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ABSTRACT 

Geo-Information Science (GIScience) is the field of study that addresses substantive 
questions concerning the handling, analysis and visualisation of spatial data. Geo-
Information Systems (GIS), including software, data acquisition and organisational 
arrangements, are the key technologies underpinning GIScience. A GIS is normally 
tailored to the service it is supposed to perform. However, there is often the need to do 
a function that might not be supported by the GIS tool being used. The normal solution 
in these circumstances is to go out and look for another tool that can do the service, 
and often an expert to use that tool. This is expensive, time consuming and certainly 
stressful to the geographical data analyses. On the other hand, GIS is often used in 
conjunction with other technologies to form a geocomputational environment. One of 
the complex tools in geocomputation is geostatistics. One of its functions is to provide 
the means to determine the extent of spatial dependencies within geographical data 
and processes. Spatial datasets are often large and complex. Currently Agent system 
are being integrated into GIS to offer flexibility and allow better data analysis. The theis 
will look into the current application of Agents in within the GIS community, determine 
if they are used to representing data, process or act a service.   
 
The thesis looks into proving the applicability of an agent-oriented paradigm as a 
service based GIS, having the possibility of providing greater interoperability and 
reducing resource requirements (human and tools). In particular, analysis was 
undertaken to determine the need to introduce enhanced features to agents, in order 
to maximise their effectiveness in GIS. This was achieved by addressing the software 
agent complexity in design and implementation for the GIS environment and by 
suggesting possible solutions to encountered problems. The software agent 
characteristics and features (which include the dynamic binding of plans to software 
agents in order to tackle the levels of complexity and range of contexts) were 
examined, as well as discussing current GIScience and the applications of agent 
technology to GIS, agents as entities, objects and processes. These concepts and 
their functionalities to GIS are then analysed and discussed. The extent of agent 
functionality, analysis of the gaps and the use these technologies to express a 
distributed service providing an agent-based GIS framework is then presented.  
 
Thus, a general agent-based framework for GIS and a novel agent-based architecture 
for a specific part of GIS, the variogram, to examine the applicability of the agent-
oriented paradigm to GIS, was devised. An examination of the current mechanisms for 
constructing variograms, underlying processes and functions was undertaken, then 
these processes were embedded into a novel agent architecture for GIS. Once the 
successful software agent implementation had been achieved, the corresponding tool 
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was tested and validated - internally for code errors and externally to determine its 
functional requirements and whether it enhances the GIS process of dealing with data. 
Thereafter, its compared with other known service based GIS agents and its 
advantages and disadvantages analysed. 
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CHAPTER ONE: FOCUS OF INVESTIGATION  

 

1.1 Introduction 

The study of the Earth, its geographical resources and natural or man-made 

phenomena, is recognised as being important in human development. Environmental 

impacts, evident from recent catastrophes like Hurricane Katrina which devastated 

New Orleans and the Mississippi area in 2005 and the tsunami which battered the 

Indian Ocean shores in 2004, have reinforced the need to better model and 

understand geographical and environmental phenomena. Furthermore, the human 

race can been seen as the perpetrator of some environmental catastrophes, including 

those linked to recent climate change, and has brought to the fore issues relating to 

water and soil contamination, soil erosion, sedimentation and deforestation, and the 

social and economic impact these have on communities. Most of these issues are 

fundamentally spatial; being to varying degrees geographically interrelated. For 

example, the evident pattern of land use in relation to availability of water, energy 

consumption in relation to environmental changes and global warming, 

industrialisation to water and soil contamination, and even the shift of large industries 

from Europe to Asia provides evidence of cause and effect of spatial relationships. The 

consequences of these interrelationships and spatial dependencies in geographical 

information (GI) cannot be ignored. Skupin and Fabricant (2008) have defined the 

work of GI scientists as generally to “investigate the conceptualization, analysis, 

modelling and depiction of geographical phenomena and processes with regard to 

geographical scale”. 

 

To identify and understand the spatial issues and relationships in modelling and 

understanding the environment in which we live, it is essential that pertinent data are 

recorded, organised and processed. Using large amounts of data to model such 

complex phenomena and their interrelationships would not be possible to any 

significant degree without information technology (IT). 
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Information processing and computing has become ubiquitous since the advent of PC 

and the Internet. According to Moore’s law, computer capacity is on an exponential 

increase. This includes computing memory, processing and communication capacity, 

which has also been reinforced by the declining cost of storage and data processing. 

Moreover, since the introduction of the Internet, communication with computers 

worldwide has become cheap and easy to attain. Thus, the computing world has 

moved from a centralised system, where one powerful computer performed many 

queries, to a distributed computing system where many smaller processors are used 

to perform a large number of queries. This concept is known as ‘distributed processing 

computing’, where multiple systems, remote to each other, are used to perform 

functions as a single system (Wooldridge, 2003). Distributed processing computing is 

seen to be the solution to systems that handle large datasets, complex mathematical 

solutions and intensive graphical visualisation (Peng and Tsou, 2003; Wu et al., 2004; 

Yang and Raskin, 2009) and has inspired considerable research and development. On 

the other hand, the Internet has provided an environment conducive to data and 

information storage and sharing. This represents a jump from the pre-Internet data-

poor era where data were only available on an individual user basis, to the now post-

Internet era with strong evidence of data richness (O’Reilly 2005), where most 

information is posted on the Web for easy access (on a free or payment basis) for 

everyone to use.  

 

With the processing increment and data availability, it became easier to integrate 

technologies and information to better handle and understand complex geographical 

problems (Goodchild, 2003; Goodchild et al. 2004), especially with more mature 

technologies such as Geographic Information Systems (GIS), Geographical 

Positioning System (GPS), remote sensing and the formation of the Open Geospatial 

Consortium (OGC; www.openspatial.org). GIS are ”a powerful set of tools for 

collecting, storing, retrieving at will, transforming and displaying spatial data from the 

real world for a particular set of purposes” (Burrough and McDonnell, 1998). GIS offer 

flexibility of scale on mapping and visualising information (Atkinson and Tate, 2000). 
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Thus, the main difference between hand-drawn maps (or any other map drawn with 

non-GIS tools) and GIS-produced products is that using GIS one can link and overlay 

different layers to use features from and analyse spatial relationships based on these 

different layers. These layers could even have been compiled from different data 

sources at different scales, though the overlay of such diverse layers may have quality 

implications (Brimicombe, 2003). However, the main strength of GIS is their ability to 

utilise many specialised tools for different functions, such as for data sorting, data 

visualisation and even the mathematical modelling of patterns within the data. This, 

together with data integration and their ability to handle and deal with large datasets, 

can provide an enabling environment towards solving many geographical problems. 

However, some weaknesses exist for GIS, which include their general lack of ability to 

integrate separate tools effectively to work on the same problem without having an 

expert user to physically facilitate the exchange of data from one tool to another. This 

requires expert users who know how to effectively utilise spatial data and the available 

heterogeneous tool sets. In this case, Goodchild (2006: p1) has stated that “too few 

people are sufficiently trained to use GIS tools effectively”, specifically with reference 

to the data, but emphasis should also be placed on the number of available tools one 

expert can use well. Many proprietary or even free tools are available on the Internet 

and industrial Intranets which are capable of providing good quality analysis, but due 

to a lack of knowledge and the ability of any one expert to master them all, it is not 

possible for this advantage to be fully utilised. Tool interoperability is an important area 

of the GIScience research agenda (Brimicombe, 2003; Mark, 2003; Goodchild, 2008), 

more so today across networks (Yang and Raskin, 2009). Interoperability has been 

defined as the ability of different components of a system to work together, having a 

unified understanding of the information structure which can then be dealt with by each 

component as a service to one another (Albrecht, 1996). Creating and joining together 

a more distributed structure to achieve this in using GIS, as opposed to the traditional 

monolithic GIS, continues to need urgent attention. 
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Distributed computing has at its heart the optimal utilization and allocation of 

computing resources (Yang and Ruskin, 2009), thus in computer science, software 

agents in distributed computing are being studied as they offer flexibility for information 

handling and complex system development (Bigus and Bigus, 2003; Callan, 2003). 

Agents have been defined by Weiss as:  

 
“…a computer system that is situated in some environment, and that is 
capable of autonomous action in this environment in order to meet its 
design objectives” (1999: p29). 

 

 Franklin and Graesser define agents that exhibit intelligence as being  

 
“…a system situated within an environment, senses that environment 
and acts on it, over time, in pursuit of its own agenda and so as to affect 
what it senses in the future” (1996: 6). 

 

Software agents are entities that exhibit certain characteristics (which could include 

intelligence and the ability to work autonomously). They have foundations in software 

development and artificial intelligence (AI) in which (in the latter case) an agent would 

have knowledge (what it knows about both itself and its environment) and may be able 

to make decisions as to a course of action to take. They form the fundamental concept 

for Distributed Artificial Intelligence (DAI) systems, which at its core employs agents 

connected via a networked environment, thus enabling collaboration, to achieve a 

common goal (Nwana 1996). This concept also underlies the principle for the 

mechanism of Distributed Problem Solving (DPS), where each agent does not have 

enough knowledge to solve the problem on its own, but through collaboration with 

other agents they are able to solve the problem together (Potok et al. 1999; Jennings 

and Wooldridge 2000; Lee et al. 2003). This also has the advantage of parallel 

processing gained from distributed systems, where each agent can work at the same 

time as opposed to one after another, thus greatly reducing the overall processing time 

(O'Hare and Jennings, 1996). Thus, software agents offer a considerable potential for 

overcoming the types of tool and data interoperability problems that are of interest to 

GI scientists. This will be the focus of the investigation presented in this thesis. 
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1.2 Problem Domain and Research Focus 

A ‘numerical model’ refers to a process that endeavours to find an analytical solution 

to a problem and thereby be able to predict the behaviour of the system from a given 

set of parameters and initial conditions. For example, with reference to oceanography 

and meteorology, AMS (2006) defines numerical models as “the prediction of flow 

evolution via numerical construction of approximate solutions to the governing 

equations”. In computing terms, numerical models are viewed as simulation processes 

which can combine with reality (actual events) responses for any set of provided 

inputs. These kinds of simulations have been extensively used, simulating the first Gulf 

War in Kuwait for example, by modelling the war zone terrain for some 66,239 tanks, 

trucks and other military activities (JPL, 1999). Using numerical simulations, many 

geographical hazards can be studied and identified to prevent, or provide warnings of, 

possible disasters. For example, Chua et al. (2002) have utilised a numerical 

simulation to understand a particular flooding process and consequently provide a 

preventive mechanism against the damage such floods cause to crops.  

 

Recent computing usage for numerical modelling has seen a shift from tightly coupled 

monolithic systems to loosely coupled distributed component-based systems. This has 

been due to the availability of a large quantity of resources (such as lightly used 

computer terminals) residing remotely from each other, which can be merged together 

using the networking infrastructure provided by the Internet. Currently, distributed 

processing technologies are at the forefront of computing research and development 

(Bigus and Bigus, 2003; Callan, 2003; Wooldridge, 2003; Goodchild et al., 2004; Rey, 

2009). The distributed processing technique is also associated with distributed 

components computing, where multiple systems, remote to each other, are used to 

perform functions as a single system (Wooldridge, 2004; Xu et al. 2008).  

 

In software development, a paradigm has emerged in which software agents are seen 

to be the main actors as distributed components, where these agents play an 

important role in cementing the shift from monolithic programs to distributed 
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architectures. The current architecture of GIS software is mostly based on a monolithic 

approach geared to perform a specific set of functions. This is now being improved 

through the aid such as Application Programming Interfaces (APIs), which are a 

separate set of functions that can be integrated into software without changing the 

original functionality of that software, thus allowing the integration of other tools into 

existing GIS software. In GIS, these APIs include additional analytical functions, which 

allow for more complex functions to be performed on the data. For example, in 

ArcGIS, a range of APIs can be used to build extra functions (applications) to support 

geostatistics (http://resources.esri.com/arcgisservier/apis/). Geostatistics Analyst 

extension of ArcGIS provides the ability to determine the spatial dependency and 

interrelation of values in a dataset (Johnston et al., 2001). Given the size (normally 

very large) of a geographical dataset and the complex features it represents, these 

tools are designed to consume considerable CPU power so as to be able to process 

the given information. This resource requirement has to be established according to 

the resource availability on a single computing machine, and thus most of these tools 

have a predefined dataset size which they can handle on a single computer (for the 

ArcGIS Geostatistical Analyst this is up to 300 data points only). This is due to the 

system being monolithic and resource intensive, requiring possibly many hours to 

perform its analysis on one dataset. 

  

In terms of programming, GIS software was initially developed using structured 

programming languages like FORTRAN to produce modular toolkits, then later moved 

on towards a more robust object-oriented programming (OOP) paradigm. GIS 

software, based on OOP, provide a basic level of interoperability. Interoperability can 

be viewed as: 

 
“the cross-platform use of computer applications, i.e. the ability to use 
applications in different computer hardware environment and operating 
systems without any need to change the programs and re-train the 
users” (Pang-Lo and Yeung, 2006:132). 
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Interoperability in GIS conveys the same meaning as in software development as 

defined by Troelsen (2002), Nathan (2002) and Bukovics (2006). 

 

Furthermore, Albrecht (2005) suggests developing loosely coupled GIS, where 

components can perform functions on data that do not necessarily reside on the same 

computing machine, but which could be accessed only when needed. A number of 

studies already exist which have tried to utilise this architecture, like those discussed 

by Peng and Tsou (2003) and Wu et al. (2004). However there are often limitations, 

such as: the high CPU cost of processing spatial data; the lack of authentication and 

authorisation of web service users for GIS; no clear definition of structure and methods 

for data compression; no obvious support for the complicated GIS workflows. Due to 

these issues, many problems arise in coupling numerical simulations to GIS software. 

Loosely coupled technology emphasizes on having components to connect services 

using interfaces to enhance Service-Oriented Architectures which can be robust in that 

change in one service does not require changes in all associated services. Loose 

coupling can be regarded as an: 

  
“approach to the design of distributed applications that emphasises 
agility (the ability to adapt to changes)”, and furthermore “intentionally 
sacrifices interface optimization to achieve flexible interoperability among 
systems that are disparate in technology, location, performance, and 
availability….which enhances reusability” (Kaye, 2003: p 32). 

 

Web services and delivery are the example of using loosely coupled technologies 

(Nathan, 2002; Bukovics, 2006). Web services are often seen as “implementation of 

capabilities for access by other application (or other web services) via industry 

standard network” (Chatterjee and Webber, 2004). To associate this with the loose 

coupling as described by Kaye (2003) and Chatterjee and Webber (2004) explain that 

“an application can use the capabilities of a Web service by simply invoking it across a 

network without having to integrate it” which represents the concept of reusability. 

Here the relation of loosely coupled and Web delivery is entangled when the loosely 
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coupled components are communicating through the network and one of the example 

where this phenomenon occur is on the Web services. 

 

To emphasise the above, Brimicombe (2003) discusses the efficient interoperability 

and integration of GIS tools as one of the required and important aspects in GIScience 

research. He points out the possible issues that arise when coupling environmental 

simulation modelling to GIS, including data quality and the choice of algorithm to be 

used which are compounded by the architecture of GIS software, with issues 

concerning scales and residual uncertainty being other effects present in analytical 

decision-making. The availability of computing resources and networking technologies 

(like the Internet) is seen as an avenue to increase the performance of GIS technology 

(Albrecht 2005, 2005; Ali and Moulin, 2005; O’Reilly, 2005). The current issue is that 

most GIS software can be viewed as too monolithic, too heavy and thus usually reside 

within one single machine. Nor are they easily personalised to allow light 

communication over a network. Thus, there remains a need to devise a structure 

where GIS functions and other tools can be integrated for optimum performance. 

Distributed components computing in GIS is seen as one potential solution to achieve 

this goal.  

  

Regarding spatial data, researchers such as Diggle (1983) have emphasised that 

anything residing in a space (any space surface) is a potential candidate for being a 

variable to be studied. Furthermore, reference to Tobler’s first law of geography 

(Tobler, 1970), which states that “everything is related to everything else, but near 

things are more related to each other”, expresses the basic principle of spatial 

dependence or spatial autocorrelation within geography and the environmental 

sciences. Tobler’s statement also expresses one of the fundamental issues of 

GIScience and how it is desirable to identify the extent of dependency within a dataset, 

in order to identify interesting (socially or physically beneficial) features and events, 

with their knock-on effects.  
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A specialist branch of spatial analysis, known as geostatistics, is dedicated to 

analysing geographical data having some degree of spatial dependence or 

autocorrelation (de Smith et al., 2007). In geostatistics, unlike conventional 

mathematical statistics, the data represent geographical locations, are thus interlinked 

and related due to their location and often do not conform to the assumption inherit in 

standard statistical procedures. Location is expressed as coordinates {x, y} on the 

plane (Â), and with further attributes of location.  

 

Spatial data are often large datasets and, which inevitably contain errors that may 

propagate themselves to the final analysis of a study. To analyse the data, like the 

traditional statisticians who used formulae and graphs of different kinds, geostatistics 

also utilise similar tools to identify quality issues, and to define and estimate the 

relationship and dependency within a dataset. The geostatistical tool that models the 

spatial dependency of variables is known as a variogram, a graph of the cumulative 

relative variance for increasing distance (see Figure 1.1). A variogram is explained by 

Isaaks and Srivastava (1989) as being “half the average squared difference between 

the paired data values” and denoted by γ. It is used to clarify and identify the important 

features of the phenomena under study (Saldaña et al., 1998).  

 

In many circumstances, the phenomenon being modelled is not sampled densely 

enough to give a sufficiently detailed array of data, so additional points need to be 

predicted to provide extra values at unknown points. Geostatistics also plays an 

important role in this prediction. One of the geostatistical tools that help achieve this 

prediction is kriging. Introduced by Matheron (1963) from algorithms defined in Krige 

(1951), it is explained in Olea as:  

 
“a collection of generalized linear regression techniques for 
minimizing an estimation variance defined from a prior model 
for covariance” (1991: p26). 
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Pringle (1980) explains that one of the objectives of geography as a discipline “is to 

develop explanatory theory of cause and effect” on the spatial processes or events 

which, by use of techniques such as the variogram and kriging, could be achieved. 

Thus, geostatistics from this perspective can be taken as interpolation techniques 

used to handle the issue of relation and prediction of attributes within a spatial plane 

(Â) and their relation to the variables in the sampled data. However, modelling the 

variogram and kriging are complex to follow in order to achieve desirable results, as in 

geostatistical studies experts are required to perform their specialists’ tasks. To define 

this dependency, Cressie (1993) identified those tasks that an expert geostatistician 

and/or GI scientists would be required to perform to provide their analysis and 

prediction: 

 

§ Design the sampling plan; 

§ graph and summarise the data; 

§ detect and allow for spatial non-stationarity; 

§ estimate spatial relationships, usually through the variogram (structured 

analysis); 

§ estimate the in situ resources, usually through kriging; then 

§ assess the recoverable reserves and, if a decision is made to mine, determine 

the mine plan and provide current reserve assessments as the mining 

proceeds. 
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Figure 1.1: Example of a Variogram 

 

Carrying out these steps in a coherent manner is an expert task. Currently, the only 

way to model and evaluate a variogram is by employing an expert who physically 

visualises the data, makes decisions regarding outliers, clusters and trend, and 

decides which mathematical functions to incorporate in order to obtain the 

characteristics of the subject in question. However, this thesis puts forward the 

possibility of allowing a variogram to be produced without necessarily relying on the 

human expert, but rather by utilising an expert agent-based module of a distributed 

component system. Considerable improvement for such modelling could be achieved 

by automation and the use of negotiation mechanisms. Software agents have a strong 

focus in their ability to negotiate and collaborate in order to produce a possible 

software solution.  Software agents can be employed to provide the potential to solve 

the persistent problems associated with GIS (Goodchild, 2004; Reitsma, 2005; Brown 

et al., 2005; Albrecht, 2005), such as those arising from geographical scale, as 

discussed by Atkinson and Tate (2000). Also, with the rise of geocomputation 
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(Openshaw and Abrahart, 2000) and ubiquitous computing (and consequently 

ubiquitous GIS, Longley and Batty, 2003), agent technology has been considered as 

potentially playing an important role, especially to solve issues associated with 

ontology for interoperability (Smith and Mark, 1998; Fonseca and Egenhofer, 1999), 

data and tool sharing and coupling (O'Reilly, 2005; Graham, 2005), and better 

knowledge dissemination among experts (and even students) (Frank and Raubal, 

2001). This thesis explores this argument by investigate software agents applied to 

geostatistics, focusing on producing a variogram agent component (VAC) as proof of 

concept for intelligent distributed component GIS. This variogram agent component is 

conceptualised as a multi-agent system in which individual agents collaborate to 

achieve the goal of modelling the variogram. This software agent solution will aim to 

provide effective distributed components for GIS, and will be tested using a case study 

of known (published) data.  

 

Software agents are already being utilised in GIS for the purpose of spatial simulation., 

A large part of these applications emphasizes individual entities, where each entity 

within a dataset is defined as an agent, to provide emergent patterns and relations that 

are formed due to the individual’s interactions (e.g. Batty et al., 2003; Batty, 2005a; 

Albrecht, 2005). Software agents have also been used to represent spatial processes 

(Reitsma and Albrecht, 2005). However, software agents can offer many more benefits 

to GIS. This could be achieved by having software agents not just acting as entities, 

but representing a software development paradigm in which the software could be fully 

developed using the syntax and semantics it provides, like other functional software 

systems that have been developed using software agent paradigms (Wooldridge, 

2003; Bresciani et al., 2004).  

 

This research, therefore, aims to utilise a novel approach of using software agents to 

act as a tool to provide a service within GIS and to support the idea of distributed 

components GIS. As a way of investigating this, a distributed component – the 

variogram agent component, based on agents, will be developed. This is a challenging 
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task within geostatistics because each data set needs its own structure and procedure 

to produce an effective and useful variogram. The research will be based on the 

concept reducing reliance on expert interaction by letting the agents learn, 

communicate and collaborate in order to do what the human expert would have done. 

To examine the possibilities of improvement with the introduction of software agents, a 

modular approach to GIS tool development will need to be initiated, starting with the 

variogram agent as a key proof of concept.  
 
 

1.3 Aims and Objectives 

The aims of this research are to investigate software agent characteristics and 

environment architectures, and the current use of software agents in geographical 

information sciences, so as to understand the agent capabilities being utilised in GIS, 

model newer and more robust ways to try to increase agent functionality to their 

potential capacity, develop distributed component GIS, and test the newly developed 

service to justify the agent characteristics being focused upon and their functionality in 

distributed components GIS services.  

 

Such knowledge would be useful for providing services and reducing the complexity of 

using GIS tools which will, in turn, reduce the expert user interaction and allow a more 

novice user to be able to comfortably interact with GIS services. The vision is to have 

GIS functions being used like those of mobile telephone functions (such as with SMS, 

where the user knows how to write the text, but not necessarily what the underlying 

technologies are that provide the transportation of that text to the intended recipient). 

Thus, the outcome of the research is to provide an architecture, platform and sample 

tool that would allow GIS queries and services seamlessly, for novice and expert users 

alike.  

 

To pilot and set a structure for the thesis, objectives were determined as to what would 

need to be conducted for the research to be successful. The main objectives are to 
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identify the flow of events that produce the most effective variogram, the right 

variogram formulae to be supplied to the agents, and the right type of agent 

architecture that would be most effective for agent technology-based GIS 

development. The objectives of the study are to: 

 

1. identify the appropriate theoretical perspectives for analysing, developing and 

testing an algorithm model for a software agent-based GIS component; 

2. examine existing agent environment architectures and determine which is the 

best fit for the purpose of using as a variogram agent. Thus, to establish the 

limitations and produce suitable architecture (or the features to add to the 

architecture) to allow for easy, flexible and efficient GIS agents; 

3. identify appropriate functions for a variogram agent; 

4. implement the features identified in objectives 2 and 3 to the environment 

architecture identified in objective 1, then test them accordingly as variogram 

agents; 

5. test the variogram agent system and analyse its performance; and  

6. draw conclusions as to the feasibility and practicality of using agent software 

for distributed component services in GIS. 

 

1.4 Structure of the Thesis 

This thesis commences with Chapter One introducing the study area, outlining the 

aims of the investigation and the objectives of the thesis, defining the problem and 

outlining how it is expected to be solved. Here, the definition surrounding the problems 

faced in the physical and socio-economic environments which are interrelational and 

spatial will be observed, together with the available tools used to deal with them. The 

current issues in distributed component technologies, which include the use of agent-

based software development and the limitations of the current architecture of 

commercial GIS software to help deal with interoperability and tool coupling for 

numerical simulation modelling using spatial dependency, geostatistics, variograms 
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and the reliance on the expert’s use of kriging, and finally the possibility of intelligent 

distributed component tools combining agents and GIS, will be discussed.  

 

Chapter Two covers the existing theory behind GIS, showing the importance of making 

it a real distributed environment. This section will show the interconnection between GI 

Science, GI Engineering and GI Systems, along with some key trends such as 

geocomputation with its relation to spatial data mining, agents and geosimulation. 

Issues of interoperability and tool coupling for the ubiquitous GIS and Web 2.0 will 

provide the case study of an agent-based intelligent distributed component GIS.  

 

Chapter Three will concentrate on the theory of software agents and agent-based 

technologies by providing a definition and their historical development, characteristics 

and typical applications. It will then provide a more detailed discussion of the use of 

agents in GIS and their functionality in geosimulations, with its provenance and 

technological heterogeneity. It will then classify agent-based applications in the spatial 

domain through a discussion about confusion of object-entity, process and service in 

GIS. This chapter will also provide the notion of the variogram agent as a test-bed for 

IDC GIS.  

 

Chapter Four discusses geostatistics and the function, application and trends of using 

the variogram. The different aspects of geostatistics will be discussed, including spatial 

autocorrelation, autoregressive models, (semi)variogram models and kriging. The 

importance of data aspects when modelling the variogram will be defined, which 

involves data cleaning, trend detection and removal, and cluster detection and 

sampling. Finally, cross validation and goodness of fit will be considered.  

 

Chapter Five will expand upon agent development methodologies, with their limitations 

and required improvements. Issues of agent programming languages (and their 

structure) and platforms suitable for GIS agent technology will be discussed. The 

datasets for testing and experiment design will then be provided. 
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Chapter Six will discuss the problems of agent system development and deployment. 

A suitable structure of agent software development to influence GIS tools will be 

established and proven to be fit for purpose. The actual design (software) of the agent-

based variogram model with its variogram agent (multi-agent) and sub-agents with 

their functionality will then be explained and tested for validity (internal and external).  

 

Chapter Seven presents the experimental results, along with verification and 

validation, the problems encountered and fixes, performance testing, statistics, outputs 

and limitations. 

 

The overall results from the experiment and the general outcomes of the thesis will be 

evaluated and discussed in Chapter Eight. Thus, this chapter will focus on the 

learnability of the agents and other important characteristics for geostatistics and 

eventually GIS. A review of the findings, comparisons to published literature and 

original contribution to knowledge will be provided. Finally, the overall conclusion and 

future research agenda will be presented.  
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CHAPTER TWO: INTELLIGENT DISTRIBUTED 
COMPONENT GIS 

 

2.1 Introduction 

 

In recent years there have been major developments in areas of computing such as the 

tightly coupled distributed engines, web 2.0 and the push towards web 3.0 on the Internet 

(Graham, 2005; O'Reilly, 2006; Singer, 2009) and the advantage that could be gained 

using thin clients for ubiquitous computing (Ki-Joune and Li, 2007; Poslad, 2009). With the 

strong market penetration of mobile devices and the ever improving mobile technologies 

(software and hardware), the market provides a good opportunity for GIS development 

especially for research. Furthermore, the functionality and software development 

opportunities using Open Source can provide a platform to GIS evolution. In this regard 

GIScience researchers are already taking advantage of these state of the art technologies 

with the creation of new GIS areas like OpenGIS. However, in some of these areas where 

GIS might benefit from the technology, some hindering problems exist. For example in 

ubiquitous computing, due to the system requirements and the difference it represents in 

terms of system platform offered by different providers, interoperability and tool coupling 

is of major concern. Thus an understanding of technologies such as CORBA, OLE, COM 

and ODBC becomes a must for creating the possibility of achieving the potential 

development. The opportunities for mashups of these technologies to improve GIS could 

be a framework, for example, to aid environmental modelling especially with the aid of 

artificial (AI) technologies like the neural networks, fuzzy logics, pattern recognition and 

for the main interest of this research the software agents. Furthermore this would lead to 

tool coupling, a concept that is high on the agenda of GIS community (Fonseca et. al., 

2000; Albrecht, 2007, Torrens, 2007b) as is anticipated to improve data analysis.  
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Tool coupling can be enhanced by software agents with their ability for being efficiently 

distributed. This brings us to the core studies of this thesis which is to look into the 

possibilities of distributed component GIS through the use of software agents and their 

capabilities. The technology behind the tool coupling is currently being initiated into web 

maps, geomarkup language (GML) and many other GIS related areas. The research in 

this thesis demonstrates the important role software agent will play in distributed GIS and 

from this the development of intelligent distributed component GIS. This can be achieved 

with the help of currently emerging technologies in GIS like spatial data mining tools and 

artificial intelligence contributing to the field and which have led to technologies like the 

Geosimulation which is developed through the advancement of geocomputational theories 

(Batty, 2000b; Albreicht 2005; Batty, 2005a).  

 

The focus for this chapter is to develop a justification, through the literature, for the use of 

agent technologies to facilitate intelligent distributed component GIS. Chapter 3 will then 

focus in-depth on agent technologies and their current use in GIScience. 

 

2.2 GISystems, Science and Engineering 

Since their origins in the mid-1960s, GISystems have been well established for storing, 

handling, analysing, visualising and disseminating spatial data. As a technology, 

GISystems have become successfully integrated with other technologies from different 

disciplines, such as geography, computer science, environmental science and 

demography. They are also used in a wide range of areas, including environmental 

protection, construction, transportation, education, crime, health and planning.  

 
“[GIS is] …a collection of computer software tools that facilitate, through 
georeferencing, the integration of spatial, non-spatial, qualitative and 
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quantitative data into a database that can be managed under one system 
environment” (Cressie, 1996: p118). 
 

 

However, Wright et al. (1997) associate GISystems as being a tool that could help to solve 

spatial problems, or simply help to build tools that could be added to existing GISystems 

to help improve solutions to spatial problems, or simply to study and understand the theory 

and concepts that lie behind the tools.  
 

By the early 1990s, the recognition of a coherent GIScience was beginning to be debated 

(Goodchild, 1990, 1992). A range of research, relating to different aspects, can be 

classified into GIScience. Some of these are within the context of many other research 

disciplines, as areas related to ontology, representation, computation, cognition, 

uncertainty, visualisation, institution and society, all of which also constitute GIScience 

research (Mark, 2003). Although GIScience is not that neatly summarised, as the 

questions and issues are either solved or better understood so the GIScience research 

agenda evolve and continually moves on (Brimicombe and Li, 2009). Three main elements 

are identified by Goodchild (1992) to make GIScience a separate domain of research 

discipline: 

 

• the use of the spatial key {x, y, a1, a2, … an}, where {x, y} defines location as 

continuous dimensions and { a1, a2, … an } define the attributes of location either 

as continuous or discrete dimensions; 

• the presence of spatial dependence between locations, in that near things are 

more likely to be similar than distant things;  

• the durability of the spatial data primitives of point, line, polygon and cell/pixel that 

have underwritten the technology and its application in many diverse applications.  
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Spatial dependency is a key issue in GIScience. It derives from Tobler’s first law of 

geography  

 
“…everything is related to everything else, but near things are more related 
than distant things” (1969: p7).  
 

It provides a basis for which spatial phenomenon can be studied and understood. 

Considering the importance of spatial dependency, the means to analyse this is regarded 

as an essential part of GIScience (Wright et al., 1997). In this research, spatial statistics 

(commonly known as geostatistics) is referred to as one approach for dealing with this 

issue in GIScience. 

 

Goodchild (1997) further expresses GIScience as being comprised of information about 

places on the Earth's surface, knowledge about where something is and knowledge about 

what is at a given location. GIScience is the field of study that addresses the production 

of geographic data, the transformation of data into useful geographic information and the 

construction of geographic knowledge. This relates both to physical and biological aspects 

of the environment (including flora and fauna) and the social, cultural and economic 

aspects of the lived environment.  

 

The GIScience concept encapsulates both reductionist and holistic approaches to the 

study of geographical phenomena. To study these complex issues, researchers have 

tended to develop tools that simplify reality as models and be able to handle the large 

amount of information produced. GISystems are, as such, collections of tools for the 

resource intense GIScience. Ball and Babbage (1989) acknowledge that GISystems assist 

GIScience studies in two important factors: human and physical. Thus, GISystems and 

GIScience could be regarded as integral, symbiotic parts of the same domain or, at the 

same time, could be differentiated as GISystems being the front end tool that allows spatial 
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analysis, with GIScience providing the underlying theory that supports the use of  this tool. 

This view has been widely discussed and generally accepted (Goodchild, 1992; 

Goodchild, 1997; Wright et al., 1997; Mark, 2003).  Therefore, in this thesis, the term GIS 

will be used to signify both GISystems and GIScience  

 

There is an important distinction to be made between science and the process of 

engineering the system to study its phenomenon. Frank and Raubal (2001) define and 

differentiate science to engineering as:  

 
“Science is the search for knowledge (new knowledge, to be precise), and 
engineering is the systematic application of the results of scientific research 
to solve real-world problems in a predictably successful way” (Frank and 
Raubal 2001: p12).  
 

Here we can see a new concept emerging; that of GI-Engineering. This concept interfaces 

and connects both GIScience and GISystems. Frank and Raubal (2001) state that “GI 

engineering is the scientific efforts to establish the rules and heuristics which engineers 

can use to build GI systems that predictably work”, while enforcing the point as to the 

importance of GI-Engineering by stating:  

 
“…the scientific results that we have produced over the past decades are 
substantial and cover most aspects of GI. However, they are not yet ‘reduced 
to practice’ to be usable to design systems that predictably work” (Frank and 
Raubal, 2001: p13). 
 

GI-Engineering has been defined as: 

 
“the design of dependably engineered solutions to society’s use of 
geographical information” (Brimicombe and Li, 2009: p103).  

These solutions are naturally developed on GISystems and GIScience and may also 

employ technologies from other disciplines. GI-Engineering aims to design products that 

integrate various technologies and techniques seamlessly so they are easy to use. Any 

specialist knowledge of GIScience and GISystems should not be required to use these 



 22 

products. By bringing GISystems and GIScience together, GI-Engineering is expected to 

help take GIS into mainstream IT and become widespread within society. GI-Engineering 

is an important aspect of this thesis. 

 

2.3 Some Key GIS Research Themes 

A number of key developments in GIS research underscore the aim of this thesis to 

investigate intelligent distributed component GIS. These can be categorised under the 

following headings: 

§ GIS and environmental modelling 

§ Spatial data mining 

§ Geocomputation and geosimulation 

§ Web 2.0 (current a concept persist for web 3.0 which is to be based on semantic 

web) 

§ Ubiquitous GIS 

 

2.3.1 GIS and Environmental Modelling 

To assess the many factors affecting environmental change, the use of environmental 

modelling can often be effectively employed, as it is able to provide predictive and 

diagnostic outputs which can be used to measure the impact on the environment, allow 

efficient management of natural resources and plan for contingencies. It assesses most 

aspects of nature, including the quality of air, soil and water, waste products, biological 

factors, hydrology and noise pollution. Environmental modelling can be considered a part 

of the spatial domain.  
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There are three broad approaches to environmental modelling: conceptual, numerical and 

physical (analogy). However, the only models to be considered further here will be 

numerical models that require computers for their execution. 

 

Environmental models usually contain a degree of spatiality, though one-dimensional 

process models do not explicitly express the spatial dimension. Even in two-dimensional 

and three-dimensional process models, the governing equations may be unable to fully 

express the spatial dimension. Often due to a lack of software development, some spatial 

components may lack flexibility or are inaccessible. However, GIS are already capable of 

addressing such spatial information, which could assist such models in successfully 

handling spatial data. To this end, the integration of such models with GIS is becoming 

accepted as being useful even de facto when handling environmental problems 

(Brimicombe, 2009).  

 

GIS and numerical environmental models can be coupled in a number of ways (Karimi 

and Houston, 1996; van Vliet et. al., 2009). This can be from loosely-coupled (whereby 

the only interaction which occurs is the exporting or importing of data via an exchange 

format), through to tightly-coupled (allowing a high degree of interoperability, such as 

Windows compliancy), and tool or network coupling where from a single interface the user 

can access distributed data, model subsystems and computing resources seamlessly 

across networks. For simpler modes of coupling, the option then is whether to develop the 

required tools externally of GIS or within it. A number of issues have to be considered in 

this respect, such as the limited capability of most GIS to store imprecise or spatio-

temporal data; limitations in functionality for most GIS regarding spatial data analysis (such 

as in geostatistics), how easy it is to share data, the running speed of the model and 

flexibility in the choice of the model. Tool or network coupling opens up the prospect of 
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integrated GIS and numerical environmental modelling using distributed components 

incorporating agent-based technology to reduce the level of complexity to the user. 

 

Considerable proprietary (e.g. ArcGIS) and public domain software (e.g. GeoDa) exists 

which can be effectively utilised for analysing spatial data. As such, in regard to 

environmental modelling and considering the increasing sophistication, speed and 

interoperability of such software, there is fast becoming little reason to spend money re-

implementing such tools within GIS and every reason to assemble them outside of GIS (Li 

et al., 2000). This concept can also be extended toward other applications where it is both 

feasible and flexible for GIS to be linked, via an interoperable framework, with external 

numerical models. 

 

2.3.2 Spatial Data Mining 

Spatial data mining is the process of having spatial information and knowledge extracted 

from a database or data warehouse, containing both spatial and attribute data, where the 

data warehouse is a repository of a large amount of data brought together from multiple 

different sources (Connolly and Begg, 2004). A data warehouse mainly contains 

previously used data which may have different data structures and can be used for a range 

of analyses. It thus brings with it certain difficulties to efficiently extract useful information 

from such a data warehouse. Sometimes, data mining is also termed ‘knowledge 

discovery in databases’ (KDD) (Ding, 2007). Another definition of the process for KDD is:  

 
“…interactive and iterative, involving several steps such as data selection, 
data reduction, data mining, and the evaluation of the data mining results" 
(Fayyad et al., 1996: p83-84).  
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The heart of the process, however, is the data mining step which consists of the application 

of data analysis and discovery algorithms that, under acceptable computational efficiency 

limitations, produce a particular enumeration of patterns over the data (Ester et al., 2001). 

 

Since the term ‘spatial data mining’ comes from a combination of two well revised 

components (spatial; data mining), it is important to understand the need and function of 

the term as a whole in the designated definition. When referring to KDD (in a generic 

sense), data mining is explained by Ester et al. (2001) as: 

  
“[a] non-trivial process of discovering valid, novel, potentially useful and 
ultimately understandable patterns from data, a pattern is an expression 
in some language describing a subset of the data or a model applicable 
to that subset” (2001: p3).  
 

KDD is therefore based on the premise that interesting patterns are hidden in and can be 

extracted from very large databases (Miller and Han, 2009). Meanwhile, the term ‘spatial’ 

introduces issues within the data of geographical relations. As Shekhar et al. (2003) point 

out, the difference between non-spatial and spatial objects is that:  

 
“Non-spatial objects are explicit in data inputs, e.g., arithmetic relation, 
ordering, is instance of, subclass of, and membership of. In contrast, 
relationships among spatial objects are often implicit, such as overlap, 
intersect, and behind… Extracting interesting and useful patterns from 
spatial datasets is more difficult than extracting the corresponding patterns 
from traditional numeric and categorical data due to the complexity of 
spatial data types, spatial relationships, and spatial autocorrelation” (2003: 
p64). 
 

Following the above discussion, Table 2.1 shows the distinction between spatial and non-

spatial data mining. Prasad et al. (2007) further explain that: “The explicit location and 

extension of spatial objects define implicit relations of spatial neighbourhood (such as 

topological, distance and direction relations) which are used by spatial data mining 

algorithms” (2007: p1).  



 26 

 

Table 2.1: Search Patterns for Classic Data Mining and Spatial Data Mining 

  
Classical Data Mining 

 
Spatial Data Mining 

Predictive 
Model 

Classification accuracy Spatial accuracy 

Cluster Low coupling and high cohesion 
in feature space 

Spatial continuity, unusual 
density, boundary 

Outlier Different from population or 
neighbours in features 

Significant attribute discontinuity 
in geographical features 

Association Subset prevalence, 

 
Correlation 

Spatial pattern prevalence, 

 
Cross K-Function 

Source: improved from Prasad et al. (2007). 

 

There has been an explosive growth in geographical data since the mid-1990s due to a 

combination of GPS, remote sensing and cheaper, easier data storage. However, 

conventional spatial data mining has been predicated on powerful, centralised computing 

and algorithms that search for interesting patterns. Spatial objects and relations tend to 

be more complex than those found in non-geographical databases leading to 

computational complexity. Fortunately, many spatial analytic techniques can be 

decomposed into parallel and distributed computations (Miller and Han, 2009) across 

networks. Newly emerging is distributed data mining which makes use of networked 

environments to mine distributed and heterogeneous data without the need to collect them 

into a centralised repository (Datta et al., 2006; Laube and Duckham, 2009). This has 

naturally required the use of agent technologies (Laube and Duckham, 2009) in order to 

implement algorithms that can act in a decentralised way to effect knowledge discovery. 

Brimicombe regards 
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“With the exponential rise in the size of databases/data warehouses, their 
increasingly complex structures and the rate at which they can accumulate 
data on even a daily basis, there is an urgent need for techniques that can 
mine very large databases for the knowledge they contain. Various spatial 
data mining techniques have thus been developed for the discovery of 
meaningful patterns from large datasets, where an important dimension of 
interest is the geographical location of events” (2003b: p2). 
 

 

2.3.3 Geocomputation and Geosimulation 

Geocomputation (Longley et al., 1998; Openshaw and Abrahart, 2000) was a paradigm 

shift that came in the late 1990s with the maturation of GIOS and the rise of research 

within a computational environment:  

 
“Geocomputation is a follow on revolution that is occurring after the 
introduction of geographic information science (GIS). It is expected to gather 
speed and momentum in the first decade of the 21st century... when we have 
finished creating our GIS databases, set up our digital spatial libraries, and 
expanded to include everything that can be linked into a two- or three- 
dimensional geographical coordinates then we are all set for 
[Geocomputation]” (Openshaw and Abrahart, 2000:13). 

 

The main challenge is how to make better and fuller use of this stored spatial data. In this 

regard, geocomputation can be considered to be the utilisation of spatial computation tools 

and methodologies in order to solve applied problems. Such tools and methodologies 

would automatically include the use of GIS, although it must be acknowledged that the 

present functionality of commercially available packages is often inadequate, barely 

extending beyond the routine handling and analysis of spatial data (Gahegin, 1999). As a 

result, other tools and methodologies are being sought and used, either on their own or 

combined with GIS, including AI, neural nets, fuzzy computations and genetic algorithms 

(Li et al., 2000, Agkun, et. al, 2008, Soleimani, 2009). This was a conscious attempt to 

enrich the available spatial analysis toolkit, provide greater flexibility in moving away from 

just monolithic GIS on its own and has inevitably lead to the technological heterogeneity 

of tool coupling.  
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As there are increases in both the size of datasets and complexity of spatial analysis, so 

a conventional approach to GIS becomes inadequate (McMaster and Usery, 2004), 

particularly reliance on single CPU whereas distributed computing is required for the 

computational intensity needed. As a new paradigm, there are many debates around 

issues such as ‘what is the exact definition of the term?’, ‘what should it be 

encompassing?’, and many other technological questions. The extreme of this debate 

questions whether it will make any real contribution to the sciences:  

 
“Geocomputation is not just using computational techniques to solve spatial 
problems, but rather a completely new way of doing science in a 
geographical context” (Openshaw, 2000: p.3).  
 

But as Kirkby notes:  

 
“As with other aspects of research, there is a need to use computing tools 
with discrimination, and not assume the power conquers all” (2000: p7). 
 

Nevertheless, one distinct advantage of geocomputation is in regard to the experimental 

and creative use of GIS for interaction, dynamics and process, rather than passive 

responses, statistics and form (Longley, 1998). For technologically heterogeneous 

applications (such as numerical simulation modelling), geocomputation can be regarded 

as being central to the way GIS are used (Brimicombe, 2003).  

 

Geosimulation can be viewed as an extension to geocomputation, being distinguished 

from other simulation methodologies due to its particular and explicit attention to 

geography and space (Benenson and Torrens, 2004a). Some interesting research has 

been undertaken recently which, although spread over many different areas, can also be 

categorised into geosimulation (Albrecht, 2005). One example consists of the 

development of a series of relatively simple decentralised, individual-based models 
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allowing contemporary theory of urban planning to be tested using traditional GIS data 

(Benenson and Torrens, 2004b; Torrens, 2007a). By bridging the process/object 

boundary, new data representations have been studied which capture the essence of 

geodynamics (McIntosh and Yuan, 2005). Software packages have been developed using 

interoperable environments and multiple agents, which provide a practical approach to 

surmounting the complex problems of geographical systems (Waddell et al., 1993; Brown 

et al., 2005).  

 

Geosimulation is about modelling complexity and emergence (Batty, 2005b) and in 

GIScience has become a key focus for experimentation and theory building/testing in silico 

(Brimicombe et al., 2009). Central to geosimulation is computation and the use of agent 

technologies (further discussed in Section 3.3). The level of complexity that can be 

reached using agent technologies poses methodological challenges in establishing and 

validating plausible models (Gilbert and Bankes, 2002; Manson, 2007). To overcome 

some of these difficulties, Li et al. (2008) have proposed utilising agent-based technologies 

to create services that help to calibrate and validate multi-agent models, which have been 

implemented within a multi-agent way-finding model (Li et al., 2008). In conclusion, it is 

worth pointing out that current research indicates that agent technology has considerable 

potential in geosimulation.  

 

2.3.4 Web 2.0 

It has been nearly a decade since the start of Web 2.0. However, even the term ‘Web 2.0’ 

itself has proved controversy, with some people declaring it to be a meaningless marketing 

‘buzzword’, but others accepting it as a new technological breakthrough. It aims to provide 

functionality to the ‘always online’ websites and web applications, so that they become 

interlinked and act as computing platforms with applications which appear to be available 
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offline to the user who is be able to generate and distribute content at any time (Barnwal, 

2007).  

