

Edinburgh Research Explorer

Declarative Specification

Citation for published version:
Fuchs, N & Robertson, D 1996, 'Declarative Specification' The Knowledge Engineering Review, vol 11, no.
4, pp. 317-331., 10.1017/S0269888900008018

Digital Object Identifier (DOI):
10.1017/S0269888900008018

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher final version (usually the publisher pdf)

Published In:
The Knowledge Engineering Review

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28968017?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1017/S0269888900008018
http://www.research.ed.ac.uk/portal/en/publications/declarative-specification(9322ecb7-22c2-4352-892c-04f6d3c9a4a6).html

The Knowledge Engineering Review, Vol. 11:4, 1996, 317-331

Declarative specifications

NORBERT E. FUCHS1 AND DAVID ROBERTSON2

'Department of Computer Science, University of Zurich, Zurich, Switzerland. Email: fuchs@ifi.unizh.ch
2Department of Artificial Intelligence, University of Edinburgh, Edinburgh, Scotland. Email: dr@aisb.ed.ac.uk

Abstract

Deriving formal specifications from informal requirements is extremely difficult since one has to
overcome the conceptual gap between an application domain and the domain of formal specifica-
tion methods. To reduce this gap we introduce application-specific specification languages, i.e.,
graphical and textual notations that can be unambiguously mapped to formal specifications in a
logic language. We describe a number of realised approaches based on this idea, and evaluate them
with respect to their domain specificity vs. generality.

1 Introduction

One of the advantages of computational logic is that it can serve the dual role of a high level
specification language and of a programming language (Kowalski, 1985). This raises the possibility
that it may be used as a medium for developing programs from preliminary specifications by refining
or transforming them. For specifications one would appeal to the declarative interpretation of
computational logic based on model theory, while for programs one would rely on a procedural
interpretation of computational logic, e.g. SLD resolution (Lloyd, 1987).

The path from specifications to programs is fraught with difficulty because it relies not only on
adequate representational capabilities at each stage, but also on appropriate forms of communica-
tion with users who typically are not well acquainted with formal specifications. We highlight some
of the key problems in supporting this process, and later demonstrate through examples how these
may be addressed. Because of their importance for the software development process, we will focus
on logic specifications, and mention programs derived from them only in passing.

One of the largest problems in deriving specifications is the conceptual gap between an
application domain and the domain of specification methods, in particular formal ones. This gap
has two closely related aspects. First, each application domain has a well-established set of concepts
and notations, an accepted set of practices, and standard methods of problem solving, all of which
are not easily mapped to, or reconciled with, the concepts of logic specifications. Second,
application specialists identify with their conceptual world, and may resist abandoning it; they
may even actively oppose the introduction of new specification methods. This is especially true for
formal methods that are not easily accepted by people who use informal, or semiformal, notations
like natural language, or one of the standard graphical representations for specifications.

A further problem in mapping application concepts to logic specifications is premature design.
For simple relations, e.g.

Mary is the mother of John

the related declarative specification in computational logic is simply a syntactic variant involving
almost no design decisions

mother (mary , John)

while for the slightly more complicated relation

NORBERT E. FUCHS AND DAVID ROBERTSON 318

M is the largest integer of a non-empty set of integers

we have already to design a data-structure for the set of integers, and a recursive algorithm to find
the largest element

largest([I], I).
largest([I|Is], I) :-
largestds, Mis),
I >= Mis.

largest([I|Is] , Mis) :-
largestds, Mis),
I < Mis.

Many more and potentially more consequential design decisions have to be made to develop
declarative specifications for realistic problems taken from application domains. Making these
decisions is, however, something one rather would want to avoid at this early stage of software
development in order not to constrain unnecessarily the designer of the software.

Thus the transition from a problem in an application domain to a logic specification of this
problem is rather thorny, since we have to

• overcome the unfamiliarity of users with formal specification methods, or even their opposition
to these methods

• manage the transition from concepts of the application domain to concepts of computational
logic

• make formal specifications accessible without compromising their formality
• manage the transition from high to low levels of specification
• encode standard specification practice without choking ingenuity in design

In this paper, we will present approaches intended to overcome these difficulties. In section 2 we
introduce application-specific specification languages as a means to develop truly declarative
specifications. Then we shall give examples of systems which have used application-specific
declarative languages to support the design of specifications, and we will evaluate them with
respect to their domain specificity vs. generality. We could have given more, or different, examples
but each of the ones we have chosen addresses a key feature of this sort of activity. The ECO system
(section 3) introduces the use of schematic specification and application-specific templates as a
means of packaging standard methods and controlling the acquisition of information needed to
instantiate schemata. The RA system (section 4) raises the issue of context in interpreting declarative
specifications, and shows how declarative frameworks can be arranged to record some of the
context in which a specification is designed. The LSS system (section 5) demonstrates the value of a
uniform declarative language as a lingua franca for specifications where different representations of
different parts of a problem must be combined. The Attempto system (section 6) explores the
relationship between natural and formal language by using a restricted form of English which is
translated to a declarative specification. The Explore system (section 7) provides a mapping from
graphical descriptions of specifications to an underlying formal language, thus allowing designers to
build declarative specifications by direct manipulation of graphical symbols. In section 8 we
conclude, summarise our results, and briefly discuss alternative approaches.

