146 research outputs found

    An Agent-Based Variogram Modeller: Investigating Intelligent, Distributed-Component Geographical Information Systems

    Get PDF
    Geo-Information Science (GIScience) is the field of study that addresses substantive questions concerning the handling, analysis and visualisation of spatial data. Geo- Information Systems (GIS), including software, data acquisition and organisational arrangements, are the key technologies underpinning GIScience. A GIS is normally tailored to the service it is supposed to perform. However, there is often the need to do a function that might not be supported by the GIS tool being used. The normal solution in these circumstances is to go out and look for another tool that can do the service, and often an expert to use that tool. This is expensive, time consuming and certainly stressful to the geographical data analyses. On the other hand, GIS is often used in conjunction with other technologies to form a geocomputational environment. One of the complex tools in geocomputation is geostatistics. One of its functions is to provide the means to determine the extent of spatial dependencies within geographical data and processes. Spatial datasets are often large and complex. Currently Agent system are being integrated into GIS to offer flexibility and allow better data analysis. The theis will look into the current application of Agents in within the GIS community, determine if they are used to representing data, process or act a service. The thesis looks into proving the applicability of an agent-oriented paradigm as a service based GIS, having the possibility of providing greater interoperability and reducing resource requirements (human and tools). In particular, analysis was undertaken to determine the need to introduce enhanced features to agents, in order to maximise their effectiveness in GIS. This was achieved by addressing the software agent complexity in design and implementation for the GIS environment and by suggesting possible solutions to encountered problems. The software agent characteristics and features (which include the dynamic binding of plans to software agents in order to tackle the levels of complexity and range of contexts) were examined, as well as discussing current GIScience and the applications of agent technology to GIS, agents as entities, objects and processes. These concepts and their functionalities to GIS are then analysed and discussed. The extent of agent functionality, analysis of the gaps and the use these technologies to express a distributed service providing an agent-based GIS framework is then presented. Thus, a general agent-based framework for GIS and a novel agent-based architecture for a specific part of GIS, the variogram, to examine the applicability of the agent- oriented paradigm to GIS, was devised. An examination of the current mechanisms for constructing variograms, underlying processes and functions was undertaken, then these processes were embedded into a novel agent architecture for GIS. Once the successful software agent implementation had been achieved, the corresponding tool was tested and validated - internally for code errors and externally to determine its functional requirements and whether it enhances the GIS process of dealing with data. Thereafter, its compared with other known service based GIS agents and its advantages and disadvantages analysed