 

The term ‘Web 2.0’ was coined during the first O'Reilly Media Conference in 2004 

(O'Reilly, 2005; Graham, 2005). The main aim of the concept is not to upgrade the web 

engine, but to change the way software developers and end-users utilise the Internet, 

which is to encourage creativity through communication (information sharing and 

collaboration).  

 

“Web 2.0 is the business revolution in the computer industry caused by the move to the Internet as 

platform, and an attempt to understand the rules for success on that new platform” (O’Reilly, 2006: 

p1). Best (2006: p7) describes the Web 2.0 characteristics as “rich user experience, user 

participation, dynamic content, metadata, web standards and scalability”, while 

Greenmeier and Gaudin (2007) add characteristics like openness, freedom and collective 

intelligence by way of user participation (O’Reilly, 2005). Currently, there are various 

definitions of Web 2.0, for example: 

 
“The philosophy of mutually maximizing collective intelligence and adds 
value for each participant by formalized and dynamic information sharing 
and creation” (Högg et al., 2006: p13).  
 
“All those Internet utilities and services sustained in a data base which can 
be modified by users whether in its content (adding, changing or deleting- 
information or associating metadata with the existing information), or how to 
display them, or in content and external aspect simultaneously” (Ribes, 
2007http://www.campusred.net/TELOS/articuloperspectiva.asp?idarticulo=
2&rev=73) 

 

It is important to be aware that the term ‘2.0’ does not refer to the second version of the 

Web system or the www (Anderson, 2006; Berners-Lee, 2006). According to Decrem 

(2007), it is the ‘participatory web’, on which the information sources are exactly the same 

as the Web version that everybody is familiar with.  
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The purpose of the perceived infrastructure is to allow the interactive facilities of the 

‘normal web’ to be redefined as a platform that allows users to run applications entirely 

through a web browser and allows them to own data with an option to exercise control 

over that data (O’Reilly, 2005; Hinchcliffe, 2006). The application should (or rather will) 

also act as an API that provides an opportunity to the user to add value to them (Graham, 

2005). O'Reilly (2005) defines this concept as ‘architecture of participation’. This then 

becomes a web architecture that allows users not only to retrieve information but also to 

contribute to the application and information.  

 

Web 2.0 includes features like the Mashups which are centred on merging content from 

different sources (client- and server-side). The notion of ‘Mashup’ was first derived from 

the concept of having an open API that allows a user to modify, change or add into the 

software, so that a completely new service is created. WebMashup (2007) further explains 

that “content used in Mashups is typically sourced from a third party via a public interface 

or so called API”. The Google Maps Mashup is Google Maps embedded onto web pages 

of outside developers through the Google Maps API, using a simple JavaScript interface 

or a Flash interface. The Google Maps API includes language localisation and geocoding, 

and has mechanisms for enterprise developers who want to utilise the Google Maps API 

within an intranet. MapTube is a website for sharing maps, which also intends to follow 

the spirit of Web 2.0 (CASA website, http://www.maptube.org/casa.aspx accessed 

12/03/2009). The maps themselves are not stored on the server, but link to another 

website where the map is already published. When maps are shared, information about 

what the map is and what it shows is entered by the owner and this is stored on the server 

along with the link to where the map is published. Implications of Web 2.0 for GIScience 

are crowd-sourced data and the delivery of distributed spatial information to clients, 

particularly mobile devices having limited local computing power. 
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2.3.5 Ubiquitous GIS 

Currently mobiles communication devices are considered as multipurpose computers, like 

desktops and laptops which is phenomenon that has been observed at least before year 

2005 (Mupparapu et al., 2005), providing a sense of ubiquitous computing. Nowadays, 

mobile devices come with extensive power in terms of processing mechanism, random 

access memory and hard drive/flash memory. As the devices, networks and operating 

systems are becoming ever more sophisticated; they increase the span of mobile users 

and their ability to explore the limitations of the devices. Communication technologies, 

from the forerunner of fixed landlines through to mobiles, have provided a completely new 

range of wearable technologies. Currently, mobile usage ranges from being a simple 

means of communication to a seriously powerful data storage device with a capability 

similar to a contemporary computer. Many in the business industry are already using 

mobile devices as mobile offices and determined to functional for e-mail exchange and 

data access, which can undertake downloads and uploads of data. 	

 

With massive decentralisation of computing, data and software are being distributed 

across networks, with access increasingly being affected by mobile devices (Longley and 

Batty, 2003). The rapid development of Information Communication Technologies (ICTs) 

and the remarkable convergence between separate disciplines have led to the diversity of 

GIS applications, and indicate the potential for GIS to become ubiquitous as mobile 

geographic services. Zipf and Jöst (2006) discussed the technical and usability issues 

related to the combination of GI services and ubiquitous computing, which they term 

‘UbiGIS’, and there is also research being undertaken on location base services (LBS) 

and spatial knowledge acquisition which is also based upon ubiquitous GIS (Brimicombe 

and Li, 2009). 
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Other relevant applications and areas of discussion include context-awareness (Jiang and 

Yao, 2005), LBS (Schmidt et al., 1999), the importance of UbiGIS (Reuter and Zipf, 2005), 

environmental monitoring by new mini-sensors (known as Smart Dust), and telematics 

and logistics (Zipf and Jöst, 2006). Zipf and Jöst (2006) have also reported on the 

heterogeneity and current expansion into computing, and the improvements in strength 

and capability of mobile devices. Li (2006) has developed a structure for location 

awareness in ubiquitous computing by providing spatial context-awareness (see Figure 

2.1). 

 

 

 

Source: Li (2006) 

Figure 2.1: The Ubiquitous Computing Environment for GIS 

 

Section 2.3 has focused on some trends for GI research which reinforce the point that 

there are drivers for distributed component GIS and for GIS to be integrated into 

technologically heterogeneous environments. Interoperability and tool coupling will now 

be discussed in the next section. 
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2.4 Interoperability and Tool Coupling  

2.4.1 External Coupling of GIS 

Section 2.3.1 introduced the strategies of coupling environmental modelling with GIS. For 

similar reasons, it would be useful to couple GIS with external tools and external numerical 

simulation models (Brimicombe, 2003). Such external models and tools have their own 

purposes and strengths, but they cannot always fully represent the spatial dimension. 

Using such other tools to model the spatial component often lack sufficient flexibility or it 

is not possible. On the other hand, although GIS is well developed to handle spatial 

information, it is not particularly well designed to incorporate a mechanism enabling 

dynamic simulation, complex data management, statistical analyses and numerical 

computing. GIS functionalities may be enhanced through the borrowing of technical 

capabilities from simulation models and external tools. The current trend for ubiquitous 

computing, as well as the growth of information communication technology, supports such 

coupling strategies.  

 

Fully embedded models and complex tools within GIS software packages are not 

considered to be the best option, due to their limited computation speeds, functionality of 

spatial data analysis and data management capability (for example, DBMS such as Oracle 

have the strength to store large amounts of data and can incorporate a comprehensive 

query function). However, it is not yet possible to build such DBMS into GIS software, 

although coupling GIS with external DBMS does occur. Statistical tools are often externally 

coupled with GIS software, and there are various tools which can provide the powerful 

statistical analysis capability required for GIS projects. Embedding such statistical 

functions within GIS software would be costly and unwieldy, but external links with GIS 

can be both efficient and effective. For some specialist software tools, external coupling 

with a GIS is both robust and straightforward - such as for neural nets, where it is neither 
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necessary nor pragmatic to develop complex model building tools within the GIS software. 

However, external to GIS, neural nets can assist many GIS applications, such as road 

network management or land use modelling. 

 

If we consider the case of hydrology, where a hydrological model normally requires 

elements of the drainage basin to be stored as reaches, junctions and sub-basins. Here, 

a GIS model could simplify matters, and coupling the available external hydrological 

models to such GIS software would improve outputs. Similarly, ecological models focus 

on the dynamics of simulation. A wide range of data models exists within ecological 

modelling. Each model needs to address the numerical methods required to solve the 

particular process under simulation. Coupling relevant GIS software with these external 

ecological models could offer an effective solution, as currently GIS software is weak for 

temporal data models. GIS software can be joined with external socio-economic models 

as well as environmental models. Considering the development of a simulation for urban 

sprawl, models could be devised with very different technologies (such as agents or 

fractal), and the coupling of GIS software with external models is indeed generally 

accepted within such studies. However, needless to say, it is neither realistic nor 

necessary to develop all of these models within GIS software packages.  

 

2.4.2 Interoperability 

Albrecht (1996) defines interoperability as the ability of client-side software applications to 

access a service from a server-side implementation such that it will respond as expected. 

Interoperability, in GIS terms, can be described as:  

 
“…openness in the software industry, because open publication of internal 
data structures allows GIS users to build applications that integrate software 
components from different developers, and it allows new vendors to enter 
the market with competing products that are interchangeable with existing 



 36 

components, just as the concept of interchangeable parts helps competition 
in the automobile industry” (Goodchild et al., 1997: p2). 
 

Brimicombe (2003) further clarifies that interoperability brings together software at a more 

structured developmental level than is usually found through the integration of 

independently developed software. This involves software parts that are interchangeable 

so that, within a specific hardware and operating system environment, groups of software 

can seamlessly operate together. Interoperability not only focuses on sharing interfaces 

and data, it also involves sharing functionality. In other words, interoperability is the 

concept of having multiple forms of tools and data, and being able to mix them together to 

achieve a common goal. 

 

Market dominant operating systems (such as Microsoft Windows and Unix), together with 

object-oriented programming (OOP) and standardised Internet protocols, have contributed 

to an environment of mutual interoperability. This brings three important advantages. The 

first is that most software tends to have the same look and feel, a shared principle of 

interface design. Secondly, data access over networks is eased as communication 

protocols and data services have become largely transparent to the users. Thirdly, with 

OOP high level languages, it is possible to select services from more than one currently 

available software and wrap them in a common interface. 

 

The Open Geospatial Consortium (OGC, previously known as the OpenGIS Consortium) 

was established in the mid-1990s as a way of fostering interoperability. OGC aims to 

produce geospatial data and geoprocessing resources that are fully integrated into 

mainstream computing, and progress toward the widespread use of interoperable, 

commercial geoprocessing software throughout the global information infrastructure 

(McKee, 1996). Concepts of OpenGIS are supported by technologies such as the Internet, 

CORBA, OLE/COM and ODBC. The framework of OpenGIS specification includes: 
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• a common means for digitally representing the Earth and Earth phenomena, 

mathematically and conceptually; 

• a common model for implementing services for access, management, 

manipulation, representation, and sharing of GeoData between information 

communities; and 

• a framework for using the open GeoData model and the OpenGIS services model 

to solve not only the technical non-interoperability problem, but also the 

institutional non-interoperability problem (Buehler and McKee, 1998). 

 

From the perspective of computer science, interoperability means the ability of one system 

to seamlessly access information from another system. As it allows data and other 

resources to be shared across a network, the full strength of a computer system would be 

harnessed. It could, therefore, enable the sharing and exchange of information in 

heterogeneous and distributed computing environments (Yuan, 2001). One solution to 

interoperability is to use autonomous entities (Wooldridge and Jennings, 2000; Brown et 

al., 2002; Bigus and Bigus, 2003; Torrens, 2003; Wooldridge, 2003; Sherematov et al., 

2004; Albrecht, 2005) and processes (Wooldridge and Jennings, 2000; Bigus and Bigus, 

2003; Wooldridge, 2003). This solution aims to provide a cost effective and user friendly 

means to maximise the usefulness of independent information and computing resources 

across multiple platforms and institutions. Agents can act as such autonomous entities or 

processes. Agents may enhance interoperability, because they are platform independent 

and even program independent (in other words, one agent developed in C++ should be 

able to communicate another developed in Java). Strong research results (Li, 2006; Li et 

al., 2008) demonstrate that interoperable multi-agent systems, which are developed over 

networks, are efficient and effective in GIS applications.  
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2.4.3 Tool Coupling 

Broadly speaking, tool coupling is the integration of two or more distinct technologies, such 

as GIS, databases and numerical simulation models (Brimicombe, 2003). According to the 

typology developed by Brandmeyer and Karimi (2000), tool coupling is a modelling 

framework having sub-systems wrapped within a common user interface. The sub-

systems could reside on the same computer, but could also be distributed over a network. 

Sub-systems can be specific to data management, spatial data manipulation and analysis, 

model building and management. Within the framework, these sub-systems can be 

coupled together for one common goal. Normally, it would be expensive to design and 

develop such a framework. The following examples show how the concept of tool coupling 

is implemented in various areas. 

 

LandSerf was originally developed on the basis of Jo Wood’s initial idea in his PhD thesis 

(Wood, 1996). Currently it is a free software package for the processing, visualising and 

analysing of surfaces, such as the Digital Elevation Models (DEMs). It is written in Java 

and runs on any platform that supports the Java Runtime Environment, such as Windows, 

MacOSX, Unix, Linux and Symbian (see Chapter Five for more details). Currently, its 

usage is widespread in geomorphology, ecology, archaeology, 3D gaming and GPS 

mapping. LandSerf couples a series of tools for multiple surface model handling, 

interactive 3D viewing, ‘flythrough’ of surface, lighting/shade models, multiple image 

blending, dynamic graphical query, raster and vector transformation, multi-scale surface 

processing and so on. 

 

GeoDa. Following the trend in functionality and working concepts of interoperability, 

GeoDa is designed to implement techniques for exploratory spatial data analysis (ESDA) 

of lattice data (points and polygons) (Anselin et al., 2006). It is a free software program 
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which provides a user-friendly and graphical interface for non-GIS specialists. It conducts 

descriptive spatial data analysis, geovisualisation, spatial autocorrelation and spatial 

modelling (Anselin, 2005). GeoDa is written in C++. It contains many features for spatial 

data manipulation, visualisation and query, mapping, exploratory data analysis and spatial 

statistics, which include global and local spatial autocorrelation, spatial regression, 

cartogram and 3D visualisation. A key feature of GeoDa is an interactive environment that 

combines maps with statistical graphics, using the technology of dynamically linked 

windows. It provides the user with multiple views for one project.  

 

CrimeStat. This is a full-featured Windows-based spatial statistics program that provides 

statistical tools to aid law enforcement agencies and criminal justice researchers in their 

crime mapping efforts. It interfaces with most GIS software packages and is currently used 

by many police departments. It mainly focuses on the analysis of crime incident location. 

CrimeStat III is the latest version of CrimeStat. CrimeStat III couples different tools for 

distance analyses, hot spot analyses, interpolation, journey to crime analysis, as well as 

crime travel demand modelling. A number of different spatial data analysis techniques are 

employed in CrimeStat III, such as the kernel density technique for interpolation and the 

‘fuzzy model’ for hot spot analysis. An example of the successful usage of CrimeStat III is 

reported by Levine (2007), who used it to model bank robbery trips. 

 

Geographically weighted regression (GWR). This is a technique used to analyse spatially 

varying relationships (Fotheringham et al., 2002), the software of which utilises three 

models (Gaussian, Logistic and Poisson) with a user-friendly interface. Models can be 

fitted to the spatial data under examination. A 'standard' Gaussian model is available if the 

response (or dependent) variable is able to sensibly take any value on the real line. 

Alternatively, should the response variables take the values of 0/1 (true/false) only, then a 

logistical model will provide location specific estimates of the probability of the response 
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variable being unity. Finally, where the data consist of positive integer counts, then a 

Poisson model would be appropriate. Outputs from this software are able to provide a 

comma-separated variable file for other statistical programs (such as SPSS), and also 

allow a convenient link to mapping software (such as MapInfor or ArcMap). GWR software 

provides a typical example of tool coupling in geostatistics. 

 

2.4.4 Coupling GIS for Better Data Analysis 

The external coupling strategy of GIS software which can enhance both the functionality 

of spatial data analysis and the capability of data management in current GIS software 

packages has been considered (Karimi and Huston 1996; Tait et al., 2004; Tang, 2008; 

Bhatt et al., 2008), as well as the increase in computation speeds and ease of data sharing 

(Croner et al., 1996; Hengl et al., 2009). This improves the flexibility of GIS software 

towards other modelling tools and data. Interoperability has been clarified as being the 

bringing together of independent software at a more structural, software developmental 

level in order to operate together more efficiently and achieve common goals (Marshal, 

2002; Fonseca et al., 2000; Vckovski et al., 1999). A number of relevant issues were 

introduced, such as OOP, standardised Internet protocols, OpenGIS and agent 

technology. The tool coupling strategy was discussed and some typical examples 

provided to demonstrate how this concept can be implemented in the different applications 

of spatial data analysis.  

 

There is considerable GIS and application research with regard to interoperability and tool 

coupling (Fonseca et al., 2000; Weidmann and Girardin 2006). It reflects the increasing 

demands for robust and flexible GIS capabilities and functionalities for the transformation, 

visualisation, analysis and simulation of spatial data. Some advanced technologies (such 

as intelligent agents, mobile communications and the Internet) provide enormous potential 
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to enhance GIS capabilities and functionalities. Development based upon such advanced 

technologies will lead to intelligent distributed component GIS. 

 

2.5 Intelligent, Distributed Component GIS  

Over recent years, advanced information and communication technologies (ICTs) have 

developed in the areas of mobile devices, wireless communications and the Internet, 

including personal digital assistants, GRID, software agents, digital libraries and 

interoperable systems. ICTs make GIS more robust, powerful and flexible, being also 

better at communicating and sharing geographical knowledge. Through integration with 

ICTs, GIS is evolving as a networked-based geographic information service that is both 

open and distributed (Peng and Tsou, 2003; Goodchild et al. 2004; Dragicevic and Balram, 

2004; Amirian and Mansurian, 2006; Garawski and Pluciennik, 2006). Geographic 

information, GIS solutions and spatial analytical tools are increasingly being accessed by 

both wireless and wired networks. 

 

The transformation from separate and unconnected computers to networked terminals 

and from fixed equipment to mobile devices represents a new frontier for GIS (Rehrl et al. 

2003; Batty, 2005). Consequently, new developments are based on distributed component 

frameworks instead of the client/server computer model (Stojanovi and Djordjevic-Kajan, 

2001) - as such, they are all within the scope of distributed component GIS. Here, GIS 

data is disseminated across networks, while GIS functionalities are decentralised through 

distributed computing. Due to such progress, GIS has moved further towards becoming 

ubiquitous, as wireless and mobile geographic services are able to deliver data, computing 

capabilities and integrated functionalities to distributed locations across various networks 

(Li and Maguire, 2003). Examples of distributed component GIS include the Internet GIS, 
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wireless and mobile GIS, OGC standard, Web mapping, location-based services and 

geographic markup language (GML). 

 

2.5.1 Rationale of Distributed GIS Components 

Distributed component GIS can offer solutions to overcome the everyday difficulties or 

improve the effectiveness of many GIS applications. The major barrier preventing the 

employment of GIS techniques to integrate GIS and environment modelling is the diversity 

of environmental modelling (Brimicombe, 2003). The many and varied environmental 

simulation models may well have very different structures, algorithms and data formats, 

or the same model may have to be adjusted for use in different locations. There is often a 

lack of expertise for specific environmental modelling and GIS techniques, which are both 

needed for integration (Muetzelfeldt and Duckham, 2005). Model developers and users 

have grown to expect the availability of generally applicable toolkits for GIS techniques 

which can be utilised for environmental simulation modelling when integrated with GIS. 

Today’s GIS software packages have limited functionalities to deal with spatial problems 

in environmental simulation modelling (Repar, 2005). Potentially, distributed GIS 

components could be developed to provide interoperable GIS tools and functionalities 

across networks which would couple with the various environmental models. 

 

A number of disciplines have already utilised spatial data mining techniques (Okwangale 

and Ogao 2006). A variety of data will need to be mined to achieve very different 

objectives. These are thus the demands of having to handle diverse tools to solve spatial 

problems, which GIS software functionalities are currently unable to do, although 

considerable effort has been made to couple together the various spatial data analysis 

tools. However, distributed GIS components work in the opposite way. They are able to 
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efficiently disseminate spatial data mining techniques on-line, offering more robust off-

shelf tools to meet the heterogeneous project requirements. 

 

Spatial objects (such as points or cells) are used to simulate an individual’s behaviour in 

geosimulation models, so that any patterns at a macro level can be revealed (Schuurman 

2005). However, there are limitations for such spatial objects in simulation modelling, 

because they are not computing elements (Ahlqvist et al. 2005). The use of distributed 

GIS components will enhance the computing ability of geosimulation models. Also useful 

would be the ability to simulate dynamic processes and provide various services such as 

model management and data quality control (Batty et al. 2005). Moreover, distributed 

components will enable geosimulation models to be shared between users. 

 

In principle, distributed component GIS is consistent with interoperability. With distributed 

components, it is less difficult to couple GIS with external models or tools, and they will 

thus work together in an interoperable framework. This provides a high degree of freedom 

to allow users to be able to couple specific components for their own purposes. 

 

Traditionally, the strategy for tool coupling is to integrate distinct technologies within a 

common user interface; this can be compared with distributed component GIS which 

couples spatial tools in an open environment (Goodchild et al., 1996). As the components 

are distributed, GIS techniques can be shared more widely through wireless mobile 

devices and the Internet. In addition, it can also be constructed as an open system on the 

Internet. Various tool developers would then be able to make their own contribution, 

resulting in there being diverse tools available for users to access and choose. 

 

In conclusion, GIS architecture is evolving into a more open, interoperable, distributed and 

ubiquitous framework, being supported by various coupling strategies (such as the 
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Internet, Web 2.0, mobile devices, OpenGIS standards, distributed component computing 

and wireless communications). Distributed component GIS is the feasible result of these 

trends. It is considered that the more regular implementation of distributed component GIS 

within different applications will move these trends forward. 

 

2.5.2 Developing Intelligent Capability for Distributed GIS Components 

When provided with additional intelligence, distributed GIS components will become more 

powerful in computing, analysis and communication. Here, intelligent features could 

include proactive, reactive, adaptive and objective-driven abilities, as well as autonomous 

and communication abilities. GIS functionalities or techniques could then be decentralised 

into intelligent distributed GIS components. It would thus be more flexible and robust to 

use such decentralised and distributed components in the interoperable and open 

environments for different projects at different locations by different users. On the other 

hand, as more distributed components are developed, they will also be expected to self-

control, as it is difficult to centrally control a large amount of distributed components in an 

open environment. 

 

There are some technologies which have become well established in AI and have also 

been successfully applied in GIS. These technologies could be incorporated into 

distributed component GIS to develop the intelligence of GIS components. The first 

technology is ‘fuzzy analysis’, which shows strength when dealing with uncertainty (Pan 

et al., 1998). To create an intelligent environment system, a Boolean value can never be 

reliable. By using the fuzzy sets to simulate the process of reasoning, improvements in 

decision-making can be achieved (Liao, 2004). Bringing it closer to the human capability 

of controversy, many options and decisions could be established by reasoning, giving the 
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best probable tactic to deal with a problem or rather what is most likely to be the correct 

answer to the question (Jamshidi et al., 1997).  

 

Fuzzy algorithms appear in many AI technologies, where they can particularly be applied 

to support agent learning ability. Nute et al. (2004) uses them to support goal analysis 

agents, to evaluate how well a management unit satisfied management goals by using 

four fuzzy categories (i.e. fails, nearly passes, barely passes and passes) that indicate the 

outcome of the agent action to the goal. From the outcome of current agent action, the 

authors set the algorithm to analyse a goal into desirable future conditions. One example 

is the agent-based intelligent infrastructure of the contingency management system, which 

is based on the cooperative game theoretical model with the fuzzy coalition’s algorithm 

(Jacobi et al., 2004; Sheremetov et al., 2004). In GIS, fuzzy sets are used to handle spatial 

uncertainty. For example, Brimicombe (1998) introduced a method that was able to 

objectively handle linguistic hedges of uncertainty within GIS. This fuzzy set technique 

was propagated using Boolean operators, which can easily be translated back and forth 

into different, however real, languages. 

 

The second technology is ‘pattern recognition’. Journel (1981) introduced a form of the 

probabilistic classification approach, calling the indicator ‘kriging’, which Caers (2001) 

identifies as being two-point statistics that work on a pattern recognition mechanism. 

Caers (2001) used simulated images (which could be previous images of training data or 

new images of real or training data) and fitted in formulae to produce prediction values to 

a real image (data). This is achieved using different templates (scale of measurement but 

similar attributes) for a given location, starting at the central location . 

 

The third technology is the ‘neural network’. A neural network or connectionism is the 

original AI technique proposed by Alan Turing (1940), who was the fore figure of computer 
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machines and AI. This technique works by imitating the human biological neural network 

(Bigus and Bigus, 2001; Li et al., 2004). Using electronic signals similar to biological 

neurons, the intelligence is acquired by responding to these electrical signals and the 

system can manifest itself according to the condition perceived by the system (Turban and 

Aronson, 2001). Neural networks achieve their maximum performance through time. They 

normally require training to gain experience and to achieve their functional objectives. This 

training needs to be targeted at the goal in hand. With neural networks, Gilardi (2002) 

proposed a structure to handle geostatistical complexity using machine learning (ML) 

techniques. Caers (2001) also developed a structure to use neural networks for providing 

non-linear mapping data. Noh et al. (2000) recognises the limitations of using pure kriging 

techniques on complex data, and suggests the use of a neural network. He recommends 

the back propagation neural network for learning, as it can be controlled through the 

learning procedure; such that if provided with fewer learning cases, it can be kept 

generalised - as a result, this will produce far fewer hidden nodes and will minimise the 

‘grandmother’ effect. He compares neural networks to ‘decision trees’. Due to the adaptive 

ability of neural networks, he gives decision trees no chance in the competition for 

efficiency. However, data quality is often problematic when using a neural network. 

Another notable problem is the inability of neural networks to become accessible via 

interoperability. 

 

The fourth technology is ‘ontology’, defined as:  

 
“Theory that uses specific vocabularies to describe entities, classes, 
properties and functions related to certain views of the world which could be 
simple taxonomy, a lexicon or thesaurus, or even a fully exiomatised theory” 
(Fonseca et al., 2002: p121). 
 

Grubber (2002) further explains ontology as being the explicit specification of 

conceptualisation. In GIS, ontologies are seen by many researchers as the way forward 
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in dealing with interoperability (Smith and Mark, 1998; Fonseca and Egenhofar, 1999). To 

provide this, Nolan et al. (2001) suggest using agents as the desired technology to enable 

interoperability.   

 
“The ontology is comprised of three critical components necessary to 
exchange information between GIS-domain agents, systems, or 
organizations, including: vector, raster, and image data; algorithms 
descriptions including name, inputs, outputs, and required parameters; and 
query/result information” (Nolan et al., 2001: p99). 

 

To achieve interoperability, they used ontology as the foundation for communication 

between agents. In AI, ontology is regarded as a specific reality that is described by an 

engineering artefact (Guarino, 1998), while others characterise it as a particular 

vocabulary that describes and reflects a specific view of the world (Fonseca et al., 2002). 

In the context of this thesis, the definition for ontology will embody both the classical (which 

is also defined by GIS) and that of AI.  

 

The fifth technology is Intelligent Agent technology, which is one of the most important 

developments in computer software since the introduction of object orientation. An agent 

is an autonomous, problem-solving, encapsulated entity operating within an open and 

dynamic environment (Wooldridge and Jennings, 1995; Wooldridge, 2000; Jennings, 

2001). Communication and autonomy are central features of an agent, although they may 

also have many other intelligent features in different applied areas (such as mobility, 

ontology, cloning, adaptation, collaboration, reactivity, social ability, activity and pro-

activity).  

 

The technology associated with such agents can be viewed from diverse perspectives. 

Agents can be used as a resource for the development of complex systems, or simply 

regarded as a design metaphor. They can be algorithms, specific techniques or 
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infrastructures (Luck et al., 2003). With such powerful characteristics, GIS techniques or 

functionalities may be decentralised as collaborating agents, whilst other agents could be 

developed to become distributed components across a network. Working as intelligent 

distributed GIS components, such agents are both robust and flexible - robust for different 

applications, systems or locations (as well as being widely shared and having high 

accessibility), and flexible with regard to collaboration, coupling, interoperability, extension 

or modification. 

 

This thesis intends to develop the intelligent ability of distributed GIS components, mainly 

on the basis of agent technology. Agent-based GIS functionalities and techniques may be 

regarded as a key way forward in the development of GIS. Because spatial dependency 

is a key issue of GIS (see sections 1.2 and 2.2), agent-based variogram modelling will be 

investigated to see how key GIS functionalities may be developed as intelligent distributed 

components.  

 

Spatial relationships and the inherent spatial dependency (spatial autocorrelation) of 

geographically distributed phenomena are a fundamental aspect of spatial data mining, 

analysis and simulations (Berry et al., 2008; Getis, 2008; Haining, 2009). As a fundamental 

tool in GIScience and one which is often difficult to use, modelling the variogram using 

intelligent distributed agents would be a good way of investigating the concept of 

distributed component GIS. Agent-based variogram modelling could be derived from a 

series of agents which are autonomous, collaborative and even mobile. Interface agents 

set up procedures and parameters to manage all other agents. Raw data input is dealt 

with by the Data Input agent, while the Variogram agent carries out the modelling. Under 

the Variogram agent there could be different Semivariogram agents available (such as the 

Exponential agent, Spherical agent and Linear agent). With the estimation of a variogram 

model, the Kriging agent then makes interpolated fields, while under the Kriging agent 
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there could also be simple Kriging agents and Cokriging agents and so on. The Data 

Output agent and Visualisation agent would then be able to export the results, using 

different formats as desired. 
 

2.5.3 Research Structure of Agent-based Distributed Component GIS  

This research will be based upon finding the right structure and mechanism to achieve a 

pure agent-based distributed component approach to GIS. Initially, desk-work will be 

undertaken to review the existing theories of GIS research on agents, as well as the 

current technology being proposed, its interpretation and the application of agents for GIS. 

The current limitations will be established and potential improvements will be structured. 

At this point, the venture into current agent research will be explored, to ascertain the 

reasons for agent limitations when developing distributed component GIS. 

Experimentation to provide potential solutions will be undertaken in order to achieve the 

most appropriate structure.  

 

Several possible structures will be established and experiments will be conducted to test 

which structure is best. This will be achieved using existing published (solved) case 

studies previously presented by Isaak and Srivastava (1989) and Cressie (1993). The 

agent system will be tested to find out how close it gets to the results found by the 

professional, and whether it is able to effectively learn and improve on these results over 

time. Thereafter, a more complex situation will be introduced.  

 

The structure of this research is illustrated in Figure 2.2. This structure will allow GIS tools 

and functions to be developed further through the use of agent software development. 

This will be investigated through the development of an agent-based variogram. The 

developed agents will be tested using data from known problems, for which the solutions 
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are already known and published, to ascertain their ability to solve problems and compare 

results with the human expert solution (this is the known solution). Furthermore, the 

complexity of the simulated problems will then be increased, so that the effects on the data 

can be observed. The variogram agent performance can then also be observed as the 

amount of data and information increases. This should show the limitations of the 

developed tool. Within this research, the problem is whether the ability of the variogram 

agent meets the design requirements in terms of problem-solving and learning 

mechanisms. 
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Figure 2.2: Research Structure for a Distributed Agent Platform
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The specific outcome of this thesis is: 

 

1. Agents are not necessarily object entities, but could be an environment (the tools 

that entities interact with and the interaction mechanism), and these would be 

beneficial in an environment notion to GIS. 

2. Proof of concept that GIS tools can be developed using agent-oriented software 

development, just as they could be developed using object-oriented software 

development. 

3. A structural architecture to developing agents in GIS components. 

4. A fully implemented and workable variogram agent, as a proving ground for point 

2. 

5. A more robust late stage of the agent development cycle (refining implementation 

diagrams) to accommodate the ability of easily producing agents for complex 

systems. 

 

The focus of this research is to create an architecture and investigation as to the 

importance of intelligent agents in GIS. This will be determined by producing a GIS 

component - the variogram modeller. The variogram was chosen to be the proof due to its 

modelling complexities and the current need for expert human interaction during the 

modelling.  
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CHAPTER THREE: AGENT-BASED TECHNOLOGIES 

 

3.1 Introduction 

This chapter looks into the origins of agents and, to some extent, their relationship to 

Artificial Intelligence (AI) and its origins. It will examine their characteristics and 

functionality, how agents were introduced and applied to different fields, and particularly 

agent technology applied to the field of GIS. The context of using agents in GIS and 

agents will be explored in relation to other AI and software development areas. Also in 

this Chapter different types of agents and their applications in the spatial domain are 

identified and described. Some challenges of deploying agents in GIS will also be 

presented.  

 

3.2 Characteristics of Software Agents 

Although agents are often defined and characterised in their own right as a discipline of 

software development, they were originally derived from AI, with arguably the first 

occurrence of the term ‘agency’ derived from John McCarthy in 1958. It all started when 

McCarthy was conducting trials to develop a system that aimed to function as a human. 

At that time, many of his peers did not even agree that computers could understand 

natural language, let alone function like humans In 1952, Arthur Samuel had written the 

first algorithm to produce a machine learning program (the program was in the form of 

a game application). The program was received with huge acclaim and recognised as 

being responsible for an increase in the performance of checker players. In the 1960s, 

Bobrow (1964) from MIT, in his dissertation, proved that computers could solve the 

algebra of word problems well enough. This changed many researchers’ 

conceptualisation of how computers could act as AI. 

 

The agent concept in AI can also be seen in Hewitt’s work (1977). Hewitt’s concurrent 

actor model was based on Distributed Artificial Intelligence (DAI), with the idea to create 

entities that were self-contained within their internal state and which could respond to 
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messages from peer entities. These entities were also interactive and concurrently 

executing. From this point on, AI agents evolved and have formed into three broad 

areas: DAI, Distributed Problem Solving (DPS) and Parallel AI (PAI).  

 

Substantial advances within the research field of agents started during the late 1980s, 

when the agent technology section of AI came into existence. Although non-human-like 

intelligent systems (often referred to as weak notions of agency, see below) still utilised 

agent technology; the main reason for the development of agents was to make AI 

effective and truly human-like. They were intended to solve problems associated with 

autonomy, ontology and mobility of the knowledge in AI systems. These characteristics, 

capabilities and functionalities of agents are what attracted research to use them in so 

many fields. Agents are characterised as being able to achieve communication with 

each other and with external users (like humans), and to harmonise a shared and 

common understanding of a domain (Lin et al., 2001). With the increasing usage of 

distributed and ubiquitous computing, many researchers also point out the importance 

of interoperability (Wooldridge, 2003) and therefore the benefits of using software 

agents that can communicate, migrate and perform tasks across heterogeneous 

network systems.  

 

Considerable research has been undertaken within software engineering, AI and other 

areas of software and hardware computing to develop suitable agents. However, as 

many researchers across the computing sector have shown interest in the subject, 

parallel studies have taken place and consequently many categories of results have 

been achieved.  

 

Due to the applicability of agents in many different contexts and different circumstances, 

a number of definitions of ‘agents’ have been developed. Some of them describe agents 

as simple entities that can be developed simply by relying on the existing object and 

oriented by adding APIs (Okomoto 2009; Yu et. al. 2009), while others describe agents 

in their own software engineering paradigms producing specific software designs that 
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should be able to conform to certain characteristics and often being more than just an 

entity (Jennings and Wooldridge, 2000; Shih, 2001; Wooldridge, 2003; Liao et al., 2004). 

In addition, due to the word ‘agent’ not having a single standardised meaning and being 

in generic usage, researchers from diverse ranges of disciplines refer to agents 

differently according to their aims and purposes. For example, there are software agents 

that assist users when printing documents, and telephone and fax redialling agents 

(albeit that they have simple functionality). 

  
"The metaphor has become so pervasive that we are waiting for some 
enterprising company to advertise its computer switches as empowerment 
agents" (Wayner and Joch, 1995: p95).  
 

On the other hand, there is a range of agents with complex functions and intelligence 

characteristics, which can be mobile over networks. Thus, it is important to determine 

the underlying mechanism of agents as to be able to establish the degree of agency of 

an application. 

 

Wooldridge and Jennings (1995, 2000) describe how agents are generally defined, 

particularly within AI research, as:  

 
“…a computer system situated in some environment, and that is capable 
of autonomous action in this environment in order to meet its design 
objectives” (Wooldridge, 2002: p15).  
 

Agents should be able to perform flexible autonomous actions to achieve a desired goal, 

with the basic properties of autonomy, interaction, reactivity and pro-activeness. This 

definition is perpetuated from similar definitions made by King (1995) and Nwana (1996). 

In general, a software agent can be defined and classified according to its characteristics 

and a notion referred to as ‘agency’ (how strongly the agent exhibits the agent 

characteristics). The following summarises the main characteristics of software agents:  

• Autonomy: the capacity to act independently from external users and other 

agents, and in the sense of adding intelligence to users’ instructions (Farjami et 

al., 2000; Kwon and Lee, 2001; Callan, 2003; McGann et al., 2009).  
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• Mobility: the ability to freely migrate from one host to another in a network and, 

when needed, initiate communication with other agents (Farjami et al., 2000; 

Shih, 2001; van Breemen and de Vries, 2001; O’Grady and O’Hare, 2004; 

Amandi et al., 2005).  

• Reactivity: the capability by which agents can perceive their environment and 

respond to changes with actions in a timely fashion (Amandi et al., 2005).  

• Social ability: the ability to establish some type of agent-communication 

platform to interact with each other or, if required, with external objects (e.g. 

humans) (Hill et al., 2004). This feature induces another feature, collaborative 

behaviour. 

• Collaborative behaviour: the capability as such where each agent is given a 

discrete task, but must also work together to establish how they will share the 

information they collect for dealing with a collaborative job (Callan, 2003). This 

feature is often confused with social ability (described above); the difference is 

that collaborative behaviour is where an agent needs to communicate with its 

own kind, whilst social ability refers to the ability to propagate freely and pick up 

new knowledge on the way and even clone itself when required (Shehory and 

van Harmelen, 2004).  

• Adaptivity: the ability to learn over time, as agents react to or interact with their 

external environment and change according to the experiences accumulated. 

Therefore, agents’ performance should improve over time. This feature directly 

interacts with the reactivity feature. Agents that can adapt are sometimes called 

‘learning’ agents (O’Grady and O’Hare, 2004). Adaptivity expresses the need for 

an agent to subsequently adapt to users (people) instead of the other way around 

(i.e. the agent should have a memory and so be able to learn and change 

according to experiences accumulated through time). Wooldridge and Jennings 

(1995) state that: “it would be impractical to assume that we could predict all 

possible events in the external environment and encode all the knowledge about 

those events in advance, agents need learning capabilities. How they react to 

new circumstances can be programmed, what they learn cannot”. 
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• Personalability: the capacity to adapt to user needs. An agent should learn the 

pattern of user behaviour and mutate itself to do the specific function that a user 

would need (Shehory and van Harmelen, 2004). Being a software, but very 

deferent from normal software where information flow is only one way (from the 

user to the software), the agent should be fully interactive whereby the user can 

learn from it and vice versa (information flows both ways).  

• Pro-activity: the ability to take initiatives without an external instruction from 

users, by using predictions. These predictions must reflect the true purpose of 

the agent’s existence and should never work to manipulate the system otherwise 

(Amandi et al., 2005).  

• Cloning ability: the ability to replicate itself (Amandi et al., 2005). 

• Ontology: formally expressing the knowledge representations needed for a 

specific domain, which may in turn be seen as a single component (Gruber, 

1993) 

• Intelligence: generally refers to an agent’s ability to learn and adapt to its 

environment. 

 

Although those listed above are widely recognised characteristics of agents, there are 

still questions concerning whether some agents in particular disciplines and applications 

can be regarded as real agents. This confusion was pointed out by Sengupta and Sieber 

(2007) and is yet to be clarified. Agents can also be recognised as being  

 
“a system situated within and a part of an environment that senses that 
environment and acts on it, over time, in pursuit of its own agenda and so 
as to affect what it senses in the future… [whilst a software program that] 
…runs once and then goes into a coma, waiting to be called again… [can 
be told apart from an agent]” (Franklin and Greasser, 1996: p4).  
 

 

Furthermore, many researchers have made an effort to classify agents, and to 

differentiate their software as one type of agent from other types. There have been many 

properties that have been used to identify different types of agents in the software 

industry. Thus, agents can often range from intelligent and collaborative ones to any 



 
58 

other autonomous software. Due to the wide range of agents, complications arise when 

differentiating types of agents. A generally accepted concept in grouping agents into 

those with a ‘weak’ or ‘strong’ notion of agency will be described below. 

 

Agents can be separated into two groups: those with a weak notion of agency and those 

with a strong notion of agency; identified depending on the characteristics that such 

agents exhibit (Wooldridge and Jennings, 1995; Nwana, 1996). Agents with a weak 

notion of agency are defined according to their basic characteristics. There are four main 

characteristics: 

 

• autonomy; 

• reactivity; 

• goal-oriented (pro-activeness); and 

• social ability (being able to interact and communicate with other agents). 

 

Software exhibiting these characteristics form the basis of being software agents. 

Entities that do not exhibit all of these four main characteristics are often questioned as 

to whether they can even fall into the non-agent category (Franklin and Graesser, 1996). 

However, the basic characteristics can also be regarded as to having a weak or strong 

notion, such as there are agents with a weak notion of autonomy and agents with a 

strong notion of autonomy (Sengupta and Sieber, 2007). Agents with a strong notion of 

agency are determined as possessing most of the agent characteristics previously 

described, in addition to the four main characteristics. In AI research areas, agents with 

a strong notion of agency are those regarded as holding certain properties (either 

conceptualised or implemented) which are generally applied to humans. These agents 

can have notions of belief, intention, knowledge and obligation, or even emotion 

(Shoham, 1993). Such strong notion agents can exhibit characteristics such as mobility, 

capability of collaborative behaviour and the ability to adapt, learn and be rational. Based 

on these two groups of agents, a third type of agent can be identified, called specialised 

agents (Al-Zakwani et al., 2007a). These specialised agents can exhibit either a weak 
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or strong notion of agency (from the above definition), but possess only the specific 

features that are required for these agents to perform their delegated tasks.  

 

A distinction between different types of agents can be made according to the 

characteristics that the agents exhibit (Nwana, 1996). Nwana (2006) has divided the 

past agent research into two strands: deliberative and collaborative agents Since the 

late 1970s, there was an emphasis mainly on deliberative types of agents and macro 

issues such as interaction and communication between agents, distribution of tasks, co-

ordination and negotiation resolution. The deliberative type of agent has been defined 

as those agents that have an explicitly represented and symbolic model of the world and 

make their decisions through symbolic reasoning (Wooldridge & Jennings, 1995). The 

second strand, which started during the 1990s, covers a much broader and diversified 

range of agents, including collaborative, interface, mobile, information, reactive, hybrid 

and smart agents. In this broader range of agents, different types of agents are 

distinguished depending on the particular characteristic(s) on which the agents have 

more emphasis. For example, collaborative agents have more emphasis on the 

characteristics of autonomy and cooperation, while having less emphasis on other 

characteristics. In the same way, interface agents focus more on autonomy and learning 

than collaborative agents. Truly smart agents should have the characteristics of 

autonomy, cooperation and learning equally, but as Nwana (2006) points out, this is 

more of an aspiration than reality.  

 

Moreover, because of the wide range of agent applications, the types of agents are also 

often differentiated according to the function and tasks carried out by them. One 

example is the role-specific classification of agents provided by King (1995) includes 

navigation, help, management, search and retrieval, role-playing, domain-specific, 

analysis and design, development and testing agents - and many others. Another 

example is the agent typology discussed by Dillenbourg (1999) includes personal 

agents, assisting decision-making agents, agents assisting human-computer interaction 

(HCI) and agents assisting spatial data retrieval. Agents in different applications can 
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also range from those with a weak notion of agency to those with a strong notion of 

agency.  

 

As discussed above, software agents can be classified by the characteristics which they 

possess, varying in agency from being weak to strong. This also depends on which 

function the agents are being employed to perform in their environment.  

 

3.3 Some Applications of Software Agents 

Since the 1990s, applications of agent technologies have been found within a wide 

range of disciplines, such as computer networking, software engineering, AI, human-

computer interaction, mobile systems, control systems, decision support and electronic 

commerce. In addition, agent technologies have also been utilised in the disciplines of 

economics, social science, philosophy and logics. Such examples show the diversity of 

agent technology, its research and applications. An agent is regarded as a design 

metaphor or a source of technology for development applications (Luck et al., 2003). An 

agent, as a design metaphor, can offer a way of developing applications around 

autonomous communicative elements and complex systems constructed with software 

tools and infrastructure (Jennings, 2001). In application development, agent 

technologies can be a source of technologies and algorithms for dealing with 

interactions in dynamic and open environments. 

 

Applications of agent technologies can be categorised differently, due to the wide range 

of application fields and the different ways by which they can be grouped. Some 

applications are grouped according to the main roles undertaken, such as the four 

application areas highlighted by Haag and Cummings (2007). 

 

• buyer agents that emphasise those applications using agents to retrieve 

information around a network related to products and services, and to monitor 

buying preferences and buying histories, then offering customised services;  
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• user agents which stress those applications and use intelligent agents to take 

actions on a user’s behalf;  

• predictive agents refer to monitoring and surveillance applications, often 

undertaking tasks such as observing and reporting on software and physical 

equipment functionality;  

• data mining agents that highlight those applications utilising agents to operate in 

a data warehouse for knowledge and information discovery, in order to detect 

major shifts in trends, a key indicator, or the presence of new information.  

 

The applications of agent technologies can also be broadly categorised as assistant 

agents, multi-agent decision systems and multi-agent simulation systems (Luck et al., 

2003). The first category emphasises assistant agents, which mainly uses agents to 

gather information and execute transactions on the Internet on behalf of users. The 

second application area focuses on multi-agent decision systems, which utilise agents 

in the system to cooperate with each other and make joint decisions. One example could 

be the joint decision-making mechanism used in auction applications (such as those 

used in eBay), where there are mainly two kinds of agents being used, the negotiation 

agent and the auctioneer agent. The third application category mainly concerns multi-

agent simulation systems, which use agents as models for simulating real-world 

domains. These multi-agent models usually deploy various components, and interact in 

complex and diverse ways. Examples of such applications can be found in a wide range 

of areas, such as human economics and social science, biological populations, road 

traffic systems, computer networks and computer games.  

 

As we can see, this way of categorising agent applications depends on how agents are 

perceived to behave. Between the first category and other two, the distinction is that one 

is a single agent and the other two are multi-agent systems. Even though agents in the 

first category of applications may well need to interact with other agents, multi-agent 

applications place more emphasis on collectively taken decisions rather than individual 

ones. The second category of applications (multi-agent decision systems) is aimed at 
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systems that comprise of agents and what agents do, whilst the third category is aimed 

at the understanding derived from the system and an appropriate representation of real-

world components that could be provided by agents. Therefore, the main difference 

between these two multi-agent system applications is that one is used for taking 

decisions while another is for understanding the phenomena.  