2 Declarative approaches

A basic idea, common to most, if not all, approaches presented in the sequel is the redefinition of the
word declarative as used in computational logic.

Starting with the original meaning of the word that labels a sentence as declarative if it makes
"true statements about the intended domain of discourse" (Kramer & Mylopoulos, 1992), the
approaches follow Sterling's suggestion of designing application-specific specification languages

Declarative specifications 319

that allow users to express the concepts of the application domain directly, and that still can be
mapped to a logic language (Sterling, 1992). "Expressing basic concepts directly, without encoding,
taking the objects of the language as abstract entities" (Borger & Rosenzweig, 1994), application-
specific specification languages are—in the true sense of the word—declarative, and have all the
advantages of declarative programming (Lloyd, 1994).

We will make this more explicit. Mapping an application-specific specification language to a logic
language allows us to identify real objects of the application domain denotated by elements of the
application-specific language with elements of the logic language, ultimately with elements of its
Herbrand model. Thus the concept declarativity of computational logic and the informally defined
concept declarativity of an application-specific specification language can be considered identical.
This identification has enormous consequences. First, seemingly informal application-specific
specification languages turn out to be formal. Second, we are able to cross at will the border
between (apparent) informality and formality—using whatever representation is more convenient—
without losing preciseness. If understanding is important we may prefer the informal side, if formal
operations are at stake, e.g. inference, we switch to the formal side. Thus application-specific
specification languages not only allow application specialists to formulate specifications in familiar
terms, but also support formal validation and verification.

Application-specific specification languages

• reduce the conceptual gap between an application domain and the domain of formal software
development methods

• should make formal methods acceptable to application specialists
• due to their dual appearance ease the transition from a problem in an application domain to a

logic specification of this problem
• allow formal operations in familiar terms

In brief, they directly address the problems listed in the introduction.
We will now briefly describe and evaluate a number of systems using application-specific

specification languages.

3 ECO—Specifications via application-specific templates

3.1 Overview

In some domains specifications frequently follow standard patterns, with practitioners re-using
these to tackle variants of earlier problems. Where this occurs it may be possible to represent these
patterns using a form of parameterisable module, which we shall call a specification schema, and to
construct a formal language which is sufficient to instantiate the parameters of schemata whilst
being representable in terms of the informal language of the domain. One of the earliest such
systems was MECHO (Bundy et al., 1979), which used schematic descriptions of standard equations
used by students in mechanics problems and parameterised these by referring to features extracted
from problem descriptions of the sort found in "A-level" exam questions. In MECHO the schemata
were small (each being an individual equation) but more complex problems normally require large
sections of specification to be parcelled together in a schema and parameterised in more
sophisticated ways. This was necessary in the ECO project (Robertson et al, 1991), where the aim
was to assist ecologists (who generally lack mathematical modelling skills) to construct prototype
models using a representative selection of modelling paradigms.

3.2 Specification schemata

The schemata used in the ECO project consisted of six elements:

• a textual summary of the purpose of the schema
• the goal for which it provides a solution

NORBERT E. FUCHS AND DAVID ROBERTSON 320

• the segment of specification which it constructs
• the conditions which must be established from a dialogue with the ecologist in order for the

schema to be applicable
• the actions necessary to parameterise the schema appropriately
• and the predicates which need to be supplied in addition to those constructed by the schema in

order for it to be complete

A typical schema is one to find the location of a mobile object in terms of its coordinates. This solves
for the goal l o c a t i o n (A,L,T) , where A is the object, L is its location and T is a time point at
which it has that location. The segment of specification provided by this schema is:

l o c a t i o n (A , L, T) : -
not(initial_time(T)),
previous_time_point(T, Tp),
location(A, Lp, Tp),
setof((A1,L1), (nearby(A, Al), coordinates(Al, LI), S),
coordinate_displacement(Lp, S, L).

location(A, L, T) :-
initial_time(T),
coordinates(A, L).

nearby(Al, A2) :-
coordinates(Al, LI),
coordinates(A2, L2),
direct_distance(LI, L2, D),
D < M.