    Dynamic land use/cover change modelling

    Get PDF
    Landnutzungswandel ist eine komplexe Angelegenheit, die durch zahlreiche biophysikalische, sozioökonomische und wirtschaftliche Faktoren verursacht wird. Eine offensichtliche Art des Landnutzungswandels, die in den suburbanen Gebieten einer Metropole stattfindet, ist die Zersiedelung. Es gibt viele Modellierungstechniken, um dieses Phänomen zu studieren. Diese wurden seit den 1960iger Jahren entwickelt und finden weite Verbreitung. Einige dieser Modelle leiden unter dem Vernachlässigen signifikanter Variablen. Traditionelle Methoden wie etwa zellulare Automaten, Markow-Ketten-Modelle, zellulare Automaten-Markow-Modelle und logistische Regressionsmodelle, weisen inhärente Schwächen auf in Bezug auf menschliche Aktivitäten in der Umwelt. Das liegt daran, dass der Mensch der Hauptakteur in der Transformation der Umwelt ist und die suburbanen Gebiete durch Niederlassungspräferenzen und Lebensstil prägt. Das Hauptziel dieser Dissertation ist es, einige dieser traditionellen Techniken zu untersuchen, um ihre Vor- und Nachteile zu identifizieren. Diese Modelle werden miteinander verglichen, um ihre Funktionalität zu hinterfragen. Obwohl die Methodologie zur Evaluierung agentenbasierter Modelle unzureichend ist, wurde hier versucht, ein selbst-kalibriertes agentenbasiertes Modell für den Großraum Teheran zu erstellen. Einige Variablen, die in der Wirklichkeit die Zersiedelung im Studiengebiet kontrollieren, wurden durch Expertenwissen und ähnliche Studien extrahiert. Drei Hauptagenten, die mit der Ausbreitung von Städten zu tun haben, wurden definiert: Entwickler, Bewohner, Behörden. Jeder einzelne Agent beeinflusst Variablen; d.h. die Entscheidungen eines Agenten werden von einer Reihe realer Variablen beeinflusst. Das Verhalten der einzelnen Agenten wurde in einer GIS Umgebung kodiert und anschließend zusammengeführt, um einen Prototyp zur Simulation der Landnutzungsänderung zu erzeugen. Dieser Geosimulations-Prototyp ist in der Lage, die Quantität und die Lage von Landnutzungsänderungen insbesondere in der Umgebung von Teheran zu simulieren. Dieses agentenbasierte Modell zieht Nutzen aus der Stärke traditioneller Techniken wie etwa zellularen Automaten zur Änderungsallokation, Markow-Modellen zur Schätzung der Quantität der Änderung und einer Gewichtung der individuellen Faktoren. Eine detaillierte Diskussion der Implementierung der unterschiedlichen Methoden sowie eine Stärken-Schwächen-Analyse werden präsentiert und die Ergebnisse mit der tatsächlichen Situation verglichen, um die Modelle zu verifizieren. In dieser Arbeit wurden GIS Funktionen verwendet und zusätzliche Funktionen in Python programmiert. Diese Untersuchungen sollen Stadtplaner und Entscheidungsträger unterstützen, Städte und deren Ausbreitung zu simulieren.Land use/ cover change is a complex matter, which is caused by numerous biophysical, socio-economical and economic factors. An obvious form of land use change in the suburbs of the metropolis is defined as urban sprawl. There are a number of techniques to model this issue in order to investigate this topic. These models have been developed since the 1960s and are increasing in terms of quantity and popularity. Some of these models suffer from a lack of consideration of some significant variables. The traditional methods (e.g. Cellular Automata, the Markov Chain Model, the CA-Markov Model, and the Logistic Regression Model) have some inherent weaknesses in consideration of human activity in the environment. The particular significance of this problem is the fact that humans are the main actors in the transformation of the environment, and impact upon the suburbs due to their settlement preferences and lifestyle choices. The main aim of this thesis was to examine some of those traditional techniques in order to discover their considerable advantages and disadvantages. These models were compared against each other to challenge their functionality. Whereas there is a lack of methodology in evaluation of agent-based models, it was presumed to create a self-calibrated agent based model, by focussing on the Tehran metropolitan area. Some variables in reality control urban sprawl in the study area, which were extracted through the expert knowledge and similar studies. Three main agents, which deal with urban expansion, were defined: developers, residents, government. Each particular agent affects some variables, i.e. the agents‟ decisions are being influenced by a set of real variables. Agents‟ behaviours were coded in a GIS environment and, thereafter, the predefined agents were combined through a function to create a prototype for simulation of land change. This designed geosimulation prototype can simulate the quantity and location of changes specifically in the vicinity of the metropolis of Tehran. This customised agent-based model benefits from the strengths of traditional techniques; for instance, a Cellular Automata structure for change allocation, a Markov model for change quantity estimation and a weighting system to differentiate between the weights of the driving factors. A detailed discussion of each methodology implementation, and their weakness and strengths, is then presented, specifically comparing results with the reality to verify the models. In this research, we used only the GIS functionalities within GIS environments and the required functions were coded in the Python engine. This investigation will help urban planners and urban decision-makers to simulate cities and their movements over time

    Calibration of a spatial simulation model with volunteered geographical information

    Get PDF
    For many scientific disciplines, the continued progression of information technology has increased the availability of data, computation and analytical methodologies including simulation and visualisation. Geographical information science is no exception. In this article, we investigate the possibilities for deployment of e-infrastructures to inform spatial planning, analysis and policy-making. We describe an existing architecture that feeds both static and dynamic simulation models from a variety of sources, including not only administrative datasets but also attitudes and behaviours which are harvested online from crowds. This infrastructure also supports visualisation and computationally intensive processing. The main aim of this article is to illustrate how spatial simulation models can be calibrated with crowd-sourced data. We introduce an example in which popular attitudes to congestion charging in a major UK city (Manchester) were collected, with promotional support from a high-profile media organisation (the BBC). These data are used to estimate the parameters of a transport simulation model, using a hungry estimation procedure which is deployed within a high-performance computational grid. We indicate how the resulting model might be used to evaluate the impact of alternative policy options for regulating the traffic in Manchester. Whilst the procedure is novel in itself, we argue that greater credibility could be added by the incorporation of open-source simulation models and by the use of social networking mechanisms to share policy evaluations much more widely

    The Repast Simulation/Modelling System for Geospatial Simulation

    Get PDF
    The use of simulation/modelling systems can simplify the implementation of agent-based models. Repast is one of the few simulation/modelling software systems that supports the integration of geospatial data especially that of vector-based geometries. This paper provides details about Repast specifically an overview, including its different development languages available to develop agent-based models. Before describing Repast’s core functionality and how models can be developed within it, specific emphasis will be placed on its ability to represent dynamics and incorporate geographical information. Once these elements of the system have been covered, a diverse list of Agent-Based Modelling (ABM) applications using Repast will be presented with particular emphasis on spatial applications utilizing Repast, in particular, those that utilize geospatial data

    The Use of Simulation in Urban Modelling

    Get PDF

    The Integrated System for Public Health Monitoring of West Nile Virus (ISPHM-WNV): a real-time GIS for surveillance and decision-making