 

In practice agents have been studied extensively for supply chain management by Lin 

et. al (2001), Jankowska et al. (2007), Nienaber and Barnard (2007), Chan and Grosof 

(2008) and IBM (2008) and many others. All these authors agree that the supply chain 

management will benefit by using a combination of proactive and reactive strategies that 

keep critical supply processes available without interruption. Nienaber and Barnard 

(2007) used software agents to support processes for project management. To study 

the effect of software agents to influence market behaviour of human traders, 

Grossklags and Schmidt (2006) have experimented in a laboratory, a MAS-based 

platform for a double auction market where passive agents with an arbitrage-seeking 

strategy are used with human subjects. They found that common knowledge about the 

presence of software agents triggers more efficient market prices. Even though, they 

explained that "controlling for information on software agents' participation, the 

introduction of software agents results in lower market efficiency".  Zivan et. al (2009) 

have developed a team agent to represent  mobile sensors who can adjust their 

locations with respect to changes on their current perception. The system presents a 

new information exploration method using Distributed Constraint Optimization Problems 

(DCOP) algorithm where the credibility of agents themselves is confirmed using 

reputation model (Huynh et. al 2006). The authors explain the model as capable of 

handling “a dynamic problem in which the alternative assignments for agents and set of 

neighbours, derive from their physical location which is ‘also’ dynamic.” This has 

achieved the goal of evaluation and adjustment of sensors during the deployment phase 

to correspond to the dynamic changes of the environment acted upon. An example of 

this is the peer-to-peer environment (Yu et. al 2009). Yu et. al (2009) have introduced 

agents capable of learning to discover service providers on peer-to-peer network. They 
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act as processes for message propagation on a distributed message relaying to remove 

the problems on communications or/and long response time. Similar applications have 

been developed to help simulate and improve team performance on time stressed group 

tasks by ad-hoc decentralisation of human teams (Sukthankar et. al 2009). Sukthankar 

et. al (2009) explain that the simulation studies how human teams rise to the challenge 

by analysing “the communication patterns of teams performing a collaborative search 

task that recreates some of the cognitive difficulties faced by teams during search and 

rescue operations”. 

 

Okamoto et. al (2009) have developed personal assistants using agent. The system was 

able to determine the requirements for hierarchical organizations and horizontal 

organizations by comparing the agent performance on assisting the impact of the 

personal assistant have on the behaviour. They have found that, for hierarchical 

organisations, the agents can assist on improving load balancing through task allocation 

and failure recovery while for horizontal organizations by improve communication. They 

concur that experiments showed system facilitate most beneficial to horizontal 

organizations.  The algorithm the agents used in Okamoto et. al (2009) are similar to 

that of Lieberman et. al (2001, 2006) who came up with a concept for integrated 

annotation and retrieval of images using agents.  Based on the user's everyday work, a 

proactive user-interface agent automatically searches an image library and seeks 

chances for image annotation and retrieval.  The main function of the agent is to facilitate 

the finding and usage of the images. The agent monitors the typing of user's text editors.  

Thus images relevant to the current text can be inserted in a single operation. Lieberman 

et. al (2006) assert this by saying "descriptions of images for storytelling can be 

seamlessly employed as raw material for annotation. Common-sense knowledge about 

situations in which pictures are taken, described, or used can help provide semi-

automatic annotation and indirect inference for retrieval." Furthermore, Nealon and 

Moreno (2003) have used Agent-Based Applications in health care.  They build: an 

Agent-Based Community Care Demonstrator using a Worldwide Agent Platform; Agent-

Based User Interface Adaptivity in a Medical Decision Support System; a Multi-Agent 
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System for Organ Transplant Management. Schweiger et. al (2007) have emphasized 

this importance of agents in healthcare due to their characteristic of proactivity and 

flexibility which the authors have affirm to be the dominant characteristics in healthcare.  

 

One widely used area of agent application involves those used in e-commerce. One 

such example is in Trading Agent Competition (TAC), in which agents are utilised to find 

and book hotels and make travel arrangements (Greenwald and Stone, 2001). Another 

example is deploying agents in a network (e.g. the Internet), to retrieve relevant 

information for their users about products and services, such as certain types of personal 

shopping assistant which are able to search online stores for product availability and 

price information, electronic marketplaces in which agents buy/sell goods and so on. 

One of the best known examples of these kinds of agents is when buyers/sellers are in 

the presence of Amazon.com, where agents are used to monitor user buying 

preferences, the types of items or themes which have been purchased in the past, so 

that a list of customised items that the user might like to buy can be offered.  

 

Agents can also be utilised for those applications where everyday mundane functions 

are performed automatically on an individual’s behalf. For instance, agents can be used 

for managing one’s e-mails, such as checking for e-mails and re-arranging the mail 

according to the owner’s usual preference (e.g. all mail directly from work should come 

highest on the priority reading list, while suspect e-mails should be put on the lowest 

priority list), answering standard e-mails (e.g. greeting e-mails and reminders from other 

colleagues) and making sure that in turn it alerts the owner of any answered e-mails. 

These agents could also schedule meetings, by negotiating a suitable time, and one of 

this kind of agents is offered as a standard example by the JADE engine (JADE Manual, 

2004).  

 

Agents are often used in applications which assist the filtering of information. One such 

example is through the deployment of agents to assemble customised news reports 

used by the CNN website. CNN has a system where users get assigned to an agent 
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which will arrange the news according to user registered profiles and preferences. Also 

with CNN, there are agents that can discuss certain topics with you (such as sports and 

betting) and agents that can find information for you on the subject of your choice, 

scanning the web pages to look for and highlight text that constitutes the ‘important’ part 

of that information.  

 

Agents have been widely applied in the area of manufacturing, including the 

configuration and collaborative design of products, scheduling and controlling 

manufacturing operations and production sequences, controlling robots, and process 

control by autonomous reactive systems. One example is a software platform known as 

ARCHON, which is used to build multi-agent systems and has been applied in electricity 

transportation management and particle accelerator control. Such agent systems have 

also been applied to monitor and diagnose faults in nuclear power plants, spacecraft 

control, climate control and steel coil processing control. Another application which uses 

agent technologies is for prediction and monitoring, such as those agents used in 

NASA's Jet Propulsion Laboratory for monitoring the inventory, planning, scheduling 

equipment orders and food storage facilities. These agents can monitor complex 

computer networks. Developed in the BRAHMS programming environment (Sierhuis, 

2007), they allow computer networks to keep track of the configuration of each machine 

connected to it.  

 

Multi-agent systems have also been deployed for applications for allocating resources 

and managing the operation across a telecommunications network, where agents 

represent a range of components of the network. Agent technologies have been 

employed with considerable effort in the telecommunications industry, particularly since 

1992. For example, the programs ACTS and EURESCOM in Europe (by BT, Telecom 

Italia, Telefónica, Portugal Telecom and Telia) have carried out specific research on 

agent applications to telecommunications services, service management and workflow, 

and methodologies for agent development. Another example is in forecasting the traffic 

on telecommunication networks, using a multi-agent system simulating user behaviour. 
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Agents have often been used in entertainment, such as developing computer games. 

Agents can be used to assist playing computer games, and computer games agents 

(especially intelligent and mobile agents) are becoming one of the main trends in this 

area (Al-Zakwani, 2006, 2007b). An example of such computer games is SimCity which 

is described by Maxis (2002). A rich simulated environment can also be developed with 

a range of synthetic agents, where a user can interact in real-time. One example of using 

agents to create remarkable scenes is in the movie ‘The Lord of the Rings’. The agents 

used can learn over time and their behaviour can change, thus the movement and action 

of each individual can perceive and respond to the environment and other agents, and 

convincing effects were achieved by the autonomous actions of agents. Agents are also 

used to facilitate intelligence and reactions in some specialised environments in 

computer games. For example, the First Person Shooter (FPS) genre gives computer-

controlled characters realistic behaviour (e.g. by dodging bullets, or working together in 

a team to kill the human players) (Mateas, 2003). The Belief, Desire, Intention (BDI) 

agent architecture (Bresciani, 2004) can be used to accomplish this. A Belief is the 

knowledge that an agent has about itself and its environment (O'Hare and Jennings, 

1996), such as how to stay alive and how to kill an opponent. Desire is the outcome or 

goal that the agent would like to bring about (Shajari and Ghorbani, 2004b). 

 

Simulation applications of multi-agent systems, in general, aim to represent real-world 

environments with an appropriate degree of complexity and dynamism; such 

applications can be the simulation of economies, societies and biological environments. 

For example, multi-agent simulation has been used for analysing climate change, 

capturing the development of social pressures such as the outcome of individual choices 

and social interaction, or researching the impact of change on various biological 

populations. In social simulations, two types of approaches are often taken. One type 

aims to establish logical systems to underlie social interaction, whilst the other observes 

and models social processes. These two types can work together.  
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Thus, it can be seen that there has been a wide range of agent applications introduced 

over recent years, of which this section has only shown a few examples. Furthermore, 

in the computing industry, agent-based software development and tool coupling is 

becoming a preferred consideration. What is not discussed in this section are the 

applications of agent technologies in GIScience (i.e. in spatial phenomena), which will 

be the focus of the following sections. Although there have been ranges of agent 

applications in GIScience, geosimulation has been one of the main areas in agent 

technology application up to now. 

 

3.4 Use of Agents in Geosimulation 

3.4.1 Early Use of Cellular Automata in Geosimulation 

The concept of geosimulation originated from urban studies. In order to deal with the 

complexity of urban phenomena, individually-based modelling technologies were 

introduced (for example, cellular automata [CA]). Urban simulation models were 

developed, based on individual urban objects such as households and pedestrians. To 

build such models, there was the need to develop tools with which to construct a spatial 

structure and consider the spatial behaviour of individual objects. Torrens and O’Sullivan 

(2001) devised the term ‘geosimulation’ to cover this new field of modelling. The 

geosimulation concept is widely applicable from urban study to ecology, economics, 

social science and other disciplines where spatial individual-based models could be 

applied (Benenson and Torrens, 2004a).  

 

One influential technology in geosimulation, as mentioned above, is CA. The roots of 

CA can be traced back to Basic Automata (BA) in AI. BA is a simple processing 

mechanism that operates on a rule-based structure. It is composed of states, an input 

stream, rules and a timer (Turing, 1940; Von Neumann and Burks, 1966). In a rule-

based structure, an automaton receives an input and acts to that input by using a set of 

rules. An example of this is ‘if today is Sunday, then switch the heater off’. This is 

achieved by a mathematical construct that can be explained using set implication rules.  
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In principle, CA works just like BA with spatial implication. A collection of CA forms a 

lattice structure, where each cellular automaton influences its neighbouring cellular 

automaton (see Figure 3.1 for a simple visualisation). 

 

 

 

Figure 3.1: Demonstration of Cellular Automata 

 

Figure 3.1 shows a structure having a cell being operated (covered in black) and shows 

the influence of and on the nearby cells. This could be regarded as a simple two 

dimensional (2D) CA - as such, on the first run (layer 1), we have picked the cells we 

want to work on. The next run (layer 2) captures the two closest cells (which are to the 

left and right of the original cells). How the cell selection works is governed by sets of 

rules, which are similar to the Turing machine rules of automaton structure (Turing, 

1940). Each cell has a state, condition and action, and thus synchronously these cells 

could be transient such that the cell state is altered according to the action of a cell close 

by. The action is governed by a set of rules similar to those provided by the game 

platform.  

 

In John Conway's Game of Life by Gardner (1970), cells have an 'alive' or 'dead' state 

where, by using the rules he provides, for each iteration the cells' states change 

accordingly. These rules are stated by Gardner (1970) as: 

• Survivals - every counter with two or three neighbouring counters survives for 

the next generation.  

• Deaths - each counter with four or more neighbours dies (is removed) from 

overpopulation. Every counter with one neighbour or none dies from isolation.  
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• Births - Each empty cell adjacent to exactly three neighbours (no more, no fewer) 

is a birth cell. A counter is placed on it at the next move. 

 

These rules in CA have also been discussed in the geosimulation area, such as  

 
“a 'live' cell in one iteration remains 'alive' in the next iteration if its 
neighbourhood contains either two or three other alive cells, otherwise its 
state is coded as 'dead'. Additionally, a 'dead' cell in one iteration can 
become 'alive' in the next if its neighbourhood contains exactly three 'live' 
cells” (Torrens, 2003: p 10).  
 

There is more in-depth discussion on CA and its uses in Batty’s “Cities and Complexity” 

(2005). Given the important position of CA in geosimulation, the above discussion 

reveals the natural links between concepts/technologies in geosimulation and AI.  

 

Geosimulation focuses on space and geography, which distinguishes geosimulation 

from other simulation methodologies. It has been well applied to simulating an individual 

object’s behaviour in order to study the spatial and dynamic phenomena at above-

individual. As discussed earlier in Chapter 2, the development of geosimulation is 

technically heterogeneous, which can be a collection of geocomputational and 

visualisation tools, spatial data representations/models, interoperable systems or 

practical approaches (Albrecht, 2005). CA-based modelling initially inspired the concept 

of geosimulation. Agent-based modelling provides the opportunity to enhance and 

broaden geosimulation.  

 

3.4.2 Next Stage of Using Agents in Geosimulation 

Applications of geosimulation can be found in diverse areas, such as urban planning, 

urban crowds, environment and ecology, hazards and contingency, retailing and 

business geography, as well as wayfinding, security and evacuation. The following are 

some examples to demonstrate the evolving use of agents in geosimulation.  
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One area, which geosimulation is being applied, is in modelling sprawling urban growth. 

For example, Benenson and Torrens (2004) developed SprawlSim, using the structure 

of CA with some agent interaction mechanisms. This structure allows the simulation to 

be able to change its environment (using automaton) and adapt to the environment 

(using agents).  

 

Moulin et al. (2003) used a multi-agent system-based geosimulation to improve crowd 

simulations. The simulation is based on agents interacting in virtual geographic 

environments based on 2D and 3D platform. The agents have spatial cognitive 

capabilities which include perception, navigation and reasoning.  They are able to 

perceive the terrain characteristics (elevation and slopes), the landscape surrounding 

the agent (including buildings and static objects) and other nearby agents. The 

environment is given real life environments that includes a smoky area un/pleasant 

odors, distractive events occurring in the agent’s vicinity like explosion, etc. The agents 

are able to utilise these perceptions to their advantage. Moulin et al. (2004) also 

developed PADI-Simul, which is an agent-based geosimulation software supporting the 

design of geographic spaces. Bédard et al. (2003) identified AI to improve decision-

support tools that would facilitate geographic knowledge discovery. In practice, this 

improved On-Line Analytical Processing (OLAP) into Spatial OLAP. The system was 

intended to improve and facilitate access and exploration of environmental and health 

geospatial data to aid health specialists.  Bédard et al (2003) explains the main function 

of the project as a "help on reducing health risks caused by an environmental source by 

providing a quick and easy access to high quality environmental and health data to 

improve decision-making and interventions, access to statistics and other information 

and the discovery of new knowledge". The system was AI based but not exhibiting much 

of software agency, however agency was fully incorporated in Chaker et al (2009) to 

increase the system robustness and to allow simulation of environments which allowed 

to capture health issue and contaminations on real life environment over simulated 

human displacement. SimWalk (2007) is another geosimulation-based experiment to 

enhance the security of public transport (train and bus) travellers. SimWalk is an open-
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source tool used to model pedestrian flow and define security strongholds for certain 

activities. It is also used to model urban planning and evacuation. It is based on a generic 

platform where any pedestrian situation can have its problems modelled and simulated. 

One of the cases that was modelled using the SimWalk is the Islamic pilgrimage in 

Mecca. The simulation studied and found solutions to the crowd flow control related 

problems. The persistent problems are based on pedestrian flow for the 

circumambulation of the Ka’aba.  The entry into the circumambulation area is channelled 

by multiple entry points and thus causes large number of pilgrims to flow in from multiple 

directions at the same time. This causes congestion and end up with disasters as 

pedestrians push into each other. SimWalk has managed to introduce a solution for this 

crowd control by employing agent with reactivity character and allow them to flow into 

the platform modelled Ka'aba. The right model was determined by introducing and 

studying the influence of obstacles helped on crowd control for the pilgrimage through 

experimenting on area extension on Levels of Service at the circumambulation area. 

 

NED-2 is a simulation system which aims to be intelligent and goal specific (Twery et 

al., 2004). It integrates tools that are designed to monitor the ecosystem of a forest and 

make intelligent decisions when needed by integrating with tools like GIS models of 

wildlife and vegetation growth. NED-2 is knowledge-based, which uses semi-

autonomous agents to manage these tools for the user by building prescriptive 

management plans (Rauscher et al., 2000). It was originally designed to provide 

silvicultural prescriptions to meet specific goals on timber production (e.g., to diagnose 

forest health problems) (Nute et al., 2004). 

 

Using geosimulation, Gosselin et al. (2005) have examined the expansion of the West 

Nile Virus (WNV), which is at its worst level of incidence since 1999. This research 

commenced when the public health authorities in North America built and operated a 

surveillance system to try to contain the spread of the infection so as to reach their 

territories through bird (carriers of the virus) migration. Bouden et al. (2005) suggest 

using geosimulation to simulate the behaviour of mosquitoes and corvidae which are 
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related to the spread and transmission of the WNV. They realised the need for reliable 

forecast of the closest possible level of expected risk and the time of occurrence to 

establish preventive measures to tackle the epidemic. This requirement for a more 

robust interpretation and prediction served to be the reason to refer to the Multi-Agent 

GeoSimulation. This simulation takes place in a virtual mapping environment 

representing a physical geographical environment with climate being factored in. Given 

that birds are the carriers of the virus to the Northern America they were developed as 

the vector of the Agent Based system that simulates their interactions to the mosquitoes 

over space and time in relation to the spread and transmission of virus. 

 

More advanced 2D and 3D multi-agent geosimulation arose in 2005. For example, 

knowledge-based agents are used in modelling customers' shopping behaviour in a 

shopping mall (Ali et al., 2005). The simulation was initially based on a 2D graphical 

platform where individual agents have knowledge based on the shopping behaviour of 

a real population of shoppers. The agents were equipped with a capability to act upon 

their surrounding and making decisions in a 'micro-scale geographic environment', a 

shopping mall. The individual agent behaviour is based upon a real agent (a person) 

who have had their behaviour captured through an interview and embedded into the 

software agent. Thus based on the given characteristic, agents were able to choose the 

right shops to go to and so demonstrate decision making and navigation character of 

real human. Given the real user knowledge of the shops arrangement in the mall, the 

agent was able to start shopping based on its position in the mall exhibiting perception 

character, its knowledge of locations in the mall using memorisation characteristic. The 

agents can realise a closer shop while heading to a different shop and change their 

course of action which again show decision making, perception and memory 

capabilities. The agent will go around the mall until it has completed its shopping task or 

run out of time. The simulation was then turned into 3D to allow a better capturing of this 

realism behaviour by allowing the agent to have real life manoeuvres (real life 

environment in 3D). 
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To support human planning and spatial cognition, Sahli (2005) has also experimented 

on agent-based geosimulation. Due to the limitation of real life evacuation planning and 

in general on tackling wild fires, a close to real life software system is needed for this 

purpose. Given the uncertainty of wild fire, Sahli (2005) has implemented a Multi Agent 

Geo-simulation with agents capable of planning through anticipating a change of 

scenario and using reaction characteristic of agency. The simulation was also designed 

on 3D environment to support real life perceptions (provide all geographical angles a 

human can perceive).   

 

3.4.3 Issues in the Use of Agents for Geosimulation 

There has been an enormous increase in data availability over the past decade in terms 

of data type, volume, coverage and scale. Such a trend undoubtedly enhances the 

capability of geosimulation and has led to many new models being developed.  

 

With large amounts of data and diverse models, spatial phenomena can now be studied 

from various perspectives and in considerable depth. Meanwhile, large amounts of data 

and different models might increase the demand for data exploration, data and model 

management. This poses a challenge in managing data and models in geosimulation 

such as handling large sets of spatial data both off-line and on-line, also managing a 

range of software and tools. 

 

Distributed components across the Internet offer both opportunities and challenges for 

geosimulation research. Multi-agent systems have been used to query and integrate 

distributed environmental information over a network (Purvis et al., 2003). Such a 

system is a collection of collaborating agents. A query from the user agent is passed to 

the query agents. The query agents send the query to data source agents that contain 

information on sources of data. Sengupta and Bennett (2003) have designed an agent-

based framework to utilise online data and models for spatial decision support. Their 

agents assist users to locate and retrieve spatial data and analytical models distributed 
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on the Internet. The agents then automatically transform spatial data ready for inputting 

into analytical models through the use of GIS software. NED-2 (Nute et al., 2004) 

mentioned in the last section, is another case, in which a set of semi-autonomous agents 

can set up and run external simulation models, load rule-based models, set up and 

execute external GIS, visualise outcomes and generate hypertext reports. However, 

deploying distributed components over a network to achieve geosimulation is still an 

area which needs much more research. 

 

Geosimulation is recognised as a new field of simulation modelling, which covers 

various geographic data and spatial analytical techniques. A range of data quality 

problems then arise which can have a serious detrimental effect on the fitness-for-use 

of model outputs. Errors and uncertainties would be introduced in data collection, 

transformation, integration and manipulation. Errors and uncertainties might also 

propagate through different phases of modelling. Simulation outcomes could be 

misrepresented in visualisation and mislead the decision-making. Therefore, the 

awareness of spatial data quality is vital for the further development of geosimulation. 

Effective solutions are needed for managing the spatial data quality in geosimulation 

modelling. Research has been carried out using agent technology to control spatial data 

quality in geosimulation modelling by Li (2006, 2009). 

 

Validation is another important issue for every type of modelling. For geosimulation 

modelling, there are some technical barriers for validation as well as verification, 

calibration or evaluation in general. This is because currently most geosimulation 

models are individual-based models which normally have a large number of dynamic 

spatial objects. To control the behaviour of these objects, various parameters and 

random factors are involved. There is also often a lack of empirical data as reference. 

Under such circumstances, traditional validation methods are often computationally 

heavy, time consuming and might sometimes even be infeasible. Li et al. (2008) have 

developed an innovative agent-based service solution for the validation and calibration 

in geosimulation modelling. On the other hand, if there are empirical data available, 
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geosimulation provides an opportunity to validate new theories or concepts. More 

research is required in this area of study. 

 

At present, there are not many open-source geosimulation models available for use. 

However, as a new field of simulation modelling, open-source models will help to 

disseminate novel achievements in research and promote their applications to industry 

by sharing new ideas and techniques. Particularly, one strong point of geosimulation is 

bringing various technologies and tools together. Open-source models will certainly 

encourage contributions from different areas and disciplines. 

 

 

3.5 Classification of Agent Deployment in the Spatial Domain 

3.5.1 Understanding of Agency 

The notion of applying software agents in GIS is by no means is a new idea, as can be 

seen earlier in this chapter regarding geosimulation. They have also been extensively 

recommended as non-simulation entities to aid analysis. The use of agents has been 

discussed in the context of GIScience by many researchers such as Openshaw and 

Openshaw (1997), Goodchild (2004), Torrens (2004b), Reitsma and Albrecht (2004), 

Albrecht (2005) and Batty (2005a). Agents have been studied in many applications to 

facilitate GIS. The main focus can be deduced from the agent definition itself, of being 

a piece of software that can travel across networks autonomously and perform its 

required function by reacting to a particular condition. Agent technology has enabled 

greater interoperability and has offered the ability to work with large distributed 

processes and data. However, it is still important to understand agency in the context of 

the applications of agent technologies in spatial domain. Such understanding can largely 

be based on the type of agent being deployed, which can be defined by the 

characteristics of the agent at work. 
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In much GIScience research, it is not uncommon to see the idea of agents being bound 

together with objects. In GIScience (and particularly research into geosimulation), there 

seems to be a direct perception of an agent in relation to an object, such that they 

certainly coexist in every situation. This can be seen in the early agent-based 

applications in GIScience. As Benenson and Torrens (2004b) state, “geosimulation 

models are noteworthy in their depiction of simulated entities”. However, in computing, 

there is a clear difference between object and agent, although they can be coupled 

together. In one example, the use of object-oriented programming (OOP) can be seen 

in the CLIMEX tool for modelling global climate change, which is implemented using two 

types of objects: the spatial object and thematic object (Fedra, 1996). In another 

example, Faulkner (1999) has taken the research approach of writing Java classes to 

deal with the variogram. At this point we can see that the object-oriented functionality of 

GIS and strong computing mechanism of fully utilising agents has not yet been met. To 

move forward, firstly it would be helpful to clarify the differences and draw a clear 

boundary between object-oriented and agent-oriented software development. The issue 

of object- and agent-oriented technologies also exists in the studies on distributed 

component GIS. It is therefore necessary to have a look into different types of agency, 

as used by researchers in their applications. 

 

Starting with the agents that have a very weak notion of agency, like those mentioned 

by Franklin and Graesser (1996), there are agents that can have some degree of 

automation but do not qualify for one fully functional characteristic of an agent. Such 

agents might possess hypothetical features that make them look like an agent (an 

example of this is the paper clip that appears on MS Office, where if a user makes 

multiple mistakes or appears to be stuck, the clip will appear to offer help). Conversely, 

there are agents with a strong notion of agency (even sometimes referred to as futuristic 

agents), like those discussed by King (1995), which provide for a role-specific 

classification of agents. The types of agents defined include navigation, help, 

management, search and retrieval, role-playing, domain-specific, development, 

analysis, design and testing agents..  
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Many researchers in GIScience area have successfully implemented agents as objects 

in simulations, such as human individuals, land parcels, fluid flow and landslides. 

However, in the pure computing environment and especially software development, 

agents have been extensively used within systems that perform some functional work. 

Those agents often poses learning and social collaboration features. Take the example 

of a timetabling agent, it can make sure that there is no clash within the timetable, by 

understanding and applying the user’s preferences. Another example of agent 

application in software development can be seen in Braciani et al. (2002), where an ice 

producing company had their system implemented using an agent-based software 

development paradigm. The system was intended to provide an easy process for the 

ordering, manufacturing and delivering of ice-based goods. It is important to bring this 

notion of agency into to GIS applications. 

 

3.5.2 Classifying  Agent Usage in the Spatial Domain 

As already discussed, agents have been deployed in the spatial domain. Such agents 

are termed here as geospatial agents. Sengupta and Sieber (2007) argue that there are 

some geospatial agents which fit within the AI paradigm of agents. Based on the 

classification scheme proposed by Franklin and Graesser (1996), they refer to the two 

types of agents: artificial life geospatial agents (ALGA); software geospatial agents 

(SGA). ALGA simulate the behavioural response of an individual to an external stimulus 

using available computational models of rational decision-making behaviour. ALGA are 

grouped into five themes: agricultural particles/subsidy, human movement, human 

networks, animal movements, land use and land cover. SGA are designed to act 

autonomously on behalf of an entity to manage geographically explicit information. An 

entity can be a person, other SGA, or a piece of software or hardware. In other words, 

SGA assist people in managing information and making decisions in hardware and 

software environments. 
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A new approach is proposed in this thesis to classify the use of geospatial agents. It 

considers three dimensions: the notion of agency, the model of spatial data, how agents 

are applied in GIS, particularly in areas of geocomputation and geosimulation. This 

classification aims to be comprehensive and practical, and more importantly it aims to 

improve the understanding of agent-based applications in spatial domains. It will also 

be helpful in dealing with issues of agent-based applications in some future 

developments, such as spatial data quality, model validation, integration or collaboration 

of different types of software and technology. In the proposed classification, the agents 

utilised in spatial domains are grouped by specification, as follows: 

• Role of the agent: agents acting as object-entity, processes or service; 

• GIS data structure: agents acting on tessellation or vector; 

• Properties of agents: agents having basic features or extra features. 

 

Where agents are deployed as object-entities, these can be points, lines or polygons 

which may represent individual persons, road segments or land parcels. When it acts 

as a process, it will concern itself with the dynamic state changes or physical movement 

over time. The simulation of geographic processes can often been seen in hydrological, 

landslide or pollution modelling. One example is oil spill modelling (Li, 2001, 2006). In 

oil spill modelling, decision-makers are not only interested in where the oil spill starts 

and might ends, they also need to know how the spilled oil is transported, as well as the 

change of thickness, the process of evaporation and emulsion of the spilled oil. When 

agents act as services, they can control the activities provided to support mapping, 

modelling or analysis, which could include data searching and retrieval, data quality 

testing and assessment, model calibration or management of a model system. Services 

can be tools, solutions or platforms. With GIS data structures broadly using tessellation 

or vector, applications using agents therefore operate either on tessellations (as in CA) 

or on vectors (as in network applications).  

 

The basic features of agents are those previously defined as having a weak notion of 

agency which normally includes autonomy, communication, reactivity and pro-activity. 
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Extra features to impart a strong notion of agency would include additional functionality 

such as intelligence and mobility. These extra features can make a key different in agent 

usage towards real distributed GIS and can result in a major shift towards functional 

spatial analysis with a reduced input from human expert. 

 

Figure 3.2 shows the proposed classification along three axise: 

• Role of the agent (agents acting as object-entity, processes or service) in which 

‘O’ represents object-entity, ‘P’ represents process, ‘S’ represents service; 

• GIS data structure (agents acting on tessellation or vector) in which ‘T’ 

represents tessellation, ‘V’ represents vector; 

• Properties of agents (agents having basic features or extra features) in which ‘B’ 

represents basic features of agents and ‘E’ represents extra features of agents. 

Table 3.1 lists some examples of utilising agents in the spatial domain, which are 

classified according to this classification scheme.  

 

The actual classification is derived from an agent that can exhibit more than one of these 

classes and the degree of agency is identified through the degree of its exhibiting the 

features that establish individual classification while the inclusion of extra features 

define. 
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Figure 3.2: Proposed Classification of Utilising Agents in the Spatial Domain 

 

 

Table 3.1: Examples of Utilising Agents in the Spatial Domain 

 

 
Author 

Agent 
Type  

 
Discussion  

Heppenstall et 

al. (2005) 

 

O.T.B

. 

O.V.B

. 

A Multi-Agent system on spatial interaction model where the 

agents are actual objects (petrol pumps with the main 

variable being the price (for petrol price setting)) to be 

studied.  The data type is classified in both analog vector 

and tessellation creating 2 parallel agent models. The 

agents used in this system exhibit basic features where 

reactivity and proactiveness play the main role of agency. 

Benenson & 

Torrens 

(2004b) 

O.T.E

. 

The system uses automaton as object and introduces the 

intelligence agency character to simulate environment 

(urban phenomenon) using cellular automata concept of AI 
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and a tessellated environment as the canvas for the 

automata growth and multiplication. 

Torren (2006 

and 2007a) 

O.T.E

. 

O.V.E

. 

Torrens (2007a) explains the system as “a reusable 

platform for modelling human behaviour, action, and 

interaction in social and anti-social crowds, for the purposes 

of simulating a variety of behavioural, human, and urban 

geography scenarios”. The system has two types of 

interaction as far as agent technology is concerned. Those 

that act from point to point and refer to as vector and those 

that act on within their boundary of movement. The example 

of vector action of the agents is demonstrated when an 

individual agent being the object having specific tasks to 

perform in time while for the tessellation is when the crowd 

acting upon their given confinement of space. The agent in 

this simulation exhibit extra agency features using Cellular 

Automata for intelligence and has the capability of 

navigation. Apart from modelling crowd behaviour the 

author has used the system for residential relocation 

behaviour and megacity modelling. 

Batty (2005a) O.T.E

. 

The concept presented by Batty (2005a) is focused towards 

developing a model for simulating the evolution of cities. 

The agent usage is presented on objects acting upon their 

confined spaces, like the tiles in tessellation model.  Batty 

(2005a) explains this as “units of space ‘which’ are 

conceived as cells and populations as individual agents”. 

The agents are presented as pedestrian movement on a 

tessellation of building scale. The system is then able to 

present a view of a city at a regional scale with the effect of 

individuals (real human represented as agent in the system) 

responding to environmental attributes encoded in cellular 

(tessellation) landscapes. The system also is used to model 

urban growth at the city scale.  

Brown et al. 

(2005) 

O.T.B

., 

O.V.B

., 

P.T.B.

The system defined by Brown et al. (2005) uses spatial data 

as objects (agents) and spatial process (agents) for 

exploration and explanation of spatial-temporal 

phenomena. Thus presenting agent in two forms; object and 

process on the same platform. The agent representing 
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, 

P.V.B. 

process on space representing tessellation while agent 

representing object act as vector. The agents act on a 

tessellation for that they are capable of acting on the given 

agenda on a given field (tile). This system has managed to 

showcase the a model for aiding tight coupling for 

geographic data using agent-based process which uses 

four key geographic data features: identity, causal, temporal 

and topological.  

Reitsma and 

Albrecht 

(2005) 

P.T.B.

, 

P.V.B. 

The paper describes the development of a novel 

methodological approach for simulating geographic 

processes. A system is developed that represents data 

model as processes (as agents). This methodology 

complements existing approaches to dynamic modelling, 

which focus on the states of the system at each time step, 

by storing and representing the processes that are implicit 

in within a given model. The processes act upon tessellation 

grids and on objects representing vectors. The system uses 

data model (called nen) which Reitsma and Albrecht (2007) 

constructed them to focus on “existing modelling 

approaches on representing and storing process 

information, which provides advantages for querying and 

analyzing processes”. The nen is a basic agent with pre-

programmed functionality and does not have any of the 

advance characteristic. 

Tail et al. 

(2004) 

P.V.B. The research covers the use of Borehole Optimisation 

System (BOS)  as a tool for informing decision-makers and 

demonstrate its applicability for the development of urban 

groundwater resources. The BOS itself is an API of ArcView 

where it integrate three GIS areas: Catchment Zone 

Probability Model (CZPM); the Land-use Model (LM); and 

the Pollution Risk Model (PRM). The system identifies 

current and historical industries located within the selected 

probabilistic catchment zone and simulate a process 

(agents) by using industrial and the associated 

hydrogeological and contaminant data (as objects) and 

predict probabilistic contaminant concentrations.  
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Li, Brimicombe 

& Li (2008) 

S.V.B. The authors cover the argument of actual implementation of 

the agents based GIS to help solve problems related to 

complexity of models that have large numbers of 

parameters, for validation and calibration.  They suggest 

using Multi-Agent System which can run large number of 

models as a solution where agents act as service providers 

for assistance. The agents achieve this by using their 

collaborative characteristic to perform calibration and 

sensitivity analysis for the model validation. The agents are 

basic entities (objects) that are given parameters for 

navigation on a vector pattern. The focus here is the 

concept of the Multi-Agent platform providing service of 

validation to other GIS Agent based systems. The system 

explained here is to provide a proof of concept for 

collaboration of agents to provide closest possible pattern 

to reality for model building using MAS in GIS. 

Al-Zakwani et 

al. (2007a) 

S.T.E.

, 

S.V.E. 

The authors explain the concept of agency for assisting in 

complexity reduction when dealing with spatial data (object 

and especially process). The Multi Agent System employs 

the intelligence and reactivity characteristic of agency to 

help analysing geostatial data. The ability of an agent to 

mimic human analysis and prediction is experimented using 

Geostatistics tool, Varigram. Thus the MAS (in this case 

known as Variogram Agent) is itself within agent 

environment which offer service to the expert Geostatistics 

user. The agent are demonstrated to work on a tessellation 

or/and vector model as long a human user can perform 

similar task. Thus the agent is to act on the place of the 

human user during data analysis (even though not entirely 

replacing them).  

 

 

3.6 Demands and Gaps in Deploying Agent Technology in GIS 

As discussed in previous sections of this chapter, software agents have established 

abilities in computing. Originally developed for AI, they can be applied in various areas 
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of different disciplines. Software agent technologies have been applied in GIS to 

simulate the object-entities and dynamic geographic process. Agents have 

demonstrated their strength of autonomy, social ability (i.e. communication) and other 

characteristics in spatial data modelling. In the field of geosimulation, there are many 

good examples of agent-based urban, environmental and socio-economic modelling. 

Meanwhile, as we know from previous discussions, there are various types of agents. 

Some of them have a weak notion of agency, whilst those may have a strong notion of 

agency. 

 

With the expansion of geosimulation, many issues arise relating to data and modelling 

such as data exploration and analysis, data management and sharing, data quality, 

model management and sharing, model validation and calibration. Therefore, there are 

increasing demands for advanced technologies to deal with these data and modelling 

issues and, furthermore, to develop stronger geosimulation models or spatial techniques 

in the broad sense. 

Currently, various techniques have been introduced into the research area of GIScience 

from the area of AI. For example, Brimicombe (1998) developed a method with fuzzy 

sets, which is able to objectively handle linguistic hedges of uncertainty within GIS. This 

fuzzy set technique is propagated using Boolean operators which can be easily 

translated back and forth into different languages. Using neural networks and machine 

learning (ML) algorithms, Gilardi (2002) proposed a structure to handle the complexity 

of geostatistics using ML techniques. These techniques could be very helpful when 

working with homogenous data and given resources, but they lack the strength to 

expand and share resources. Although they are currently being used in GIS, these 

techniques are mostly applied in the internal mechanisms of GIS tools rather than 

devised as generic tools. For example, ArcGIS has some notion of neural networks, but 

does not possess any functions (i.e. does not have a mechanism specifically for neural 

networks). 
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Agents have the potential ability to deal with the abovementioned issues in 

geosimulation. For instance, they are able to manage sharing data, tools and models 

over a network or by wireless. They can also track down errors and uncertainties in 

spatial data modelling and rectify rules, parameters and data, which will save huge 

amounts of labour and time. Such agents are those with a strong notion of agency, but 

which have not been widely used in geosimulation research and applications. A large 

number of agent applications in current geosimulation research are mainly reactive, with 

basic agent features although there is the potential to incorporate a great degree of 

agency in agent-based modelling. Agents with a strong notion of agency are strong in 

terms of autonomy, reactivity, pro-activity and social ability (communication). They 

normally also have other characteristics; for example, they could learn and adapt to keep 

up with the required capacity of decision-making mechanisms in the ever-changing GIS 

environment, whilst travelling over networks (mobility) and thinking independently. As 

they are able to overcome the difficult data and modelling issues in geosimulation and 

consequently are able to effectively decentralise and distribute computing tasks, agents 

with a strong notion of agency can be developed to support distributed component GIS. 

However, much work still needs to be undertaken in this direction. 

 

In the proposed classification of agents in the spatial domain (see Figure 3.2), we can 

see that the majority of agent-based models in geosimulation belong to the classes of 

agents acting as object entities. There are fewer agent-based models where agents 

acting as services. Agents acting as a service should have a strong notion of agency. 

This is because these agents need to take on heavy and complex tasks, such as data 

quality testing, model calibration or wayfinding computation. There is currently an 

apparent lack of attention being paid to developing such service agents for GIS and 

geosimulation. This thesis aims to fill that gap by creating and investigating an intelligent, 

service-oriented varigram agent. 

 

GIS software and related analytic tools are usually complex and require large amount 

of computing power. They often require skilled human in order to run the more advanced 
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functionality. In this thesis, we have proposed using software agents to experimentally 

facilitate modelling variogram, which is often considered to be one of the more difficult 

items to achieve without using a human expert. The major problems are the size of the 

tools, the size of the data, the chaining of the process and the constant requirement for 

input from expert users. Agents with reactivity, mobility, social ability and other intelligent 

features would seem to be good candidates to deal with these issues.  
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CHAPTER FOUR: METHODS FOR MODELLING THE 
VARIOGRAM 

4.1   Introduction    

 

This chapter looks into the concept of geostatistics and its principal techniques. The main 

focus in this Chapter is on modelling the variogram. The use of variogram is an important 

technique for spatial prediction and thus the emphasis here will be to understand the 

process and procedure with related mathematical formula for the modelling. Presented 

here are the steps normally taken by an analyst which in this research are intended to be 

learned by an agent. Thus the process will be discussed from the data cleaning and 

sampling to fitting the right model of the variogram and subsequent kriging. The main 

purpose here is to examine the features required for an agent to be able to start functioning 

as a variogram modeller, acting in a similar way to a human analyst. 

 

4.2   Geostatistics    

 

The concept of spatial analysis refers to a set of formal techniques which study 

georeferenced data where geostatistics is a key set of techniques (Grumpecht, 2009). 

Since the work of Krige (1951) and further popularisation by Matheron (1962) for 

geostatistical techniques, a revolution had occurred which has produced contributions 

from a number of disciplines focusing on spatial phenomena. For support of this point 

Getis (2008) observed that "by the 1990s, the field of spatial analysis had matured to the 

point where the methods and concepts it created were becoming fundamental to 

researchers in a host of disciplines including geography, ecology, epidemiology, 

sociology, urban planning, geology, and environmental studies". Geostatistics can be 

defined as models and methods to analyse and study the regionalised structure and 
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degree of spatial dependency in geographical data (Goodchild, 1993; Lee et al., 2001).  

Deutsch (2002) states that geostatistics is “a study of phenomena that vary in space and/or 

time”. Isaaks and Srivastava (1989) regard geostatistics as offering “a way of describing 

the spatial continuity of natural phenomena and provides adaptations of classical 

regression techniques to take advantage of this continuity.”  

 

Geostatistics can also be viewed as a collection of numerical and mathematical techniques 

dealing with the characterization of spatial phenomena as a sub-set of spatial statistics. 

An important aspect of spatial statistics is the study of spatial autocorrelation (Bailey and 

Gatrell 1998, Ripley 1981), similar to correlation statistics. The difference of correlation 

statistics to spatial autocorrelation is that the former is designed to show relationships 

between or/and among variables while the latter shows the correlation within variables 

across geographical space (Cliff and Ord 1981; Hubert et al., 1981; Getis 2008). 

Geostatistics are fundamentally embedded into the concept of spatial autocorrelation (Cliff 

and Ord 1981; Cressie 1993). Given the ever growing usage of georeferenced data, Getis 

states the importance of spatial autocorrelation as playing "a crucial role among spatial 

modelers" and as a  

 
"fundamental element of all spatial models" central to model building. He 
explains this importance as it "provides tests on model misspecification; 
determines the strength of the spatial effects on any variable in the model; 
allows for tests on assumptions of spatial stationarity and spatial 
heterogeneity; finds the possible dependent relationship that a realization of 
a variable may have on other realizations; identifies the role that distance 
decay or spatial interaction might have on any spatial autoregressive model; 
helps to recognize the influence that the geometry of spatial units under 
study might have on the realizations of a variable; allows us to identify the 
strength of associations among realizations of a variable between spatial 
units; gives us the means to test hypotheses about spatial relationships; 
gives us the opportunity to weigh the importance of temporal effects; 
provides a focus on a spatial unit to better understand the effect that it might 
have on other units and vice versa 'local spatial autocorrelation'; helps in the 
study of outliers". (2008: p291)   
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Geostatistics has the ability of offering a description of spatial continuity and the spatial 

dependency including how the formulae can be determined and be simplified to provide a 

base model for agent-based distributed component GIS. Spatial dependency is always 

present in geographical phenomena as a prerequisite of landscapes having form and 

process; otherwise the data under study would be random on the plane (Â) implying an 

absence of process (Atkinson and Tate 2000). In order to describe the spatial relations 

and correlations of observed variables, there are three principal techniques used in 

geostatistics (Burrough and McDonnell 1998):  

 

1. Correlogram: graph of the autocorrelations (ρl) against lags ( ), where 

autocorrelation refers to the correlation of a point and its neighbour(s) either in time 

and/or space (Cressie 1993) and where lag refers to increasing separation 

between groups of points in time and/or space (Atkinson and Tate 2000). The 

correlogram is a measure of autocorrelation which is also referred to as a “serial 

correlation” (Cliff and Ord, 1981). 

 

2. Semivariogram: A technique used to establish spatial dependence between values 

at spatial locations. This measure is commonly referred to as the variogram, and 

will be so called throughout this thesis. The variogram is discussed in detail in 

Section 4.3. 

 

3. Covariance: A statistical measure of the correlation between two variables. In 

geostatistics, the covariance is usually treated as the inverse of the variogram, 

computed as the overall sample variance minus the semivarience (g) at each lag. 

Although a number of mathematical tools that could be used for data descriptions will be 

discussed in this chapter, modelling the variogram will be the principal focus of interest in 
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this research. The modelling of the variogram is the key function in geostatistics (Burrough 

and McDonnell, 1998). It is used to detect and describe spatial dependencies and their 

patterns in space (Ripley 1981; Isaak and Srivastava 1989; Dungan et al. 2002). This is 

achieved by inspecting the variogram either through the shape of the plotted 

semivariences or from the type of theoretical model that could best fit the plotted values 

(Rossi et al. 1992). The main theoretical models and their interpretations will be discussed 

in detail on section 4.3. The variogram model can be used to interpolate the surveyed data 

points and thereby model the spatial phenomenon as a continuous surface or field. The 

process of interpolation is commonly referred to as Kriging.  

 

The technique of kriging (Krige, 1951; further discussed in Section 4.6), which uses 

parameters of the variogram, can be used to interpolate the data or simply to provide 

confidence in the description of the analysed data. The latter is done by calculating 

residual errors after interpolation – usually to a held back sample. Kriging is defined as a 

technique of statistical modelling that can interpolate unknown data values of a continuous 

surface given a set of known data points. In general geostatistical estimation is done in a 

two-stage process:  

 

1. Collected data are studied to analyse the predictability of the missing values. This 

is normally done through the variogram. At this stage the variogram is used to 

model the difference between values of one location to another location given the 

distance and direction. 

2. Missing values are predicted at un-sampled locations along with a measure of 

variance at each location. This can be done using different forms of Kriging 

(Cressie 1993, Isaak and Srivastava 1989). The most commonly used is Ordinary 

Kriging. 
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This two-stage process can be carried out using a number of available Geostatistical tools. 

Given the focus of variogram modelling these tools are included in GSLib (and its 

decendants), Avenue scripts in ArcView, VarioWin, Java Class and the ArcGIS 

Geostatistics which has been moved to agent technology since ESRI’s adoption of RePast 

(Najlis and North, 2005). GSLib (Deutsch and Journel 1992) started as a Microsoft DOS 

command line for analysing data and later moved to Graphical User Interface (GUI) which 

provides an user-friendly interface. GSLib was originally developed using structural form 

of programming (Fortran) with a heavy code for execution (i.e. requires a lot of computing 

resources) and minimal reuse capability. Currently it is based on semi-object oriented 

programming (OOP) which has increased its reuse capabilities. However, even with this 

new development, the tool is still too large and heavy to run and acts monolithically which, 

introduces limitations on the amount of data that can be processed at one time.  