which is a recursive definition of location. An object's location at any time other than the initial time
is calculated as some displacement of its location, Lp, at the previous time point, Tp, with the
displacement being influenced by the set, S, of coordinates of nearby objects. An object's location at
the initial time is defined directly by its coordinate position. The definition of nearby is that two
objects, Al and A2, are near to each other if the direct distance, D, between the coordinates is less
than a given threshold, M. We have emboldened and underlined this variable to denote that it plays a
special role in the specification: it must be instantiated in order to complete the specification. This is
done by the action:

get_maximum_j?roximity_distance (M)

which prompts the ecologist for the appropriate parameter value. The schema also needs to ensure
that the appropriate information for coordinate positions of objects is supplied in the specification,
which is achieved by a second action:

construct_coordinate_goals(Cs)

which finds all the objects mentioned in the current problem description and constructs a definition
of initial coordinates for each one (prompting the ecologist for appropriate positions). The resulting
set of clauses, £s , is added to the specification. These two actions demonstrate two different forms
of parameterisation of schemata: by simple instantiation of variables in clauses and by construction
of additional groups of clauses. To do this, ecologists need not know the details of the specifica-
tion—they need only reply to the questions posed by the schema application system during
parameterisation. However, the application system needs to know which schemata to suggest to
ecologists when building the specification and this is done by checking conditions associated with
each schema. In our example these are:

i n _ s o r t (A , S a) , s p a t i a l _ r e p r e s e n t a t i o n _ a s _ p o i n t s (S a)

Declarative specifications 321

which requires that the objects we are dealing with, A, should belong to the class of objects Sa and
that Sa should have a spatial representation in terms of points. This last piece of information
regarding spatial representation is unlikely to be volunteered directly by ecologists so the later
incarnations of the ECO system contained a mechanism for conducting a dialogue with the user, in
which key schema selection conditions were progressively elicited and refined.

3.3 Dialogue in parameterising schemata

One of the major obstacles to the sort of knowledge acquisition required in parameterising schemata
like the one above is the "blank sheet of paper" syndrome, which made ecologists hesitate to
volunteer information to the system unless they were given some clues to the sort of information the
system required—so it was necessary for the initiative to be taken at this stage by the system. This
was achieved by a combination of a template filling mechanism as a means of refining formal
statements; abductive inference to suggest possible new areas of dialogue to ecologists; and
deductive inference to establish "background" consequences of what had been said. These
mechanisms operated over a set of clauses like the examples shown below:

Rule 1 [X in object, A in attribute_name] :
spatial_representation(X) :- varies_with(A, X, location, X).

Rule 2 [X in object] :
spatial_representation(X):- spatial_representation_

as_points(X).

Rule 3 [X in object] :
spatial_representation(X):- spatial_representation_

as_zones(X).

These are of the form, [V i n S, . . .] :C, where each V is a variable in clause C and the
corresponding S restricts all instances of that variable to belong to the class named by S. Rule 1
says that if an attribute of an object varies with its location then it is spatially represented. Rules 2
and 3 say that a spatial representation as points or zones imply a spatial representation. To
demonstrate how the dialogue works, we show how we might obtain the information necessary to
select the example schema above.

The dialogue begins by offering the ecologist a selection of template statements, designed to be
opening gambits. These are rendered into pseudo-English (not shown here), with the ecologist's only
task being to restrict (if necessary) the classes to which variables refer. For example, the ecologist
might select the template:

[X in object, A in attribute_name] : varies_with(A, X,
location, X).

and restrict the scope of X to deer and instantiate the attribute name to biomass. This gives the
assertion that the biomass of deer varies with location:

[X in d e e r] : v a r i e s _ w i t h (b i o m a s s , X, l o c a t i o n , X) .

The system can now deduce (via Rule 1) that deer are spatially represented:

[X in d e e r] : s p a t i a l _ r e p r e s e n t a t i o n (X) .

To continue the dialogue, the system can now hypothesise, by abduction on Rules 2 and 3, that the
spatial representation might be in terms of points or zones. It then presents these suggestions to the
ecologist, who selects points in this case. The new assertion is then:

[X i n d e e r] : s p a t i a l _ r e p r e s e n t a t i o n _ a s _ p o i n t s (X) .

NORBERT E. FUCHS AND DAVID ROBERTSON 322

which is the information we need to select the schema introduced above. Since we would not like
both points and zones to be selected (since we have no schema to deal with that situation) the system
applies integrity constraints to block this option. In our example the relevant constraint is:

[X in object] : not(spatial_representation_as_points(X),
spatial_representation_as_zones(X))

3.4 Evaluation of ECO

The ECO system targets a narrow domain so it can package much of the complexity of specification
inside schemata which encapsulate some standard modelling methods. The descriptions necessary to
parameterise these schemata are expressed in terms familiar to ecologists and the complexity of
expressions needed purely to select schemata is relatively low—thus allowing us to deploy quite
simple forms of inference during our knowledge acquisition phase. This simplicity is also
constraining: it relies on there being a fixed vocabulary of ecological keywords and the pseudo-
English generation mechanism is domain specific. In section 6 we give a more extensive discussion of
the relationship between natural language and formal specifications.

4 RA—Specifications in context

4.1 Overview

Formality in specifications is a guarantee of precision, but precision does not guarantee that the
specification is appropriate to the problem it is intended to solve. In general, no such guarantee is
possible because judgements of appropriateness are made subjectively by those in the domain of
application. However, we can use the structure of declarative specifications as a means of
attachment to key points of reference for those who might wish to judge the appropriateness of
our designs. This can be helpful in areas where design is regulated by codes of practice. One such
area is in the offshore oil industry, where the design of safety shutdown systems is carefully
regulated. The RA system was built to assist the designers of such systems by keeping track of key
connections between their designs and relevant sections of the appropriate codes of practice. A
detailed description of RA appears in Hesketh et al. (1996). Its main components are:

• A graphical interface which allows a safety engineer to describe key features of the production
platform on which the safety system is to be installed.