    Get PDF
    BACKGROUND: After its first detection in North America in New York in 1999, West Nile virus was detected for the first time in 2002 in the province of Quebec, Canada. This situation forced the Government of Quebec to adopt a public health protection plan against the virus. The plan comprises several fields of intervention including the monitoring of human cases, Corvidae and mosquitoes in order to ensure the early detection of the presence of the virus in a particular area. To help support the monitoring activities, the Integrated System for Public Health Monitoring of West Nile Virus (ISPHM-WNV) has been developed. RESULTS: The ISPHM-WNV is a real-time geographic information system for public health surveillance of West Nile virus and includes information on Corvidae, mosquitoes, humans, horses, climate, and preventive larvicide interventions. It has been in operation in the province of Quebec, Canada, since May 2003. The ISPHM-WNV facilitates the collection, localization, management and analysis of monitoring data; it also allows for the display of the results of analyses on maps, tables and statistical diagrams. CONCLUSION: The system is very helpful for field workers in all regions of the province, as well as for central authorities. It represents the common authoritative source of data for analysis, exchange and decision-making

    Urban Atlas, land use modelling and spatial metric techniques

    Get PDF
    Recently, through the GMES program of ESA the Urban Atlas dataset was released. The Urban Atlas is providing pan-European comparable land use and land cover data for Large Urban Zones with more than 100.000 inhabitants as defined by the Urban Audit. The production of the various datasets started in 2009 and is expected to be completed by the end of 2011. At presently datasets for more than 150 urban areas have been released. Most importantly the datasets can be freely downloaded and distributed. The availability of such a huge dataset produced with the same standards will have a major impact on the development of urban transportation models and the comparative analysis of the urban areas across Europe. Combined with the data sets that will be developed from the various Census of population it could become the basis for the application of various models in the next ten years. In this paper two major themes are discussed. First, how the current state of art in urban modeling (behavioral, cellular automata and statistical) can use these models, what type of additional data might be needed and how these datasets can be combined with other data for developing land use transportation models. Second, spatial metric techniques are used to define indicators for the landscape that could be used for comparing the structure and the form of the various cities. In the last ten years there has been an increasing interest in applying spatial metric techniques analysis of urban environments, to examine unique spatial components of intra-and inter-city urban structure, as well as, the dynamics of change. The landscape perspective assumes abrupt transitions between individual patches that result in distinct edges. These measures provide a link between the detailed spatial structures that result from urban change processes. The spatial metric indicators were developed for several cities and are then used for a comparative study of city typologies and urban fabric characteristics.

    Adaptable Spatial Agent-Based Facility Location for Healthcare Coverage

    Get PDF
    Lack of access to healthcare is responsible for the world’s poverty, mortality and morbidity. Public healthcare facilities (HCFs) are expected to be located such that they can be reached within reasonable distances of the patients’ locations, while at the same time providing complete service coverage. However, complete service coverage is generally hampered by resource availability. Therefore, the Maximal Covering Location Problem (MCLP), seeks to locate HCFs such that as much population as possible is covered within a desired service distance. A consideration to the population not covered introduces a distance constraint that is greater than the desired service distance, beyond which no population should be. Existing approaches to the MCLP exogenously set the number of HCFs and the distance parameters, with further assumption of equal access to HCFs, infinite or equal capacity of HCFs and data availability. These models tackle the real-world system as static and do not address its intrinsic complexity that is characterised by unstable and diverse geographic, demographic and socio-economic factors that influence the spatial distribution of population and HCFs, resource management, the number of HCFs and proximity to HCFs. Static analysis incurs more expenditure in the analytical and decision-making process for every additional complexity and heterogeneity. This thesis is focused on addressing these limitations and simplifying the computationally intensive problems. A novel adaptable and flexible simulation-based meta-heuristic approach is employed to determine suitable locations for public HCFs by integrating Geographic Information Systems (GIS) with Agent-Based Models (ABM). Intelligent, adaptable and autonomous spatial and non-spatial agents are utilized to interact with each other and the geographic environment, while taking independent decisions governed by spatial rules, such as •containment, •adjacency, •proximity and •connectivity. Three concepts are introduced: assess the coverage of existing HCFs using travel-time along the road network and determine the different average values of the service distance; endogenously determine the number and suitable locations of HCFs by integrating capacity and locational suitability constraints for maximizing coverage within the prevailing service distance; endogenously determine the distance constraint as the maximum distance between the population not covered within the desired service distance and its closest facility. The models’ validations on existing algorithms produce comparable and better results. With confirmed transferability, the thesis is applied to Lagos State, Nigeria in a disaggregated analysis that reflects spatial heterogeneity, to provide improved service coverage for healthcare. The assessment of the existing health service coverage and spatial distribution reveals disparate accessibility and insufficiency of the HCFs whose locations do not factor in the spatial distribution of the population. Through the application of the simulation-based approach, a cost-effective complete health service coverage is achieved with new HCFs. The spatial pattern and autocorrelation analysis reveal the influence of population distribution and geographic phenomenon on HCF location. The relationship of selected HCFs with other spatial features indicates agents’ compliant with spatial association. This approach proves to be a better alternative in resource constrained systems. The adaptability and flexibility meet the global health coverage agenda, the desires of the decision maker and the population, in the support for public health service coverage. In addition, a general theory of the system for a better-informed decision and analytical knowledge is obtained
    • …
    corecore