 

VarioWin is another tool developed using structured programming but, unlike GSLib, it is 

constrained to building the variogram. With this tool an expert user needs to do all the 

required exploratory data analysis (e.g. remove outliers, check for distribution type and 

organise the data) before creating the variogram (experimental or model). However 

VarioWin provides an easy mechanism for constructing the variogram by providing a 

function to dynamically change the lag. The main problem with VarioWin is that it is limited 

to small datasets and the human expert is considered to be the main driver of data analysis 

prior to variogram modelling. 

 

More sophisticated is the Java Class for Variogram by Faulkner (1999) where the entire 

program was developed using OOP which provides easy extension and reusability. The 

tool focuses on producing variograms from pre-analysed data, which makes it similar to 

the previously discussed VarioWin. 
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A sophisticated tool in Software Engineering terms is ArcGIS Geostatistics with RePast 

as its companion (Tatara et al., 2007). RePast is an agent plug-in that can assist data 

analysis and improve functionality for geostatistics (North and Macal, 2007). However, the 

tool requires an expert to determine the parameters and define the queries for the 

execution. 

 

The above tools are different as each was developed using its own programming language 

and its functionality. However their functionality has similar characteristics in that they are 

monolithic and single function tools. 

 

Another tool that uses agent technology for spatial data analysis (though not geostatistics) 

is Oracle Spatial which provides software agents for analytical and statistical tasks in a 

similar environment to that of RePast. These two agent tools differ on their complexity in 

execution and running speed which will be examined in more detail in Chapter 6.   

 

As discussed in Cahapters 2 and 3, due to the introduction of the Internet and technologies 

like Web 2.0, the computer environment and information management has moved from 

being monolithic to distributed. There is also an increase in on-line data availability which 

has had a huge impact on the uptake of GIS and the use of on-line GI Services (e.g. 

Google Maps). In most cases when dealing with data describing spatial phenomena, 

geostatistical tools provide analyses of the structure of the data (regionalised variables). 

With the implementations of geostatistical tools described above, the user currently needs 

to have available (and needs to know how to use) the individual tools as well as knowing 

how to structure the data and format them for passing from one tool to another. This 

requires expert knowledge of all the tools.  

 

This is where tools which provide functionality and flexibility as a distributed environment 
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will have greater advantage and thus be more desirable. The suggestion here is to use 

software agents to achieve this mechanism. Software agents can offer services to one 

another (agent to agent), to external tools (to aid interoperability e.g. Oracle Spatial to 

VarioWin) and to users (easing their analytical tasks). The introduction of this kind of 

technology will see a major shift into more effective use of distributed spatial data and 

running GIS from thin clients and mobile devices. 

 

This is the aim of implementing a variogram agent so as to investigate the feasibility and 

implications of distributed component GIS. Compared to traditional monolithic GIS tools it 

should provide faster data analysis (time taken for all steps of the analysis); better 

functionality (more functions within a perceived single tool, since there will be many tools 

coming together seamlessly to create an environment that appears to be a single tool); 

less complexity (most of the inputs required will be learnt by the agents and expert user 

interaction will be minimised); and finally more consistent results as data will be handled 

in a single format throughout the analysis (see Chapter 6). 

 

4.3   The Variogram   

Modelling the variogram is a fundamental technique in geostatistics, which is used to 

measure the spatial structure of observations (attributes of point measurements). 

Knowledge of the spatial structure as modelled by the variogram also allows prediction of 

unsampled points within the reference frame (Â). This is because each attribute 

observation (z) is tied to its x,y coordinate location, expressed as z(x). The calculation of 

the variance at each spatial lag (h) is divided by two to give the semivarience (which is the 

main point of interest) and the plot of semivarience against the lag forms the 

semivariogram. However, in common usage within the literature, the term ‘semivariogram’ 

is shortened to ‘variogram’. The semivarience is expressed as: 
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!(h) = !

"#(%)∑ 'z(x') − z(x()+
")

'*!              (4.1) 

 

...where h is spatial lag, N(h) is number of data points within lag h, z is the variable being 

modelled as determined at points xi and xj (Barnes, 2002). 

 

The semivarience quantifies spatial correlation and is plotted for all h to form the 

variogram. A variogram can be defined as a tool that is capable of characterising the 

spatial data. A variogram can be described as: 

 
 “…a statistically-based, quantitative, description of a surface's 
roughness. Which is a function of a separation vector: this includes both 
distance and direction, or a Dx and a Dy. The variogram function yields 
the average dissimilarity between points separated by the specified vector 
(dissimilarity is measured by the squared difference in the Z-values)” 
Barnes (2002: p. 16).  
 

However it could be thought of as a statistical function borrowing expressions from 

probability to find the degree of correlation between two or more points residing on a 

spatial plane (Â).  

 

A variogram is a measure of the variance between data as a function of distance. This 

function is crucial in geostatistics and as a predictor of data values in general (Cressie, 

1993). It is one of the means of determining the spatial correlation of a regionalised 

variable. A variogram has three important parameters: 

 

1. The nugget: this is the point where there is no dependence on the point being 

paired, or there is spatially unexplainable dependant variation (perhaps due to 

measurement error), or if purely random variance is being experienced in a model. 

This is being defined mathematically as the positive intercept of the variogram to 
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the ordinate (Cressie, 1993). Atkinson and Tate (2000) define the nugget as the 

point where the semivarience is constant throughout the lags. This is expressed 

as c0. 

 

2. The sill: this is the value at which the dependency is none existent or at a minimum 

and thus the variogram levels out (Isaaks and Srivastava, 1991).  The sill can be 

defined numerically as: 

 

"#$$ = &! + &"         (4.2) 

 

....where &" is the structured variance and represents the spatial variation that is 

spatially dependent (autocorrelated) at a relevant scale as defined by the lags 

(Atkinson and Tate, 2000). 

 

3. The range: this is simply defined as the distance or lag which marks the end of the 

obvious dependency. In general it is the inflection where the model reaches or 

approaches the sill (particularly in reference to spherical, exponential and 

Gaussian models). The nugget model has a constant sill and a range of zero and 

the linear and power models use the sill and range to simply to define the shape of 

the slope (see section 4.3.1.). 

 

4.3.1 Modelling the Variogram 

One of the challenges of the variogram is associated with choosing the appropriate model 

for the data at hand. The experimental variogram is a line graph linking the semivariences 

(g) for each successive lag. On visual examination of experimental variogram, an 

appropriate model can be fitted which mathematically describes the structure of the data. 
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Therefore, a variogram model is a simplification of the spatial structure of the data. 

Parameters of the variogram can be used to interpolate values at unsampled points. Within 

modelling, spatial structure can bring insight into what we want to study and understand 

the relationships between the attributes of neighbouring and nearby points in the study of 

local processes. Identifying the right model is referred to as ‘fitting the variogram’. There 

are two branches of such models: unbounded and bounded (discussed separately below).  

4.3.1.1 Unbounded 

These are variograms plotted using models that have an infinite semivarience as the lag 

(h) increases (Atkinson and Tate, 2000). These models are generally referred to as power 

models. There are three basic types of unbounded models: linear, logarithmic and power. 

 

§ Linear model: exhibits the same rate of increase between semivarience to lag (h), 

thus there is no sill. An example of this fitted model is given in Figure 4.1(a) 

§ Logarithmic model: the semivarience rate of increase is slightly higher than the 

lag (h) which is referred to as logarithmic model. The graph of this model is shown 

in Figure 4.1(b) 

§ Power model: the semivarience rate of increase is slightly lower than the lag (h) 

which is referred to as power model. Figure 4.1(c) shows examples of curves for 

powers >1, powers <1; for power = 1 the fit is a straight line and the fitted model 

becomes linear.  

 

Mathematically these three models show the correlation increasing indefinitely. These 

models are defined by the following formula: 

 

((ℎ) = &. ℎ#														where	0 < 4 < 2           (4.3) 
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....where h represents lag distance, a represents range, and c represents sill 

 
Figure 4.1(a): Variogram unbounded model: 

Linear 

 
Figure 4.1(b): Variogram unbounded model: 

Power 
 

   
Figure 4.1(c): Variogram unbounded model: 

Logarithmic 

 

Source: Pebesma (1999). 

Figure 4.1: Variogram, Unbounded Model 

4.3.1.2 Bounded 

These are models that have an identifiable sill (Cressie 1993). The parameters that identify 

the important variogram components are h, a and c where h represents lag distance, a 

represents range, and c represents sill. These models are: 
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§ Exponential Model: a function frequently used when fitting mathematical models 

to an experimental variogram, often in combination with a nugget model. This 

model is defined by formula bellow and presented in Figure 4.2(a) 

 

((ℎ) = &. 61 − exp;!"#$ <=        (4.4) 

 

…where k is a constant; k=1 or k=3. This is often used for those models having a 

large nugget value and a relatively long range. 

 

§ Gaussian Model: a function frequently used when fitting mathematical models to 

an experimental variogram, often in combination with a nugget model. This model 

is defined by following formula and presented in Figure 4.2(b) 

 	
-(ℎ) = /. 11 − exp'!"#$%$ +5       (4.5) 

 

…where k is a constant; often k=3. This model gives a more ‘S’ shaped curve and 

is often not stable for models without a nugget. 

 

§ Pure Nugget Model: a constant variance model shown in Figure 4.2(c), which can 

be used in combination with one or more other models. This model is defined as: 

 

((ℎ) = >0					if	ℎ = 0	
&	otherwise	         (4.6) 

 

§ Spherical Model: a function that is frequently used when the nugget effect is 

important. This model is defined by formula bellow and shown in Figure 4.2(d) 
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((ℎ) = D &. 61.5	;
#
$< − 0.5;

#
$<
$
=

&													otherwise								
		if	ℎ ≤ G     (4.7) 

 

 

Source: Pebesma (1999). 

Figure 4.2: Variogram, Bounded Model 

 

 

Figure 4.2(a) Variogram bounded model: 
Exponential 

 

Figure 4.2(b) Variogram bounded model: 
Gaussian 

 

Figure 4.2(c) Variogram bounded model:         

Pure Nugget 

 

Figure 4.2(d) Variogram bounded model: 
Spherical 
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4.4 Data Aspects of Modelling the Variogram 

The main function of the variogram is to provide a description of the spatial structure of 

geographically distributed data. Prior to plotting the experimental variogram and fitting a 

model, there are a number of data preparation steps that are necessary depending on the 

nature of the data.. These are data sampling, data polishing including outlier removal, 

identifying and removing patterns such as trends and clusters. The order in which they are 

carried out depends on the particular data set to be analysed. 

 
4.4.1  Data sampling 

Sample data are a subset of an exhaustive data set where the exhaustive data are the 

total collected data for the area under study. Data sampling is usually deployed as a 

means of reducing the exhaustive data set without altering its integrity and information 

content and yet reducing the computational overhead (Isaaks and Srivastava, 1989). This 

may be necessary for example when modelling from remote sensing data. Ripley (1981) 

defined the standard sampling schemes as: 

 

1. Systematic: 

a. Centric, in which a grid of equally sized squares known as quadrats is 

placed over the area to be sampled where elements closest to the centre 

of each square is selected.  

b. Non-aligned, in which a grid of equally sized squares known as quadrats 

is placed where equal number of element are randomly selected in each 

cell.  

2. Random: 

a. Uniform, in which each element of the data has an equal chance of being 

selected. 
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b. Stratified, in which first the data is characterised then divided into 

homogeneous group according to certain characteristic then a sampling 

is performed in within these groups.  

 

Kent and Coker (1998) suggest that stratification should be used when there are major 

and/or very obvious variations within the surface under study. The sampling strategies can 

vary depending on the objectives of study and the nature of the surface being modelled. 

To limit the complication on investigating an agent-based approach in this research, only 

mathematically defined strategies are used. These are quasi-random (selecting specific 

point/cell locations within an existing data set), stratified-random (proportionate sampling 

from a number of classes) and cluster deduction sampling (for removing spatial bias from 

an existing data set; see Section 4.4.4). 

 
4.4.2 Polishing and Outlier Removal 

It is not unusual that data are collected by means which cannot guarantee their 

consistency within a specified range of accuracy. Thus the data need to be polished 

(cleaned) to increase their reliability and fitness for purpose. There are several predefined 

techniques that include: 

 

• Outlier analysis:  

o boxplot 

o Grubbs test 

o scatter plot (used for bivariate description) 

 

• Trend analysis:  

o trend regression techniques  
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o weighted median polish 

 

• Cluster analysis:  

o determine the presence of cluster 

o k means cluster analysis. 

 

Outlier, trend and cluster analyses are discussed separately in the following two sub-

sections. 

 

4.4.2.1. Outlier Analysis 

Tukey (1977) introduced the boxplot as a robust means of studying the distribution of a 

variable and for identifying extreme values and outliers. It involves a three steps process:  

 

1. find the median, the lower quartile and the upper quartile of the data;  

2. denote the median and draw a box around it between the lower and upper 

quartiles (marking the interquartile range); 

3. lines (stems) are drawn from the upper and lower quartiles respectively to 1.5 

times the interquartile range or to the maximum and minimum points respectively, 

whichever is less.  

 

An outlier is a value that lies outside 1.5 times the interquartile range as illustrated in Figure 

4.3. 
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Legend: Symbols 0 represent the outliers, while X represent lower quartile, higher quartile and median 
Source: Chambers et al. (1983) 

Figure 4.3. Box Plot 

 

Another technique for outlier detection is Grubbs’ test that is define in Grubbs (1969) and 

improved in Stefansky (1972). The test is especially effective in detecting outliers on 

normal distributed data. By using Grubbs’ test any outliers can be detected and removed 

from the overall data. The process is repeated iteratively until no outliers are detected. 

Due to this iterative nature of this test the sample size of the data has to be high (over 6 

points) for it to be valid. It is expressed in the following formula: 

 

 

G = %&'|)%*+|
,             (4.8) 

 

...where M is the sample mean and σ the standard deviation while V& is the variable being 

tested. Thus any point having the largest absolute deviation from the sample mean in units 

of the sample standard deviation will be tested as possible outlier against the confidence 
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limits of a t-distribution at N-2 degrees of freedom. Thus the hypothesis of no outliers by 

Grubbs’ test can be rejected when the following condition is satisfied:  

 

 

G > -*.
√- $

0'() ('*),*-')⁄
-*120'() ('*),*-')⁄

         (4.9) 

 

.....where t is the critical value of the t-distribution and N is the number of values. 

  

This concept can also be adopted for a one-tailed test, allowing the user to find the outlier 

on the lower and upper extents. The formulas for outlier detection on lower and upper 

extents respectively using the Grubbs’ test are:  

 

G = +*)/%0
,                                      ...where V1&2	is the minimum value  (4.10) 

 

G = )/34*+
,                               ...where V156	is the maximum value  (4.11) 

 

 

These techniques are known as outlier detection which consequently leads to outlier 

removal.  

 

A scatter plot can be used to define outliers for a bivariate description (Isaaks and 

Srivastava, 1989). To find erroneous data, data is plotted against a graph to ascertain 

those points which are completely out of harmony with the rest. These points which are 

out of harmony are best reviewed before being completely removed, as they might not be 

erroneous data but simply very uneven points on the plane (Â). A scatter plot reveals 
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relationships or associations between two variables (Chambers et al., 1983). Such 

relationships manifest themselves by any non-random structure in the plot.  

 

A scatter plot is a plot of the values of L versus the corresponding values of M:  

 

§ Vertical axis: variable L which is usually the dependent variable  

§ Horizontal axis: variable M which is usually an independent variable  

 

There is normally a problem that many analysts try to avoid during data polishing which is 

over polishing the data. Over polishing the data could actual serve as a negative point 

rather than positive one by actually hiding the important information. It might also cause 

the importance of a phenomenon to be diminished by overly smoothing the data. Therefore 

it is important to bear in mind this issue when processing data in preparation to modelling 

the variogram.  

 

4.4.2.2 Trend Analysis 

Spatial patterns are caused by trends on the plane (Â) surface. Data pattern is an 

important consideration when modelling. Researchers in geostatistics of refer to spatial 

and attribute patterns as part of the same issue. However even though there is a clear link 

between the two, here we identify their difference and the importance of that difference in 

building a better model.  

 

The data patterns in geostatistics can be broadly defined in two aspects: 

§ Attribute patterns 

§ Spatial patterns 
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Attribute patterns are mainly concerned with non-linearity of the attributes under study. 

This can be seen when a planar graph has been plotted against the attributes of the spatial 

data to determine the offsets. In general such patterns are associated with regional trends 

in the phenomenon under study (Diggle, 1975; Cressie, 1993). In such cases, how the 

surface is configured becomes the main focus of interest. These patterns are comprised 

of the actual geometric arrangement, the surface trend and the presence of physical 

geographical features such as the topography. Whilst each attribute under study may have 

its individual trend, some of the attributes may be highly correlated and could be important 

for the analysis. In modelling a variogram, it is often the case that trends are removed prior 

to calculating the semivarience. 

 

Spatial patterns concern the distribution of the x,y points themselves, irrespective of their 

attributes. Where sampling has been carried out to collect the spatial data, the distribution 

of the sampling points themselves may be random, on a grid or according to some other 

scheme. However, where the data are point events, that is, the points represent the 

occurrence of an event such as the presence of a tree or the occurrence of a crime, then 

the spatial distribution of the points can have structures that can be revealed through the 

use of the variogram (Ripley, 1981). This then is concerned with neighbourhood effects. 

This type of data is referred to as spatial point pattern by Diggle (1975). 

 

Geostatistical data (point observations of a continuously varying quantity over a region) 

often has a trend in it. A trend is the non-uniformity of the surface where the geostatistics 

are to be operated. The trend often affects the outcome of the prediction and thus 

becomes one of the common issues in geostatistical data analysis (Isaaks and Srivastava, 

1989). Thus, before a variogram is plotted, it is often important to remove this trend (large 

scale variation) using various techniques, some of which will now be discussed. There are 

many techniques available from the published literature. These include:  



 107 

 

• Polynomial regression: one of the much used polynomial regressions is the 

multidimensional generalisation of Student (1914), which is currently referred to as 

a smoothing technique and is based on fitting the data (for a two dimensional 

surface) by the least square (Ripley, 1981), using the following general formula: 

 

 %(', )) = 	∑ -34'3)432456            (4.12) 

 

....where the integer p is the order of the trend surface and x and y determine the 

coordinates use for the regression process. By expanding and adding additional 

paremeters to the above formula, Cressie (1993) showed an example of a more complex 

trend detection formula, a quadratic trend. He defined this with the following formula: 

 

%(', )) = 	-77 + -.7' + -7.) + -17'1 + -..') + -71)1            (4.13) 
 

Thus, the given regression formula can be expanded to fit any size of trend. 

 

• Tessellation and triangulation: this technique works by creating splines between 

data points (Ripley, 1981). There are two structures that can be attributed to this 

technology: 

 

o The first structure is known as the Drichtel Cell or Theissen Polygons, 

defined by dividing two points with a line (right in the middle) and thus 

creating continuous joining lines that form lattices (or tiles) on the plane (Â) 

under study.  

o The Delaunay Triangulation defines two points which are near that could 

join up with a third to form a triangle. The structure works so that 
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triangulation creates a continual curve through a specified plane (Â). For 

this structure, the work of Lawson (1977) is normally attributed to when 

deciding the joining line for measuring the angle (by choosing the larger of 

the two angles formed by the different possible triangles).  

 

A weighted median polish is acheived by overlaying a grid (normally rectangular) on the 

plane (Â) under study, picking appropriate interval size and placing nodes on those 

intervals. Cressie (1993) used 20 miles with 9 North-South and 24 East-West intervals. 

 
4.4.3 Declustering  

Whilst the ideal is to have a randomly distributed sample of data points, this may not occur 

in practice due to the practicalities of sample collection and particularly so if the data set 

represents point events. This may result in some areas being over sampled/represented 

and may introduce bias into any analysis, that is, the data may not be representative of 

the population. There is a consequent need to remove this effect through declustering. 

There are two broad approaches to declustering: count-based weighting and area-based 

weighting (de Smith et al., 2007). At it its simplest, count-based weighting involves 

superimposing a regular grid and those cells which have an above threshold number of 

data points can be regarded as clustered or over-sampled. This threshold may relate to 

percentiles within the distribution. Two strategies can be adopted for declustering given 

the evidence of clustering, one being to randomly sample the over-sampled cells, the other 

being to weight all the points in the data set by the reciprocal of the count of points in the 

cell to which they belong. One problem in this approach is in deciding the appropriate size 

and positioning (even orientation) of the grid mesh over the data set. Area-based 

declustering is similar in that Voronoi regions are created around each data point and then 

weighted in proportion to the area of its Voronoi polygon. The weight can be calculated as 
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the area of each Voronoi polygon divided by the average size of all Voronoi polygons thus 

giving smaller weights to smaller Voronoi polygons that result from data points being closer 

together. Problems arise in this approach from edge conditions where the outer data points 

can have very large Voronoi polygons. Suggested solutions are to have a minimum 

bounding rectangle (MBR) or a convex hull. 

 

4.5 Cross Validation and Goodness of Fit 

Variogram validity can be measured using a number of mathematical tools. However, one 

well used tool is cross validation, which is a function achieved by kriging each sampled 

location with all of the other samples in the search neighbourhood, then comparing the 

estimated values with the true sample values. The technique is used to make a decision 

to use a variogram model over other models, which is decided according to their ability for 

making predictions. One cross validation process, known as ‘leaving-one-out’, takes the 

following steps: 

 

1. Compute an experimental variogram of the sample data. 

2. Fit all possible models (the experienced user needs to define the models that seem 

plausible to the content). 

3. Estimate N from the data for each model, using kriging at each sampling point.  

4. Calculate the results using one of the available formulae. An example is the mean 

deviation or mean error, ME, as given below: 

 

ME = 	 .-∑ (z(x8-
89. ) −	z4(x8))        (4.14) 
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Normally this model will be completed through kriging to determine which of the possible 

models performs. Thus the ME result should be close to 0, since kriging is an unbiased 

prediction method. 

 

Goodness-of-fit is an approach to measuring the fit of a variogram model to the graph of 

semivariences. This is done after the data have been modelled as a variogram. Looking 

into how good is the fit and thus how well the regression line fits the data is very important. 

The goodness–of-fit can be defined as the degree to which observed data coincide with 

theoretical expectations (Diggle, 1975). The test is based on a statistical test. One 

approach is to calculate the R2 of the fitted model and the overall significance of the 

regression model using F test. Another approach is to use indicative goodness-of-fit as 

follows (Landim, 2004; Deutsch and Journel, 1998): 

 

5 = .
:∑ ∑ ;(=) ∑ ;(=)7(8)

9:;⁄
A(=) A<=>(B)⁄

C(B)
=97

:
B9. 6D(=)*D↓(=)E' 7

1
     (4.15) 

 

.....where O is the number of directional variograms, Q(R) is number of lags for the kth 

directional variogram and # is the lag. S(#) is the number of pairs in the lag and ℎ(#) is the 

mean distance between members of pairs with ℎ@AB(R) as the maximum distance for the 

kth variogram. T(#) being the value of experimental variogram for lag # effectively T↓(#) is 

the value of the model variogram for lag #. The variance of the variogram estimation is 

denoted by UC.  

 

The fitness is considered good if the value of the criteria (V) is close to zero. This model 

can be achieved using having the lag distances, min and max distance and the number of 

pairs being computed for each lag. 
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4.6 Kriging 

The term kriging is derived from Daniel Krige (1951), a mining engineer, even though the 

technique was described and made famous 13 years later by Georges Matheron (1965). 

These methods are now widely used in the minerals industry and have disseminated out 

into many other fields where spatial data is studied. In geostatistics, prediction is normally 

done using the data structure as represented by the variogram model which is used in 

kriging to determine an optimal set of weights to estimate the value of any unsampled 

location (Cressie, 1995). Thus, kriging can be used to construct contour maps, but unlike 

many other contouring algorithms it can provide a measure of the uncertainty of the 

contoured surface.  

 

Ordinary Kriging uses a weighted average of neighbouring samples to estimate the 

‘unknown’ value at a given location. The relation of Ordinary Kriging and variogram model 

is the use of later to optimize the weights and provide the relation between known and 

unknown values through the location of the samples. A “standard error” which quantifies 

confidence levels also provides the Ordinary Kriging. It is defined by two formulae:  

 

 Predictor assumption:    89(:7) = ∑ ;=8:=:
=9.      

  

 Model assumption:        8(:) = < + =(:)     (4.17)  

 

Ordinary Kriging assumes that local means are not necessarily closely related to the 

population mean. For this reason it uses only the samples in the local neighbourhood for 

the estimate. Ordinary Kriging is one of the most commonly used kriging method for 

environmental situations. The Ordinary Kriging satisfies the B.L.U.E (Best Linier Unbiased 

Estimator) model. This model determines that by minimizing the variance of the errors and 
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dealing with weighted linear combinations of the data and making mean error equals to 

zero the prediction is more likely to be accurate. This makes Ordinary Kriging a very 

common technique for interpolation in geostatistics. For this point Cressie (1991: p119) 

has referred to it as “optimal predictor”.  

 

The goal of Ordinary Kriging is defined by Isaaks and Srivastava (1989) as “ambitious 

ones and, in a practical sense, unattainable since MR and σDC  are always unknown.” They 

managed to attain it as their calculations for the mean error and the error variance were 

possible through the exhaustive data set. However, they explain its usefulness by building 

a model of the data being studied and work with the average error and the error variance 

for the model. Thus a probability model should be used where both, the bias and the error 

variance can be calculated. 

 

4.7 Conclusion 

The purpose of this Chapter has been to establish the basic techniques and functions that 

are used in geostatistics. The aim here is to establish the techniques that in this research 

form the algorithmic basis of the software agents used to investigate distributed 

component GIS. The next Chapter goes on to investigate the various methodologies of 

developing and testing software agents. 
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CHAPTER FIVE: METHODS FOR IMPLEMENTING AND 
TEST DESIGN OF AN AGENT-BASED VARIOGRAM 

MODELLER 

5.1 Introduction 

This chapter sets out and explains the methodology for agent development for modelling 

the variogram and investigates its performance as a programming environment. The 

limitations of the methodology used for implementation will be discussed, and a 

proposed solution presented. The appropriate architecture for Agent Programming 

Languages (APLs) will be examined, as well as the novelty of their structure and 

implementation design. 

 

5.2 Agent Development Methodology 

Brazier et al. (2002) explain that methodology is very important for conceptual design. 

However, careful observation is required, as this is the stage where the knowledge-

based techniques can be exploited and developed within known engineering which, in 

turn, will enable the design of more complex agents. Considerable research has been 

conducted on agent development methodologies (architecture) and, as a result, there is 

a range of methodologies available, each with its strengths and weaknesses. Presented 

here is the methodology focused on in this research, known as ‘Tropos’, as it covers 

many of the required research areas for agent modelling. The methodology for Tropos 

will be explored; its strengths and weaknesses will be compared with other 

methodologies (also on Appendix E). 

 

5.2.1 Tropos 

Tropos is an agent development methodology architecture which is designed to 

complement the flexibility of agent-based software during the development cycle 

(Bresciani et al., 2000; Giunchiglia and Mylopoulos, 2000; DeLoach et al., 2009). It 

provides a facility to capture the ability of agent behaviour and to satisfy the desired 
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functionality throughout the development cycle, such that knowledge functionality is 

considered during the modelling iteration of each development stage.  

 
Development stages are clearly defined within the Tropos methodology, so that it is easy 

to start the development of an agent-based system. Tropos captures the system 

approach, individual agent approach and internal structure of each agent in the system, 

from system analysis to implementation. Five stages are specified in support of the 

analysis, design and implementation (Braciani et al., 2004), which are as follows: 

1. Early requirements: like the object-oriented software requirement analysis 

stage, it captures the requirements of the system to be implemented. It specifies 

and defines preliminary system requirements and draws diagrammatic 

interpretations to facilitate the next stage. 

 

2. Late requirements: captures the system requirements integration to its 

environment, such that by this stage the main agents are developed. At this 

stage, agents are introduced to their environment and are assessed as to their 

functionality. 

 

3. Architectural design: this is where the system is defined, with its external 

actor’s interconnection mechanism using data and goal flow. This stage is 

divided into three sub-stages: 

 
o The system’s overall architecture; so it is not the agent but the system is 

defined from an architectural point of view. 

o Capturing the capabilities required to fulfil the system’s goal (i.e. the 

collective goal of the agents). 

o Defining agent types and their capabilities which are required for full 

dependency. 

4. Detail design: this stage specifies agent capabilities and interactions using 

Belief-Desire-Intention (BDI) structure. During this stage, action and plan 
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diagrams are established. These are identical to the action and sequence 

diagrams of the object-oriented design stage. 

 

5. Implementation: this specifies how to implement the system at hand into the 

object-oriented agent development APIs. Tropos is mainly structured to work 

with JACK (Georgini et al., 2001), but the structure is flexible and could be 

applied to other tools like JADE and ABLE. 

 

Tropos has drawn upon many previously defined methodologies (like the Gaia and Yu 

i* paradigms) to enrich its functionality and increase flexibility (Bresciani et al., 2000). 

Figure 5.1 illustrates a comparison of Tropos to other methodologies in relation to 

development stages. One limitation of Tropos methodology is that, during 

implementation, the programmer needs to revert back into Unified Modelling Language 

(UML) or Agent Unified Modelling Language (AUML) to convert the preliminary design 

and detail design into an object-oriented based design, to be implemented using Java 

(Giunchiglia et al., 2002). To ease this process, the Tropos designers suggest the use 

of JACK API to implement the agent. Although using JACK minimises the amount of 

coding for a programmer, it does not simplify the implementation design, as object-

oriented class diagrams, sequence diagrams and activity diagrams need to be provided 

to allow the programmer to code agents. However, the explicit representation of the goal 

and plans of an agent, and the direct reference to BDI structure allows flexibility in the 

run time adjustment to deal with unforeseen circumstances (Giunchiglia et al., 2002). 

This feature is not available in pure OOP.  
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Source: Braciani et al. (2000). 

Figure 5.1: Comparison of Agent Methodologies and Functionality 

 

Mylopoulos et al. (2002) point out the extensive capabilities of Tropos, by fitting 

organisational structures (such as auction structures and joint venturing) to show its 

strength and flexibility. Because of the many successes when using Tropos in real life 

(like the ice producing company project identified by Garzetti et al., 2004) and its ability 

to capture every step of a development cycle, it can be viewed as the complete 

architecture for intelligent agents. Tropos would be utilised for the development and 

proposed programming language structure that can be directly applied to the 

implementation level of the methodology to create an agent variogram modeller.  

 

Even with all these advantages, Tropos still requires improvement. As it currently 

stands, there is no available agent-oriented architecture which is clearcut for use from 

design to implementation. All the available methodologies (including Tropos) only 

provide a transition to UML class and other relevant diagrams (Wooldridge et al., 2000; 

Giunchiglia et al., 2002; Mylopoulos et al., 2002; Garzetti et al., 2004). Tropos has a tool 

to by pass this stage by auto generating the code using Taom4E but this process does 

not allow the programmer to understand the code for maintenance. This lack of suitable 

architecture increases the required architecture complexity and lengthens the 
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development cycle, and creates a bottleneck at the implementation stage. This is the 

principal reason why some agent software ends up being considered as a conceptual 

design but is not then implemented. Even so, object-oriented software development also 

has many methodologies (Stevens and Pooley, 2001). These object-oriented 

methodologies are themselves moving toward rapid application development to secure 

software integrity and thus reduce development time.  

 

It is sometimes argued that agent software development is only useful in specialised 

situations, but historically object-oriented software initially started out for use in 

specialised cases (Dahl et al., 1972; Dijkstra, 1994; Bray, 1997; Potok et al., 1999), 

much as agent-oriented software development is today. Nevertheless the usefulness of 

the architectures developed has led to their becoming the foremost software 

development structure currently. This trend is now moving towards agent-oriented 

software development.  

 

5.2.2 From Design to Implementation 

It is necessary to clearly define when agent design stops and implementation starts. It 

can be where the rapid application development structure of methodology refers back 

and forth at the development stage, but a programmer needs to be told when to start 

and how to write the code. So a structure is needed to cut out the object-oriented UML 

transition in agent-oriented software development. This would help separate the work 

tasks of the system analyst, designer and programmer, as current architecture proposes 

that these three stages (or jobs) run simultaneously throughout the development cycle, 

without any clear cut agreement of where to start and where to stop. Albeit that this 

problem seems less obvious nowadays, as we move into the era where agent software 

is becoming the norm, programmers will start taking the initiative to build large software 

with this style of architecture which will become cumbersome and hard to adopt. 
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5.3 The Programming Environment 

Abelson and Sussman (1984: p12) state that:  

 
“First, we want to establish the idea that a computer language is not just 
a way of getting a computer to perform operations but rather that it is a 
novel formal medium for expressing ideas about methodology. Thus, 
programs must be written for people to read, and only incidentally for 
machines to execute.”  
 

It often occurs that, during the process of new software paradigm development, the 

emphasis of software development shifts completely toward methodology and how the 

software is to be structured, while the focus on how to implement it only comes much 

later in the process. Programs or discreet variables are essential to computer software 

and so a strong programming language structure would thus ease the process of 

implementation. This is simple cause and effect. Tools for developing agents have not 

yet been formalised, although considerable research is currently being undertaken to 

standardise this issue (Travers, 1996; Voyles, 1997; Odell and Bock, 1999; Zhao and 

Jo, 2003; Jo and Einhorn, 2005; Yu et. el. 2007; Sterling and Taveter 2009).  

 

Arguably, development methodology of agent-oriented programming is also improving 

at a very fast pace, but implementation still relies upon object-oriented languages like 

Java and C++ (Nute et al., 2004). For example, a number of these tools have been 

considered during the design of the multi-agent platform ‘Gulliver’s Genie’ (O’Grady and 

O’Hare, 2004)(such as FIPA-OS, LEAP, Zeus and JACK). These tools are described as 

a new area of software engineering, entitled agent-oriented software engineering 

(AOSE) (O’Grady and O’Hare, 2004).  

 

As the Java development environment is both platform independent and object-oriented, 

it is often recommended to be used as an integral programming language for the agent 

applications (van Breemen and de Vries, 2001). Even if agents are to function cross-

platform (as heterogeneous systems) on a network environment, there will be no conflict 

between the client and the server, or from one peer to another (Shih et al., 2001). 

Furthermore, Amandi et al. (2005) have specified an agent development language, 
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JavaLog, which is based on the Java object-oriented environment, tapping into Prolog 

to deal directly with the intelligence element (i.e. the required knowledge) of an agent 

system.  

 

With regard to the network and mobility of an agent, a communication platform must be 

established to allow the agents to communicate with each other. This can be achieved 

by using an inter-agent communication language (such as FIPA’s agent communication 

language) that was used to develop the ‘Gulliver’s Genie’ (Farjami et al., 2000), DESIRE 

model (Brazier et al., 2002) and Petri net (Kwon and Lee, 2001). More importantly, agent 

development must consider and, in broad terms, allow modularity.  

 

KADS is a methodology, presented by Coffey (2003), which is solely implemented to 

make sure that modularity is achieved during agent development. This methodology is 

derived from a group of models, each of which represents some part of the agent system 

(Schreiber et al., 1994). Furthermore, van Breemen and de Vries (2001: p247) have 

determined that an agent-based system “should be decomposed into a set of 

supposedly independent control tasks”. On the other hand, simulations have paved the 

way for experiments. When there are no concrete mathematical models of the system 

and also the increased possibility of system damage during such experimentation, 

simulations are probably the best approach to represent the actual behaviour of the 

system and so minimise the risks of real system damage (Lucey, 2002).  

 

One of the main differences between the simulator and the experiment is as follows. A 

simulation of a small section of the system may be developed then, modularly, extra 

components can be added as required or desired to represent the system (Nute et al., 

1995). In comparison, experiments engage the whole available system (whatever 

modules are under test, whether being the whole system or just the part being tested) 

into ‘try and test’ mode. Simulators could even be equipped with an interface that assists 

the user to deal with component interaction, extension and augmentation issues 

(Crookston, 1997).  
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Once the agent has been developed and simulated, its unknown performance still 

remains to be tested at the deployment level of the development cycle. Performance 

can be measured using an experimental approach. A scenario can be established. A 

practical example is seen in Lee et al. (2003), quantitatively experimenting their online 

auction application ‘MoCAAS’ (mobile collaborative auction agent system), where they 

set an interval of thirty minutes for six hours to establish the network load when using 

the application with or without agent employment. Likewise, van Breemen and de Vries 

(2001) had previously used a similar experimental approach when they developed a 

tracking controller-agent to complement the design and implementation of a domestic 

room thermostat, with an experimental tool to objectively compare two house 

temperatures for a period of sixty hours. The experiment was to establish the key value 

that should decide the proposed agent framework. Here, the experiment was used as a 

tool to empirically initialise the deduction of data through a positivist approach, which 

consequentially led to explanations and predictions (Blaxter et al., 2002) of the suitability 

of function for a tested framework.  

 

From the above published studies on programming environment for agent development, 

it has become apparent that in order to achieve a more rapid and constructive way of 

developing an agent application, a formalised and most appropriate methodology is 

needed to be established. Another point identified from the literature is that certain 

methodologies are more likely to yield successful results than others. The argued 

implementation methodologies and appropriate methods should have the following 

features: 

• modelling languages – such as UML; 

• a modular approach development model; 

• object-orientated;  

• logic-oriented. 

As discussed, Amandi et al. (2005) has suggested the use of JavaLog for implementing 

agents, which has the ability to allow modularity without compensating knowledge 
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behaviour. However, for many mainstream agents, problems have arisen with the 

implementation programming of APIs into Java and C++.  

 

Any proposed structure of agent-oriented programming should map the development of 

OOP. OOP provides a good example of the evolutionary process of programming 

development. It started during the early 1960s, when Nygaard and Dahl set out to 

develop Simula 67 (Bray, 1997). Their prime objective was to develop an easy structure 

to implement objects, as described through object-oriented development design. During 

these early years, it was perfectly normal to implement objects using the widely available 

structured languages such as C and PASCAL (Sutherland, 1999). Due to the growth in 

popularity of OOP, many languages have arrived on the scene since the 1960s. 

However, one can still code objects through structured language, except the 

programmer will need to be highly knowledgeable in both structured language and the 

object-oriented design in question. This makes it time and resource consuming, neither 

of which are in abundance in today’s world.  

 

However, mapping the development of OOP should utilise the capabilities of OOP itself 

to easily build objects, and not use OOP to build software that are to be called ‘agents’. 

A new programming language will be superior to another if it is easier to implement, 

more secure and functional. According to Bigus and Bigus (2003), the race towards 

producing such a language structure for agents started around the mid-1990s, and they 

have compiled an extensive list of attempted platforms and APIs for agent development. 

This list ranges from agents that focus on mobility rather than intelligence (e.g. FIPA-

OS), to agents that focus on intelligence rather than mobility (e.g. AgentBuilder), 

including everything in-between (e.g. Aglets, JADE and JAKE). However, most of these 

suggested and enforced languages lack functional requirement features and need to 

use OOP to achieve their agent development goal. These current agent languages are 

based on the API structure, imported into the Java language. The agent Java APIs are 

very similar, with different implementations or sometimes minor functionality. 
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Considering a few, JACK, JAM and JADE are each very similar in all development 

aspects. Such similarities are: 

 

1. They are all object based and possess super classes: 

• behaviour 

• agent 

• goal 

• action. 

 

These classes are simply object-oriented super classes that need to be inherited 

and mostly rewritten in the OOP structure to provide agent software. This is often 

cumbersome and the programmer needs to be very efficient in OOP before they 

can start coding the simplest agent. Looking at object-oriented programming 

during its early years, the main focus emphasised that it offered flexibility to 

implement (through easy coding), with better programme control and software 

security developed through encapsulation.  

 

2. They all are APIs running on the Java Virtual Machine, superseded by Java 

programming language 

The difference between JACK and other agent development APIs is that JACK 

offers the visualisation of agents during the development of the system (Bresciani 

et al., 2004). Furthermore, all languages (including JACK and JADE) are object-

oriented-based, requiring extensive knowledge of object-oriented programming for 

implementation. 

 

The direct implications of evolving object-oriented into agent-oriented programming can 

be seen by the work of Giorgini and Henderson-Sellers (2005), who focus on showing 

the influences of object-oriented programming on agent-oriented programming. The 

issue, though, to reduce complexity in agent-oriented  programming, rather than 
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increasing complexity by adding a stage where one needs to completely revert to object-

oriented methodology to achieve an implementation.  

 

Mobility is an important attribute of an agent which is achieved through the 

communication mechanism in agent platforms and which plays an important role in how 

agents function. For this, the compiler has to have capabilities like XML, which is an 

extensible mark-up language that allows programmers to define their own variable 

structures. However, this feature is not the point of interest when making XML-like 

structures, it is the ease of transportation via browsers that is important regarding XML 

and agents. An illustration of message passing in agent functionality is given in Figure 

5.2. 

 

 

Source: Faulkner et al. (2005). 

Figure 5.2: BDI Agent Functionality and Message Passing on a Class Diagram 

 

Another character that defines an agent is reaction which is an important attribute when 

providing agents with intelligence. In agent programming, it is very difficult to implement 

intelligence using functions, as these are pre-planned procedures that the programmer 

codes (Charatan and Kans, 2002). An agent cannot have reactive intelligence using the 

current object-oriented or structural programming language structures. However, a 

reaction based language could generate intelligence. The need for reaction in intelligent 
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agents has been emphasised by Wooldridge (2003), and a new language based on 

reaction needs to be produced.  

 

Reactions would allow agents to react to changes in the environment. Thus, an agent 

would be able to perform a function (or action) and, if while executing it the environment 

changes, then it should change the action accordingly. This is not possible utilising the 

currently available programming languages, as one function has to terminate before 

another executes. Thus, reactions should allow a subsequent change of action without 

terminating the previous action. This situation occurs when the environment is too 

complex: “In domains that are too complex for an agent (or MAS) to observe completely 

or there are uncertainty in the environment (the agent cannot assume its reason for 

executing is valid) the assumptions are not reasonable” (Wooldridge, 2002: p9). This 

statement shows that, in most situations, when the environment changes and the agent 

executes an action to reach the agent’s goal according to the new environment, it should 

still observe its belief of the environment. If this belief changes it should react to this 

change, but still execute the previous action in the background without changing the 

state.  

 

5.3.1 A Proposed Agent Programming Language Structure – ‘Agent 
Diagram’ 

In this Section, a structure for agent programming language, named as ‘agent diagram’ 

is proposed, see Figure 5.3. Class diagram concept is used. The class diagram shows 

how an object behaves, and what data and functions it encapsulates. All other 

functionality of an object is drawn in other interaction diagrams, such as the state 

diagram. Using class diagram can expedite object-oriented software development and 

improve communication between designers and programmers. A similar structure is 

required for agent-oriented software development.  
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Figure 5.3: Agent Diagram - Structure for a Top View of Agent Representation 

 

Figure 5.3 demonstrate the concept of the programming structure of a proposed agent. 

This structure can be supported by the JADE or JACK programming syntax. This ‘agent 

diagram’ provides information on: 

 

1. The agent name – required in order to be identified by other agents; such agents 

could be software, hardware, a human or any external factor, as discussed by 

Wooldridge and Jennings (1999) and Wooldridge (2003).  

 

2. Belief - the status of the environment being sensed by the agent (Voyles, 1997; 

Zhao and Jo, 2003). Thus an agent might have a single belief (as shown in our 

implementation example) which could be a set of states, and which in turn are 

stored in an array type of structure that is present in OOP. This acts like the 

attribute element of the object-oriented class diagram. However, in the case of 

the agent, it is important that the data are not only accessible by specified 

functions, but also that it is actually mapped to goals that are achieved by actions 

taken. When the belief of the environment changes, it triggers a reaction that 

agent Name  ¹ Environment 
7

Belief     ²

Communication     ³

Desire/Goal:     4

Action (goal)     5

Reaction((belief))     6

Believes [ ]
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rechecks the goal - if the status of the environment is such that the goal wants it 

to be changed (or needs to be changed), then it needs to generate an 

appropriate action.  

 

3. Communication – is the mechanism that allows an agent to contact other 

agents. Here, the programmer can specify the type of communication and which 

other agents this agent can communicate with. In a hierarchical structure, an 

agent can have communication protocols established (e.g. I am superior to agent 

type X but inferior to agent type Y, so I can respond to orders from X but not from 

Y, and also I can give orders to Y but not to X). This is where the depender-

dependum-dependee structure is identified for the first time during 

implementation. The communication structure is defined as where agent A can 

communicate with agent B directly, or the communication is passed to the desire 

(or goal) level where agent B only needs some task done by agent A for it to 

continue on its state change mechanism 

 

4. Desire (or goal) – what an agent wants to achieve in response to the 

environmental changes. Here, the goals that have to be achieved for the 

prescribed agent in order to satisfy the goals of other agents are identified, then 

linked to the agent in question at the appropriate level (e.g. the action of agent 

A that is required to trigger an action from agent B will be linked by an arrow 

directly to the name of agent B). Also, if a goal of agent A needs to be satisfied 

so that a goal of agent B can be satisfied, the arrow will link goal to goal. Using 

this section of the diagram, communication between objects can be shown (see 

Figure 5.4).  
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Figure 5.4: Connection Between Two Agent Diagrams, Showing Benefit 

 

This structure is very comprehensive and supports the current analysis and 

design phases specified by Tropos (Bresciani et al., 2004). Like the class 

diagram in object-oriented programming, here the number of goals that one 

agent requires another to satisfy can be annotated, as well as the type of relation 

which makes it easier for the programmer to implement. Figure 5.4 shows an 

example of the relation ‘needs to know’, which is that: the LightSwitch agent can 

only detect its environment and make sure there is light if the temperature agent 

returns the room temperature. 

 

5. Action (goal) - the various ways an agent can execute an action to keep the 

environmental state as required. These are often referred to as ‘capabilities’ (Jo 

and Einhorn, 2005). Figure 5.5 provides an example of functions that could be 

executed to reach a goal.  