• A graphical interface with which a safety engineer may construct a safety specification using
schematic components.

• A system for marking segments of the textual codes of practice and associating these with proof
obligations which safety engineers might choose to discharge as a means of endorsing their design
decisions.

• A system for testing which proof obligations apply to a developing specification and, for those
which apply, determining whether or not they are discharged.

The use of graphical systems to provide declarative specifications is discussed in detail in Section 7
so we shall concentrate here on the relationship between codes of practice, proof obligations and
system specification. We do this by means of an example.

4.2 Describing and checking proof obligations

The textual markup system allows us to associate with segments of the code of practice proof
obligations like those shown below. Each of these is of the form C >- G, where each C is a set of
conditions which can be confirmed or denied by examining the production platform description and
G is a goal which, if all the conditions in C are confirmed, may be presented to the safety engineer as
a requirement to be established from the specification or the platform description.

Declarative specifications 323

Obligation 1: If we have an incident control centre, A, on the platform then there should be
a surface process shutdown button, B, located within A.
[area(incident_control_centre,A)] >-
initiator(sps_j?ushbutton,B) & location(B, within(A))

Obligation 2: If there is a surface process shutdown button, B, on the platform then
activating B should cause the installation hazard status to become red based on B.
[initiator(sps_pushbutton, B)] >-
activated(B) ==> output(installation_hazard_status(red),

[B])

Obligation 3: If there is a surface process shutdown button, B, and a small power tool
socket, S, on the platform then activating B should cause S to be tripped based on B.
[i n i t i a t o r (s p s j p u s h b u t t o n , B) ,
s o c k e t (s m a l l _ p o w e r _ t o o l _ s o c k e t , S)] > -

a c t i v a t e d (B) ==> o u t p u t (t r i p (S) , [B])

Suppose that the platform description contains an incident control centre labelled iccl—hence
a r e a (i n c i d e n t _ c o n t r o l _ c e n t r e (i c c l)) can be established. This is sufficient to make
Obligation 1 (above) applicable and the safety engineer is therefore presented with the option of
satisfying its goal:

initiator(sps_pushbutton,B) & location(B, within(iccl))

This can be satisfied by placing on the platform description (using the graphics tools provided) a
surface process shutdown button (which we shall call sp sb l) located within i c c l . The system
records that this obligation has been satisfied. It also checks whether new obligations have been
made relevant by the extra information. In this case there is a new obligation, derived from
Obligation 2, which yields the goal:

a c t i v a t e d (s p s b l) ==> o u t p u t (i n s t a l l a t i o n _ h a z a r d _ s t a t u s (r e d) ,
[s p s b l])

This goal can only be satisfied by the safety system design, which needs to connect the s p s b l
button to the output responsible for setting the installation hazard status and describe the logic by
which the signal is transferred. The details of this process are given in Robertson & Hesketh (1994)
and Hesketh et al. (1996) but, essentially, the safety engineer can satisfy the goal by simulating the
behaviour of the safety shutdown logic; by referring to properties associated with the schema used to
construct the shutdown logic; or simply by asserting that the goal holds of the design. This leaves the
burden on the designer to determine the amount of evidence to associate with his or her claim to
have discharged the obligation. The system's main role is to record this evidence so that it can be
reconstructed when reviewing and maintaining the specification.

As well as providing a record of key points of contact between the specification and the codes of
practice, automated checking for obligations can help to prompt for missing pieces of the design.
For instance, although we would expect competent safety engineers to remember Obligation 2, it is
easy for even experienced engineers to miss some cases of Obligation 3 because there are a large
number of small power tool sockets, and it is easy to miss one. Since the RA system generates every
instance of an obligation, it ensures that each is brought to the attention of the designer and a
decision recorded for it. Thus, if we added two small power tool sockets (s i and S2) to our current
design we would raise the new goals:

activated(sspbl) ==> output(trip(sl), [sspbl])
activated(sspbl) ==> output(trip(s2), [sspbl])

NORBERT E. FUCHS AND DAVID ROBERTSON 324

4.3 Evaluation of RA

This system is intended to act as a support tool for an experienced designer, so it provides little
control over the design itself. Instead, its task is to sit "at the elbow" of the designer and, as
unobtrusively as possible, monitor the evolving design in terms of key aspects of the codes of
practice. To be unobtrusive, RA must perform its checks of proof obligations automatically
(although it has an interactive explanation facility). This, in turn, means that the language used to
describe the relevant aspects of the codes of practice must be sufficiently simple that automatic proof
attempts are guaranteed either to succeed or fail in a (short) finite time. This is guaranteed by
limiting the vocabulary and grammar of our language, for example by requiring that all descriptions
of the platform features should be ground and that there are no proof obligations involving
unbounded recursion. Perhaps surprisingly, this restriction was not a major problem because the
purpose of proof obligations in RA is not to "prove" in some absolute sense that the specification
satisfies the codes of practice (which would be an impossible task) but to provide a framework which
connects the specification to those areas of the codes of practice which provide a contextual basis for
interpreting it.