 

agent LightSwitch  Room 

Belief

Communication 

Desire/Goal

Action (goal)

Reaction(belief)     

Believes 
[ ]

agent TempReg Temp

Belief

Communication 

Desire/Goal

Action (goal)

Reaction(belief)  

Believes 
[ ]

Needs to know
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Figure 5.5: Depiction of Action for an Agent 

 

6. Reaction (belief) –the structure used to monitor the environment and trigger an 

action according to change (as per belief). The reaction, like belief, constantly 

monitors the environment but, unlike the belief which can change simply by 

sensing the environment, the reaction will only occur when it gets confirmation 

of the environment change. There are major differences between action and 

reaction, the most important being that reaction is initiated by the environment 

and belief, while action only takes place to reach a goal (i.e. action is only 

triggered in order to reach the desired goal). This is illustrated in Figure 5.6. 

 

GOAL

ACTION
for

GOAL

ACTION

for



 
129 

 

Figure 5.6: Depiction of Reaction by Agent 

 

7. Environment - this has to be close to the belief. This could be anything that an 

agent supports or observes. It could be a human, another agent, the agent itself, 

a software environment or a physical environment. 

 

The ‘agent diagram’ structure (being for implementing agents, as compared to a class 

diagram for object-oriented implementation) could be compared to what Tropos 

currently specifies for the implementation stage. Figure 5.7 shows the general actor 

(agent) structure of the agent implementation diagram provided by Tropos (Perini and 

Susi, 2005).  

 

BELIEF

REACTION
for

BELIEF

REACTION

for

Environment

changes



 
130 

 

 

Source: Perini and Susi (2005). 

Figure 5.7: Structure of Agent Implementation 

 

The structure suggested by Perini and Susi (2005) is necessary, because each attribute 

and action modelled for the agent needs to be a separate object which must be 

physically coded to fit the purpose of the agent. However, to implement this structure, a 

mapping of the agent-oriented detail design, which focuses on the specification of 

agents’ capabilities (goals) and interactions, is needed. This is an unnecessary extra 

step (with added complexity) that has to be taken into account when building an agent-

based system. Figure 5.8 shows the suggested mapping structure from Tropos 

methodology to object-oriented class provided by Perini and Susi (2005). 
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Source: Perini and Susi (2005). 

Figure 5.8: Mapping Structure of Agent: Tropos Methodology to Object-Oriented Class 

 

Figure 5.8 is more complex, yet it provides much less information for the programmer 

than the ‘agent diagram’ proposed in this thesis. Features like contribution (as the 

contribution to the system at large) are not necessary if each agent developed is 

(supposed to be) autonomous. Thus, they do what they are supposed to do, regardless 

of other agents, but only according to the environment (Wooldridge et al., 1999).  

 

Like the class diagram for object-oriented design, ‘agent diagram’ simply points out the 

components required for a single agent to function. In reality, this is the most important 

view for the programmer. It provides more information and less confusion. 
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Also in the ‘agent diagram’ structure the depender-dependum-dependee structure is 

explicit. Garzetti et al. (2002) introduced a structure to investigate dependency 

complexity and criticality for each depender-dependum-dependee structure. This 

structure is of immense help at the implementation level and even to simply 

understanding the system’s performance. However, each agent should execute 

autonomously. Because of this, the dependee should only be conceptual for the 

programmer’s information, such that one agent can change the environment so that 

another can act, but the second agent should only act when required by the changed 

environment. 

 

Another important issue is that with the current Tropos structure there is support for 

modularity, but if any module (extra agent functionality) is added then the development 

cycle almost literally starts again from early requirements through to implementation 

(UML), where the object-oriented notion gets revised and modularity is achieved. 

However, with the ‘agent diagram’ structure, an agent could be added to the 

environment easier and quicker.  

 

5.3.2 Agent Communication Infrastructure 

Agents can communicate with each other regardless of their language structure. In this 

sense, the language structure refers to the implementation software of an agent. 

Suppose that one agent is developed using C++ and the other using Java. With the 

Multi-Agent System (MAS) structure, these two agents could be brought to an 

understanding (Wooldridge, 2003). Intelligent software agents can communicate via a 

model definition language (MDL) to integrate data with models. The MDL provides an 

inter-agent communication protocol for model development. Through the MDL structure, 

agents can communicate and thus retrieve, manipulate and store data from the available 

databases regardless of the type of data structure used. Agents can also request other 

agents to perform tasks. “To accomplish this task agents parse an MDL query and 
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translate tokens into a sequence of software specific spatial operations that transform 

the data into a form that is usable by particular models” (Bennett et al., 1999: p153).  

 

Using MDL as communication protocol described above, intelligent agents can match 

datasets (irrespective of vendor formats) by creating wrappers around, for instance, 

wrapper built around GIS data sets and possible modelling software. This is aided mainly 

by the functionality of ontology, as it expresses the ability of agents to act on their own 

without the need of interaction by other agents. Agents can simply react according to an 

action, despite the formats and styles which data sets employ. In other words, an agent 

can share data of different formats and styles. The concept of semantics is therefore 

emphasized. The basis of the Summary Schemas Model (SSM) as explained by Miller 

et al. (2001) suggests “a system taxonomy and map each local database attribute to a 

term in it”. An SSM could provide a way to unify database terms and their semantic 

meanings through implementing ontology. This is done to minimise the amount of data 

needed to represent large amounts of information (Miller et al., 2001). “For imprecise 

queries, the first problem is to take query terms and map them to database terms. 

Therefore, minimally we must modify the ontology to make it database specific” (Lin et 

al., 2001:2).  

 

As an intelligent agent provides the ontology, the described structure could work by 

giving an agent the semantic of the other agent. If an agent encounters another agent 

with a semantic that it does not understand, it should then in theory request help from a 

mutually-understanding agent to acquire the semantics, or even to get the task done.  

 

5.3.3 A Code Structure for Producing an Agent Programming Language 

The most important issue on bridging the gap from the implementation of designs to 

coding is to have diagrams which can produce a basic structured code without worrying 

about the complexity of the performance code (Somerville, 2002). Such a structure 

would enable the rapid application development of the software. However, this structure 
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with the current topology of Tropos or any other methodology (e.g. Gaia) would have all 

the complex migration processes from agent-oriented design to object-oriented design, 

where the classes and function to build even a single agent are to be established. With 

an agent programming environment such as JACK or JADE, it requires a minimum of 

four inheritances and three objects to be developed (Bresciani et al., 2004). When an 

agent system is created, it requires from one agent to many agents where each agent 

consists of minimum of four inheritances and three objects. 

 

A programming language should have a structured template to which the programming 

environment or the integrated development environment could adapt. This structure can 

be seen in object-oriented flexibility (Java, C++), where APIs and integrated 

development environments are constantly evolving, aiming to reduce the complexity, 

increase the ease of coding and reduce the amount of developer coding by increasing 

the native code. By comparison, for structured language, if any changes are to be made 

on the language the whole previous platform becomes obsolete. Given below are basic 

guidelines for developing an agent programming language. It should have: 

 

• a structured style of coding (uniformity); 

• a minimised amount of coding for the programmer; 

• robust coding; 

• an easy way of achieving software improvement (modularity); 

• security in the code (e.g. encapsulation in OOP); and 

• security in the software produced (e.g. during software interaction). 

 

These guidelines would facilitate the development of an agent programming language. 

From this perspective we can consider JACK or JADE. One can see that in object-

oriented programming that Java is not the OOP language, but is an environment that 

offers OOP. There are many other environments that could directly be compared to 

Java, which include C++, C# and Delphi. All these environments have the same OOP 

structure, where each object is developed using the class notion. Each class has: 
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• a name; 

• attributes; and 

• functions. 

 

These are always mapped to a diagram (called a class diagram) which shows the exact 

name of the object, its attributes and functions. A class diagram is shown in Figure 5.9 

and the code template accompanying this class will be written as shown in Figure 5.10. 

 

 

Figure 5.9: UML Class Diagram 

 

 

 

 

 

 

 

 

Figure 5.10: Translation of a UML Class Diagram Into Object-oriented Program Code 

 

Security in OOP is achieved through encapsulation, where only an object itself has the 

power to manipulate its data. Other objects can use this data via the owner object’s 

functions. This makes the data secure, in that it cannot be changed by multiple objects 

and cause conflict in the system (Charatan and Kans, 2002). These functions are also 

displayed in the class diagram, which simplifies the understanding and coding 

complexity for programmers.  

 

+Function()
-Attribute

Name

class Name 
{ 

private Attribute; 
 

 public Function() 
 { 

} 
} 
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Such a structure is required for agent-oriented programming. To achieve this, a 

modelling structure is suggested here, and is put into a coding template. Figure 5.3 

shows the ‘agent diagram’, while its accompanying code structure is shown in Figure 

5.11. 
 

agent  Name 
{ 
 belief  
  
 clonable (true) 
 { 

 partial as ------ 
 { 

//structure of partial clone: possible renamed to reproduction 
} 
full as Name 
{ 
 this // this refer to exact copy 
} 

} 
 
communication 
{ 
} 
 
goal : 
{ 
} 
 
action (:) 
{ 
} 
 
reaction (()) 
{ 
} 

} 

Figure 5.11: Code Structure for Agent Diagram 

 

This code structure can also support dynamic learning, where an agent is able to add 

beliefs into its knowledge domain. Figure 5.11 shows only the initial beliefs that an agent, 

being instantiated knowledge, needs to have. The agent is provided with a  database. 

This is identified as a vector structure that holds a list of beliefs. For programming, this 

database can be presented in many forms. For example, it can be presented like a 

notepad where each belief is written on its own line, or be an SQL supported structure 

like Microsoft Access DB. If Java Virtual Machine (JVM) is to be used as the supporting 
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execution environment, then the appropriate database system would be Java DB 

(provided by JVM). This structure would allow the newly acquired knowledge to be 

dynamically added into the agent’s database. Furthermore, using a vector-like collection 

array will allow a faster knowledge search, resulting in real-time reactions and improved 

belief control and manipulation. 

 

The proposed guidelines on code structure of agent programming language has 

improved utility in comparison with current implementations using JACK, JADE or other 

agent-based APIs. Figure 5.12 (based on Bresciani et al., 2004) displays the 

implementation structure provided by JACK which is one of the widely used agent 

development tools. See Section 5.3.4 for description of JACK. 

 

Shown in Figure 5.12 is also the implementation (code structure) for a single agent that 

is presented as an actor which has goals and beliefs. The depender-dependum-

dependee structure can be seen in this figure, which is already presented in the agent-

oriented detail design concept.  
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Source: Bresciani et al. (2004). 

Figure 5.12: Actor that has Goals and Beliefs 

 

Comparing the above to object-oriented design, where the complex structure of how the 

code should perform is left on the collaboration, sequence, state and activity diagrams 

(Pooley and Stevens, 2001). The proposed structure is built to save time and reduce the 

complexity of the initial coding of an agent (Somerville, 2002). Figure 5.13a represents 

the coding structure on the JACK plateform, while Figures 5.13b and 5.13c show how 

each line of the code requires its own coding (increasing the complexity) and own class 

of coding respectively. Thus, has capability PresentQueryResults in Figure 5.13a is 
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expanded to Figure 5.13b, and #uses plan EvaluationQueryResults in Figure 5.13b is 

expanded to Figure 5.13c. 

 
 

 

 

 

 

Figure 5.13a: Coding Structure of Agent on the JACK Platform 

 

 

 

 

 

 

 

Figure 5.13b: Increased Complexity of Coding Structure on the JACK Platform 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13c: Coding a Sub-class Which Increases Complexity for                                       
Coding an Agent on the JACK Platform 

public agent Userlnterface extends Agent  
{ 

#has capability GetQueryResults; 
#has capability ProvideUserSpecification; 
#has capability GetUserSpecification; 
#has capability PresentQueryResults; 
#handles event InformQueryResults; 
#handles event ResultsSet;  

} 
 

public capability PresentQueryResults extends Capability  
{ 

#handles external event InformQueryResults; 
#posts event ResultsSet; 
#posts event EmptyResultsSet; 
#private database QueryResults (); 
#private database ResultsModel (); 
#uses plan EvaluateQueryResults; 
#uses plan PresentEmptyResults; 
#uses plan PresentResults;  

} 

public plan EvaluateQueryResults extends Plan  
{ 

#handles event InformQueryResults ev; 
static boolean relevant (InformQueryResults ev)  
 
{ 

return true 
} 
 
static model md; 
static queryResults qr; 
body () 
{ 
   if (readQueryResults (qr)) 

                   {  
if (findResultModel (qr,md)) 
{ 

if(compareResultModel(md))  
{ 

{storeResults(qr,md)} 
} 

} 
else storeEmptyResults(); 

    } 
    else { System.err(1);  
} 

} 
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The new code structure is similar to that suggested by Zhao and Jo (2003). They provide 

a more robust structure in their proposed language than is present in JACK, reducing 

much of the complexity of the coding and consequently requiring much less coding. 

Figure 5.14a represents an example of the structure of the programming environment 

being proposed here, while Figure 5.14b shows the accompanying code structure 

generated from it. 

 
 

 

Figure 5.14a: Representation of the Structure for the Proposed Programming Environment 
 
 

As can be seen, this code structure tightly ties an agent’s design and code together and 

encapsulates an agent to its goals, desires and capabilities. In the time available for this 

research, it has not been possible to implement and validate a new agent programming 

language, but it was deemed important to define an appropriate language structure for 

easy agent development (at least at a design level). Thus, although the algorithm 

implementation of this thesis is based on this conceptual development and 

implementation mechanism, the actual implementation has had to be based upon code 

transfer and mapping to the JACK agent platform. Consequently, the variogram agent 

component (VAC) will be presented using the proposed design structure. This is 

intended to make it easier to understand the function of each agent, which should also 

help to make it easier to read for the lay user and for the future improvement of the 

system.  
 

LightSwitch Room

light
dark

null

Light: on

switchOn (:light)

toDark((dark))  

Believes 
[ ]none
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Figure 5.14b: Code Generated from Figure 5.14a 

 

This chapter so far has emphasised the importance of having the right agent platforms 

available when introducing agents into a software development environment within a 

discipline. The study of software development for agents identified that there was a 

deficiency in the ease of understanding methodologies for non-experts. Thus, two areas 

were identified that needed improvement: 

1. the design stage of methodologies (specifically for diagrams that transit from 

design to implementation); and 

2. the programming languages used. 

For the first point, a new and more efficient diagram for software agent design has been 

proposed in the thesis. For programming languages it was determined that this required 

considerable additional studies, which were beyond the scope of this thesis. Thus, the 

focus of this study shifted to the environment. The best programming environment 

available was identified and utilised - this environment being JACK. 

agent  LightSwitch 
{ 
 belief light = on 
 belief dark = off 
 clonable (true) 
 { 

 partial as ------ 
 { 

 //structure of partial clone  
 //possible renamed to reproduction 
} 
full as LightSwitch 
{ 
 this // this refer to exact copy 
} 

} 
communication 
{ 
 null 
} 
goal :light 
{ 
  switchOn (light) 
} 
action switchOn(:light) 
{ 
 light = on 
} 
reaction toDark((dark)) 
{ 
 If (belief = = dark) 
 { 
  switchOn(light) 
 }  
} 

} 
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5.3.4 JACK Environment for Programming Agent   

JACK platform is fully integrated software development engine. It used Java Virtual 

Machine (JVM) and has pre-constructed agent characteristics and their interrelation. For 

ease of use the engine developers have constructed a collection of autonomous agents 

which sense their environment and communicate with each other. Thus providing a 

simulated of encapsulation. Individual agents are defined using BDI concept which is 

translated to Capabilities, Plans, Events and Belief sets, designed to able to perform 

functions autonomously within its given environmental context. The JACK environment 

has extended programming syntax and semantics to allow ease of agent development 

(see. Fig5.15).   

 

 

Figure 5.15: Code Template for Developing a Simple Agent in JACK 

agent AgentType extends Agent {implements interface} 
  { 
     // JAL declaration statements - the following declarations may be 
     // used in an agent definition (when required). 
 
     #{private,agent,global} data Type Name (arglist); 
 
     // The agent handles events of type EventType. 
     #handles event EventType; 
 
     // The agent uses a plan of PlanType. 
     #uses plan PlanType; 
 
     // The round robin task manager is to be used - there are others. 
     #uses taskManager SimpleRRTaskManager(steps); 
 
     // The agent posts events of type EventType to itself. 
     #posts event EventType reference; 
 
     // The agent sends events of type EventType to other agents. 
     #sends event EventType reference; 
 
     // The agent has a capability of type CapabilityType. 
     #has capability CapabilityType reference; 

 
     // Data members (Java data structures).  Constructor method. 
     AgentType(arglist) 
     { 
       super("agent name"); 
        : 
        : 
     } 
     // Java methods that implement agent functionality. 
     // (These may be called from within the agent's plans.) 
  } 
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Furthermore the JACK allows drags and drop function (see. Fig 5.16) for software 

development which makes agent development as intuitive as developing objects in 

Object Oriented (OO) programming.  

 

 

Figure 5.16: JACK Programming Environment 

 

Thus, JACK has a good theoretical framework for agent development. It expresses that 

the agent is coded and, when the code is compiled: 

  

• an agent gets instantiated (deployed into its environment); 

• an agent waits for an event (that provides a goal satisfaction requirement) that it 

is supposed to respond to; or 

o if it receives an event to initiate a re/action that can handle this event/goal; 

or  

o if the action so initiated does not satisfy the goal, then it has to try a different 

plan. 
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This structure can be supported by the proposed ‘agent diagram’ described in Section 

5.3.1 for mapping implementation (see Figure 5.3). The code template for developing a 

simple agent in JACK is shown in Figure 5.15. 

 

The main reason of using this structure is the fact that Tropos is fully adept in designing 

agent systems, but before actually implementing them we have to revert back to object-

oriented designs, which could cause many agent concepts to be lost during coding.  

 

The origins of producing a comprehensive programming environment for agents can be 

seen from the extensive work of Travers (1996), with many attempts to make agent 

development easy and robust. Travers’ (1996) initiation into languages like Agar and 

BrainWorks clearly shows the complexity that is to come when developing an agent-

oriented programming structure.  

 

5.4 Data Sets for Testing an Agent Variogram Modeller 

Finding the best fit model for spatial dependency (constructing and fitting a variogram) 

usually requires the knowledge of an expert to achieve it, as discussed in Chapter 4. In 

this thesis, a distributed modeller agent system aims to be built and tested in order to 

investigate distributed component GIS. This agent system will be termed here as 

variogram agent component (VAC).  

 

A well known published data set in geostatistics is the Walker Lake data, which will be 

used to test and validate the implemented agent system VAC. The Walker Lake data 

had been previously analysed by Issaks and Srivastava (1989). Walker Lake is a 

perennial terminal lake located in the Great Basin of Western Nevada (near the 

California-Nevada border), in the western United States. Its volume was measured in 

1994 and found to have a fluid volume of 2,060,000 acre-ft over an area of 50.3 square 

miles (130 km²). However, the data was not derived from the lake itself, but from its 

surrounding area. The data set used by Isaaks and Srivastava (1989) was derived from 
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a DEM of the National Cartographic Information Center (NCIC) from the lake area. The 

data was obtained from the DEM coded in the Defence Mapping Agency Digital format. 

It consists of an area covering 1° of latitude by 1° of longitude with a ground distance 

between adjacent points of approximately 200 feet. Thus each 14° by 1° quadrangle 

contained about 2.5 million elevation points, covering a standard 1:250,000 topographic 

map sheet over two contiguous blocks. 

 

Three variables have been derived using this DEM, for 78,000 points on a 260 x 300 

foot rectangular grid. This is known as the exhaustive dataset. This data grid contains 

an identification number for each point, the x, y location of measurement and the three 

values V, U and the indicator T. V and U represent soil contaminants in parts per million 

(ppm) and T is the time interval. The data is discontinuous and highly skewed. However, 

the version of the data used by Issaks and Srivastava (1989) is not exhaustive, as it only 

contains data from a selected region containing 470 points (known as the sample 

dataset). Only the data examined by them will be used here, as it is sufficient for the 

required test. In Issaks and Srivastava’s (1989) publication, their data is presented on 

pages 115-119. The distribution of points of the Walker Lake sample data set, Nevada 

is given in Figure 5.16, while the file specification is given in Table 5.1.  

 
Table 5.1: Explanation of the Walker Lake Data 

 

This data will be used in this thesis for testing and validation, aimed at determining the 

functionality and performance of the VAC. The outputs produced by the VAC will then 

be compared to those derived by the original authors, Issaks and Srivastava (1989). The 

 
Symbol 

 
Explanation 

Id Identification Number 

X X location in metres 

Y Y location in metres 

V V variable, concentration in ppm 

U U variable, concentration in ppm 
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main reason for using this data is that it has many features which pose a range of 

challenges often encountered in geostatistics. These include outliers, clusters, trends 

and errors that need to be removed before any variogram modelling can be applied, if 

useable results are to be achieved. Issaks and Srivastava (1989) outline these 

challenges as: 

  1. the description of the important features of the data; 

  2. the estimation of an average value over a large area; 

  3. the estimation of an unknown value at a particular location; 

  4. the estimation of an average value over a small area; 

  5. the use of the available sampling to check the performance of an estimation 

methodology; 

  6. the use of sample values of one variable to improve the estimation of another 

variable; 

  7. the estimation of a distribution of values over a large area; 

  8. the estimation of a distribution of values over a small area; 

  9. the estimation of a distribution of block average; and 

10. the assessment of the uncertainty of estimates. 

 

In this thesis, the 470 points will be used as the test data set, where a number of sample 

blocks will be segmented from the full set. Each block will be independently tested and 

the results compared. As each block will be minimally defined, more data might be 

required during the experiment and so will be added accordingly. This is intended to 

build the basic structure of the experiment in order to test the VAC and see its 

performance. The test results will be compared to those obtained via just simply using 

conventional geostatistical tools.  

 

Most of the technical experiments of geostatistical components (e.g. trends, variograms, 

kriging, etc.) are based on the V values of the Walker Lake dataset. A map showing the 

data posting of the V values is given in Figure 5.17. 
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Figure 5.17: Concentration and Clustering of V Values in the Walker Lake Dataset 
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CHAPTER SIX: THE DESIGN OF THE VARIOGRAM AGENT 
COMPONENT(S) 

6.1 Introduction 

 

This chapter looks into the modelling (analysis and design) and the implementation 

(frameworks, platforms and coding algorithms) of the agent proposed in this thesis. 

Designing an agent based system is challenging for various reasons, mainly due to 

complexity of the agent development platforms and formalise Modelling language. The 

available modelling languages will be assessed for distributed component GIS with 

consideration for their suitability to support implementation on JACK programming 

environment.  

The agency features will be examine and assessed for their ease of implementation and 

function with the chosen modelling and implementation platform. New agency features 

will be studied and embedded in the software development process. This chapter will 

define the functionality of individual agent while determining their collective and 

collaborative performance. 

6.2 GIS Agent-based System Architecture  

Here a framework is defined as a supporting structure in which a general platform for 

agent supporting component based GIS service can be produced. It is set to be the 

underlying infrastructure and provision for any distributed agent component GIS. The 

platform to be structured will provide the underlying infrastructure to hold different 

components of GIS. Thus, using this framework and platform, another VAC project can 

be analysed, designed and developed. The overall architecture of the agent system for 

GIS is based on a three-tier structure (see Figure 6.1), which support one another. The 

top level tier has to conform to the requirements of the lower level. These tiers are: 
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1. The framework, which provides a set of protocols (policies and regulations) for a 

chosen platform to conform to. The framework defines the communication 

mechanism (i.e. TCP/IP); the core structure of the agents (i.e. what should 

individual agent provide to other agent and acquire, and the data type and 

format); the function of the agent (i.e. the environment which an agent can act 

upon, extent it can communicate, and capability).  

2. The platform, which is the underlying engine upon which a component can be 

developed. The platform consist of programming engines (i.e. JACK, Egglets, 

JADE, MASE and more advance O-MASE), language (i.e. C and Java) and 

agent code design structure since the current available engines are not fully 

agent oriented but Object Oriented they are not fully sufficient for developing 

agent and thus new structures need to be developed). 

3. The actual component that performs a specific function. This component is an 

agent with its own goal. Furthermore, it encapsulates sub-agents with individual 

sub-goals that help achieve the main goal. In this thesis the sample is the 

Variogram agent but could be remote sensing agent, cartographic agent, survey 

agent, and/or any other geographical components. 

 

 

 

Figure 6.1: Architecture Design for Component base GIS System, Showing Three Tier 
Structure 
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6.2.1 The Distributed Agent Framework for GIS Agents 

The main aim of the framework (shown in Figure 6.2) is to provide the basic design 

protocols and infrastructure in which agent-based GIS components can be deployed. 

To achieve this, it is important to define the primary requirements to develop GIS agents. 

According to the literature analyses (Sánchez et al., 2005), these are: 

• knowledge acquisition - the learning ability of the agent. In the proposed 

framework/tool/platform, it is envisaged that an agent will learn by interacting and 

communicating with GIS experts (humans) and other software systems 

(including other agent components); 

• knowledge verification – the possibility of determining the status of its 

environment and acting upon it. In the proposed framework, the agent will sense 

its environment when a certain event takes place and then will act upon it with 

the knowledge it has at that point. If the agent does not have the appropriate 

knowledge (usually in the form of plans) to act, then it will try to consult a human 

GIS expert or other agent(s), through its interfaces, to obtain the required 

knowledge. Then, the newly acquired knowledge will be added as a new plan 

during the run time of the agent system; and 

• knowledge dissemination - the ability of understanding its own capability and 

then disseminating it to other agents that might need that information. Since an 

agent has to share its knowledge, this makes for a cleaner structure by providing 

knowledge (plans) without needing to amend the internal structure of the agent 

being taught. 

 

This structure is based on a continuous flow of requests and proposals from 

communicating agents. Immediately after agent creation, it will assess the resources 

(processor, memory, communication and storage) of its situated physical environment 

in order to determine its capabilities. Similarly, Batty (2005c) explained the importance 

of framework while compare various computational spatial models to determine a 

general framework for Geosimulations using agents. In this thesis the main goal will be 

to obtain knowledge available in its domain and enhanced it by observing other agents, 
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human expert and, particularly, the pattern of the expert’s decisions. The framework 

described in this section effectively defines an agent-based GIS technology, where a 

base platform is provided that allows the deployment of agents of distributed component 

GIS. In particular, the proposed framework indicates the ability of each agent’s (that 

belongs to an agent-based system following the framework) communication protocols 

and its responsibility to the system. Each agent is able to acquire knowledge dynamically 

and use this knowledge to teach other agents.  

 

 

Figure 6.2: Fundamental protocol which all agent components must adhere to within 
Distributed Component GIS System 

 

6.2.2 The Platform for Intelligent Distributed Component GIS 

The architecture is implemented using existing agent engines. The chosen engine for 

the implementation of the experimental prototype is JACK Agent which is developed 

over a Java Virtual Machine. This provides the benefit of portability flexibility since Java 

is platform independent (can run over any Operating System, i.e. Windows, Mac, UNIX, 
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etc.). Also due to Java being an open source environment there is much availability of 

application programming interfaces (API), e.g. Graph drawing interface, Math and 

Statistics APIs were used for this project. Since Java was used as underlying 

infrastructure for JACK (by Jack developers) it was used to the advantage of the 

developing of the VAC. Over the JACK architecture a specialised platform was 

developed. The platform has specialised protocols and structure (fig 6.2) to allow a 

common ground for agent runtime binding, communication, collaboration and the ability 

to identify each other's existence, role and functionality. On this platform VAC was 

developed as a prototype component to the Distributed Component GIS System. In this 

thesis this component is design as Multi-Agent System with features explained in section 

6.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: General Architectural Platform for and Agent-based GIS 

 

Thus, the overall architecture comprises of a framework which defines the rules and 
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distributed components GIS, with the ability for self-growth and greater flexibility. On top 

of this framework, a general platform (see Figure 6.3) is embedded. This platform 

promotes inter-agent communication, which is an important factor. More importantly, it 

provides an enabling environment for system developers and geographers, and acts as 

a reference architecture for developing distributed agents, as long as the agent being 

developed sits on the common GIS agent platform. Thus, this platform represents the 

physical development environment, where all the agents adhering to the given 

framework (despite being developed separately and irrespective of their function) should 

be able to work together through the platform to achieve certain goals. 

 

Each agent is expected to work autonomously to achieve its goal. These individual 

agents could be distributed remotely to one another. The distributed agents could be 

facilitated by their own multi-agent systems and provide a semi or fully functional GIS 

component. Here, one of these components is developed which represents a 

geostatistical tool, the VAC.  

 

The development of the VAC is intended to show the functionality and limitations of the 

overall architecture to the suggested technology. In terms of the tool being developed in 

this thesis, the problem we are concerned with is the ability of the variogram agents to 

be able to do what they are supposed to do in terms of representing agent characteristics 

and, to an extent, the problem-solving and learning mechanism. 

 

6.3 VAC Design Using Tropos 

The agent system architecture has been designed and developed using the Tropos 

methodology, which not only allows analysis of the system, but also supports the 

analysis of its environment and how the system environment (and all the related 

stakeholders) might affect the design of the system. In Tropos, the system and its 

environment is modelled in terms of actors which have strategic goals. They might have 

a number of dependencies with other actors for the satisfaction of goals which the actors 
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cannot achieve on their own. Using the Walker Lake sample dataset described in 

Chapter Five for the VAC, three main actors (stakeholders) can be identified, as shown 

in Figure 6.4.  

 

1. The Data Producer actor. This is the actor responsible for the production of the 

data (e.g. the Walker Lake dataset). In a typical GIS scenario, the input actor is 

usually a human, who imports the data from a data producer (provider). 

2. The Spatial Analyst actor is the person who wishes to process the dataset in 

order to address the types of problems listed in section 5.4 (from Isaak and 

Srivastava, 1989).  

3. The Result Consumer actor is responsible for decision-making based on the 

outputs of the VAC.  

 

 

Note: Here we display a legend that applies to all Tropos diagrams used in this section. 

Figure 6.4: Actor Diagram for the VAC System 

 

Following the Tropos process, each of these actors is further defined in terms of his/her 

goals and tasks. Various alternatives are analysed in order to select the best possible 

way of satisfying the actors’ goals (Yu et al. 2007). This analysis allows us to reason 
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(amongst other things) whether an electronic system is needed and the advantages it 

provides over a manual system. The system analysis (shown in Figure 6.4) thus 

indicates the need to provide a software system to support the variogram definition and 

satisfy the main goal of the Spatial Analyst actor to determine spatial dependency in 

data through the means of the variogram faster and more efficiently. The goal diagram 

of the Spatial Analyst actor is shown in Figure 6.5. 

 

 

 

Figure 6.5: Goal Diagram of the Spatial Analyst Actor 
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parallel and efficient fitting is evident. The output of the above stage is the input on the 

late requirements stage of the Tropos methodology. In that stage, the proposed 

electronic system is defined as another actor that interacts with the actors shown in 

Figure 6.4. Using the same reasoning techniques utilised in the previous Tropos stage, 

the system actor is analysed in terms of its goals and tasks. For this reason, a variogram 

actor is defined. The system analysis of this actor is shown in Figure 6.6.  

 

 

Figure 6.6: Goal Diagram of the Variogram Actor 

The Variogram actor is the main actor in the GIS agents system and is the VAC, and 

would be just one component available within distributed components GIS. The 

Variogram agent has its own capabilities and goals, which are decomposed into sub-

systems. Thus, when all the goals and tasks have been identified by the system’s 

Variogram actor, the next stage of the methodology aims to decompose the system into 

Obtain data
Clean Data

Fit Model

Identify data 
charcteristics

Validate model

Analyse 
data

Describe 
data

Compare 
the description 
strategies

Justify 
results

Provide 
fit options 

Find 
dependency

Check 
goodness 
of fit

Use box 
plot

Observe 
values

Use scatter 
plot

Use 
mathematical 
formulae

Use 
Sampling 
strategies

Use 
parametric 
method

Use robust 
method

Variogram 

Data
Producer

Construct 
variogram

Agree model 

Spatial Analyst



 
157 

a set of agents each responsible for satisfying the system’s goals and tasks. These 

capabilities include communicating with other actors, allowing its internal (sub-) actors 

to cooperate and share their knowledge with other GIS systems. The actor 

decomposition of this sub-system is given in Figure 6.7.  

 

 

Note: Actor decomposition of the variogram agents - these actors are going to be defined as the agents in 
the system. 

Figure 6.7: Actor Decomposition of the Variogram Agents 

The proposed system has been analysed and designed with the aid of the Tropos agent-

oriented software. The agents themselves have been constructed using JACK agents. 

The diagrammatic programming structure of the Variogram agent and all its sub-agents 

can be found in Appendix C. The main actor is the Spatial Analyst, requiring construction 

and modelling of a variogram. The human actor Spatial Analyst is converted to a 
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software agent called the Variogram agent. The Variogram agent acts as the container 

and regulator of its internal actors, which will be defined as the agents of the system. 

This concept is referred to as agent decomposition. Decomposed into a set of agents, 

each is responsible for satisfying the system’s goals and task results in the following 

agents (see also Figure 6.7): 

• Data Finder agent: responsible for acquiring data, establishing certain 

characteristics of structure and type, then providing it to the rest of the system; 

• Integrity Checker agent: responsible for determining errors and cleaning the 

data (from problems like abnormality and sort). This agent performs box plots 

and scatter plots on the data to determine outliers and possible erroneous data; 

• Data Analyser agent: responsible for determining if the type of data (or similar) 

has been received before or is a new data type, and so determine its structure. 

If the data has trends and/or clusters, it removes them and registers it as a new 

type of data; 

• Sampler agent: responsible for determining sample sizes for the modelling and 

integrity checking of the variogram. This is done by defining a size of a section 

of the data that can give the most accurate spatial pattern prediction and hold 

back enough data to compare the results of the variogram; 

• Mathematical Modeller agent: responsible for applying the appropriate formula 

for the calculation of γ given a particular data structure; 

• Strategy Comparer agent: responsible for checking the results produced by the 

Sampler agent and Mathematical Modeller agent, and determining the residual 

errors; and 

• Model Fitter agent: responsible for checking the plots and providing a best-fit 

curve as a model. This is done by using the plots defined by the Mathematical 

Modeller and/or Sampler agents and fitting them onto one of the validated curves 

(spherical, Gaussian, pure nugget, linear etc.). The actual drawings are achieved 

using a sub-agent, the Plotter: 

o The Model Plotter agent is responsible for plotting the various models 

chosen by the Model Fitter agent.  
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Figure 6.8: Variogram Interagent Depender-Dependum-Dependee Diagram:                          
Internal Variogram Actors and their Dependencies 

These actors are defined as the agents of the variogram system. The information about 

these actors (agents), their goals and plans will be presented in order of their function 

and dependency. Figure 6.8 shows their depender-dependum-dependee diagram. Each 

of these agents will be further analysed and defined in more detail. However, apart from 

having these sub-agents to aid it to do its job, the Variogram agent has its own 

capabilities and goals. These capabilities are: 

 

• communicating with other agents; and 

• allowing its internal (sub-) agents to cooperate and share their knowledge with 

other variogram agents.  
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These functions set the minimum requirement for GIS agents. The actual information 

and action flow of the Variogram agent in relation to these agents is shown in the agent 

action diagram (see Figure 6.9): 

 

 

 

Figure 6.9: Algorithm for the Variogram Agent 
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6.3.1 Data Finder   

The first agent in this architecture and simplest in term of performance is the Data 

Finder. The Data Finder agent is versatile and able to determine any new data that 

needs to analysed, whether from single or multiple sources. The source could be a 

human input, remote sensing portals, other computing devices or any other data 

distributing devices. The agents can also try to traverse the network for any information 

(data) that could aid the scenario. This agent’s goal analysis is given in Figure 6.10.  

 

 

Figure 6.10: Goal Analysis for the Data Finder Agent 
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• acquire data, which is facilitated by two input capabilities that allow it to actually 

capture this data. The interfaces are: 

o direct data input: this function allows forceful data input into the agent. The 

data can be fed into the agent by a human agent or other GIS devices. 

o spatial data input: this data importing mechanism is normally initiated by the 

agent itself. This can be defined for specific time intervals. 

 

• identify the data type, which checks if the data has: 

o clusters, and if the clusters have any significance to the data description. 

o temporal data, and what type of temporal data it is. 

 

This agent possesses a plan which enables it to determine what would be required to 

produce a new plan, which thus displays the essential concept of dynamic binding. The 

requirement of dynamic binding function is explained by Krutisch et. al. (2003) albeit 

without the use of agent technology. When all the given plans have failed and using all 

the knowledge it possess, the agent will declare to the expert that it requires new plan 

and with the dynamic binding feature it can use this plan without having to restart the 

system. Furthermore, this new plan will be added into the agent’s plan, so it can be used 

next time. To increase the functionality the reasoning algorithms will be embedded into 

the plans. The dynamic data binding mechanism is defined in detail in section 6.4.3 of 

this chapter.  

 

6.3.2 Integrity Checker 

The Integrity Checker is responsible for cleaning the data of any errors and determining 

if there is data that appears like an error but is not an error. It also determines if it has 

data that forms a cluster when looked at in the perspective of its neighbours. Figure 6.11 

shows the Integrity Checker agent.  

 

After realising the data structure and pattern given by the Data Analyser agent, the 

Integrity Checker will determine the correct formula to use. However, if the available 
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formulae do not resolve the abnormality, it will be able to experiment with its own formula 

using its knowledge of formula construction. This formula construction knowledge is 

acquired when the formulae available are defined in steps, and each step’s importance 

is determined. This structure is unique and important to this framework’s architecture as 

opposed to all other GIS tools (like GeoDa, ArcGIS and other software that perform 

different GIS functions) that have predefined formulae.  

 

This agent creates a scatter (or q-q) plot and box plot. The main goal is to find data that 

is abnormal to the rest. Here, the agent’s reasoning mechanism will be based upon the 

formulae described earlier in Chapter Four - scatter plot formulae, weighted median 

polish and box plots. 

 

Figure 6.11: Integrity Checker Agent Diagram Using Tropos Methodology 
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The main job of this agent is to clean the data and remove ambiguity. It communicates 

with the Data Finder and Data Analyser so that it can get the available data, clean the 

data and make it ready for the Sampler and/or Mathematical modellers to do their job.  

 

6.2.3 Data Analyser 

This agent is responsible for data analysis and determining if this data type is familiar. 

This is determined by checking the various properties of the data to be analysed. This 

is achieved by examining the scenario under study, which can be determined by: 

 

• the spatial pattern (associated to the surface formation of the event or process), 

described in section 4.4.2 and section 4.4.3;  

• the point event pattern (associated to the actual datum on the location x,y and 

its effect), described in section 4.4.2 and section 4.4.3; 

• the subject under study (i.e. fluid, moving object, static object); and 

• the behaviour of the subject under study (predictable or unpredictable). This can 

be measured using information like “if predictable, how predictable?” 
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Figure 6.12: Data Analyser Agent Diagram Using Tropos Methodology 

 

This agent is also responsible for removing spatial trends in the data, which will simplify 

the variogram creation for the scenario under study. Trend removal will be achieved 

using: 

 

• polynomial regression; 
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• general regression. 

 

The choice between these techniques will be determined by the data type, which has 
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6.3.4 Mathematical Modeller 

This agent is responsible for picking the right mathematical formula according to the 

data structure and pattern. So, its communication needs to be established in two 

phases: 

 

1. It needs to communicate with the Integrity Checker (as the main communication 

agent). This will be the first strategy.  

2. If the data is identified as being familiar by the Data Analyser, then there is the 

possibility of the Integrity Checker being skipped and the data being sent directly 

for mathematical processing. An example of this is where the Data Analyser 

agent is repeatedly processing the same kind of data in its normal duty. Thus, it 

will only send unfamiliar data, of which it has no previous experience, to the 

Integrity Checker agent. 

 

 

Figure 6.13: Mathematical Modeller Agent Diagram Using Tropos Methodology 
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This agent will have knowledge of equations with their preferred situation usage. Also, 

it will also have knowledge of defining a new formula on occasions where no available 

formulae are good enough for the type of data or situation. This new formula is then 

saved, to be used again if needed.  

 

When a new formula is defined it is logged for verification, which is achieved through 

the reuse of the formula. Thus, every time it is used, its performance is detailed so that 

the agent or human expert can review it.  

 

6.3.5     Sampler 

 

This agent is called upon only if the dataset is large enough. From the data (which at 

this point all the properties are known, from the Data Analyser agent) it constructs 

different sampling schemes. This concept works like a game theory, where each 

sampling scheme competes with the rest to build the best possible variogram fit, as 

determined by the agent according to its current knowledge.  
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Figure 6.14: Sampler Agent Diagram Using Tropos Methodology 

 

The result of each sample will be compared to the Mathematical Modeller agent and the 

closest result will be re-defined and tested to narrow the choice. This agent will hold 
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Figure 6.15: Sampling Action Flow Diagram 
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6.3.7 Model Fitter 

The main function of this agent is to choose the appropriate model from the universal 

models available for the given data environment. Here, the universal models that are 

already known by the agent are: 

 

• Spherical; 

• Gaussian; 

• Exponential; 

• Pure nugget; and 

• Linear.  

 

Here the lag, range and sill are established for the parametric (mathematical) variogram 

and will be chosen by making sure that: 

 

1. the model fit lies to the right of the mathematical model, otherwise change the 

scale (e.g. length value); 

2. if more than 50% of the data lie to the right of the points estimated by the 

mathematical model and this lies on the same line as the model fitted, then it is 

good.  

3. the range is the distance on the x axis to the plateau of the mathematical model.  

 

A non-zero nugget indicates that repeated measurements at the same point will yield 

different values. The model chosen is also determined by looking into the following 

known indicators (Isaaks and Srivastava, 1989; Cressie, 1991): 

 

• If the range is smaller than the sill, the spherical model is good. 

• If the range is almost twice the sill, the Gaussian model is good. 

• If the range is larger than the sill, the exponential model is good. 
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Figure 6.16: Model Fitter Agent Diagram Using Tropos Methodology 
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that employed in Geovariences (2009) for automated variogram fit. 
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6.3.8 Model Plotter  

This agent has the final task of displaying the model chosen for the variogram. It 

achieves this through the use of a specialised plan called the Plot Plan, which has the 

functionality to choose the appropriate representation scale for the GUI.  

 

Even though this agent has the very simple task of simply representing the already 

chosen variogram model selected by the Model Fitter agent, it also has an important 

function to make sure the display is appropriate for the designated environment. An 

example of this could be that there are too many points on the graph and the screen is 

too small, which would cause the screen to be cumbersome and hard to read. This agent 

will point out this issue and attempt to either reduce the number of points or increase 

the sharpness of the viewable image. Also, in circumstances where it realises that there 

are issues in representing the current value, it flags to have the model refitted.  

 

This agent is also responsible for communicating with the expert user, who can decide 

if the model fitted is inappropriate and ask the agent to refit. It has only one capability, 

called the ‘model plotting cap’, which allows this agent to achieve its goal. This agent is 

not included in the implementation of an experimental agent for this thesis. However, it 

is one of the important features and an important future requirement. 

 

 

6.4 Algorithm, process and data handling for the VAC 

At the start point, the data is searched within the approved locations. Currently, these 

locations are specified folders and the agents are triggered to work when the Data Finder 

agent believes that data has arrived into these bins. Then the actual data is scrutinised 

to find out if it has been used before. If the data is found to have been dealt with 

previously, it jumps all non-crucial steps that are normally taken to analyse the 

variogram, so that the agent does not waste time re-analysing it. Sometimes, it simply 

shows the previous result, where the expert user can say whether the data is to be re-
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analysed and/or assist on a new strategy. Then, the Data Finder agent simultaneously 

checks for clusters and repetition. Heuristic methods will be used to check for repetition, 

including: 

• checking the repetition pattern. If the repetition is perceived by the agent to be 

erratic and possibly due to an error, then it is removed; otherwise, it moves to 

the next strategy; 

• checking for clusters, done using the formula Index of Cluster Size; and 

• constructing the experimental variogram and finally fitting a variogram model to 

the data. 

 

Determination of the slice is done heuristically, by checking if the data are divided into 

equal slices. This is only done if the data is found to have repetition. The main function 

here is to determine if the data is to be sliced for more analysis or not and, if yes, what 

structure should be followed. All other agents and their plans follow this same 

mechanism, where formulae are mainly extracted, as from Issaks and Srivastava 

(1989), Burrogh and McDonell (1998) and Cressie (1993).  
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Figure 6.17: Agent's Plan and Event Flow 
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6.4.1 Data Handling of the VAC - Data Responsibility Diagram 

The multi-agent system developed was able to handle the specific task of dealing with 

the geostatistical case at hand. Each agent was given the autonomous responsibility to 

do its job correctly and, by collaborating with one another, this can allow a form of social 

ability that gears them towards quick and decisive results. The main aim of each agent 

in the multi-agent system is specified by the data, resulting from its functionality. This is 

shown in Figure 6.18. 

 

 

Figure 6.18: Data Flow Within Agents and Their Plans 
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targeted towards providing BDI intelligence and easy internal communication (but not 

much external communication). Tools like Egglets and Voyager can easily provide this 

feature, as they provide an easy mechanism of code and data migration. In JACK, only 

data migration was achieved. Even this was only a kind of primitive migration, achieved 

by providing a predefined location where data is stored and, if the analysis is to be done 

by an external agent, the agent is pointed towards this location and can either copy the 

data to its designated (on the machine) location in its native environment or just do the 

analysis on the fly (the current location of the data). However, the latter will put the 

mobility or code migration on a very low level. The agent system for GIS requires mobility 

as one of its primary features, so to allow flexibility the agent was made flexible enough 

to be able to choose any one of these two mechanisms.  

 

6.4.2. Agent Architecture: Design of VAC using Unified Agent Diagram 

In software analysis and design, a structure providing the overall picture of the agent 

system was established in Chapter Five, section 5.3.1. Thus, here we prove the success 

of this new structure by showing the design of the VAC and using it in a real and well 

established spatial environment situation (the Walker Lake case, dataset in Appendix 

B). This is important, as it shows the whole system in its perspective environment, and 

also visualises agents to their functions and collaborators. For this, a diagrammatic 

interpretation of the overall agent system was determined. The unified agent diagram is 

used here to provide an outlook of the system. The agent architecture, as seen in the 

agent diagram, is defined in section 6.2. This architecture allows the agent to be 

visualised on a unified platform (see Figure 6.19).  
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Figure 6.19: VAC design using unified Agent Diagram  
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Figure 6.19 provides an overall picture of the agent architecture and inter-agent 

relationship. This is intended to give a clear picture of the agent functionality to the GIS 

expert with not much software engineering knowledge. At the same time, this structure 

should allow an expert programmer to determine the mechanism and functionality of the 

overall system, by providing the actual programmatic notation of each agent, their 

function and how they achieve such function.  