5 LSS—Using specifications as a lingua franca

5.1 Overview

When constructing large specifications it is often necessary for experts from different engineering or
commercial backgrounds to cooperate on the design. Unfortunately, it is not always possible to
devise a single means of communication which suits everyone and which is also easy for each
participant to learn. This makes it necessary to think of ways to support diverse styles of expression
without isolating each individual's contribution. One way of doing this is by building tools for
specification which are tuned to the roles of each type of participant but all of which build
specifications in the same declarative language. In this way, the declarative language acts as a lingua
franca between participants (although it is not essential that all participants are aware that the
common language exists). The LSS system was built to demonstrate this architecture.

5.2 Summary of LSS tools

It consists of the following tools which, although each looks very different in its operators, all
manipulate Horn clause specifications:

• A graphical tool for describing sequential, non-deterministic processes using box and arrow
diagrams. These are translated automatically into definite clause grammars, which can them-
selves be translated directly to Horn clauses.

• A graphical tool for describing recursive specifications using a set-based visual metaphor drawn
from the familiar Venn diagram notation. These are translated into incomplete Horn clause
specifications, since the diagrammatic notation is not sufficiently expressive to show all the details
of the recursive specification. However, the "holes" which are left in the specification are in a
form which can be filled using the techniques editing tool (below).

• A tool which constructs Horn clause specifications by first selecting a skeletal specification
containing only those arguments and subgoals responsible for the flow of control in the
executable specification, and then extending this incrementally by the addition of arguments
and subgoals responsible for the other parts of the functionality of the specification. This method
is known as techniques editing, (cf. Sterling & Yalcinalp, "Logic Programming and Software
Engineering—Implications for Software Design", The Knowledge Engineering Review 11:4,1996;
this issue).

• A tool which treats groups of predicate definitions (provided by the other tools) as modules and

Declarative specifications 325

provides a graphical interface for assembling these modules into larger specifications. It also
provides facilities for selectively displaying related groups of modules.

• A tool which allows argumentation networks (in a style similar to that used in Ramesh & Luqi
(1993)) to be drawn as a means of recording some of the non-functional requirements behind the
specification and some of the interactions between these requirements. The nodes of these
diagrams can refer to predicates in the specification (supplied by other tools) and if these
predicates have been constructed incrementally (as in the techniques editor) the stages in their
construction can be "rewound" or "played back" in order to review their construction in the
context of the argumentation network.

5.3 Evaluation ofLSS

The success of this approach relies on a clear subdivision of the tasks in a collaborative specification
and commitments from the participants about what the interactions between tools will be. For
example, Robertson (1996) describes the construction of a simple diagnostic specification in which
the process description tool is used to describe the overall patient processing procedure; the
recursion tool is used to outline the basis for diagnosing each patient; and the techniques editor is
used to define the algorithm for determining the covering set of hypotheses based on the known
symptoms. For this interaction to be effective there must be a partitioning of effort at the beginning
of the collaboration—so that the operator of the process description tool knows to leave the
definition of diagnosis to the person using the recursion tool, and the operator of the techniques
editor is able to identify the component of the diagnostic specification which is his or her
responsibility. In other words, the flexibility afforded by this heterogeneous toolkit must be
constrained by agreements on its use, tailored to particular applications. The value of the tools is
to provide anchor points for such agreements and the value of declarative specifications are as a
uniform foundation for the tools.

6 Attempto—Specifications in Controlled English

6.1 Overview

Natural language has a long tradition as a specification language—though uncontrolled use of
natural language leads to ambiguous, imprecise and unclear specifications. It is, however, possible
to define subsets of natural language that are sufficiently expressive to serve as application-specific
specification languages, and at the same time sufficiently restricted to be computer-processable
(Pulman & Rayner, 1994). That is, these controlled natural languages are formal and share most of
the advantages of formal specification languages—specifically precision and unambiguity—but not
their disadvantages such as inscrutability and non-acceptance.

Attempto Controlled English (ACE) is a computer processable subset of English for writing
requirements specifications (Fuchs & Schwitter, 1996; Schwitter & Fuchs, 1996a). A specification is
an ACE text that is translated into semantically equivalent representations in logic. Since this
translation is reversible, an ACE specification and the derived logic specifications are semantically
equivalent representations of the same formal object. In brief, ACE specifications may seem to be
informal but are formal, and even executable. Because the representations are semantically
equivalent one can decide to work exclusively with the ACE representation. Thus ACE offers
domain specialists an application-specific language that breaks the bottleneck between informal and
formal specification methods. Furthermore, ACE does not presuppose more than elementary
linguistic knowledge and the willingness to learn a small number of principles on which the language
is based.