 

6.5 Required Features for Software Agents as Components for GIS 

Developing an intelligent agent-based structure to communicate between GIS tools 

residing remotely from each other is an important concept in improving GIS technology. 

Furthermore, interoperation of different GIS platforms (developed using different binary 

structures (Operating systems and programming languages)) and collaboration of 

different tools can be achieved via this structure. Such collaboration will include agents 

teaching each other better techniques to tackle a problem. Also, as this structure will 

allow the GIS to be broken down into even smaller, more specialised, tools it will allow 

better modularity, functionality and execution speed, which are important factors in 

computational tools (computing in general) and in this case GIS. 

 

The proposed technology is identified to especially benefit from specific characteristics 

of intelligent agents. The characteristics include reactive ability that will allow an 

interaction of GIS components to form a social behaviour in a similar environment and, 

most importantly, the autonomicity of individual agents. There are many features that 

characterise intelligent agents; however, for the VAC only some of the features were 

found to be important and considered, these are:  

 

• autonomicity (described in Chapter Three) - probably the most important feature 

in terms of this research, as it describes the ability of agents to work explicitly 

towards their goal without depending on other agents (feature described by 
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Wooldridge (2003) which makes up a basic character of a software agent and 

used by all the agents in the VAC; 

• reactivity, which expresses the need for an intelligent agent to be able to perceive 

its environment and respond to changes (internal and external) to the system, in 

order to consistently satisfy their design objectives or goals (Wooldridge, 2004); 

• social ability, interacting with each other or external agents (humans, or a 

separate variogram in the case of this research) in order to satisfy their design 

objectives. This characteristic is particularly important when dealing with spatial 

scales of measurement, and specifically the utilisation of a multi-scale approach 

(Tate and Atkinson, 2000) in dealing with large or complex datasets; 

• intelligence, use the BDI structure of JACK agents to decide the best solution to 

the situation. Furthermore, if the expert user determines the given solution to be 

unsuitable for the situation, to learn from this mistake and, in the future, use the 

new mechanism defined by the expert user during this incident to handle the 

data. This function is termed the ‘dynamic binding mechanism’ and was 

developed for the system used in this thesis, as it was identified to be important; 

• proactiveness, which is to take initiative actions towards an expected situation, 

thus sensing a possible problem and dealing with it before, or as soon as, it 

occurs. Here, trying to learn before the situation occurs is the key point. An 

example is trying a process and testing it to get suitable back transformation on 

a kriging, as mentioned by Wright et al. (1997); and 

• mobility, as there are levels of mobility ranging from weak to strong. It was 

deemed sufficient to incorporate weak mobility for the requirement of this study, 

being represented as the communication mechanism in this thesis. 

 

All the above characteristics are implemented for VAC however individual agent in within 

VAC take advantage of some of all these feature to fulfil their design goal and to achieve 

the overall goal of fitting a varigram through geostatistical process, table 6.1. shows 

utilisation of these characteristics by individual agent. 

 



 
180 

Table 6.1: Agency application on VAC 
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Mathematical Modeller * * *   * * * 
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Model Fitter  * * * * * *   
Model Plotter * * *      
 Function in Jack Engine Function not in 
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structures 

 

Mapping these features into GIS and especially Geostatistics shows the potential of 

seriously moving this technology forward. Once the simulation has been tested with the 

previously solved data problem and proved consistent, it will be tested on a more 

complex problem to see its performance. 

 

Software agents provide greater mobility, autonomy, reactivity and flexibility to the 

service (Bingham et al., 2004). With these functions, they will provide a leverage to GIS 

by using agent characteristics, including adaptivity, reactivity, autonomicity, networking 

capability with a sociability and collaborative behaviour, personalisability, pro-activity 

and cloning ability (Sargent, 1992; Ovum, 1994; Shih, 2001; Callan, 2003; Liao, 2005), 

and this thesis goes a step further by introducing a reproduction capability. The ultimate 

ability is to realise the workload and either clone itself (Shih, 2001), breaking down the 

job into smaller tasks and dividing the tasks among the newly cloned agents, or 

reproduce to more functional specific agents that will tackle the complexity of data 

analysis in an unconventional environment.  

 



 
181 

With the features mentioned here, GIS services, like the agents themselves, will be able 

to adapt to the user's needs and have the ability to migrate in a self-directed way from 

one location to another on a specified platform (i.e. a common network system). Also, 

they can respond to changes that occur in a timely fashion by learning the pattern 

according to the environment, so that their performance improves over time (Lee et al., 

2002). Furthermore, there is a distinct need for improvement in the GIS environment, 

making the systems more networked and more adaptive to their environment (Longley 

et al., 2002). The system should have a reactive ability that would allow an interaction 

of GIS tools to form a social behaviour in a similar environment. Artificial intelligent 

agents could be used to solve this problem, so the need to look deeper into the 

collaboration between these subjects (GIS and AI) becomes essential.  

 

The behaviour of the agent, according to its features demonstrated in first in test data 

and in more complex real life data, the Walker Lake data is presented in Chapter Seven 

of this thesis. 

 

6.5.1 The Agent Reproduction Capability 

Software agents are characterised to be able to achieve communication with both, each 

other and external users (like humans), harmonising a shared and common 

understanding of a domain (Lin et al., 2001). Agents have been characterised by many 

features. However, one significant feature that has not been yet mentioned in agent 

research but was considered as being important in this research is an agent’s ability to 

reproduce itself: 

 

• Reproductivity: this is a feature that is very important, and indeed crucial for an 

agent which perform functions that have no particular pattern. When an agent 

realises a change of pattern from the user, it should be able to customise itself 

to deal with the environment - thus, it should give ‘birth’ to a new agent having a 

slightly different capability and goal. The first step is for the agent to be able to 
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reproduce plans to handle the foreign situation, then if these plans get too 

complex and numerous the agent should then recreate another agent to 

specifically deal with them, having goals that will be satisfied with these new 

plans (i.e. a new agent with slightly different goals but very different plans).  

 

6.5.2 The Agent Reproduction  

Agents deal with sampling and modelling of the data to the variogram, such that if a 

formula to the problem seems to not work appropriately, then an agent could produce 

new plans, or another agent, and supply it with all the information it has about the 

situation. Furthermore, the reproduced agent could roam freely to gather extra 

knowledge to deal with the problem at hand (see Figure 6.20).  

 

Reproduction is 'super-function' of cloning function currently present in agent 

characteristics. The cloning function is present in most agent software development 

platform; this is especially true for JACK agent environment which is used for the 

development of the VAC. Cloning is a mechanism that allows an agent to duplicate itself 

on temporary basis. However, as described an agent is normally specialized for specific 

function or task. Thus, in learning new function cloning is not sufficient. Thus it is 'super-

function' where a cloning takes place on a permanent basis, see Figure 6.21. This 

provided 2 main challenges: 

 

1. The agent capabilities need to be easily redefined using external file (xml in this 

case). 

2. Keeping the basic knowledge of an agent distinguished from what it learned 

through time as offspring need only have this basic knowledge and the 

knowledge required to handle the new task (function), then it can acquire its own 

knowledge and own character.  
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The solution to these 2 problems can be seen in Figure 6.20 which shows the steps 

(actions) taken when an agent reproduces another agent. 

 

 

Figure 6.20: Activity Diagram representing algorithm for Reproduction 
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The algorithm for agent reproduction 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

To explain reproduction and the need for it, suppose there is an agent ‘A1’ which already 

has knowledge about problems ‘PA1’, ‘PB1’ and ‘PB3’. Agent A1 encounters a new 

problem which is a manifestation of problem PA1, which we will call ‘PA2’. Agent A1 

realises that this problem is getting too large and thus could reduce its efficiency. 

Therefore, it will reproduce a specialised agent for this kind of problem, teaching it the 

techniques and tricks it had itself previously used (when it encountered the similar 

problem PA1 previously) and suggest possible solutions to the new problem PA2 (as a 

learning and teaching process). It will then release the ‘baby agent’ to mature on its own 

and be able to later follow this trait of reproduction in its own right. Figure 6.21 

demonstrates reproduction function.  
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END 
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Figure 6.21: Agent Reproduction Mechanism 
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functional technique to solve a problem that was not able to be correctly resolved 

previously. This structure allows a new mathematical formula to be passed as an 

argument, if the final results were not satisfactory, to either the ‘dependee’ agent or to 

the human expert - this feature is termed ‘the dynamic binding mechanism’. In this 

thesis, only the human expert input is regarded, while the function to incorporate agents 

that will handle this function is kept as an improvement to be made in the future, as it 

would take a considerable amount of time for agents to be able to learn and reach the 

required level of intelligence.  

 

The agent will be ‘born’ with minimal knowledge so it can do simple functions and, like 

a child, become inquisitive and compare its own answers to that of the expert. Here, the 

term ‘born’ is used to differentiate the intelligence being introduced into the system from 

other pieces of software. Due to the expert’s input and agent’s own observations, in time 

it should be able to become more intelligent, such that the process could work the other 

way round and the expert is able to raise their query and the agent can suggest possible 

models. Of course, this is not the desired effect of the Variogram agent, but it will 

facilitate the learn ability of the agent.  

 

The dynamic binding mechanism is explained in the next section and its experimental 

results will be presented in Chapter Seven.  

 

6.5.3 The Dynamic Binding Mechanism  

In GIS, every problem (associated to the data) has its own way of being solved. An 

example of this concept is having data to be studied which has spatial trends. These 

trends can either be removed, or left unconsidered when undertaking an analysis, 

depending upon the nature of the data. If the data is about the growth of fish in a lake, 

an important factor is simply the number of fish, while if this same data was dealing with 

iron ore, the clusters would be important. Thus, the data also needs to be determined 

according to its qualitative nature and not just its quantitative nature.  
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This phenomena needs to be determined during the run time of an agent. To achieve 

this, the reasoning process will be imported into the agent’s plan during the run time. 

This concept is shown in Figure 6.22. 

 

 

 

 

 

 

 

 

 

Figure 6.22: Structure of Dynamic Binding of Plans 

 

At this stage, the human expert too could communicate with the agent, for example to 

tell the agent that it has categorised the data wrongly. This is achieved by an agent 

being able to provide a pop-up which would request a new formula to be used for the 

analysis. Consequently, the agent would re-examine the original data and re-process it. 

However, at this stage, the other agent that had the previous run data sent to it would 

not stop executing and so the process would be as if there are two separate data types 

being processed. This would not affect the system processors, as the agents work 

autonomously to each other, and mostly on different machines.  

 

A specialist console is designed to for the VAC to help binding formula, Figure 6.23 
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Figure 6.23: Dynamic Binding Console Design 

 

This function introduced a challenges of which were partly handled (the main 

requirements) and partly left as future work. 

1. The ability to insert new mathematical symbols; as some formula might require 

symbol. An experiment of inserting a square is given in chapter 7 by inserting a 

symbol and define is being a float number x, by expressing it as xXx, where X is 

multiplication sign. This was simple enough and easy to enter but when dealing 

with complex symbols like Σ which means the sum of all and in turn requires a 

programmed "for loop" the implementation becomes complex. And thus the 

system will accept and symbol and its definition and it reject what it cannot 

understand while giving a option to remove symbol to other agent if the symbol 

constantly yields wrong results.  
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Because of the above given problem they mathematical symbols are exhaustively 

inserted during the development of an agent to support their function. Furthermore, the 

symbols can be updated directly in the xml file since it is where all the symbols and their 

functions are store and always compiled as in class function during runtime of an agent.  

 

The idea is to progress this console to eventually be able to handle natural language 

(semantic input). Currently VAC can only bind formula using action flow (activity) given 

on Figure 6.24 and the algorithm that follows. 

 

 

 

Figure 6.24: Activity Diagram representing algorithm for Dynamic Binding 
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The algorithm for dynamic binding 

 

 

6.6 The Agent Communication 

A communication mechanism is required to handle large datasets and/or when data 

arrives which is unfamiliar to the given agent. An agent has the knowledge that there is 

another agent within the network that has similar capabilities to itself, but which might 

have different knowledge and be able to handle the different dataset. The stress here is 

on the word ‘might’, as an agent does not have a definite idea as to whether another 

agent that has the same function as itself will also have different knowledge. The 

functional mechanism of the architecture is only hinged, and so relies upon a look-up 

table in the Broker agent.  

 

To ensure accuracy of functionality on ad-hoc systems communication is facilitated by 

a broker agent. A broker agent is none integral part of VAC, as an agent specifically 

design to assist mobility and communication for the in within VAC environment. The 

inspiration to this function is due to the lack of sufficiency of mobility feature in JACK 

Agents platform. The communication function is given in figure 6.25.  

 

 
 

BEGIN 
A new plan is required and the consoled to bind is called 
Get new formula 

Add new formula and its explanation to xml file 
according to circumstances it was developed //e.g. 
//during trend analysis of data type 'sample1' the 
//normal linier regression was rejected and new 
//formula: t-test was created the formula is "" 

Use the formula on the current data 
Confirm user acceptance to the results 

If results are good  
Tag the formula good for circumstance 

If results not good  
Retain formula and provide it as a plan 

     But display for scrutiny to other users 
END 
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 Figure 6.25: Activity Diagram representing algorithm for Communication (Broker) 

 
 
The algorithm for communication 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Receive agent to register to the system
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END 
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To explain the mechanism the following example is devised. The structure is such that 

an agent specialising in ground water levels (termed ‘Ground Water Agent’), which 

hypothetically let's say specialises in dealing with smooth, gradually varying trends. This 

agent needs to access information from an agent specialised in dealing with soil 

pollutants (termed ‘Soil Pattern Agent I’). Hypothetically this agent is specialised in 

dealing with pits and peaks that could be quite sudden in variability (see Figure 6.26a). 

However, it happen that this agent being contacted is not experienced enough to solve 

the problem and needs to contact another soil pollutant agent (termed ‘Soil Pattern 

Agent 2') to solve the problem (see Figure 6.26b). A test of the main requirements of 

this feature is provided on chapter 7.  

 

 

 

 

 

 

 

 

 

 

 

 

6.26a: Communication Flow Without Utilising VAC Functionality 
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So, the hydrology agent ‘Ground Water Agent’ can access data from Soil Pattern Agent 

2 through Soil Pattern Agent 1, as shown in Figure 6.22b below: 

 

 

 

 

 

 

 

 

 

 

 

 

6.26b: Communication Flow Utilising VAC Functionality 

 

As the intelligent agent provides the ontology (explained in chapter 3), the described 

structure works by giving an agent the semantic of the other agent. If an agent 

encounters another agent with a semantic that it does not understand, it should then 

request help from a mutually understanding agent to acquire the capability to handle 

those semantics, or even to get the task done.  

 

Ontology already contributes immensely to the current trends of geosimulation. 

However, the full power of ontology has yet to be fully realised and it could indeed be 

made to be much more effective. Lin et al. (2001) suggest that ontology should be 

domain specific, but what they don’t show is how the specific domains can interact with 

different domains when needed. Through the given communication mechanism (Figure 

6.22), this can be achieved through VAC, which aims to build a domain-specific ontology 
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that can form an interface when needed to communicate with external agents. The 

actual experimental runs can be found in section 7.5.  

 

 

6.7 The Agent Learnability 

An agent needs to be able to log the geostatistical tools (formulae used within a plan) 

used by it when formulating the decisions it has made. These logs can then be reported 

to a human expert, so that the expert can point out any mistakes and critically assess if 

the decision is good enough or not. If it is not good enough, then the expert needs to 

suggest a better decision, so that the agent can work the decision in reverse  in order to 

try to ascertain at what stage it made the mistake and rectify the log at that point. This 

mechanism will rapidly expand the knowledge of the agent and allow a much better 

relationship between the human expert’s thinking mechanism and the agent’s thinking 

mechanism.  

 

There are also other methods that are used to rectify a decision, achieved by the VAC 

checking on itself. This is done by using its previous logs. If the results are expected to 

trigger certain actions (for example, producing a certain graph, table or decision) but this 

action does not take place, then the agent can reverse work from the time of the 

expected action, so that the point which caused the problem can be noted into the log. 

It is important that, at this point, the agent can receive feedback regarding the action, so 

that it can decide what was wrong with the decision (i.e. whether the decision was wrong, 

or was it just a different phenomenon with similar data characteristics to other previous 

processes). This helps to fine tune the agent. Figure 6.27 shows the learnability of VAC. 
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Figure 6.27: Activity Diagram representing algorithm for Learnability 
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To point out the direct implications of the expression worked above, the relationship 

between the support and distribution of the data for a spatial process will be described 

as explained by Atkinson and Tate (2000) will be used as an example. Atkinson and 

Tate (2000) express that it is important to evaluate the support of the sample data and 

the support of the intended final estimate. If these two are different, then we will need to 

deploy the dynamic binding mechanism so that the support for the process at large can 

be derived. This structure is required for the many problems that exist with estimation 

tools (e.g. if the decided tool for the process is such that the mean is kept constant and 

only the variance is changed) (Isaaks and Srivastava, 1989). This is due to the fact that, 

in this situation, it is arguably better to do some form of correction than not do anything 

at all.  

 

In terms of supporting the intelligence theories chosen on this algorithm in content of  

the machine, if to think like a human (i.e. have intelligence), it is important that it also 

behaves like a human. Thus the human behaviour is needed to observe a decision and, 

if the result is not satisfactory, rethink the decision and add the current decision as a 

(negative) weight to what it already knows, so as to get a better shot at making the 

second decision. At this moment, one might ask “so how can one trust a machine to 

make decisions on a critical problem if it has the probability of making wrong decisions?”. 

Looking at the work of Alan Turing, the father of artificial intelligence (quoted in Hodges, 

1983), he states that "if a machine is considered infallible than it can never be intelligent 

(sic)”. To explain this point, first let us look at the real meaning of intelligence (or rather, 

most perceived meaning). Gottfredson defines intelligence as:  

 
“…a very general mental capability that, among other things, involves the 
ability to reason, plan, solve problems, think abstractly, comprehend 
complex ideas, learn quickly and learn from experience” (Gottfredson, 
1997: p13).  
 

 

This explanation refers to the ability of general comprehension when making decisions 

which, of course, can go wrong.  
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“…it reflects a broader and deeper capability for comprehending our 
surroundings - ‘catching on’, ‘making sense’ of things, or ‘figuring out’ what 
to do” (Gottfredson, 1997: p13).  
 

 

Furthermore, Piaget's and Vygotsky's theories express that intelligence does not mean 

getting it right all the time, but simply the ability to learn and make decisions in a given 

situation (APA, 1996). The decisions could be right or wrong, according to the perception 

of the situation. Furthermore, Bratman (1999) argues that if an agent satisfies the BDI 

mechanism, then it can satisfy the intelligence notion. As the JACK programming 

platform is being used to develop the agents used in the experiments of this research, 

and JACK is identified as an agent platform supporting pure BDI (Wooldridge, 2000), 

then the argument is held that the agents here are intelligent agents.  

 

6.8 Conclusion 

Here we have defined the structure of the agent system using the Tropos model. There 

were some limitations identified in the implementation stage, along with the need for a 

non-software development expert to understand and contribute to the final system. To 

deal with this issue, a new modelling mechanism for presenting the implementation 

stage of the system was identified and used as the overall system architecture. The 

results of this architecture are presented in section 6.3 of this chapter. Furthermore, a 

new agent feature was identified through the development of this thesis, that of agent 

reproduction. The complexity of this feature is explained, then referred to against the 

existing literature review for comparative analysis. However, the reproduction 

mechanism, as suggested, is identified as being too complex for the level required here, 

and thus is explained in three phases: 

 

1. The cloning mechanism as reproduction; this is an existing feature in a software 

agent which creates a copy of the original agent. 



 
198 

2. The dynamic binding of plans as reproduction (as these new plans subsequently 

change the agent’s functionality) - the agent with new functionality then acts 

independently. 

3. The actual reproduction mechanism; as having one agent 'reprogram' another 

smaller, more compact and agile agent. 

 

The dynamic binding mechanism, as novel agent architecture, is used throughout the 

experiments in this research and the results are presented in section 7.4. 

 

These two contributions to software agent design and functionality were deemed to be 

necessary for software agents to be utilised as service providers in GIS.  
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CHAPTER SEVEN: RESULTS AND ANALYSIS  

7.1 Introduction 

This chapter looks into the functionality of the variogram agent system by validating the 

data it analysed. This validation will be conducted by examining the internal mechanisms 

of the system and the final results it provided, which will be defined as external 

validation. This will be explained with respect to Isaaks and Srivastava (1989) who have 

worked with this data, showing conclusive results. Furthermore, the functionality of the 

VAC will be compared to other GIS tools that offer agent-based services and are 

available to geostatisticians. Also in this chapter, the new theories and features that 

were introduced in section 6.4 for agent-based GIS will be analysed and examined. 

 

The starting point for internal and external validation will use geostatistical analysis for 

the variogram construction process (detailed in section 7.1.1 and shown in Figure 7.1). 

The problems encountered during validation will be outlined and their solutions 

discussed.  

 

7.2. The Agent Functionality Test 

By ‘internal’, it is meant that the system will be validated in terms of its process flow, the 

code functions and programmatic (semantic and syntax) errors. The important point to 

note here is the ability for each individual (internal) agent to reach its desired results and 

final goals. A cluster analysis agent should be able to analyse the clusters and provide 

results, so they can be passed on to the next agent in line. Thus, the experiments will 

be undertaken without considering the data or its analytical results, only focusing on the 

fact that the agent is handling the data appropriately, as designed. If the agent fails to 

do so, it will be determined as an error (programmatic), which will be investigated and 

explained either with the appropriate solution or deemed that it cannot be solved. The 

first step will be to look into the Figure 6.11 to explain the process that takes place during 

agent analysis, shown in Figure 7.1.  
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Figure 7.1: Process that Takes Place During Agent Analysis 
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The process is started by a human or software agent placing the data file in a designated 

location (computer folder). The agent responsible for dealing with data at this stage is 

the Data Finder Agent (DFA), using its capability searches for a specific named data file 

in an approved location. After this step, the DFA will check if this data (as exact data or 

a similar structure) has been dealt with before. If ‘yes’, it will use one of its plans to alert 

the Integrity Checker Agent (ICA), otherwise it will determine the structure of this data, 

which it will add to its knowledge. The determination of the data type is based upon the 

agent checking whether the data has clusters, using cluster analysis formulae (e.g. 

quadrat cluster analysis), examining repetition patterns on the data if available and 

perceiving whether it is erratic or due to errors in the data file, then dealing with the error 

(by removing the perceived problematical data).  

 

If there is repetition in the data, the DFA will heuristically check whether the data should 

be divided into equal slices or use cluster division for sampling. After this step, the DFA 

will reach the dataArrived goal and the process will be taken over by the ICA, which will 

have to determine if the techniques to be used are robust, parametric or both, and sort 

the data by x axis, y axis and the actual variables under study. When the data has been 

sorted and the technology suggested, the ICA will trigger the techSuggested event, 

which will determine if there are any outliers (using the Grubbs test technique). If it finds 

any outliers, it will call up a plan to clean the outliers. However, determining outliers is 

never a precise exercise (Isaaks and Srivastava, 1989). So, even though the outlier data 

is removed, the plan will separate the collected outlier data into a new file and provide 

two separate files - one with the outlier and one without. Once the data is found to not 

have outliers, or to have had outliers but these are now removed, then dataCleaned will 

be initiated and the Data Analyser Agent (DAA) is instructed to start its function. 

 

The DAA attempts to find out whether there is a trend in the data and, if so, identify what 

type (linear, quadratic, etc). If not, it will pass the activity to the Sampler Agent (SA). 

However, if a trend is found, the DAA will check the extent of the trend and determine if 

it must be removed for data analysis or whether the trend is negligible, whereby it will 



 
202 

pass the activity to either the SA or Mathematical Modeller Agent (MMA). The MMA will 

handle this data by either determining the lag or by setting the average spacing within 

the dataset as the starting lag and choosing a scale for the variable measurement, which 

in itself is an important step in choosing lag space. The results of both plans will be used 

to help determine the technique for modelling the experimental variogram (determined 

as the data is correlated, so a parametric or robust variogram model is applied to the 

data). In some circumstances, depending on the agent’s decision from the data analysis, 

the SA will be called to provide an interim step before the process is taken over by the 

MMA, which provides a sample of the overall data by using stratified random, quasi 

random or cluster-based sampling techniques.  

 

After this step, the process will be passed to the MMA, using similar plans to those it 

could have passed when coming directly from the DAA. The MMA will, in both cases, 

pass the process to the Strategy Comparer Agent (SCA), which tests the hypothesis to 

see if the sampling strategy was good and, in turn, the variogram. Then, the Model Fitter 

Agent (MFA) will find the appropriate model from the universal variogram models. At this 

stage, the chosen model will be validated by the ICA and the MFA’s own internal plan, 

which will check the goodness of fit using techniques (e.g. ordinary kriging) to estimate 

a percentage of values and determine if the variogram fit is good. This process will end 

with one of two outcomes: (1) if the strategies used to model the variogram were not 

satisfactory, then a plan provided by the MPA is initiated to re-analyse the data; or (2) if 

the fit is good, it will then choose the appropriate representation scale on the Graphical 

User Interface, then send the process to the Model Plotter Agent (MPA). The MPA itself 

might decide that the plan to re-analyse the data must be taken. The ICA will allow, 

using dynamic binding, the expert user to interact with the agent and determine if the 

data should be re-examined, and whether the expert user would like to specify new 

formulae which would determine where the process needs to be restarted from. The 

choices are the DAA, ICA and SA. The process showing agent interaction and plan 

functionality was provided earlier (see Figure 6.17).   
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The following experiments are done on PC running window 7 with 3.2GHz processor, 8 

GB RAM with a dedicated storage space of 10 GB specifically for the VAC. Basic tests 

(memory over flow) have been done to determine that the agent is able to realise its 

capacity and able to distribute overflow process (the agent divide the task before hand 

and send request for help) to other computers. This effect will be shown during 

communication experiment on this chapter. Since the agents are able to determine their 

capacity there will be no issue on validating the data volume but to determine the 

available capacity and be able to efficiently divide and distribute the sub-files.  

 

7.3 Internal Validation 

The internal validation process identified a number of programming errors. We will now 

look at the programming problems and how they were corrected. In this low level 

analysis, there were two major issues in the functioning of the agents that needed to be 

dealt with separately: 

1. the non-response problem, and 

2. the large dataset problem. 

 

7.3.1 Non-response Problem 

The main issue here was the agent becoming non-responsive. This was determined to 

be caused by one of these two factors:  

1. data not being located and causing the system not to execute at all; or 

2. agent pausing and not passing the data to be dealt with to other agents. 

 

These issues can be seen in Figures 7.2a and 7.2b respectively. The major problem in 

this case was that the agent could stop working and not do anything at all. This was 

found to happen if the data was not available. By not available, this could mean that: 

• the data is missing and not available, which could also happen if the data was 

misplaced (as shown in Figure 7.2a); 

• the data name was wrongly spelt and not able to be found; or 
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• the data being called was in the wrong format. 

 

Figure 7.2a: Log Showing Message for Misplaced File 

 

Figure 7.2b: Log Showing File That is Non-responsive 

 

Figure 7.2: Logs Showing Internal Errors of the Agent 
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In Figure 7.2a, the bottom window of the JACK compiler utility shows that the Integrity 

Checker could not find the Walker Lake data (Walker.dat), even though it was notified 

that there was data in the directory. To find whether the problem was in fact that the 

data was not available, data was physically placed in the directory, but the error still 

persisted. After doing ‘white box’ testing, it was found that the address of the directory 

had changed for the current agent. This was fixed by recoding the data address. 

 

This problem arose in three runs during the experiments. This showed the agent to be 

unreliable and more research (as shown in the paragraph above) was conducted to 

tackle this issue. Currently, the agent programming language cannot track the data, so 

in this case a technique was devised and the data location was specified in three 

different locations to aid the user should it have forgotten the correct location. 

 

The agent also became stuck at times. On a number of occasions the agent became 

stuck when checking for clusters or determining trends, when the system seemed to get 

into an infinite loop. Figure 7.2b shows the non-responsive problem of data not being 

available from the start. Four runs were executed, with all returning the same problem 

(same log). These runs were to test the agent’s behaviour when: 

 

1. the data was not present at all on the called domain; 

2. the data was available, but the name of the data was intentionally misspelt; 

3. the data was available, but with an unknown file extension name; or 

4. the data was available, but in the wrong format. 

 

Problems 1, 2 and 3 were not solved, because there were no implementable solutions. 

The only solution was to make sure that the data sending agent (human or software) put 

the data in the right domain and in the right name. Problem 4 was identified as being 

important to be solved to facilitate the agent intelligence feature. This was done so that 

an agent, when it realised that the data was in a format that it could not understand, 

would find another agent in the network that could understand it and ask for the data. 
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Thus, this function was solved using the intelligence and communication features of the 

agent. The intelligence feature determined that the data was useful but in a format it 

could not handle, then it utilised the communication feature to ask for help from a nearby 

agent that could handle the data (this is discussed further in section 7.5). It could also 

utilise the agent reproduction feature, through dynamic binding (shown in section 7.4), 

if it did not find any agent in the network that could deal with this data. 

 

7.3.2 Large Dataset Problems 

The exhaustive Walker Lake dataset caused the agent to make a bad data segmentation 

decision which caused the VAC to produce wrong results, which consequently made it 

hard to choose the final best fit model. This occurred due to the memory requirement 

for reading over 1000 records, then analysing them. At the time of the study, the VAC 

was used on a peer-to-peer network of two computers and perhaps if the Broker agent 

had had a larger peer-to-peer system to work over this problem might not have occurred. 

Furthermore, a process like ordinary kriging involves regenerating the 1000 record 

dataset, multiplying this to over 10000 values. In the case of the 447 Walker Lake data, 

330 were sampled, which generated 8772 kriged data. This caused an operating system 

memory overflow which subsequently crashed the whole program. Figure 7.3 shows this 

problem being flagged by the ESRI ArcGIS tool. 
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Figure 7.3: Analysis Being Rejected by ArcGIS due to the Dataset Size 

 

This issue is tackled and helped by examining the distributed function of the agents. The 

original design was that an agent would provide a number of possible variogram models 

and suggest the most appropriate one. Then, once affirmed by the expert, it would save 

this knowledge for the next time. This is facilitated at the start of the agent analysis, 

where the agent will check whether this kind of data has been dealt with previously. This 

will also check for data similarity as well. If the data is almost the same, the agent will 

use the exact same model agreed and suggest any very close ones that should also be 

looked into (for better analysis or if the first suggested model is not workable).  

 

However, a problem arose here as each of these models had to be tested with more 

than one lag, which created the exponential problem (the more models possible, the 
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more lags possible and so forth). Thus, the agent should either find another agent on its 

range that can do the analysis or reproduce a more specialised version of itself and 

divide the task. The agent can do either, but as passing the data to another agent is 

easier, it will try this first and, if not possible, it will reproduce itself and instruct its newly 

reproduced agent to define four possible lags within a given range (which the original 

agent will avoid). The communication mechanisms of the Broker agent are explained in 

section 6.5 and the experimental results are presented in section 7.5.  

 

7.4 External Validation 

After determining the internal validation issues the external validation test were 

conducted. External validation will be ascertained through the process of examining the 

outcome of the agent results. Here, the final results will be assessed and compared to 

conventional geostatistical tools. The accuracy and usefulness of these results will be 

determined and problematic areas of the agent system, if any, will be identified. After all 

the required data handling mechanisms for geostatistics have been completed, a 

variogram will be constructed and compared to that published by Isaaks and Srivastava 

(1989). Finally, the performance of the agent system as a service provider (the VAC) 

will be compared with other agents in GIS that are determined as service providers by 

their respective authors.  

 

The first concept for experimentation was the data handling mechanism, being that 

access to data is an essential function for the agent to run at all. Thus, the experiment 

was undertaken on data placed by human, other proprietary software (other established 

software used by human experts to help dealing with data analysis) and software agents 

as users. The concept of using other software systems or an external expert user is 

what prompted the requirement of the dynamic binding feature for the agent. This 

feature was explained in more detail in section 6.2.1. This problem escalates to 

ultimately crash the agent, which brings us to the next important feature which is that 

the agent needs to be able to save processes through the data. This is achieved through 
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the data integrity function, which is an internal rule of any good software development 

mechanism, including both object-oriented and agent-oriented. However, in this case, it 

is further enhanced by the agent defining an internal structure which not only keeps the 

data in a consistent state (hence saving the data after each transaction), but it also 

provides a log that tells the agent where the last process was and what path it took to 

get there.  

 

The first line shows the last process, the other lines show the process in their order of 

appearance as to what took place to get there. Because of the heterogeneity of problems 

that GIS is employed to solve, it is impossible to programme agents for every eventuality. 

Therefore a dynamic binding mechanism is required.  

 

7.4.1 Scenarios: Testing the new agent features on VAC system 

The dynamic Binding and Communication functions are considered to be two of major 

novelty of this thesis, thus will be used as the central point of the experiment setup for 

the system validation.  

Two scenarios are designed to specifically test these new functions. However, the 

scenarios will also serve for the observation for the functions described on chapter 6. 

For these scenarios four data files with good structure (for the test) were created with 

intentional inclusion of clusters, trends and are known to fit a standard variogram model. 

Two more files were created one with no data and the other with corrupted data.  

 

7.4.2. Scenario 1: Testing Dynamic Binding and Reproduction functions 

Using the dynamic binding function, the agent system will provide a unique mechanism 

into GIS. This will create a knowledge sharing mechanism between agent and users 

which will help to deal with data. It will enable data to be analysed by interacting with the 

user and providing possible results, from which the user can determine the best possible 

choice. This is unlike the currently available systems, which simply provide calculation 

algorithms that the user can choose from and, if the result is not satisfactory, the user 



 
210 

will have to repeat the process again until the result is satisfactory. This scenario follows 

the following reasoning algorithm (see Figure 7.4). 

Figure 7.4: Reasoning Algorithm 

In this scenario a file known to have 2 clusters with a quadratic trend and having a 

Gaussian variogram as a best fit by determined by a human user. The agent was 

intentionally left with no knowledge of quadratic type of trend it should require dynamic 

binding functions to be called. The file had only few data points and thus should not be 

split for optimization or be sampled. The file is a text file named q_gooddata.txt. 

 

7.4.2.1 The experimental run 1 

The file is placed by a human user to the folder being monitored by the VAC.  The file 

has a sample dataset with 4 columns (ID, x, y and v). After the file was inserted in the 

folder the agent located and recognized it, figure 7.5. 

 

 

Figure 7.5: Report of File Reception by the Agent System 

BEGIN 
 Read file 
  Determine the data type 
  Check if data type is familiar 
              Or   
    Declare data being: – references dynamic plan  
                                           Univariate – single point datum 
    Or 
    Bivariate – two points datum 
    Or 
    Multivariate – more than 2 datum 
  Split data if not univariate 
               Check for clusters – points to dynamic plan as the algorithm may change for different situation 
               Check for repeated samples – points to dynamic plan 
RESULT 
             Log the data type 
             Change internal environment by declaring data available 
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Following the process for dataFinder agent, two clusters were found in this experimental 

data. However, only two of the clusters found were determined by the agent with its 

existing plan, but during this cluster finding process the agent determined that there was 

some data left which could be another cluster, the relation to x-y coordinate to the data. 

This was relayed back to the user in order to confirm that this left-over data was not a 

cluster, and so the agent then added this result (the inter-cluster range according to data 

size) as new knowledge and the plan as a new plan, in case this type of cluster is 

encountered at any time in the future. The agent found two clusters in the dataset, see 

figure 7.6 where the clusters are based on higher and lower v values. The sample cluster 

data that is given in figure 7.7 

 

 

Figure 7.6: Clusters Identified by the Agent 
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Figure 7.7: Printed File of Cluster Sample 

The agent proceeded to removing outliers and the data determined to be erroneous is 

displayed to the user to determine if an outlier and should be removed, or not outlier and 

should be left in, figure 7.8. 

 

 

 

Figure 7.8: Printed File Representing the Outliers Found by the Agent 

The agent identifies that data split is not required and proceed. A linear trend was tested 

but data was found to have no linear trend, since the agent at this point only have 
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knowledge of linear trend. This is determined as the fit is compared before and after a 

linear trend was tested and found to have no difference. 

 

However after manually working with the data on GSLib it was identified that a quadratic 

trend is present on the data. This new knowledge was provided to the agent via Dynamic 

binding mechanism for how to deal with this kind of trend, figure 7.9. Using the new 

knowledge a quadratic trend was tested and found to be present. The trend was handled 

and the fit is compared before and after the trend, see figure 7.10. 

 

 

 

Figure 7.9: Dynamic Binding Dialog Box (user inserts formulae for quadratic trend) 
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Figure 7.10: Quadratic Trend to be Handled 

 

Since now there is more than one plan for trend analysis the agent DataAnalyser 

determine the process of handling trends is on its own complex and thus new child agent 

was reproduced, figure 7.11. This new agent has ability to handle any kind of trend (a 

dynamic binding function does not always cause the reproduction function to be called 

but when a single plan becomes complex the agent is then triggered to reproduce, such 

as this case. For reproduction function see section 6.4.2) 

 

 

 

Figure 7.11: Agent Announces New Agent Reproduced 
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The data was cleaned and analysed an experimental variogram was produced by the 

agent, figure 7.12. At this stage the scale and lag size was determined by the agent and 

eventual choice for the theoretical variogram model was spherical. After manually 

constructing the variogram a human user was able to confirm the variogram to be 

spherical. The process of handling the data and come up with the variogram (which is 

the main goal of the agent system) took the human user 30 minutes as compared to the 

agent which took 122 seconds. This is despite that the agent stopped to have quadratic 

trend knowledge being dynamically bound to it. It is expected that the agent will take 

even shorter time to handle this type of data next time while the human user is very likely 

to take the same time. 

 

 

 

Figure 7.12: Experimental Variogram Fitted and the Derived Theoretical Model as 
Spherical 

 

The agent now studies goodness of fit and in this case it kriged the data and provided a 

krige file which can be taken over to any tool like ArcMaps for display (Kriged maps 

(images) are out of the scope of this this, therefore the data file is produced and can be 

put into any tool for imaging). 
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7.4.3 Scenario 2: Testing Communication and Faulty data 

 

Few issues were determined during the development of the communication mechanism. 

One of the major issues was that the agent platform used for the system development 

did not support the agent feature of mobility and had a very low level networking 

mechanism implemented to allow communication. For this reason, a structure had to be 

defined to allow a weak mobility-like function and a better communication function. A 

Broker agent was developed, which was able to segment the data if too large using 

known data analysis methods in GIS, like defining each cluster as a dataset and/or using 

stratified random mechanisms to sample the data (multi-samples to be analysed by 

multiple agents in this network). The mechanism that was implemented is an ad-hoc 

function to identify binomial descriptive data and able to divide it into multiple smaller 

files, for the purpose of testing. 

 

In this scenario three files were placed at one in the folder for the agent to handle. The 

agent should be able to determine that the files could be handled quicker with the help 

of other agents. Thus, the agent should communicate with broker agent to pass the files 

to other agents who can handle them. The three files to be analysed by the agents have 

the following properties: 

 

1. Known file, thus has been handled before by one of the agent; this should help 

determine if agents will identify files they have been dealt with and simply present 

the results instead of reworking them.  

2. Corrupted file; here no agent should respond to/declare corrupt. 

3. New file to all agents in the system; The file is design to have no clusters or 

trends simply to see that agent can collaborate and return results as required. 

However, this file is binomial based file. The agent currently does not know how 

to handle binomial data but already have a knowledge to handle each column 

value separately should there be more than one column (id, x and y are not 

considered as column value and the agent currently knowledge does not allow 
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it to deal with 3d data). Here this experiment is designed so to test data splitting 

mechanism and so dynamic binding for handling binomial data is not 

implemented. 

7.4.3.1 The experimental run 2 

The file as their placed synchronously on the folder, the agent realized of the job and 

flags the files being available. The agent send a message via the broker agent (to all 

agents and human user, figure 7.13) that there is few files it would like analysed by the 

help of other agents in the system. The agent keeps the dialogue for 5 seconds then 

continues by announcing for help to other agents while simultaneously disable the 

‘Announce to Agents’ button.  

 

 

Figure 7.13: Announcement to Human User (if no response the agent continues) 

The JACK trace function (shown in Figure 7.14.) shows agents RRRR1, RRRR2 and 

RRRR3 have responded to the call. The actual Broker agents utilise a copy of itself 

called BroakeTest to act as the lookup table while the other acts as a searcher for 

available agents in the network, respectively.  

 

 

7.14: The Trace Function of VAC, Communication 
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The broker agent shows 3 agents have responded to the call hence all 3 file have been 

taken up by other agents and thus the originator agent is left to only analysed the result 

provided by the responded agents. The agent analyse the result using algorithm 

provided on section 6.5. As the process continues; firstly the originating agent received 

results of the file from agent RRRR1 (the same agent as in experiment 1) that it has 

dealt with the kind of file before and the resulted Variogram was Spherical and shown 

the same figure as figure 7.12. next the agent RRRR3 return results and determines the 

file being corrupted, figure 7.15. 

 

 

Figure 7.15: Message Show an Agent Announcing a Corrupted File 

For confirmation Broker agent resend the file over the network for verification and the 

agent RRRR0 takes it and also return corrupted file message, figure 7.16. it is important 

to note at this point if agent RRRR3 did not send the corrupted file back to the network 

to be re-checked human user still could opt to manually examine the file through the 

‘examine’ function on the dialog. 

 

 

7.16: Faulty File Announced and Both Human and Agent Users Have the Possibility to 
Re-examine 
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The file handled by the agent RRRR2 has binomial data and can be split into smaller 

file for handling efficiency, therefore more complex process. The process starts with 

agent splitting the file where each column (two unrelated chemical on the x-y 

coordinates) is examined by its own. Hence, creating 2 new files and place a call to 

broker agent to call for help to handle the files. The broker agent places them to the 

examination folder to be handled and the process restarts, figure 7.17. The process is 

delicate since the broker agent is already engaged by the originating agent (RRRR0) 

and therefor it has to keep integrity and be able to determine which agent process is 

handle by which agent. Especially that agent RRRR0 is considered to be like any other 

agent in the network and could take up the task called by RRRR2 (which happen to be 

its own sub-task). 

 

 

Figure 7.17: Agent Receive Large File and Splits it Then Place New Files to The 
Examination Folder 

Agent RRRR1 (has finished its previous call) accepts the call from agent RRRR2 to take 

one of the 2 files, analyse the file and finds no cluster and no trend present on the file 

and produce a variogram shown in figure 7.18. 
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7.18: Experimental Variogram Fitted and Agent Derived Theoretical Model as Gaussian 

Using the same process of section 7.3.3.1 Agent RRRR3 finds one cluster and a trend 

being present on the file (figure 7.19, and figure 7.20 respectively) and produces a 

variogram shown in figure 7.21. 

 

 

Figure 7.19: Cluster Identified by the Agent 
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Figure 7.20: Linear Trend to be Handled 

Agent RRRR3 found the data to have a Gaussian variogram, figure 7.21. 

 

 

Figure 7.21: Experimental Variogram Fitted and the Agent Derived Theoretical Model as 
Gaussian  

The process of fitting the variogram from initial call by agent RRR0 has taken 452 

seconds (7minutes 32 seconds) where the replicated process done by human user took 

3 hours 2 minutes and 32 seconds. It is clear the agent provide better functionality in 

terms of resources management and data processing efficiently, which allow a rapid 
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development of variogram. This has major implication on areas that requires real time 

information of spatial dependency. 

 

7.5. The Agent handling the Walker Lake data  

In this section, clusters and trends are detected then highlighted and discussed, see 

Figure 7.22.  

 

 

Figure 7.22: Identified Clusters 

Isaaks and Srivastava (1989) data have indicated that there was more than one cluster 

of data, which was confirmed by the agent as three clusters were found (see Figure 

7.22). Each set of data was realised to have some clusters, while other datasets did not 

(these were denoted as having one or two clusters as indicated on the experiments 

scenarios in section 7.3.1). The intelligence and learning mechanism was demonstrated 

at the cluster analysis and separating clusters stage, when the agent determined the 

structure of the data to be analysed, which can be aided by the Data Analyser agent. 

Then a sample iteration factor was input and checked to see if this sample was 
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appropriate (this could be achieved by the human expert interaction, other agent 

interaction or the agent self-confidence mechanism provided). The self-confidence 

mechanism was achieved by looking at two important aspects:  

 

1. the number of data which appear in the cluster compared to the total number. If 

the number of data in the cluster is less than 20% of the overall data, then 

remove the cluster data and check if the left-over data provide a normal or 

random distribution with no clusters. If so, then the initial analysis was correct. 

Otherwise, either there were no clusters or there was more than one cluster. In 

this case, increase the number of iterations. 

 

2. checking the separation of the identified clusters compared to the mean 

separation. If this value is lower than the mean of the overall data, then these 

two or more clusters could be perceived as one cluster, but due to too many 

iterations they were classified as one and thus the next time reduced the number 

of iterations. 

 

The expert user or other collaborating agent can help with learning and making 

intelligent decisions via the GUI provided by this agent. The GUI shows the data on a 

scatter plot and draws contours around the perceived clusters, while numerically 

identifying why it chose these data points as clustered. The preferred results and the 

undesired result get added into the agent's ‘brain’ and will be used the next time data 

arrives and is perceived to be similar to this data.  

 

The agent’s current knowledge allows it only to determine clusters and/or a linear trend 

in the data, if there is any. Using this mechanism, it determined that the data had three 

clustered areas (as shown in Figure 7.22) and found outliers. It also found that the data 

had a trend which was not analysed by Isaaks and Srivastava (1989), which the agent 

dealt with when it produced what it determined was a better fit for the variogram. The 

trend identified was found to be linear in a North West direction at a 70 degree angle. 
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This trend analysis was achieved using the polynomial regression formula presented 

previously in section 4.3.3. To analyse this dataset, a clustered and stratified random 

technique was chosen by the Sampler agent when sampling the data. 

  

Comparing these results with the original results determined by Isaak and Srivastava 

(1989), the agent identified a few minor differences. For example, the original authors 

only found two clusters and did not find any trends. The agent considered the relation 

between the U and V values and their relation to each other where Isaaks and Srivastava 

(1989) only consider the individual variable and their relation to x-y coordinate. Other 

analysis like the outliers had the same outcome to those found by the VAC.  