The language ACE is embedded in the specification system Attempto that accepts specification
texts, analyses them syntactically, and translates them into discourse representation structures
(DRSs), and optionally into Prolog. A DRS is a structured form of first-order predicate logic which
contains discourse referents representing the objects of the discourse, and conditions for these

NORBERT E. FUCHS AND DAVID ROBERTSON 326

discourse referents. Each sentence is translated in the context of the preceding sentences, yielding an
extension of the current DRS into which the present interpretation step is incorporated.

To inform the user about the results of the analysis, the Attempto system generates a paraphrase
in ACE—displaying all substitutions and interpretations made—that explains how Attempto
interpreted the input text. It is up to the user to accept the interpretation, or to rephrase the input
to achieve a different interpretation.

Translated specification texts are added to a knowledge base. The user can query this knowledge
base by formulating questions in ACE. Questions are translated into query DRSs which are
answered by deduction. The user can also execute the knowledge base, i.e., the specification, for
prototyping and validation. Executing a specification leads to a dialogue between the Attempto
system and the user who has to provide situation-specific information, again using ACE.

Attempto Controlled English (ACE)

The basic construct of an ACE specification is the declarative sentence. Declarative sentences can be
combined by constructors to powerful composite sentences, while restricted forms of anaphora and
ellipsis leave the language concise and natural.

Specification texts consist of

• declarative sentences subject + finite verb (+ complement or object)
• composite sentences built from simpler sentences with the help of constructors that mark

coordination {and, or, either-or), subordination {if-then, who/which/that), and negation {not).

Sentences can contain

• subject and object modifying relative sentences
• anaphoric references, e.g., personal pronouns
• coordination between equal constituents, e.g. and, or
• ellipsis as reduction of coordination
• negated noun phrases, no X
• synonyms and abbreviations.

Furthermore, we place interrogative sentences at the user's disposal for verifying the translated
specification text. Interrogative sentences comprise

• yes/no questions
• wA-questions, e.g. who, which, how

Here is a small excerpt of the ACE specification of a simple automated teller machine called
SimpleMat:

The customer enters a card and a numeric personal code.
If it is not valid then SM rejects the card.

The example specification text employs

• composite sentences built from declarative sentences with the help of the constructors and, if-then
and not

• ellipsis, viz. The customer enters a card and [the customer enters] a numeric personal code.
• compound nouns, e.g., personal code
• anaphoric references via the pronoun it and the definite noun phrase the card
• abbreviations {SM standing for the name SimpleMat).

To make ACE easily learned and remembered, it is based on a small number of syntactic and
semantic principles, and uses a small number of simple rules to handle ambiguity (Schwitter &
Fuchs, 1996b).

Declarative specifications

Controlled English Discourse Representation Structure

327

The customer enters a card
and a numeric personal code.
I£ it is not valid
r.hen SM rejects the card.

Who enters a card?

Answer:
[A customer] enters a card.

user: John is a customer,
user: Bank card is a card.

event: John enters the bank card.

Translation

Query

Execution

[A.B.CD.E.F.G.H.I.J.K.L]

customer(A)
card IB)
event (Center (A, B))
cul(CO)
numeric(E)
personal code(E)
event(F,enter(A,E))
cul(F.G)
named (H, simplemat)
IF:

NOT:
[I.J1
stated, valid(E))
holds!I,J)

THEN:
[K,L|
event(K, reject(H,B))
cuKK.D

Figure 1

6.3 Using the Attempto system

The Attempto system accepts specifications in ACE and translates them paragraph by paragraph
into Discourse Representation Structures. In a further step, the specification can be translated into
Prolog. Translated specifications can be queried in ACE, and can be executed for prototyping and
validation.

Figure 1 shows the translation of the above example specification and the generated discourse
representation structure which consists of a list of referents [A, B, C,...]—standing for the objects of
discourse—and conditions for these referents. The figure also shows the sample query Who enters a
card? and the generated answer [A customer] enters a card.

Finally, figure 1 gives an excerpt of the execution trace of the example specification. The situation-
specific information (John, bank card etc.) is provided by the user while the actions associated with
events are built into the execution environment.

6.4 Evaluating Attempto

Attempto Controlled English (ACE) fulfils the criteria for an application-specific specification
language—at least the technical ones—since it allows application specialists

• to develop logic specifications by formulating them in ACE, using their concepts of the
application domain

• to validate logic specifications by querying and executing them in ACE.

Thus logic specifications are made available to application specialists in the disguise of the familiar
natural language. It remains to be seen whether this disguise will also help to eliminate the
acceptance problem of formal methods.