 

The agent determined that the data had three clustered areas and found outliers similar 

to those found by Isaaks and Srivastava (1989). The data was found to have a trend, 

which was dealt with before producing a variogram. Clustered and stratified random 

techniques were chosen by the agent when sampling the data. Results from the 

sampled data were compared to the whole data. The results of checking for clusters, as 

presented by the agent platform, can be seen in Figure 7.23. There were also other 

analytical differences in results compared to Issak and Srivastava (1989). For example, 

only two clusters were found by the authors but three were found by the agent, and the 

agent also found a trend which the authors did not examine at all. 
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Figure 7.23: Clusters Identified in the Walker Lake Data 

The results produced by the agents are slightly different to those provided by Isaaks and 

Srivastava (1989). However, the differences should be acceptable since the theoretical 

model which was fitted to the variogram was the same. The agent provided satisfactory 

results with regard to the GIS methods concerned, particularly when it is considered 

that, in GIS, analysis of the same data does not always provide the same results - 

different experts can provide different results, depending upon which strategy they use 

(Issak and Srivastava, 1989; Ripley, 1981; Cressie, 1993; Deutsch and Journel, 1998).  

 

7.5.1 The Variogram Selection Process 

Once the data had been analysed and cleaned, the variogram was constructed using 

defined models. All the lags of these models were presented to the user and a selected 

best fit model highlighted by the agent. Here, for the purpose of variogram construction, 

all parameters were chosen and then inserted into a standalone package that could do 

the drawings. These drawing were developed to be undertaken by the Plotter agent, but 

due to time constraints and the fact that with these drawings it makes no difference as 

to where and which program draws them, the important values were defined and passed 

to an established graph drawing package. These graphs are presented below, followed 



 
226 

by the fitted variogram. The corresponding variables (lags, sills and ranges) for 

variograms being chosen are presented in Appendix D. 

 

 

7.24a: Anisotropic Experimental Variogram 
at 45 degree angle 

 

7.24b: Anisotropic Experimental Variogram 
at 90 degree angle 

Figure 7.24: Experimental Anisotropic Variograms 

 

After determining the various experimental variogram curves, the fitting process is 

started by the ModelFitter agent. In the Walker Lake dataset, two curves were 

determined to be most suited, the spherical and the Gaussian. In the first iteration, the 

spherical variogram was found appropriate, which was the same as chosen by Isaaks 

and Srivastava (1989). Figure 7.25a shows the variogram determined by the agent and 

which is the same as the variogram drawn by Isaaks and Srivastava (1989). However, 

after analysing the data further, the agent also found a linear trend in the data and 

decided to remove it. Analysis after the trend had been removed led to the decision for 

a Gaussian variogram instead of a spherical one (contradicting the authors), as the 

agent determined that this was a better fit (see Figure 7.25b). 
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7.25a: A Spherical isotropic variogram 
determined by agent prior to remove trend 

 

7.25b: A Gaussian isotropic variogram 
determined by agent after to remove trend 

Figure 7.25: Fitted Isotropic Variograms 

This best fit was analysed using various well established geostatistical tools for 

variogram validation, determining the goodness of fit, using ordinary kriging and cross 

validation (see Chapter Four).  

 

7.5.2 The Variogram Validation  

The goodness of fit of this variogram was assessed using ordinary kriging and cross 

validation. Here again, the numerical data results that determined the acceptance of the 

Gaussian variogram were put into the GSLib and ArcGIS applications. The results are 

presented in Figures 7.26a and compared to the Isaaks and Srivastava 1989, figure 

7.26b. The agent’s suggestion on the final result was Gaussian as opposed to the 

original authors’ of spherical distribution, which is what was determined by the experts 

(original authors) for the given data.  
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Figure 7.26a: Kriging Map of Walker Lake Data as Identified by the VAC  
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Figure 7.26b: Kriging Map of Walker Lake Data (Isaaks and Srivastava, 1989) 

The kriging process was undertaken in two dimensions with the interpolation interval (x-

y) calculated at 2.8588 and 2.8020 respectively. This kriging process was performed on 

variable V of the Walker Lake dataset, but renamed as z. The process is done starting 

at (x-y, 8-8) with a range starting from 8 to 251 for x and 291 for y, giving a z estimate 

at point 0-0 over the range of -23.47 to 1314.25, giving a z estimated standard deviation 

range of 179.71 to 292.42 with a mean value of z estimated at 298.6551 and its standard 

deviation mean at 38884.30. The residual errors based on a held-back sample and 

some additional points taken at random from the exhaustive data, as provided by the 

agent, were input into a map and are presented in Figure 7.27a which was also proven 

to be very similar figure 6.9 in Isaaks and Srivastava (1989), see figure 7.27b. 
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Figure 7.27a: Map of Walker Lake Data Showing Residual Errors From the Kriged Data by VAC 
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Figure 7.27b: Map of Walker Lake Data Showing Residual Errors From the Kriged Data Isaaks 
and Srivastava (1989) 

 

The cross validation graphs show that the agent underestimated some of the higher 

points and overestimated some of the lower elevations. This is because the values of 

the Walker Lake dataset consist of points taken over an area containing a ridge and a 

basin. The points taken on the ridge are shown on the kriging map (Figure 7.26a) as 

being darker brown, while the points on the basin are shown by the lighter coloured 

area. These points have caused the regression line to tilt slightly off the 45 degree. Since 

there was a linear trend found in the data, the agent decided to remove this to try and 

obtain a better fit. This improved the cross validation at about a 47 degree angle with 

95% confidence intervals. Figure 7.27b shows the residual error of the kriging process, 

with darker red being the highest and darkest blue being the lowest. This was 

determined against the held back sub-sample of 144 random points, held back from the 

original 470 sample points of the Walker Lake dataset.  
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As most of the process of reaching a chosen good fit variogram requires the nearest 

neighbour values, the agent was instructed to define a file with these values. This file 

was then tested to see if the nearest neighbours chosen by the agent corresponded to 

other available tools. Twenty random values were selected to determine their nearest 

neighbour. Each value and its corresponding nearest neighbour were collected together 

with distance and difference. These values were then saved on a special file, so they 

could be used for finding trends and other functions. 

 

7.6 Comparing the VAC to Other ‘Service’ Based Agent Technologies in 
GIS 

The system was compared to two well-known agent-based GIS - the RePast and Oracle 

spatial. The results show there are significant deficiencies in these two systems, 

addressed in terms of performance, functionality and complexity of execution. Also, the 

most important feature in the system proposed is the possibility of having a GIS tool that 

can talk back to the expert and co-expert analysing a spatial phenomenon. This test will 

only use one agent from the VAC. This agent will be the Data Analyser agent, as its 

functionality is very similar to that supported by RePast and Oracle.  

 

The test will be to measure the run of each system in order to produce the results. This 

will be a measure of speed (in seconds) where the fastest is the best. This will lead to 

an examination of the agents’ functionality in each system and the query complexity 

(defined as length of writing and number of nested loops required where these features 

will take up more computing resources). An agent’s functionally will be assessed by the 

amount of functions an agent can provide. The functionality measurement will comprise 

of the amount of features the agent possesses (the agency), the data acquisition 

process and the querying process. The query complexity will also be looked at, based 

on the amount of knowledge required from the expert to construct the query. This test is 

not intended to accurately examine the result, as in GIS different analyses can provide 

different outcomes. For this reason, we have refrained from placing any emphasis on 
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the accuracy of the results and simply compare them to those provided by the expert 

user. 

 

In GIS, this agent framework and architecture offers flexibility to the user. It offers the 

capacity of easy extensions, as agents are able to move from one system to another if 

more resources are required. Also, the agent is learning from the user, so that in time 

the agent becomes an expert and requires less and less intervention from the user to 

solve problems. Given the range of data types and contexts in which the agent system 

might be applied to, this is the main advantage of applying agents as processes and 

service providers, rather than static objects (simulating entities under study) like most 

current GIS tools which use agent technology. 

 

There were also some functions that were required from the agent’s point of view. These 

functions were not theoretically novel, but were not implemented due to the current 

structure of agent programming languages. This issue was addressed and a structure 

was proposed and tested. The structure, termed dynamic binding mechanism, was 

where an agent could suggest a solution and negotiate with a human or agent expert. If 

the expert manages to convince the agent that their technique is better, then the agent 

will request the expert to feed this technique (as a formula) to the agent, so that the 

agent can then add this information to its knowledge domain.  

 

After the agent’s mechanism was enabled in Oracle, a select SQL was used to attempt 

to minimally analyse the data. Thus, the measurement of the time taken and the results 

of the query were recorded.  
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Table 7.1: Comparison of Agents Run 

 

In the experiment, we were not able to utilise the agent to provide any help in data 

analysis, but we were able to utilise the agent for distributing the data. After the query 

was executed, the agent was able to send the results for different node (agents) 

execution. This allows parallel execution when needed, and indeed help on the speed 

of the execution run (the analysis). In VAC, when the agent is in running mode 

(executing), the dataflow is not only being handled internally but is also being 

communicated to the human expert. The human expert’s view of this data is shown in 

Figure 7.29. 

 

 

Figure 7.29: Exhibition of the Data Analyser Agent 

 Seconds Measured on a scale of 10 

Technology Run to 

completion 

Agent 

functionality 

Accuracy of 

the results 

Complexity of 

query structure 

Oracle 3.1 3 3 10 

Repast (ArcGIS) 6.4 3 5 4 

VAC 2.3 6 7 1 
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The data was found to be bivariate, with each variable having clusters. So it was divided 

into univariate and clustered data. 

 

On the other hand, the data was analysed using the RePast of ArcGIS. This examination 

was able to examine the errors by simulating the environment. This is the only feature 

provided by RePast. However, it provided the possibility of seeing the errors. Even 

though ArcGIS have improve the functionality of RePast by developing a more 

comprehensive tool (Geostatistical Analst, 2009), the tool uses very minimum agency 

functionality and in this particular example it function exactly as RePast. 

 

For Oracle, after the agent mechanism was enabled, a select SQL was used to attempt 

to minimally analyse the data. Thus, the measurement of the time taken and the results 

of the query were recorded. The results are shown in Figure 7.30a. The same data 

analysis was carried out using RePast on ArcGIS. It was only possible to examine the 

errors by simulating the environment. This is the only feature provided by RePast. 

However, it provided the possibility of seeing the errors. The results are shown in Figure 

7.30b. 

 

Figure 7.30: Results From Oracle and RePast 

 

This test produced satisfactory results, given the fact that one geographical problem can 

be tackled in different ways. Figure 7.31 shows the summary of the results from the 

 

7.30a: Oracle Query 
 

7.30b: RePast through ArcGIS 
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experiment. From the perspective of developing agent-based systems for GIS, this test 

produced satisfactory results, particularly given the fact that any one geographical 

problem can be tackled in a number of different ways. Each expert tends to take their 

own approach to analysis, although hopefully converging on the same outcomes and 

decisions.  

 

 

   Note: x-axis represent a ranking scale of 0 - 10 

Figure 7.31: Comparison of Agent Performance 

 

The overall results of the investigation are given in Table 7.1. The results show that it 

was possible to achieve similar results to those produced by the Data Analyser agent. 

However, this involves constant interaction with the expert user. It also adds its own 

complexity, as the expert user needs to also be a SQL query designer, as the query 

used here is complex PL/SQL with a number of ‘nested loops’. The query process took 

3.1 seconds, which is a less than a second slower than the Data Analyser agent. This 

difference is negligible, except that it took over an hour to prepare the query for the 

Oracle, while the Data Analyser agent requires no query at all. The conclusion is that 

the agents in Oracle are useful for a distributed data environment, particularly in 
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heterogeneous operating systems, but they are not facilitated to deal with intelligence, 

mobility or any other software agent characteristics.  

 

7.7 Conclusion 

This chapter provided the results achieved by the VAC by experimenting on its 

functionality and comparing its results with established authors. Through these 

experimental runs of the VAC, a few problems were identified. These problems were 

categorised into their functionality, the effect on the outcome or the system being 

internally and externally validated respectively. These problems were solved by either 

being rectified or theoretically justified to pose very little hindrance to the performance 

of the system.  

 

The main aim of this research was to provide an agent-based system that would provide 

a service as an expert in a distributed environment. The functionality is to leverage this 

in utilising available resources. The VAC was then compared to other agent systems 

that have been published as service providers in GIS and found to be very different. 

Thus, the system is a new one of its kind and is useful as a system that could be 

implemented into GIS simulation tools. Apart from having the VAC as an original 

contribution in GIS, one other contribution to agent development is the dynamic binding 

mechanism which allows plans to be added to the agent during the run time. 

 

The next chapter will cover the determination of the tests and functionality of the five 

characteristics of software agent previously discussed, in order to be able to enhance 

GIS functionality, and improve and encourage utilising the computing capacity. 

Furthermore the limitations, advantages and disadvantages of the VAC will be 

discussed. 
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CHAPTER EIGHT: CONCLUSION AND FUTURE 
RESEARCH 

 

8.1 Introduction 

Through time, geostatisticians have come to realise that by borrowing from other 

technologies, GIS and in turn geostatistics could significantly enhance their functionality. 

One reason to incorporate a more versatile computer technology is due to the growth 

and the move towards ubiquitous, wearable and mobile computing (Brimicombe, 2003; 

Poslad, 2009). As computers keep following the Moore’s Law of doubling the capacity, 

while the price decreases and make them available in most homes in western world and 

accessible almost anywhere in the world (geographical space). This expansion causes 

degradation to data integrity while communication channel become more constraint due 

to large volumes of data (Ding, 2007), it is essential to find the means to optimise the 

available capacity especially on processes that require large computing resources. 

Geostatistical research often needs its own unique process to acquire the data 

information (Diggle, 1983; Isaaks and Srivastava, 1989; Cressie, 1993). These are the 

bases that propelled this thesis to examine the functionalities of agents in distributed 

component GIS, using geostatistical tools as they provide complexity challenges.  

 

This chapter looks into the operational functionality of the tool developed for these 

experiments, the VAC. It will focus on intelligence and other agency characteristics, 

outline the issues of GIS that it intends to solve, the contribution of knowledge to current 

GIS systems and science in general, then provide concluding remarks and ideas on 

required future work.  
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8.2 Operational Functionality of the VAC 

Building agents for GIS proved to be a complicated and complex task. The existing agent 

platforms had limitations on making dynamic Agent based GIS solution. Therefore new 

algorithms on the agency were developed and especially new agent design component 

was added to the JACK platform.  

 

The limitation on the actual agent development platform can be seen on chapter 7, 

internal validation of the system where agents halted their process various times due to 

two different errors. The errors were none-response where an agent stop functioning 

and causing the system to stop responding to any activity and the system crashing due 

to large dataset. Solution to these problems had to be hardcoded and be developed 

through user defined API. The agent design platforms reviewed were missing important 

functions essential for making component based GIS system as envisaged by this 

research. For this reason a new agent development structure had to be established and 

then added into TROPOS development language as one of its agents design stages. 

These diagrammatic presented processes allow for easy understanding and 

deployment of the agents, see figure 6.19. Also precisely maps the functional 

requirements of each agent, their interaction and their stable status within the system 

acting like class diagrams on Object Oriented Programming. These were then published 

to software development community for verification, see appendix G for published 

material from this thesis. 

 

Thereafter a deployment (programming) platform was established according to its 

mechanism, ease of development for complex system and the agency functionality. 

Since the VAC had to be intelligent, reactive and proactive JACK platform was chosen. 

However, JACK was also found to have limitations with mobility and communication 

functions. These functions are important for brokerage of the GIS components. This was 
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overcome by developing a broker agent with hardcoded solution that allowed for a cross 

platform communication.  

 

The research was to assess the effectiveness of agents on the existing standard 

platforms (e.g. JACK) to improve and ease GIS issues pertaining to interoperability and 

heavy process. After examining various characteristics it was deemed that for solving 

GIS problems agent platforms have to be robust on cloning and communication 

functions. In terms of cloning agents have to be more constructive since most GIS 

problems are related to standardisation, mechanistic and data heterogeneity. 

 

Even though Ali and Moulin (2005) showed their model was able to facilitate a solution 

to these problems there remain an issue of constant monitoring and re-development of 

the agents. To alleviate these problems two new features were introduced: the 

reproduction feature that is developed through a technique for dynamically binding new 

processes to already running agents and communication that allowed better data and 

function brokerage across platforms. These features were thoroughly described and 

tested on chapter 6 and 7.   

 

8.3 Intelligence Focus in the VAC 

To gain intelligence, the agent is able to log the geostatistical tool used for the decision 

it made. Initially, the logs would be reported to a human expert, so that the expert could 

point out mistakes and criticise the decision. If it was not good enough, then the agent 

would repeat the analysis or the expert would simply suggest a better decision and then 

the agent would work the decision in reverse so it could try to capture at what stage it 

made the mistake and rectify the log at that point. This mechanism expands the 

knowledge of the agent more rapidly and allows a much better relationship between the 

human expert and the agent thinking mechanism.  
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Other methods that are used to rectify a decision are achieved by the Variogram agent 

checking on itself. This would be achieved by using its previous logs and if the result is 

expected to trigger a certain action (in this case, it could be producing a certain graph 

or table, or even just a sentence stating a decision) and this action does not take place, 

then the agent could reverse work from the action point of view so that the point that 

caused the difference could be noted into the log, as shown in Chapter 7 section 7.4.2.2. 

At this point, it is important that the agent can receive feedback on its actions, so that it 

can decide what was wrong with the decision (if the decision was wrong) or whether it 

was just that it was a different phenomenon with similar data characteristics to another 

previous process. This will facilitate the purpose of fine-tuning the agent’s knowledge.  

  

This learning mechanism can relate the relationship between the support and 

distribution of the data for a spatial process on the structure, as presented by Atkinson 

and Tate (2000) who explain that it is important to evaluate the support of the sample 

data and the support of the intended final estimate. If these two are different, then one 

should deploy the Negotiation agent so the support for the process at large can be 

derived. This structure is required for the many problems that exist with the estimation 

tools (e.g. the tool used on the process was such that the mean is kept constant and 

only the variance is changed) (Isaaks and Srivastava, 1989). This is due to the fact that, 

in this situation, it is arguably better to do some form of correction than not do any at all. 

The point to stress here is that, in GIS, a data analysis can yield a number of different 

results depending upon the analysis structure and statistical formulae, and thus one just 

good enough result could produce good results elsewhere (Isaaks and Srivastava, 

1989). So, as long as the results are deemed ‘good enough’, the agent system is said 

to be sufficient. In terms of intelligence, the agent has a back propagation mechanism. 

In context, if the machine is to think like a human, having intelligence, it is important that 

it also behaves like a human. Human behaviour is needed to observe a decision and, if 

the result is not satisfactory, rethink the decision by adding the current decision as a 

weight (negative) to what it already knows, so it makes a better attempt at formulating 

the second decision.  
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8.4 Suitability of Agent Characteristics to GIS 

The VAC system is supported with agent characteristics that involve intelligence, 

mobility, autonomicity and reactivity, together with the ease of extensibility. It was also 

determined that proactivity is a requirement of such a system.  

 

The intelligence of the VAC is argued to have been attained through clever agent design 

and the usage of the chosen agent programming platform. JACK is an environment 

which supports BDI through a hard coded capability, goal, plan and event alignment 

mechanism. Furthermore, the intelligence is further strengthened through the 

learnability of the agent. This is achieved by keeping the data structure in the memory 

bank, which reduces the process the next time it encounters the same kind of data, or 

a dataset which has a similar structure.  

 

To improve learnability, a new feature is introduced through this thesis (the dynamic 

binding mechanism), which is currently not available on other agent systems, as it was 

not found within any available literature or agent systems that were reviewed. This 

function is derived from the argument that, in certain circumstances, agent cloning is not 

enough and a reproduction mechanism is required. Through such a reproduction 

mechanism, the dynamic binding function of the agent was introduced. This function is 

close to reproduction, as it changes the physical structure of the agent and its previous 

capability, so it is suggested (even though not implemented in this thesis) that using 

agent cloning and then dynamically binding the cloned agent will introduce a new agent 

very similar to the original agent but not identical - this is what is termed ‘reproduction’.  

 

For mobility, a brokerage mechanism was introduced. Many algorithms were suggested 

for this function, and some major thinking was required as JACK does not support 

mobility (this was confirmed by the JACK development team). Thus, functions using the 
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communications that are available within the JACK environment were adopted, with 

some modification (together with the introduction of the Broker agent). In addition, 

through this adaptation of the communication mechanism, the design of the Broker 

agent allowed social ability characteristics to be achieved, by having the agents report 

their functionality to one another via the brokerTest agent, which is the agent responsible 

for the lookup table that controls agent function over their platform.  

 

Since the VAC makes periodic checks into data repository areas (a pre-determined 

location from which the dataFinder agent can fetch data), it uses software agent 

autonomicity characteristics to take initiatives to respond to file (dataset) changes and 

react to them. This achieves the requirement of agent characteristics of reactivity, which 

is also supported through an inter-agent response mechanism where each agent will 

react to certain events, a feature provided and pre-implemented by JACK. The reactive 

feature was experimented on through internal validation and at some point was 

determined to cause a problem (tested on the IntegrityChecker agent of the VAC). The 

problem was that the agents would not react to a dataArrive event. This problem was 

found to be caused by having a data (file name) error or not being available at the 

perceived location. The problem was eventually solved by introducing a dedicated 

location for data fetching and emphasising the data file name to be correct.  

 

The proactive characteristic of agents was also determined to be important for GIS, but 

it is not implemented through this thesis as it was determined to only become important 

when the system grows very large (having agents over a Wide Area Network) and needs 

to work in multiple sub-networks, where, when idle, the agents are expected to take their 

own initiative to proactively deal with datasets and keep them ready for information (if 

required) by other agents. The current system was only tested over two networks (Local 

Area Networks) which are directly connected and do not reside in their own (Wide Area 

Network) environment. Thus, this characteristic was deemed important and kept as 

being a future improvement of the VAC system.  
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Another function that the VAC achieved was ease of extensibility. This function is 

especially required in fields like GIS, where analysis can be done differently to achieve 

the same results. This function is derived from the ideas of Anselin (1995 and 2005) and 

Wiederhold (1994) on ontologies in GIS. As the intelligent agent provides ontology, the 

described structure could work by giving an agent the semantics of the other agent. If 

an agent encounters another agent with semantics that it cannot understand, it should 

request help from a mutually understanding agent (or human expert) to acquire the 

semantics or even get the task done. Many who know much about the current structure 

of intelligent agents and Artificial Intelligence in general could argue that this is wishful 

thinking. However, the structure was developed and is presented in section 6.5. 

 

8.5 Current GIS Issues and Improvements Through Agents: 
Geostatistical Pilot Study 

GIS tools and services are usually large and cumbersome, often requiring human 

intervention for fine-tuning and/or to provide accurate answers (Isaaks and Srivastava 

1989; Cressie, 1993; Beiley and Gatrell, 1995). Here, we have proposed that software 

agent(s) should be used to facilitate these issues We have experimented using one of 

the GIS tools, the variogram, that is deemed to be very difficult to conceive without the 

help of a human expert (Isaaks and Srivastava 1989; Cressie, 1993). The main two 

problems regarding this research on GIS tools proved to be the size of the tools and 

data, the clustering (each tool being an expert of their function) and the constant 

requirement of the expert user - which takes us to the next problem, the time taken to 

actually perform a function. Here we identified features like intelligence, reactivity, 

mobility and social ability could help when dealing with this issue. However, on the agent 

side there were also issues in terms of developing an agent-based tool that was capable 

of achieving these capabilities. Thus, the experiment involved using a number of 

available development tools and programming languages. For this, Tropos with some 

improvements proved to be sufficient for the development of the GIS tool and similarly, 
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in implementation (programming), JACK proved efficient in most areas, but required 

much work in other areas - in the VAC case, mobility.  

 

Geostatistics provides an easier mechanism to use, quantitatively analyse, characterise 

and predict the structure of the data under study, with its main tool being the variogram. 

However, the only way at the moment to produce a variogram is through the use of a 

GIS expert who has to physically visualise the data and decide upon the right 

mathematical functions to be incorporated in order to obtain the characteristics of the 

subject in question. For example, there may be a need to assemble data from across a 

network, a requirement to understand the nature of the data and its context, and to fit 

an appropriate model (e.g. Gaussian, spherical, quadratic; plus any antistrophic effects). 

Tool (different software systems) interoperability is also an important consideration in 

variogram construction and other aspects of geostatistics.  

 

Another issue in this context is that, in geostatistics, human experts use quantitative 

techniques to analyse, characterise and predict the trend of the data under study. 

However, the need to analyse data qualitatively seems to be inevitable for prediction, 

such that geostatisticians have to always physically choose variables (such as the lag 

distance) to produce the quantitative analysis (Isaaks and Srivastava, 1989). As a result, 

to deal with the process of producing a variogram, Cressie (1993) identified the following 

tasks that an expert statistician is required to perform for the prediction: 

 

1. design the sampling plan; 

2. graph and summarise the data; 

3. detect and allow for spatial non-stationariness; 

4. estimate spatial relationship, usually through structured analysis; 

5. estimate the in situ resources, usually through a validation technique like kriging; 

and 
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6. assess the resources and take decisions on the next action (e.g. mining); this 

should facilitate designing the execution plan and further observations of the 

resources. 

 

The complexity of geographic data and processes raises other fundamental issues 

related to the incompatibility of representations, structures and semantics that need to 

be addressed to achieve geographic information Interoperability. The available literature 

indicates that several studies have been conducted on GIS and AI. Instead of teaching 

everybody to develop the GIS tool structure, it is surely better to have everybody do 

what they do best and simply have a Broker agent that could be fed with the semantics 

of GIS data (whether the data is an agent structure, object or relationship). The Broker 

agent could relate the current geostatistical functions which have been applied to that 

data (using the information that will be communicated by the agents). Such a structure 

would aid information access. The VAC is assumed to be: 

 

• a continuous environment: infinite perception; 

• dynamic: other external factors could possibly change the environment; 

• inaccessible: cannot obtain complete, accurate information; 

• non-deterministic: such that there is no single guaranteed effect, just like with 

human perception. 

 

Thus, the variogram might realise the outcome of a run to be insufficient or maybe 

acquire extra data about the environment that would help in characterising the data. It 

should treat the situation according to time. It should also change the accuracy of its 

outcome by expecting a response from the next agent or environment. If this response 

has not been received, then it should enquire about the data. This response time to 

failure should be fairly short. So, after a decision has been made, the agent should 

expect a certain outcome, and thus listen to the effects or (when required) change the 

decision. 
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Furthermore, it has recently been argued that agent technology can substantially 

support the development of GIS in overcoming these kinds of limitations (Torrens, 2002; 

Reitsma, 2004; Albrecht, 2005; Batty, 2005a; Brown et al., 2005). Multi-agent systems 

can be developed, where different agents can deal with different types of GIScience 

data in an effective way. Moreover, the autonomous abilities of multi-agent systems can 

reduce the workload currently required from GIScience experts. Here, the VAC is 

designed to deal with issues of handling large, distributed data by building better 

interoperability, extensibility and accessibility of GIS data analysis tools. As an 

experiment for agent functionality to provide a solution to these problems, a 

geostatistical tool (the variogram) was selected to run a pilot study as to the feasibility 

of using agents in GIS. 

 

8.6 Critical Evaluation and Conclusion 

8.6.1 Significance and Implication of the Findings  

This section aims to establish alignment of the findings to the aims and objectives of the 

thesis. The research has been able to identify appropriate theoretical perspectives for 

analysing, developing and testing an algorithm model for an agent-based distributed 

GIS component. Developing an agent-based GIS as a service provider has been shown 

to be possible.  

 

This continued with an examination of the existing agent environments and their 

architectures to determine which is best and fit for purpose to use as a variogram agent. 

This established the limitations and produced a suitable architecture (or the features to 

add to the architecture) to allow easy, flexible and efficient GIS agents. The appropriate 

software development methodology for analysis and design was established and 

argued. It was selected according to the currently available methodologies and the 

agent’s functional requirement. The Tropos methodology was chosen. Areas which were 

deemed missing or weak (such as making it easy, like other methodologies, to 

understand the overall picture, provide an easy understanding of the analysis tools and 
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the lack of effective implementation diagrams) for this methodology were identified and 

solutions to these were outlined and experimented upon.  

 

This exercise was repeated for the programming environment, where the 

implementation (programming) platform chosen was JACK. The process of identifying a 

suitable implementation environment was much more complicated than that of 

identifying the software development methodology. This was due to the fact that there 

is much more agent development at the moment than methodology development, and 

their functional capabilities are very different to one another (e.g. JACK would easily 

support intelligence but not mobility, while Egglet would support mobility but not 

intelligence). Examinations were performed to determine which one of the agent 

characteristics is harder to construct an algorithm for and implement, and which 

methodology supports it easily. In this case, intelligence seemed to be the key and it 

was concluded that the best implementation environment platform for this was JACK.  

 

After identification of the appropriate software development methodology and 

implementation (programming) platform environment, it was necessary to identify the 

appropriate functional components for a Variogram agent. These were determined and 

incorporated into an agent system. These components were found to include cluster 

analysis, trend analysis and validation mechanisms. After the successful design using 

appropriate methodology and in accordance with the desired agent characteristics and 

features identified, and following the successful implementation of the VAC on the 

appropriate implementation environment, experimental tests were performed to test the 

validity of the newly developed VAC system. These tests were aimed at analysing its 

performance by validating its internal functionality, its perceived external output and 

support for agency due to its functional characteristics (those agent characteristics that 

give the VAC its personality). An internal validation was conducted to check for design 

and programmatical errors, whereby a few were found and rectified. Then an external 

validation was conducted to determine whether the agent had fully met its functional 

requirements and was able to provide an accurate analysis of the data and fit a 
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variogram. At this stage, tests were undertaken on nearest neighbour, cluster analysis, 

trend analysis, constructing variogram, fitting a variogram, validating a variogram (using 

Kriging and other methods) and other required procedures to achieve the desired 

results. The results were deemed sufficient and conclusions were drawn on the 

feasibility and practicality of using agent software for distributed component services in 

GIS. 

 

8.6.2 Critical analysis  

Most reference available defines conceptual design of agent system but implementation 

is often problematic to appropriate design and programming tools. Despite these issues, 

various authors have used agent technology in GIS system with success. The standing 

out literature of agent based GIS is Moulin et al. (2003), Benenson and Torrens (2004b), 

Batty (2005a), Torrens (2006 and 2007a) and Chaker et al (2009) where all have used 

agent technology to increase the system robustness and to allow simulation of 

environments. As an example SimWalk (2007) is a geosimulation-based experiment to 

enhance the security of public transport (train and bus) travellers. Whereas Nute et al. 

(2004) monitored the ecosystem of a forest using agent simulation. Similar experiment 

allowed Gosselin et al. (2005) to examine the expansion of the West Nile virus (WNV).  

 

More process based agent were introduced by Purvis et al. (2003) to query and integrate 

distributed environmental information over a network. Similar research has been carried 

out using agent technology to control spatial data quality in geosimulation modelling by 

Li (2006) and more advance agent system demonstrated by Sahli and Moulin (2005) for 

Geo-simulation with agents capable of planning through anticipating a change of a 

scenario and by using agency characteristic of reactivity.  

 

Furthermore, in chapter 3 agents were described by various role they play, object-entity, 

process, or service and categorised by the GIS data structure agents acting upon, 

tessellation or vector. Also within GIS community where agent use basic properties or 
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extra features as described on section 3.5 and demonstrated on table 6.1. On this 

context Heppenstall et al. (2005) described agent as entities exhibit basic features and 

working on tessellation and vector. The agents were able to communicate and optimise 

petrol pump functionality. Similarly Brown et al. (2005) provide the same capabilities but 

added processes into the agent functionality successfully. More service-oriented agents 

were described by Li, et al. (2008) albeit with basic agent features.   

 

This thesis provides a concept of agency with extra features for assisting on reducing 

complexity when dealing with spatial data by utilising service based GIS agent, the VAC. 

These agents in VAC are developed as components capable of replicating themselves 

while adding or reducing knowledge of certain domain for the purpose of optimisation.  

 

The challenge during the development of the VAC was that the software development 

tools inflexibility. The available Modelling languages and software development 

platforms for agents are non-standard and very difficult to align with the actual 

implementation process (Nikolai and Maddy 2009). These complications make it hard 

for novice software developers to be able to grasp the concept of agency and 

differentiate it with Object Oriented practices. Since GIS expert are often none-software 

development experts this hinders the potential of agents in solving GIS problems. This 

thesis try to improve the current tools to be more comprehensive in developing agent 

based GIS. The main limitation of this research is that the tool is tested specifically for 

mathematical based GIS solution and more qualitative test would be required in the 

future. Therefore, the VAC is only built as the basis of a theoretical framework that 

should enable these agent systems in GIS to act at as service rather than entities.  

However, successful test were done to show what agent systems are missing in support 

of GIS and these missing features were coded and tested. The results show success on 

the ability of easily generating agents that are more of service than entities or processes.  

 

Among the important features is the ability of determining the resources available on an 

environment during agent creation (through reproduction, cloning or compilation). As an 
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agent is created it will request for dedicated processor space (semaphore). Using this 

knowledge it will assess its processing capabilities and make sure any task it agrees to 

undertake that is larger that its capability it will address it by using file segmenting 

techniques explained in section 7.4. Furthermore, the VAC periodically (every 12 runs) 

re-assesses the resources and makes sure to re-tune in case of memory degradation.  

 

The main challenges to the VAC and its development process was the testing of the 

process since it is developed in resource-controlled environment (set from its initiation). 

Another challenge was to determine when the human user can/should stop interacting 

with the system.  

 

The main advantage is that it provides knowledge sharing environment, speeds up the 

GIS process and eliminates large dataset issues (crash of the system, etc.), even if the 

human expert is involved all the time these advantages still makes the VAC system very 

desirable.   

 
8.6.3 Conclusion  

This thesis has presented a novel multi-agent system to support the field of GIS in 

general and the analysis of geostatistics in particular. This system is the first attempt to 

develop a multi-agent system for a service base distributed component GIS. As 

explained on section 3.2 the service is based on agent characteristics such as 

intelligence, autonomicity, mobility and reactivity. The discussion on section 3.5 and the 

analysis given on section 8.6.1 show that GIS community have realised the potential of 

agent technology and have been studying and implementing them into the GIS domain. 

However, as shown on these section most of the research is on the potential of agent 

as entities, while only few have been using agents as process. This research has shown 

the potential of agent embedded as GIS service. An important aspect of the system is 

the ability to log the geostatistical tools used for the decisions it made during the analysis 

and so reduces the GIS expert’s workload. This is very important, since it allows the 
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system to report such information to the human expert if the results obtained are not 

satisfactory. By having input from the human expert, the system is able to reverse the 

analysis order and identify the stage at which the error occurred.  

 

Other methods that are used to rectify a decision are achieved by the VAC checking on 

itself, such that it works using its previous logs and, if the results are expected to trigger 

a certain action (in this case, it could be producing a certain graph or table, or even just 

a sentence of decision) and this action does not take place, then reverse working from 

an action point of view can be undertaken so that the point that caused the difference 

can be noted into the log. It is important that, at this point in the process, the agent can 

receive feedback on the actions, so that it can decide what was wrong with the decision 

(if the decision was wrong) or whether it was a different phenomenon with similar data 

characteristics to other previous processes. This will help to fine tune the agent’s 

knowledge.  

 

Accuracy of the system has been validated by using a well-known set of GIScience data, 

then comparing the results of the VAC with the published results from the same data 

using a similar analysis (Isaaks and Srivastava, 1989). The results were encouraging, 

since the VAC produced the same output as the original analysis from the human 

experts. The tests were performed using real life data and the technology and its 

architecture proved to be useful and helpful in achieving the intended requirements and 

results. 

 

The system demonstrates the possibility of having agent provide service to GIS. The 

main finding was the need of new function to support agent characteristics to be 

incorporated into the current agent platform to achieve desired results. First cloning 

needed to be extended, since it only replicates the agent and does not address the issue 

of unique analysis required for GIS data. Hence, reproduction characteristic was 

implemented and tested (section 7.4.2) as an extension of cloning in JACK platform. For 

this function to be effective its processes and calculations had to be dynamically bound 
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to a running agent. Therefore a function to dynamically bind the information (process) 

was also designed, implemented and tested. Additionally, the communication for 

distributed component GIS had to be on a specialisation basis (due to uniqueness of 

individual GIS data) brokerage mechanism for data and process was established. After 

these features implementation the actual analysis of the system was done. The agent 

was able to function as a component and when compared to existing service based GIS 

system it had much better performance, the performance was also compared to human 

expert with superior effect (shown on section 7.4).  

 

This is a first attempt to develop a deployable system of loosely coupled GIS 

components based on agent technology. These components should be able to make 

GIS perform large process in shorter time with high data integrity and less resource 

constraint. A potential of these components will be demonstrated on the following 

sections. Nevertheless, more work is needed, in particular with respect to knowledge 

definition. Knowledge definition, in this case, refers to an agent’s ability to understand 

the dynamically bound plans (formulae and processes within a plan) and create a 

mechanism for re-utilising these plans. This mechanism aims to ultimately make the 

agent more autonomous, intelligent and responsive. However, this function was 

successfully implemented and tested. Discussions regarding the performance and 

future of this agent and software agents for GIS in general were presented.  

 
8.7 Future Work 

There are many functionalities, improvements and tests that could be introduced into 

agent-based GIS systems. Focusing initially on the VAC, the first step is to provide the 

ability to construct maps for all analysis outcomes from provided data. For example, 

when the dynamic binding feature of the agent determines that the dataset contains 

clusters, it would be useful to be able to present these clusters on a map for easier and 

quicker analysis.  
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Regarding the dynamic binding feature, the system should be improved to allow agent 

to agent binding, whereby once an agent has analysed the dataset it could then ask 

other agents for their opinion (and any rectification) before it asks the human user. The 

reproduction function (described in Chapter Six) should be fully implemented and tested, 

to assist in this function. Furthermore, with regard to dynamic binding, the agent should 

allow for more analysis, rather than simply asking the user to input the new functions. 

This would ensure that during the learning period, the expert would suggest and state 

whether the agent’s result is right or wrong. The suggestions would be of a similar 

pattern to those used for NED-2 by Nute et al. (2004), but would be in more detail and 

made easier to enable this information to be added to the knowledge log of the individual 

agent. Here, the choices will be: 

 

• Right - completely right. 

• Wrong - completely wrong, try again. 

• Almost Right - it is ok, but could improved. 

• Almost Wrong – it is ok, but should be improved. 

• About OK – it’s in-between. 

 

Having received the data in a ‘churned up’ manner from an external source like remote 

sensing, an agent could communicate with external vendors to negotiate for an 

appropriate image for the study at hand. The agent should use a tool (such as a scatter 

plot) to clear the data and save the effects (statistical formulae and data properties) that 

have been noted during the cleansing function into a data file. However, the knowledge 

acquired during this run would need to be saved in a symbolic format, so as to maintain 

the GIS data heterogeneity and tool interoperability. The agent could use these symbols 

to interpret what had happened to the data when applied to this statistical analysis, and 

could also identify any similarities of the final statistics to the data pattern (Issak and 

Srivastava, 1989). 
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Table 8.1: Knowledge Structure or Agent System 

 

 

 

 

 

 

 

 

 

The next time that this type of data or process type is recognised, the agent can increase 

the weight of the symbol and a confidence level will be noted. In addition, each time 

such a pattern is recognised then the process can commence from the recorded point 

where it was correctly started the previous time(s). With a certain amount of confidence, 

it will be able to do fewer runs and, eventually, it should be able to understand the data 

pattern and use only one formula in order to produce the scatter plot for the data. This 

will improve the intelligence, by creating better look-up table mechanisms. Furthermore, 

this could be incorporated with other AI techniques, particularly for pattern recognition 

and neural networks.  

 

The VAC should also be implemented into geosimulation engines to study its support of 

the increasing functionality of other successful agent-based systems in GIS. To 

effectively achieve this goal, more variogram construction functions should be defined 

and implemented into the VAC (such as introducing more variogram models) and other 

GIS components should be designed, implemented and tested to allow wider 

collaboration between GIS tools. A model (similar to that shown in Figure 8.1) should be 

established. This model would allow for GIS improvements in data sharing and fetching.  

 

 

 

Formula Outcome Symbol 

1 Right 1 

2 Almost Right 3 

3 Wrong 2 

4 Almost Wrong 4 

5 About OK 5 
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8.7.1 Use of the VAC With Other Agent Systems in GIS 

The VAC should be implemented to support and increase the functionality of other 

successful agent-based systems used in GIS; in particular in geosimulation where 

agents are currently being utilised to help improve data analysis. The VAC should be 

used in the geosimulation environment as a service provider. This should be a 

mechanism to take over from the human user who would undertake an analysis after 

the data has been made rich by the agent simulation process in the geosimulation. 

Moreover, components of different functions should be implemented and utilised for this 

kind of support.  

 

Introducing the VAC into geosimulations is the next step of the thesis. The mechanism 

that shows the position of the VAC and other agent components that provide service to 

GIS, the Broker Agent Component (BAC) and the Map Agent Component (MAC), is 

given in Figure 8.2. 

 
 
 

 

Figure 8.1. Agent as Service Provider to Geosimulations 
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In geosimulations, agents are used as interacting entities that model real life objects and 

provide scenarios of data function in their perceived environment. More functions exist 

for geosimulations which do not include agents as service providers. For agents to 

function as service providers, a very defined and specialised architecture is required, 

like that given by the VAC. In the geosimulation environment, the VAC could be used to 

provide services to other GIS tools, like defining dependency within entities of a 

particular environment and building a relationship of entities. Furthermore, the 

architecture provided by the VAC could be extended to other services (like the example 

given in Figure 8.2) and more functions introduced where maps are provided. These 

functional agents will act like other internal agents in the geosimulation, but with the 

specialised task of providing services to the environment. This architecture can be 

further extended by providing a Broker agent component to help provide a service from 

one geosimulation environment to another which does not support that service but has 

a need for it. As per agent simulation theories (Batty, 2005b) this mechanism should 

also provide a bigger and more robust geosimulation system in a distributed 

environment using the Broker agent components as the communicating agent (see 

Figure 8.1 for details). 

 
8.7.2. Communication of Distributed Component GIS 

Using the agent simulation will provide an access point where agents of other GIS 

components can be integrated and thus provide a communication channel between the 

multi-components of GIS. This will draw the structure to introduce GIS into a real 

ubiquitous computing paradigm, where GIS components can loosely couple and form 

an better services rather than rely on multiple remote components that have to be called 

on to perform a function when they are needed. This is shown in Figure 8.2 with an 

example of communication of multi-component GIS using information resulting from the 

VAC for a remote sensing image that needs to be interpolated. 
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The structure is such that each GIS component is built as an autonomous agent that is 

designated to its goal - and only its personal goal. Here, the negotiator agent compares 

the price and resources of each remote sensing vendor and recognises (according to 

the need) which image is the best fit for the purpose and, in turn, acquires it. The 

negotiator would keep track of this information, so the next time the same or similar 

information is requested it would contact the appropriate vendor without losing time for 

comparing. This technique provides for easy extensibility and learning mechanisms.  

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

Figure 8.2: Agent Communication and Information Sharing 
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8.7.3 Expanding Distributed Component GIS  

On analysis, the requirement is that the agent should be extended to be able to fetch 

data through a network and implement the proactive characteristic of the software agent. 

There should not be a predetermined data location (i.e. the VAC can only fetch from 

these pre-determined locations), but the agent should take the initiative to fetch data 

from all sources that it has access to. This fetching data function should allow an agent 

to determine the best data for the analysis (for example, if a dataset is required to 

analyse London’s transportation patterns, the agent should be able to go to different 

sources [data owners]). Furthermore, if the data that was acquired by the agent proves 

to have a problem in it, then the agent should be able to look for other (cheaper) 

mechanisms to rectify that problem. In some circumstances, the agent might determine 

that it is better to buy only the section of the data that is causing the problem and not 

the whole dataset. This should improve the analysis, reduce the time taken to handle 

the data and, most importantly, reduce the cost of analysis. This would improve the 

function of high performance GIServices (Friis-Christensen et al., 2007) and promote 

GIS as being an easy to use service and ensure its widespread use via technologies 

such as the Short Message Service (SMS) of mobile telephones.  

 

Furthermore, test should be conducted to determine the limitation of the VAC as a tool. 

In this research agency functionality and the development of the agent based GIS was 

the focus and extensive tests were done but the deployment of the actual tool into a 

larger environment (in terms of network and data) to test its versatility.  
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APPENDIX A: AGENT FUNCTION AND ALGORITHMS 
 

Agent Name: Data Finder 

Capability Algorithm 
Data Finding At this point the data is searched in the approved location.  

Pre-defined locations are searched periodically to check if any new data has arrived.  

Then the actual data is scrutinised to find if it have been used (dealt) for before.  

If the data is found to have been dealt with then the agent does not waste time to 
re-analyse it but simple show the previous result where the expert user can say if 
the data is to be re-analysed and assist on new strategy. 

Plans and Events Associated 

Plan  Event  

Get Data Get Data 

Data Does not exist 

Data Arrived 

Data 
Identifying 

The agents simultaneously check for clusters and repetition.  

Start by checking the repetition heuristically.  

Find the pattern if the repetition is perceived by the agent to be erratic and possible 
due to error then it is removed otherwise move to the next strategy. 

Check for clusters using the variance over mean formula which if returns zero means 
there is a clusters in the data and also using kMean cluster analysis we will pick out 
the clusters and visually display them to expert user. 

Heuristically check if data is divided into equal slices.  

Only do if the data has repetition (the main function here is to determine if the data 
is to be sliced for more analysis or not and if yes what structure to follow). 

Checking Repetition 

 

Check Repetition 

Data Arrived 

Split Data 

Check Clusters Check Repetition 

Data does not exist 

Determine slice Data Arrive  

Split data 
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Agent Name: Integrity checker 

Capability Algorithm 
Data 
Cleaning 

Separate the collected outlier data into a file and provides the two separated file 
one with outlier one without.  

Keep back the data (determine if the data removed is of interest or not in case the 
resulting analysis is not favoured by the expert and the agents needs to re-evaluate 
which data has to go back into the overall analysis). 

Check if data has normal distribution 

Use the Grubs technique for detecting outlier (Grubbs' test (Grubbs 1969) is mainly 
used to detect outliers in a univariate data set that is assumed to have normal 
distribution. Thus to apply this test on a dataset it is important to determine the that 
the data can be reasonably approximated by a normal distribution). 

 Detect one outlier at a time (each data set is iterative examine using formula and 
checked if it is an outlier).  

Repeat iteration for all data set and again the iteration is repeated until there is no 
outlier detected (this multiple iterations mechanism changes the probabilities of 
detection and thus the test is not used for very small dataset sample sizes.  

check if the resulting analysis is deemed insufficient whether by the expert user or 
the inter-agent communication (other agent that failed to come up with conclusion 
due to missing information).  