7 Explore—Graphical specifications

7.1 Overview

Explore is an approach for the schema-based graphical and textual composition of logic specifica-
tions (Fromherz, 1993; Fuchs & Fromherz, 1994). Explore has three main features:

NORBERT E. FUCHS AND DAVID ROBERTSON 328

• an object-oriented logic specification language Explore/L
• graphical views of logic specifications that can serve as application-specific specification

languages
• an object-oriented framework that provides predefined schemata for partial specifications

Explore provides graphical views as semantically equivalent representations of a logic specification
in Explore/L, or—as will be seen shortly—parts of it. For each view there is a view editor that allows
users to graphically compose specifications from predefined classes of the object-oriented frame-
work, or to view an already existing logic specification in Explore/L in one of its graphic
representations. Among the view editors are:

• the process editor to specify behaviour, concretely to define the overall structure of a specification
as a finite state automaton

• the dialogue editor to specify window-oriented user interfaces.

Each graphical editor notation is a language for combining objects in an abstract, problem-oriented
manner. Because there is a bi-directional mapping between a graphical view and its associated logic
specification, we can again consider the views as application-specific specification languages.

The object-oriented framework of Explore is a set of interconnected objects that provide the basic
functionality of applications in a specific domain. With such a framework available, an application
is built by reusing the structure of the framework while specialising its objects to the individual
requirements. In this respect, a framework is more than just an object library, as it provides not only
classes and instances, but also the design of an application.

7.2 An example specification with Explore

To demonstrate working with Explore, we will sketch the development of a logic specification for
an automated teller machine called SimpleMat. As its name indicates, SimpleMat provides the
minimal functionality of an ATM—identifying customers, and withdrawing money with or
without receipt.

The development of the SimpleMat program consists of three steps. In the first step we define
SimpleMat as a finite-state machine with the help of the tools of the process editor of Explore.
Figure 2 shows the process editor and a partial view of SimpleMat's state transition network.

Process view editor for md_mochine

Figure 2 SimpleMat (NB: the numbers in brackets refer to the data of the transitions).

Declarative specifications 329

Dialog uieu> editor for md-dialog

C D
on

S

Money Dispenser

iPress On ...

3 © ©
m m in

(Take paper)

(Trap: 0) [On] [Off]

Figure 3 Dialogue editor with a part of the user interface of SimpleMat.

Using the default functionality provided by the specification framework, this incomplete
specification is already executable. We can put the finite-state machine through its paces and check
if it has the required states and transitions.

For the second step, we assume that transitions of the finite-state machine are triggered by user
interactions. We use the dialogue editor of Explore to define a user interface for SimpleMat. The
names of events triggering the transitions are used to connect the transitions to elements of the user
interface. Figure 3 shows the dialogue editor with a part of the user interface of SimpleMat.

Again, due to the default functionality of the framework, this new version of the SimpleMat
program is executable. We can trigger transitions of SimpleMat's finite-state machine by simulating
operations of the user.

In the third step, we incorporate the required functionality of SimpleMat by accessing the textual
representation of the specification, i.e., the Explore/L code, and override or extend default methods
and attributes.

Following is a section of the completed Explore/L specification for SimpleMat. These definitions
represent two alternative transitions after the desired amount of money has been entered by the user.
The first transition is chosen if the amount is valid for the current card. In this case, the money trap
is instructed to prepare the money, a receipt is printed (if button A was pressed), and the dialogue
interface is told to display an appropriate message. The second transition is chosen if the amount is
not valid; again, a suitable message will be displayed.

tr_valid_amount(Event, Amount) :-
current_card <- valid_amount(Amount),
money_trap <- set_amount(Amount),

machine: : current_state = st_amount_A

Textldent = text_prep

Textldent = text_paper,
printer <- print_receipt

NORBERT E. FUCHS AND DAVID ROBERTSON 330

dialog <- tr_next(Event, next_text(Textldent)).

tr_valid_amount(Event, Amount) :-
not current_card <- valid_amount(Amount),
dialog <- tr_next(Event, next_text(text_iamount)).

The SimpleMat specification being completed, we can execute it to validate its functionality with
respect to given requirements, to complete and clarify vague requirements, or to experiment with the
user interface. The execution can be visualised in the view of the dialogue editor.

7.3 Evaluation of Explore

Though the graphical views of Explore allow users to develop and to validate logic specifications in
terms close to an application the view languages do not completely fulfil the criteria for application-
specific specification languages. The main reason is that the mapping between a specification in
Explore/L and it graphical views is only partial. Functionality added in third step by overriding and
extending the classes and objects of the framework is simply not visible in the graphical views. This
functionality will only become apparent when the specification is executed.

8 Conclusions

We have presented a number of approaches that should reduce the conceptual gap between an
application domain and the domain of formal software development methods, should make formal
methods acceptable to application specialists, and in general should ease the transition from a
problem in an application domain to a logic specification of this problem. We must note, however,
that all these approaches are limited—to particular problem domains, to restricted classes of users,
or to a limited range of formal specifications. Table 1 summarises some of the main limitations of
each system, according to these three dimensions.

Not all of the application-specific restrictions above are hard-wired into each system. For
example, the ECO system library of schemata (which constrain the range of specifications which it
can build) could be replaced by a different collection of schemata for an appropriate new
application; the lexicon which limits Attempto to the ATM domain could be replaced by a new
lexicon for a different domain. In this sense, the systems described have an element of configur-
ability, provided that the new target domain is of a similar nature to the one in which the tool was

Table 1 Limitations of each system

Domain Users Type of specification

ECO Population dynamics

RA Safety shutdown systems for
oil production platforms

LSS Partitioned design of logic

programs

Attemptto Automated teller machines

Explore Automated teller machines

Ecologists possessing little
modelling expertise

Safety system engineers

Those trained in the use of
each tool

Familiar with basic English
grammar
Familiar with basic ATM
operation

Horn clauses restricted to those
in a schema library

Functional logic augmented
with codes of practice

Horn clauses

Finite state machines

Finite state machines, object-
oriented

Declarative specifications 3 31

developed. Such reconfiguration is itself a specialist engineering job which requires familiarity with
the principles of the original systems.

Is it possible to construct systems which are less limited but equally accessible? There are several
alternative routes to this goal. The most obvious approach is to devise a single method which is both
flexible and accessible but this route seems impassable, unless we reconcile the users of such a
method to extensive training in a generic specification environment (which contravenes the
accessibility requirement). A second approach is to combine application-specific methods which
complement each other. For example, combining Attempto Controlled English with graphical and
algorithmic specification languages might result in a powerful specification system that is more than
the sum of each individual approach, because of the opportunities for interplay between graphics
and natural language. A third option, which is part of the motivation for LSS, is to retain the use of
independent tools and to use these as the basis for a large-scale plan of construction, which selects
particular systems for targeted portions of the specification and forges agreements between
designers for how specifications produced by each tool will be combined. This option requires a
high degree of social organisation, which may only be possible in well explored domains.

References

Borger, E and Rosenzweig, D, 1994. "A mathematical definition of full Prolog" Science of Computer
Programming.

Bundy, A, Byrd, L, Luger, G, Mellish, C and Milne, R, 1979. "Solving mechanics problems using meta-level
inference" In BG Buchanan (ed), Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI).

Fromherz, MPJ, 1993. "A methodology for executable specifications-combining logic programming, object-
orientation and multiple views" PhD thesis, Department of Computer Science, University of Zurich,
Switzerland.

Fuchs, NE and Fromherz, MPJ, 1994. "Transformational development of logic programs from executable
specifications-schema-based visual and textual composition of logic programs" In C Beckstein and U Geske
(eds), Entwicklung, Test und Wartung deklarativer Kl-Programme GMD Studien Nr. 238, Gesellschaft fur
Informatik und Datenverarbeitung, pp 13-28.

Fuchs, NE and Schwitter, R, 1996. "Attempto Controlled English (ACE)" CLAW 96, First International
Workshop on Controlled Language Applications University of Leuven, Belgium, March.

Hesketh, J, Robertson, D, Fuchs, N and Bundy, A, 1996. "Automating reasoning support for design"
Research paper, Department of Artificial Intelligence, University of Edinburgh, Scotland.

Kowalski, RA, 1985. The Relation Between Logic Programming and Logic Specification Prentice-Hall.
Lloyd, JW, 1987. Foundations of Logic Programming Springer-Verlag.
Kramer, B and Mylopoulos, J, 1992. "Knowledge representation" In SC Shapiro (ed) Encyclopedia of Artificial

Intelligence Wiley.
Lloyd, J, 1994. "Practical advantages of declarative programming" Invited lecture, GULP-PRODE '94,

Peniscola, Spain.
Pulman, S and Rayner, M, 1994. "Computer Processable Controlled Language" SRI International Cambridge

Computer Science Research Centre, Cambridge.
Luqi, BR, 1993. "Process knowledge based rapid prototyping for requirements engineering" Proceedings IEEE

Symposium on Requirements Engineering San Diego, CA.
Robertson, D, Bundy, A, Muetzelfeldt, R, Haggith, M and Uschold, M, 1991. Eco-Logic: Logic-Based

Approaches to Ecological Modelling MIT Press (Logic Programming Series).
Robertson, D, 1996. "Distributed specification" Proceedings 12th European Conference on Artificial Intelligence

(ECAI-96) Budapest, Hungary.
Robertson, D and Hesketh, J, 1994. "Making specification design more accountable" Proceedings ONRj

ARPA/AFOSR/ARO/NSF Workshop on Increasing the Practical Impact of Formal Methods Monterey, CA.
Schwitter, R and Fuchs, NE, 1996. "Attempto—from specifications in controlled natural language towards

executable specifications" GIEMISA Workshop Natiirlichsprachlicher Entwurf von Informationssystemen,
Tutzing.

Schwitter, R and Fuchs, NE, 1996. "Attempto Controlled English (ACE)—a seemingly informal bridgehead in
formal territory" Extended abstract. In NE Fuchs and U Geske (eds) Proceedings Poster Session, JICSLP
'96, Joint International Conference and Symposium on Logic Programming Bad Honnef, Germany.

Sterling, L, 1992. "A role for Prolog in software engineering" Computer Science Colloquium Department of
Computer Science, University of Zurich, Switzerland.