Plans and Events Associated 

Plan  Event  

Clean Data Data cleaned 

Outlier found 

Find Extreme 
Outliers 

Outlier found 

Data cleaned 

Technique suggested 

 

Re-examine Data Data cleaned 

Data problem 

Data to be sampled 

Data arrived 

Data sorting Sort the data in three structures: 

1. The x axis sorting 

2. The y axis sorting 

3. The actual data under study sorting 

Sort Data  Technique suggested 

Data arrive 
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Finding 
Distribution 

Determine the techniques to be used (robust, parametric or both). Check for all the 
required processes individually (checking clusters, trends etc) and the general 
preferred technique.  

× Determine there is a clusters in the data and robust techniques preferred when 
handling the overall data 

× Determine that the data is regular and that parametric technique is good 

× Determine that the data is normal and parametric is good 

Suggest Technique Data arrived 

Technique suggested 

 

 

Agent Name: Data Analyser 

Capability Algorithm 
Data 
Analysing 

finds if there is a trend in the data and identifies the type of trend. Formula used for 
finding and describing trends are those presented by Unwin and Davids: 

Here we use a polynomial regression formula. The constants are determined using 
matrix algorithms provided by JAMA. 

the value being observed v, x, y, residual u, the trend value z 

Check the extent of the trend and determined if it must be removed for data 
analysis or negligible (simply apply formula to remove trend from the data when 
required). 

Plans and Events Associated 

Plan  Event  

Find Trend Data to be Sampled 

Data to be modelled 

Remove (Check) 
Trend 

Trend found 

Data to be sampled 

Data to be modelled 

Data cleaned 
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Agent Name: Sampler 

Capability Algorithm 
Sampling Provide a sample of the overall data by using well known sampling strategies. Use 

inbuilt strategies: 

× Stratified Random 

× Quasi Random 

× Cluster based sample 

Plans and Events Associated 

Plan  Event  

Sample Data to be sampled 

Data to be modelled 

 

Agent Name: Mathematical Modeller 

Capability Algorithm 
Applying 
formula 

Determine scale 

Choose Lag plan the lag for the variogram plays a crucial role in producing a valid 
variogram analysis. Thus here using the formula provided by Isaak and srivastava 
(1989), p0- the agent determine appropriate lag and test until appropriate lag is 
determined. The lag is determined by getting the average spacing between dataset 
as starting lag (Isaak and srivastava 1989 p 146). If the data is normally distributed 
then the spacing between the data is chosen (Isaak and srivastava 1989 p 146). This 
lag is then checked if there are less than 30 values in the lag chosen for all the 
separation. If there are less than 30 then accordingly the lag is iteratively decreased 

Plans and Events Associated 

Plan  Event  

Determine Scale Data to be modelled 

Fit model 

Choose Lag 

 

Data to be modelled 

Fit model 
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and increased by extra 10% of the mean value. Also to give the lag values some 
tolerance we allow is some difficult (the data with strong trends in multi direction, 
to clustered data, and the data size that is too large, too small) circumstance to have 
the allowed values on the lag(30) + 10 and -10. However this will be determined as 
suspect fit. 

Plan at this point a parametric or robust variogram model is applied to the data. This 
is done after the data is determined if required to be checked if correlated.  

Apply Formula Data processed 

Fit model 

 

Agent Name: Strategy Comparer 

Capability Algorithm 
Comparing Test the hypothesis to see is the sampling strategy was good and in turn the 

variogram.  

Simply compare the result of the sampling data to of that of real data and try to see 
the offset. Use: 

× Chi Square 

× Student test 

× Simply using mean, median, variance, max, min of dataset 

Plans and Events Associated 

Plan  Event  

Compare Send similar results 

Data processed 

 

Agent Name: Model Fitter 

Capability Algorithm 
Fitting 
Model 

Choose appropriate model from the universal models. Here the universal models 
that are already known by the agent are: 

Plans and Events Associated 

Plan  Event  
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× Spherical (valid in R1, R2, R3) 

× Gaussian 

× Exponential (valid in Rd, d>0) 

× Pure Nugget (where is nugget) 

× Linier (valid in Rd, d>0) 

the same lag, range and sill deducted for the parametric variogram will be 
chosen by making sure that: 

1. the model fit lies to the right of the mathematical model otherwise 
change the scale (e.g.) length value. 

2. If more than 50% and the rest lie to the right of the points estimated by 
the mathematical model lie on the same line as the model it is good 

3. The range is the first dipping point of the mathematical model 

A non-zero nugget indicated that repeated measurements at the same point 
yield different values. The model chosen are also determined: 

If the range is smaller than the sill spherical model is good 

If the range is almost twice than the sill gaussian model is good 

If the range is larger than the sill exponentional model is good 

Model Plotter returns that the strategy used to model the variogram were not 
satisfactory this plan takes place to re-analyse the data. The data is tagged to what 
has been to it and not work so the techniques are not repeated. 

Fit Data to Model Validate model 

Send similar results 

Data problem 

Re-Fit Data to Model Model wrong 

Validate model 

Validate 
Model 

Use Ordinary Kriging to estimate a percentage of values and determine if the 
variogram fit was good. 

Validate Goodness of 
Fit 

Model wrong 

Model fit 
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weights used are deducted using the weighted least square method (This weight 
coefficients makes the cost criteria sensible to the number of pairs and to the value 
of the variogram) 

validate the variograms using Student test and the Indicative Goodness of Fit (To 
choose the best fitting result and possibly to improve it by some small changes not 
any cost function can be used. They can be either the other goal functions of 
minimisation procedure (for example mentioned above) or some the indicators of 
fitting quality). 

for small distances use the Cressie method give the same resultsand for larger 
distance use Student test and/or the Indicative Goodness of Fit (In the variogram 
List for each lag I have to save the lag distance the min distance the max 
distance the number of pairs) 

Check the value of the Indicative Goodness of fit is close to zero then the 
fitness is good. It can be used for all directions together or for each 
separately.  

Usually use the Indicator of  goodness of fit for one direction. 

Validate model 

  

 

Agent Name: Model Plotter 

Capability Algorithm 
Model 
Plotting 

this will choose the appropriate representation scale on the Graphical User 
Interface. If it realises there is any issue in representing the current value it flags to 
have the model refitted. This agent is also responsible on communicating with the 
expert user who can decide if the model fitted is inappropriate and ask the agent to 
refit. 

Plans and Events Associated 

Plan  Event  

Plot Model fit 

Model wrong 
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APPENDIX B: THE SAMPLE DATA (WALKER LAKE DATA) 
Index for the values: 

• ID Identification Number 
• X location in meter 
• Y location in meter 
• V concentration in ppm 
• U concentration in ppm 
• T indicator variable 

 
 

ID X Y V U T 
1 11 8 0 1.00E+31 2 
2 8 30 0 1.00E+31 2 
3 9 48 224.4 1.00E+31 2 
4 8 69 434.4 1.00E+31 2 
5 9 90 412.1 1.00E+31 2 
6 10 110 587.2 1.00E+31 2 
7 9 129 192.3 1  1.00E+31 2 
8 11 150 31.3 1.00E+31 2 
9 10 170 388.5 1.00E+31 2 
10 8 188 174.6 1.00E+31 2 
11 9 209 187.8 1.00E+31 2 
12 10 231 82.1 1.00E+31 1 
13 11 250 81.1 1.00E+31 1 
14 10 269 124.3 1.00E+31 2 
15 8 288 188 1.00E+31 2 
16 31 11 28.7 1.00E+31 2 
17 29 29 78.1 1.00E+31 2 
18 28 51 292.1 1.00E+31 2 
19 31 68 895.2 1.00E+31 2 
20 28 88 702.6 1.00E+31 2 
21 30 110 490.3 1.00E+31 2 
22 28 130 136.1 1.00E+31 2 
23 28 150 335 1.00E+31 2 
24 30 171 277 1.00E+31 2 
25 28 190 206.1 1.00E+31 2 
26 31 209 24.5 1.00E+31 2 
27 28 229 198.1 1.00E+31 2 
28 30 250 60.3 1.00E+31 2 
29 31 269 312.6 1.00E+31 2 
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30 31 289 240.9 1.00E+31 2 
31 49 11 653.3 1.00E+31 2 
32 49 29 96.4 1.00E+31 2 
33 51 48 105 1.00E+31 2 
34 49 68 37.8 1.00E+31 2 
35 50 88 820.8 1.00E+31 2 
36 51 109 450.7 1.00E+31 2 
37 48 129 190.4 1.00E+31 2 
38 49 151 773.3 1.00E+31 2 
39 51 168 971.9 1.00E+31 2 
40 48 190 762.4 1.00E+31 2 
41 50 211 968.3 1.00E+31 2 
42 49 231 394.7 1.00E+31 2 
43 51 250 343 1.00E+31 2 
44 50 268 863.8 1.00E+31 2 
45 51 290 159.6 1.00E+31 1 
46 71 9 445.8 1.00E+31 2 
47 71 29 673.3 1.00E+31 2 
48 70 51 252.6 1.00E+31 2 
49 68 70 537.5 1.00E+31 2 
50 69 90 0 1.00E+31 2 
51 68 110 329.1 1.00E+31 2 
52 68 128 646.3 1.00E+31 2 
53 69 148 616.2 1.00E+31 2 
54 69 169 761.3 1.00E+31 2 
55 70 191 918 1.00E+31 2 
56 69 208 97.4 1.00E+31 1 
57 69 229 0 1.00E+31 1 
58 68 250 0 1.00E+31 1 
59 71 268 0 1.00E+31 1 
60 71 288 2.4 1.00E+31 1 
61 91 11 368.3 1.00E+31 2 
62 91 29 91.6 1.00E+31 2 
63 90 49 654.7 1.00E+31 2 
64 91 68 645.5 1.00E+31 2 
65 91 91 907.2 1.00E+31 2 
66 91 111 826.3 1.00E+31 2 
67 89 130 975.3 1.00E+31 2 
68 88 149 551.1 1.00E+31 2 
69 89 170 155.5 1.00E+31 1 
70 89 188 10.7 1.00E+31 1 



 321 

71 90 211 0 1.00E+31 1 
72 90 230 0 1.00E+31 1 
73 88 249 0 1.00E+31 1 
74 88 269 12.1 1.00E+31 1 
75 88 288 62.2 1.00E+31 1 
76 109 11 399.6 1.00E+31 2 
77 111 31 176.6 1.00E+31 2 
78 108 49 402 1.00E+31 2 
79 109 68 260.6 1.00E+31 2 
80 108 88 192 1.00E+31 2 
81 110 109 237.6 1.00E+31 2 
82 109 129 702 1.00E+31 2 
83 110 148 38.5 1.00E+31 2 
84 111 169 22.1 1.00E+31 1 
85 111 191 2.7 1.00E+31 1 
86 110 208 17.9 1.00E+31 1 
87 109 230 174.2 1.00E+31 2 
88 109 249 12.9 1.00E+31 2 
89 109 268 187.8 1.00E+31 2 
90 111 291 268.8 1.00E+31 2 
91 130 9 572.5 1.00E+31 2 
92 131 31 29.1 1.00E+31 2 
93 130 48 75.2 1.00E+31 2 
94 128 70 399.9 1.00E+31 2 
95 129 90 243.1 1.00E+31 2 
96 131 109 0 1.00E+31 2 
97 129 128 244.7 1.00E+31 2 
98 131 148 185.2 1.00E+31 2 
99 131 169 26 1.00E+31 1 
100 129 191 0 1.00E+31 1 
101 128 209 100.3 1.00E+31 1 
102 130 231 530.3 1.00E+31 2 
103 131 248 107.4 1.00E+31 2 
104 128 269 159.3 1.00E+31 2 
105 131 288 70.7 1.00E+31 2 
106 148 8 260.2 1.00E+31 2 
107 149 29 326 1.00E+31 2 
108 150 49 332.7 1.00E+31 2 
109 151 69 531.3 1.00E+31 2 
110 150 89 547.2 1.00E+31 2 
111 150 109 482.7 1.00E+31 2 
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112 150 129 84.1 1.00E+31 2 
113 150 151 4.7 1.00E+31 2 
114 149 169 180.6 1.00E+31 2 
115 151 190 0. 1E 1.00E+31 1 
116 148 208 342.4 1.00E+31 2 
117 150 228 602.3 1.00E+31 2 
118 149 251 209.1 1.00E+31 2 
119 149 271 79.4 1.00E+31 2 
120 148 291 104.1 1.00E+31 2 
121 168 8 446 1.00E+31 2 
122 171 29 189.9 1.00E+31 2 
123 169 49 280.4 1.00E+31 2 
124 168 69 0 E31 1 1 
125 168 91 499.3 1.00E+31 2 
126 171 109 457.3 1.00E+31 2 
127 168 131 341.2 1.00E+31 2 
128 171 150 0 1.00E+31 2 
129 171 171 208.3 1.00E+31 2 
130 169 191 99.7 1.00E+31 1 
131 170 210 636.6 1.00E+31 2 
132 170 230 173.1 1.00E+31 2 
133 169 249 17 1.00E+31 2 
134 168 271 283.1 1.00E+31 2 
135 168 290 30.9 1.00E+31 1 
136 190 11 348.5 1.00E+31 2 
137 191 28 222.4 1.00E+31 2 
138 191 48 59.1 1.00E+31 2 
139 190 69 0 1.00E+31 1 
140 190 89 326 1.00E+31 2 
141 188 111 325.1 1.00E+31 2 
142 191 129 114.7 1.00E+31 2 
143 189 149 481.6 1.00E+31 2 
144 190 169 324.1 1.00E+31 2 
145 190 189 10.9 1.00E+31 1 
146 188 210 332.9 1.00E+31 2 
147 191 231 184.4 1.00E+31 2 
148 190 248 146.6 1.00E+31 2 
149 189 270 92 1.00E+31 1 
150 189 290 2.5 1.00E+31 1 
151 211 11 358.1 1.00E+31 2 
152 209 30 473.3 1.00E+31 2 
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153 211 49 308.8 1.00E+31 2 
154 210 70 406.8 1.00E+31 2 
155 209 90 812.1 1.00E+31 2 
156 210 111 339.7 1.00E+31 2 
157 211 130 223.9 1.00E+31 2 
158 208 151 673.5 1.00E+31 2 
159 209 168 141 1.00E+31 2 
160 208 191 61.8 1.00E+31 1 
161 210 211 258.3 1.00E+31 2 
162 211 228 590.3 1.00E+31 2 
163 211 250 166.9 1.00E+31 2 
164 208 268 125.2 1.00E+31 2 
165 208 289 29.3 1.00E+31 1 
166 231 10 617.6 1.00E+31 2 
167 231 28 425.9 1.00E+31 2 
168 230 50 295.7 1.00E+31 2 
169 230 71 224.9 1.00E+31 2 
170 229 91 31.7 1.00E+31 1 
171 229 110 377.4 1.00E+31 2 
172 230 131 333.3 1.00E+31 2 
173 228 148 351 1.00E+31 2 
174 229 169 0. 0 1.00E+31 1 
175 231 191 137.6 1.00E+31 2 
176 231 208 451.2 1.00E+31 2 
177 229 228 639.5 1.00E+31 2 
178 231 249 119.9 1.00E+31 2 
179 231 268 27.2 1.00E+31 1 
180 230 291 2.1 1.00E+31 1 
181 249 9 167.7 1.00E+31 1 
182 250 30 147.8 1.00E+31 2 
183 249 48 442.7 1.00E+31 2 
184 251 69 487.7 1.00E+31 2 
185 251 91 0 1.00E+31 1 
186 248 109 28.2 1.00E+31 1 
187 249 130 0 1.00E+31 1 
188 248 150 18.3 1.00E+31 1 
189 250 169 266.3 1.00E+31 2 
190 250 190 502.3 1.00E+31 2 
191 251 208 0 1.00E+31 2 
192 251 229 240.9 1.00E+31 2 
193 249 251 234.4 1.00E+31 2 
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194 248 270 22.4 1.00E+31 1 
195 250 291 45.6 1.00E+31 1 
196 40 71 76.2 1.1 2 
197 21 69 284.3 7.8 2 
198 28 80 606.8 105.3 2 
199 29 59 772.7 1512.7 2 
200 41 81 269.5 9.8 2 
201 18 80 1036.7 860.4 2 
202 39 60 238.6 12.7 2 
203 18 60 519.4 177.1 2 
204 41 90 414.9 23.4 2 
205 21 90 601.4 173.1 2 
206 31 101 579.2 296.5 2 
207 41 100 601.4 300.6 2 
208 21 100 594.6 229.7 2 
209 60 8 550.1 258.3 2 
210 40 11 99.4 2.2 2 
211 51 18 233.6 14.2 2 
212 59 20 14.4 0.1 2 
213 41 21 115.9 3.1 2 
214 59 90 506.2 126.9 2 
215 51 101 502.4 73.8 2 
216 50 81 608 210.7 2 
217 59 101 363.9 30.4 2 
218 60 81 385.6 50.3 2 
219 60 151 1521.1 3691.8 2 
220 38 148 340.9 50 2 
221 50 160 879.1 474.2 2 
222 50 138 413.4 83 2 
223 61 158 868.9 983.8 2 
224 39 160 657.4 217.8 2 
225 61 139 477 71.5 2 
226 38 140 268.5 26.2 2 
227 61 170 806.4 301.1 2 
228 39 170 914.4 1548.5 2 
229 49 179 811.5 234.9 2 
230 58 179 1113.6 2154.7 2 
231 39 181 1008 3637.4 2 
232 60 191 1528.1 1930.9 2 
233 40 190 970.9 1391.1 2 
234 51 198 1109 1660.8 2 
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235 60 198 1203.9 1813.7 2 
236 40 200 641.3 249.1 2 
237 58 208 720.6 1160.1 2 
238 38 209 665.3 547.8 2 
239 50 221 543.3 1066.6 2 
240 61 220 101.1 59.5 1 
241 39 221 615.9 420.9 2 
242 59 268 543.1 1714.2 2 
243 41 271 868.8 828.7 2 
244 49 278 583 1788.8 2 
245 51 260 670.7 3738.9 2 
246 59 281 148.8 675 1 
247 39 279 798 1182.1 2 
248 59 258 194.9 983.3 1 
249 38 260 635.2 766.6 2 
250 78 28 781.6 565.4 2 
251 60 29 238.6 12.7 2 
252 70 41 472 84.9 2 
253 70 21 58.1 0.3 2 
254 78 41 600.3 124.6 2 
255 61 41 64.9 0.8 2 
256 78 20 505.9 70 2 
257 80 131 801.6 421.1 2 
258 58 128 158.8 4.3 2 
259 71 140 606.3 175.1 2 
260 70 121 30.7   0.0 2 2 
261 79 138 730.1 1694.5 2 
262 80 119 421.2 35.1 2 
263 61 121 104.8 1.8 2 
264 79 149 44.1 0 2 
265 71 160 801.1 2535 2 
266 78 159 742 3371.5 2 
267 80 168 689.1 634.6 2 
268 69 181 424.6 762.6 2 
269 79 181 184.3 241.7 2 
270 80 188 245.2 431.1 2 
271 70 198 630 1992.1 2 
272 81 200 0.0 0 0 1 
273 100 48 48.7 0 2 
274 80 49 757.4 473.8 2 
275 90 58 739.8 280.2 2 
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276 88 39 520.7 76.8 2 
277 100 60 0 0 2 
278 80 59 0.0  0 0 2 
279 101 38 730.5 464 2 
280 101 68 383.1 97.8 2 
281 79 70 508.8 103.9 2 
282 90 79 573.3 138.3 2 
283 100 78 372.4 70.9 2 
284 81 81 585.8 197.2 2 
285 100 91 397.2 38.9 2 
286 80 89 614.5 192.3 2 
287 91 99 734.9 159.6 2 
288 101 100 599.3 539.3 2 
289 81 98 181.2 1.3 2 
290 98 111 744.8 1987 2 
291 81 108 1022.3 643 2 
292 90 120 899.3 1290.3 2 
293 100 118 363.7 20.5 2 
294 98 130 513.2 263.9 2 
295 90 140 648.8 2147.5 2 
296 90 138 645.4 1927.1 2 
297 121 131 13 0.2 2 
298 111 140 190.3 48.8 2 
299 108 121 893 3070.9 2 
300 120 141 104.7 14.6 2 
301 119 118 150.4 16.9 2 
302 158 228 558.4 551.6 2 
303 140 229 558 513.9 2 
304 150 241 318.5 129.2 2 
305 151 218 394.3 239.2 2 
306 161 241 141.9 8.6 2 
307 141 240 112.5 4.6 2 
308 160 218 580.4 1118.7 2 
309 139 220 535.9 445.7 2 
310 178 211 398.2 561.8 2 
311 159 209 517.3 148.8 2 
312 169 221 427.2 197.2 2 
313 170 198 367.6 1429.8 2 
314 180 218 374.7 77.5 2 
315 178 201 144.8 81.3 2 
316 158 198 169.8 154.5 2 
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317 219 88 235.1 136.9 2 
318 198 90 611.7 735.8 2 
319 211 100 746.4 710.6 2 
320 208 80 436.6 495.8 2 
321 221 99 540.9 586.8 2 
322 199 98 801 1419 2 
323 220 81 272.1 177.3 2 
324 198 78 204.1 86 2 
325 220 150 543.9 675 2 
326 200 150 606.2 381.1 2 
327 208 159 356 280.4 2 
328 210 140 440.9 330.3 2 
329 221 160 301.8 365.6 2 
330 198 161 369.4 154.5 2 
331 219 139 166.8 24.5 2 
332 200 139 230.9 42.2 2 
333 239 8 240.3 80.2 2 
334 218 8 737.1 1373.4 2 
335 229 19 518.6 147.7 2 
336 239 18 390.7 186.7 2 
337 218 18 797.4 1429.7 2 
338 238 229 602.6 1510.9 2 
339 218 228 430.8 265.2 2 
340 231 239 354.1 478 2 
341 230 221 602.4 538.9 2 
342 240 239 172.6 51.9 2 
343 221 241 324.8 290.9 2 
344 239 220 420.1 398.3 2 
345 218 218 763.5 1236.7 2 
346 35 71 687.8 486.8 2 
347 24 71 735.8 463.9 2 
348 34 88 86.9 0.1 2 
349 23 91 817 708.8 2 
350 54 10 637.9 349.4 2 
351 46 11 512.3 392 2 
352 55 89 423.4 21.2 2 
353 45 89 569.6 62.8 2 
354 53 150 858 873 2 
355 46 148 234 7.5 2 
356 55 168 876 288.1 2 
357 43 170 1082.8 1174.9 2 
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358 55 191 1392.6 1004.7 2 
359 44 191 646.6 76.8 2 
360 55 211 889.5 938.8 2 
361 46 211 509.2 429.7 2 
362 54 269 613.1 2922.4 2 
363 43 271 767.8 198.1 2 
364 73 29 649.4 231.7 2 
365 64 31 235.4 10.8 2 
366 75 129 782.8 639.3 2 
367 64 129 227.3 8.6 2 
368 73 149 722.9 696.1 2 
369 64 151 974.5 664.1 2 
370 75 171 512.2 144.8 2 
371 63 168 1215.8 1446.1 2 
372 73 188 687.1 2351.5 2 
373 64 191 1259.9 1257.6 2 
374 93 48 687.5 373.2 2 
375 86 48 471.9 31.8 2 
376 93 70 512.1 196.1 2 
377 84 69 963.9 1210 2 
378 93 90 874 1031.3 2 
379 86 89 582.4 117 2 
380 96 111 553.2 360.5 2 
381 85 108 937.3 1495.5 2 
382 93 131 883.6 1336.8 2 
383 86 131 879.9 965.3 2 
384 114 131 268.4 104.4 2 
385 106 130 651.5 1957.7 2 
386 155 229 386.4 88.2 2 
387 145 230 333.2 63.5 2 
388 174 208 339.2 335 2 
389 166 211 600.3 647.6 2 
390 215 89 595.2 1457 2 
391 205 89 809.6 955.8 2 
392 215 148 293.3 67.7 2 
393 204 151 697.3 444.5 2 
394 236 9 515.9 1593.8 2 
395 223 9 613.2 277.6 2 
396 236 229 665.3 1962 2 
397 226 230 813.6 2279.8 2 
398 35 80 174.8 2 2 
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399 24 79 891.8 635.7 2 
400 36 61 699.6 1547.8 2 
401 26 58 39.5 0.3 2 
402 16 80 915.6 634.8 2 
403 43 60 584 97.4 2 
404 15 88 610 319.3 2 
405 46 99 566.8 100.2 2 
406 36 99 38.1 0 2 
407 54 80 483 105 2 
408 46 81 542.6 138.6 2 
409 54 161 959.3 466.7 2 
410 43 161 631.9 261.1 2 
411 65 160 928.3 2252.5 2 
412 33 160 431 48.6 2 
413 36 170 672.3 605.5 2 
414 53 179 1003.4 425.4 2 
415 44 180 876.4 937.8 2 
416 65 181 734.1 589.3 2 
417 34 180 366 110.2 2 
418 33 191 296.5 79.1 2 
419 55 199 1069.2 376.4 2 
420 46 198 804.3 674.6 2 
421 63 201 731.1 1363.3 2 
422 34 201 318.1 79.6 2 
423 65 210 238.6 488.3 2 
424 35 208 428.9 161.2 2 
425 46 220 734.4 1236.1 2 
426 36 219 429.1 152.3 2 
427 35 217 597.4 397 2 
428 53 258 442.6 1696.4 2 
429 46 260 765.2 779.8 2 
430 45 281 605.5 934.8 2 
431 35 278 795.9 1588.3 2 
432 35 259 235 18.9 2 
433 84 30 562 85.3 2 
434 84 41 411.4 34 2 
435 75 40 696.7 356.2 2 
436 73 141 790.9 607.3 2 
437 63 140 696.5 357.8 2 
438 84 138 687.3 893.4 2 
439 76 159 597.5 997.3 2 
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440 84 161 437.4 387.2 2 
441 86 169 317.4 761.7 2 
442 73 199 470.7 5190.1 2 
443 76 51 498.7 101.8 2 
444 94 61 778.7 1354 2 
445 85 60 523.3 117.5 2 
446 104 38 617.1 200.2 2 
447 93 41 395.5 28.4 2 
448 75 90 518.9 113 2 
449 94 101 383.7 12.9 2 
450 85 100 704.1 126 2 
451 104 109 562.3 908.6 2 
452 75 110 655.3 349 2 
453 95 121 823.6 548.4 2 
454 83 119 847.7 701.4 2 
455 94 140 607.5 723.2 2 
456 103 139 491.2 565.3 2 
457 114 120 319.5 154.2 2 
458 104 118 594 289.2 2 
459 196 91 433.5 254.1 2 
460 215 101 209.6 4 2 
461 204 101 533.8 127.3 2 
462 196 101 592.4 419.4 2 
463 195 149 478.7 141.9 2 
464 216 11 660.2 1424.8 2 
465 225 19 832.2 512.2 2 
466 214 19 242.5 15.6 2 
467 245 231 161.2 26.1 2 
468 233 220 626 959.7 2 
469 226 221 800.1 1681.5 2 
470 213 218 482.6 476.2 2 
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APPENDIX C: AGENT DESIGN FROM JACK CONSOLE 
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APPENDIX D: VARIAOGRAM AND CROSS VALIDATION DATA 
 
Anisotropic at 0° 

1 10.07 51120.7 68 
2 19.73 62261.04 215 
3 30.35 75819.95 174 
4 42.2 65093.42 386 
5 56.73 79103.28 492 
6 68.73 106599.5 433 
7 80.05 83655.71 436 
8 91.44 93359.62 403 

 
Anisotropic at 45° 

1 10.37 57283.11 42 
2 16.39 76487.4 131 
3 28.91 78870.65 284 
4 42.51 95868.4 234 
5 56.16 97050.96 302 
6 68.84 93038.22 235 
7 81.19 91570.6 302 
8 92.64 91445.42 272 

 
Anisotropic at 90° 

1 7.62 54424.08 133 
2 18.61 69377.91 330 
3 30.52 103157.5 295 
4 42.41 91154.07 324 
5 56.46 86843.68 267 
6 67.64 90220.71 181 
7 80.33 64516.8 211 
8 93.16 94716.91 168 

 
Anisotropic at 135° 

1 9.89 48215.13 32 
2 15.87 65240.34 146 
3 28.92 80526.39 310 
4 42.93 81180.72 285 
5 56.53 76867.69 369 
6 68.72 84050.52 300 
7 80.9 102112.7 341 

8 92.45 109066 276 
 
Experimental variogram 
 

1 7.62 54424.08 133 
2 18.61 69377.91 330 
3 30.52 103157.5 295 
4 42.41 91154.07 324 
5 56.46 86843.68 267 
6 67.64 90220.71 181 
7 80.33 64516.8 211 
8 93.16 94716.91 168 

 
 
Variogram with Gaussian fit 
 

1 8.03 46301.12 739 
2 16.92 67792.5 2551 
3 27.89 84853.73 3249 
4 39.11 88045.77 3687 
5 49.65 89372.38 4134 
6 60.69 88568.11 4991 
7 71.5 90414.52 5065 
8 82.32 87823.68 5485 

 
 
Variogram with spherical fit 
 

1 7.1 40478.56 523 
2 14.81 68748.92 2035 
3 24.66 77775.37 2839 
4 34.63 91312.23 3057 
5 44.6 84768.83 3804 
6 54.79 90462.5 4032 
7 64.5 89683.38 4632 
8 74.58 90926.1 4877 
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Cross validation 
 

1 0 252.96 
4 434.4 564.88 
5 412.1 581.6 
6 587.2 465.42 
8 31.3 399.39 
9 388.5 318.42 
12 82.1 224.22 
13 81.1 226.12 
14 124.3 276.31 
16 28.7 117.28 
17 78.1 135.31 
18 292.1 292.48 
19 895.2 677.39 
20 702.6 496.93 
21 490.3 458.84 
22 136.1 352.26 
23 335 297.06 
24 277 491.58 
25 206.1 309.42 
26 24.5 419.31 
27 198.1 284.18 
28 60.3 250.21 
29 312.6 530.39 
30 240.9 487.44 
31 653.3 512.52 
32 96.4 144.41 
33 105 242.74 
34 37.8 372.51 
35 820.8 527.7 
36 450.7 387.96 
37 190.4 293.1 
38 773.3 591.39 
39 971.9 912.63 
40 762.4 919.32 
41 968.3 696.95 
42 394.7 394.54 
43 343 405.16 
44 863.8 676.53 
45 159.6 343.55 
46 445.8 360.6 

47 673.3 515.74 
48 252.6 390.56 
49 537.5 332.98 
50 0 473.83 
51 329.1 371.49 
52 646.3 337.03 
53 616.2 810.65 
54 761.3 820.81 
55 918 809.21 
56 97.4 317.38 
60 2.4 196.87 
61 368.3 400.54 
62 91.6 539.15 
63 654.7 594.02 
64 645.5 646 
65 907.2 772.52 
66 826.3 723.04 
67 975.3 876.95 
68 551.1 423.13 
69 155.5 277.57 
70 10.7 175.47 
73 0 152.01 
74 12.1 145.84 
75 62.2 134.81 
76 399.6 354.57 
77 176.6 412.75 
78 402 182.08 
79 260.6 312.23 
80 192 371.89 
81 237.6 446.06 
82 702 548.16 
83 38.5 258.08 
84 22.1 124.45 
85 2.7 80.87 
86 17.9 117.49 
87 174.2 149.15 
88 12.9 155.25 
89 187.8 108.65 
90 268.8 109.42 
91 572.5 260.03 
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92 29.1 289.27 
93 75.2 304.06 
94 399.9 307.81 
95 243.1 331.58 
96 0 286.82 
97 244.7 77.24 
98 185.2 92.69 
99 26 107.16 
100 0 122.45 
101 100.3 234.08 
102 530.3 294.67 
103 107.4 203.32 
104 159.3 141.6 
105 70.7 143.27 
106 260.2 387.67 
107 326 264.33 
108 332.7 288.48 
109 531.3 330.5 
110 547.2 382.59 
111 482.7 281.13 
112 84.1 256.28 
113 4.7 159.12 
114 180.6 105.97 
116 342.4 340.23 
117 602.3 376.95 
118 209.1 181.96 
119 79.4 163.03 
120 104.1 95.32 
121 446 302.98 
122 189.9 287.37 
123 280.4 262.1 
125 499.3 418.01 
126 457.3 376.26 
127 341.2 217.3 
128 0 258.16 
129 208.3 172.96 
130 99.7 254.59 
131 636.6 467.58 
132 173.1 334.52 
133 17 178.52 
134 283.1 80.47 
135 30.9 121.34 
136 348.5 324.52 

137 222.4 290.16 
138 59.1 264.86 
139 0 275.04 
140 326 393.5 
141 325.1 397.02 
142 114.7 308.58 
143 481.6 332.86 
144 324.1 222.42 
145 10.9 201.24 
146 332.9 254.43 
147 184.4 295.13 
148 146.6 191.32 
149 92 120.96 
150 2.5 90.28 
151 358.1 483.68 
152 473.3 303.96 
153 308.8 297.92 
154 406.8 270.24 
155 812.1 706.74 
156 339.7 379.61 
157 223.9 297.18 
158 673.5 522.84 
159 141 280.37 
160 61.8 233.94 
161 258.3 398.33 
162 590.3 380.27 
163 166.9 232.76 
164 125.2 117.54 
165 29.3 78.08 
166 617.6 545.92 
167 425.9 450.26 
168 295.7 359.35 
169 224.9 292.95 
170 31.7 284.56 
171 377.4 240.69 
172 333.3 205.52 
173 351 319.21 
175 137.6 356.7 
176 451.2 456.96 
177 639.5 737.02 
178 119.9 222.53 
179 27.2 111.64 
180 2.1 101.4 
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181 167.7 304.96 
182 147.8 383.81 
183 442.7 311.8 
184 487.7 255.26 
185 0 256.8 
186 28.2 183.22 
187 0 190.31 
188 18.3 244.29 
189 266.3 251.72 
190 502.3 275.35 
192 240.9 238.83 
193 234.4 168.59 
194 22.4 139.21 
195 45.6 105.34 
196 76.2 462.1 
197 284.3 684.45 
198 606.8 660.08 
199 772.7 297.81 
200 269.5 331.14 
201 1036.7 871.41 
202 238.6 612.99 
203 519.4 250.41 
204 414.9 373.82 
205 601.4 779.79 
206 579.2 321.42 
207 601.4 330.56 
208 594.6 599.52 
209 550.1 464.33 
210 99.4 285.61 
211 233.6 305.26 
212 14.4 273.11 
213 115.9 150.04 
214 506.2 330.77 
215 502.4 499.58 
216 608 533.7 
217 363.9 410.29 
218 385.6 421.75 
219 1521.1 897.92 
220 340.9 330.85 
221 879.1 859.22 
222 413.4 348.48 
223 868.9 1065.33 
224 657.4 556.11 

225 477 629.56 
226 268.5 280.78 
227 806.4 1087.4 
228 914.4 825.77 
229 811.5 958.72 
230 1113.6 939 
231 1008 667.3 
232 1528.1 1286.7 
233 970.9 589.59 
234 1109 964.02 
235 1203.9 1034.57 
236 641.3 593.11 
237 720.6 737.52 
238 665.3 492.05 
239 543.3 604.39 
240 101.1 499.78 
241 615.9 500.07 
242 543.1 422.43 
243 868.8 730.44 
244 583 555.61 
245 670.7 581.43 
246 148.8 333.1 
247 798 709.11 
248 194.9 451.27 
249 635.2 405.44 
250 781.6 580.58 
251 238.6 141.31 
252 472 457.99 
253 58.1 446.49 
254 600.3 619.49 
255 64.9 263.42 
256 505.9 409.58 
257 801.6 789.1 
258 158.8 220.09 
259 606.3 753.05 
260 30.7 454.19 
261 730.1 689.05 
262 421.2 729.21 
263 104.8 206.84 
264 44.1 673.54 
265 801.1 751.74 
266 742 542.14 
267 689.1 466.62 
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268 424.6 657.46 
269 184.3 348.35 
270 245.2 275.34 
271 630 639.06 
272 0 334.49 
273 48.7 514.72 
274 757.4 471.57 
275 739.8 630.98 
276 520.7 403.65 
277 0 507.76 
278 0 540.11 
279 730.5 484.69 
280 383.1 310.59 
281 508.8 681.18 
282 573.3 597.69 
283 372.4 429.15 
284 585.8 578.56 
285 397.2 551.83 
286 614.5 505.61 
287 734.9 568.19 
288 599.3 424.37 
289 181.2 664.82 
290 744.8 531.19 
291 1022.3 757.48 
292 899.3 843.7 
293 363.7 686.59 
294 513.2 754.73 
295 648.8 617.4 
296 645.4 696.38 
297 13 212.27 
298 190.3 250.7 
299 893 510.77 
300 104.7 135.06 

301 150.4 220.7 
302 558.4 377.47 
303 558 389.33 
304 318.5 212.88 
305 394.3 514.19 
306 141.9 232.5 
307 112.5 319.23 
308 580.4 493.53 
309 535.9 408.07 
310 398.2 350.66 
311 517.3 444.58 
312 427.2 434.95 
313 367.6 205.92 
314 374.7 349.98 
315 144.8 286.27 
316 169.8 331.09 
317 235.1 418.78 
318 611.7 511.83 
319 746.4 397.18 
320 436.6 467.04 
321 540.9 240.18 
322 801 584.61 
323 272.1 290.17 
324 204.1 340.13 
325 543.9 301.15 
326 606.2 556.66 
327 356 421.06 
328 440.9 294.98 
329 301.8 349.08 
330 369.4 384.24 
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APPENDIX E: COMPARING AGENT DEVELOPMENT SYSTEMS 

Platform Primary Domain Programming Engine Operating System 
FIPA 
Compliant 

GIS 
Capabilities 

A3 / AAA (Agent 
Anytime 
Anywhere)  

General-purpose distributed 
and atomic agent based 
platform. Java Any Java Virtual Machine. N/A N/A 

ABLE (Agent 
Building and 
Learning 
Environment)  

Building intelligent agents 
using machine learning and 
reasoning 

Able Rule Language 
(ARL) 

OS/2; Windows 95; Windows 
98; Windows NT; Java 2 
JVM) N/A N/A 

AgentBuilder  
General purpose multi-agent 
systems 

Knowledge Query and 
Manipulation Language 
(KQML); Java; C; C++ 

Any platform with a Java 
Virtual Machine N/A N/A 

AnyLogic 
Agent-based general purpose; 
distributed simulations 

Java; UML-RT (UML for 
real time) 

Applets and Java Virtual 
Machine  N/A Yes 

Ascape  
General-purpose agent-based 
models. Java 

Windows; Macintosh; Unix; 
Linux; web N/A N/A 

Brahms 

Multi-agent environment for 
simulating people's activity and 
situated behavior (location, 
artifacts, communication, etc.). 
Used for modeling and 
simulating work practice in 
organizational processes. 

The BVM (Brahms Virtual 
Machine) is a mult-agent 
discrete-event engine, 
running each agent as a 
separate event-based 
Java thread.Brahms and 
Java agents can interact 
together easily.  

Windows 2000; Windows XP; 
Linux; Sparc/Intel Solaris; and 
Mac OS X 

Yes, agents 
use 
Communica
tive Acts 
objects to 
send FIPA 
messages. 

Yes: 
Hierarchical 
user 
defined 
objects that 
can have 
attributes 
represent 
coordinate, 
etc. 

Breve 

Building 3D simulations of 
multi-agent systems and 
artificial life. 

Simple Interpreted object 
oriented language called 
Steve; agent behaviors 
can be written in python 

Mac OS X; Linux; and 
Windows N/A N/A 

JADE Distributed applications Java Any Java Platform Yes N/A 
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composed of autonomous 
entities 

JCA-Sim 
Cellular automata; General 
purpose simulator 

Java; Cellular Description 
Language (CDL) (for input 
to simulation) Any Java Platform N/A N/A 

JESS 
Rule engine and scripting 
environment 

Java/Jess/JessML 
(declarative xml rule 
language) Java Virtual Machine N/A N/A 

MAML (Multi-
Agent Modeling 
Language) 

Social science; domain 
specific programming 
language for developing agent 
based models 

MAML language; C; visual 
programming interface PC; Linux N/A N/A 

MASON 

General purpose; social 
complexity, physical modeling, 
abstract modeling, AI/machine 
learning Java 

Any Java Platform (1.3 or 
higher) N/A Yes 

MASS (Multi-
Agent Simulation 
Suit)  

General purpose, distributed 
simulations, participatory 
simulations. 

FABLES (Functional 
Agent-based Language 
for Simulations); Java; it is 
possible to run Repast 
and NetLogo simulations 
too. 

Any OS with Java 1.5, tested 
for Windows, MacOSX, Linux No No 

Repast Social sciences 

Java (RepastS, RepastJ); 
Python (RepastPy); Visual 
Basic, .Net, C++, J#, C# 
(Repast.net) 

Java version 1.4, although a 
1.3 version for Mac OS X is 
available. To run the 
demonstration simulations, 
you'll need a Java Runtime 
Environment (RepastS, 
RepastJ); platform 
independent (RepastPy); 
Windows (Repast.net) N/A Yes 

SDML (Strictly Multi-agent systems (with Smalltalk release 5i.2 Windows 3.1; Windows 95; N/A N/A 
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(Source: amended from http://en.wikipedia.org/wiki/Comparison_of_agent-based_modeling_software) 

Declarative 
Modeling 
Language) 

limited rationality) Non-Commercial Widows 98; Windows 2000; 
Windows NT; Linux; Intel; 
PowerMac; Unix; 
ADUX/AIX/HPUX/ SGI/Solaris 

SEAS (System 
Effectiveness 
Analysis 
Simulation)  

The US Air Force's Multi-Agent 
Theater Operations Simulation 

Tactical Programming 
Language (TPL) 

32-bit and 64-bit Windows 
2000/XP/Vista/7 N/A N/A 

SeSAm (Shell for 
Simulated Agent 
Systems) (fully 
integrated 
graphical 
simulation 
environment) 

General purpose multi domain 
(agent based); research, 
teaching, resources, graph 
theory 

Simulation compiled from 
visual specification; Visual 
programming 

Java 5.0 or better; Windows; 
Linux; Mac OS X 

Plugin 
available 

Raster- and 
Vector-GIS 
as spatial 
representati
on, ESRI-
Arcview  

Jade’s sim++ 

Parallel simulation; Applied 
simulations; network planning; 
electronic CAD; real time 
communication simulation C++ 

Available for Meiko and BBN 
multi-computer systems and 
can be used on a network 
with Sun3, Sun 4, and HP 
9000 workstations N/A N/A 

JIAC General purpose Java Any Java Platform Yes N/A 
Spatial Modeling 
Environment 
(SME)  

Ecological economic; 
Ecoystems modeling 

No knowledge of 
computer programming 
required Unix N/A N/A 

Swarm General purpose agent based Java; Objective-C Windows; Linux; Mac OS X N/A N/A 

VisualBots  
Multi-agent simulator in 
Microsoft Excel Visual Basic Windows N/A Yes 

ZEUS  

Rules engine and scripting 
environment; Distributed multi-
agent simulations 

Visual editors and code 
generators 

Windows 95; Windows 98; 
Windows NT; Windows 2000; 
Windows XP; Linux; BSD; 
UNIX-like OSes; Solaris Yes N/A 
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APPENDIX F: THE AGENT KNOWLEDGE ACQUSITION, THE 
LOG FILE FOR THE WALKER DATA  

 
 

DF: New File Found in dulaFolder1 in Server IP 127.0.0.1 
DF:  Data unknown process and strategy to be analysed 
DF: Analysis log is being used to speed up variogram development 
process 
DF: Data size too large 
DF: data Split 
DF: Data subsets are stored for separate use 
DF: 3 clusters found 
DF: Data archived and stored to memory 
Agent Data Analyser initiated 
DA: New data received from DataFinder 
DA: Checking for trends 
DA: Timeout-error occur during trend analysis due to algorithms 
unavailable 
DA: No trend in data 
DA: Data archived and stored to memory 
Agent IntegrityChecker initiated 
IC: Data has been sorted in ascending order for easy analysis 
IC: Suggested technique for this data is robust 
IC: Data that were determined erroneous has been removed and 
saved in file err.dat for expert opinionIC: 3 Outlier found 
IC: 3 Outlier found 
IC: Saved on file name outlier1.dat 
IC: Saved on file name outlier2.dat 
IC: Saved on file name outlier3.dat 
IC: Failed and aborted 
-IC: Data clean and integrity confirmed 
IC: Data archived and stored to memory 
Agent Sampler initiated 
S: Dataset large and has been sampled affectively 
S: No enough data for efficient modeling 
S: Sampling strategy used with 124 datum being held (inclusive) 
S: Sampling strategy used with 250 datum being held (inclusive) 
S: Sampling strategy used with 353 datum being held (inclusive) 
S: 353 data ready for modeling 
S: Data archived and stored to memory 
Agent MathematicalModeller initiated 
MM: Experimental Variogram created for Data err1.dat 
MM: Experimental Variogram created for Data Sample1.dat 
MM: Experimental Variogram created for Data Sample2.dat 
MM: Experimental Variogram created for Data Sample3.dat 
MM: Experimental Variogram created for Data Walker.dat at 0 
degree 
MM: Experimental Variogram created for Data Walker.dat at 45 
degree 
MM: Experimental Variogram created for Data Walker.dat at 90 
degree 
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MM: Experimental Variogram created for Data Walker.dat at 135 
degree 
MM Scale of 2 is determined 
MM: Lag of 10 is determined 
MM: Data archived and stored to memory 
Agent StrategyComperer initiated 
SC: Model of created variograms (sample) results have been 
compared SC: Model values at 4/10 
-SC: Failed and aborted 
SC: Initiate Dynamic binding 
SC: User reinitiated Agent DataAnalysis 
SC: Model values at 9/10 
-SC: Pass 
SC: Data archived and stored to memory 
Agent ModelFitter initiated 
MF: Examining defined lag and scale 
MF: Gaussian model applied 
-MF: Spherical model applied 
MF: Krige determine good fit 
-MF: Kriged data too large require extra resources for 
processing, data saved on krig1.dat 
MF: Cross validation pass, data saved on cross1.dat 
-MF: Cross validation fail, data saved on cross1.dat 
MF: Goodness of fit determined, pass 
MF: Goodness of fit determined, fail 
MF: bad fit, refit 
MF: Use data for graphics 
MF: Data archived and stored to memory 
 
From each agent termination @@Process has taken 09:23 
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