42 research outputs found

    Selected Works in Bioinformatics

    Get PDF
    This book consists of nine chapters covering a variety of bioinformatics subjects, ranging from database resources for protein allergens, unravelling genetic determinants of complex disorders, characterization and prediction of regulatory motifs, computational methods for identifying the best classifiers and key disease genes in large-scale transcriptomic and proteomic experiments, functional characterization of inherently unfolded proteins/regions, protein interaction networks and flexible protein-protein docking. The computational algorithms are in general presented in a way that is accessible to advanced undergraduate students, graduate students and researchers in molecular biology and genetics. The book should also serve as stepping stones for mathematicians, biostatisticians, and computational scientists to cross their academic boundaries into the dynamic and ever-expanding field of bioinformatics

    Exploring the Danish Diseasome

    Get PDF

    Use of Text Data in Identifying and Prioritizing Potential Drug Repositioning Candidates

    Get PDF
    New drug development costs between 500 million and 2 billion dollars and takes 10-15 years, with a success rate of less than 10%. Drug repurposing (defined as discovering new indications for existing drugs) could play a significant role in drug development, especially considering the declining success rates of developing novel drugs. In the period 2007-2009, drug repurposing led to the launching of 30-40% of new drugs. Typically, new indications for existing medications are identified by accident. However, new technologies and a large number of available resources enable the development of systematic approaches to identify and validate drug-repurposing candidates with significantly lower cost. A variety of resources have been utilized to identify novel drug repurposing candidates such as biomedical literature, clinical notes, and genetic data. In this dissertation, we focused on using text data in identifying and prioritizing drug repositioning candidates and conducted five studies. In the first study, we aimed to assess the feasibility of using patient reviews from social media to identify potential candidates for drug repurposing. We retrieved patient reviews of 180 medications from an online forum, WebMD. Using dictionary-based and machine learning approaches, we identified disease names in the reviews. Several publicly available resources were used to exclude comments containing known indications and adverse drug effects. After manually reviewing some of the remaining comments, we implemented a rule-based system to identify beneficial effects. The dictionary-based system and machine learning system identified 2178 and 6171 disease names respectively in 64,616 patient comments. We provided a list of 10 common patterns that patients used to report any beneficial effects or uses of medication. After manually reviewing the comments tagged by our rule-based system, we identified five potential drug repurposing candidates. To our knowledge, this was the first study to consider using social media data to identify drug-repurposing candidates. We found that even a rule-based system, with a limited number of rules, could identify beneficial effect mentions in the comments of patients. Our preliminary study shows that social media has the potential to be used in drug repurposing. In the second study, we investigated the significance of extracting information from multiple sentences specifically in the context of drug-disease relation discovery. We used multiple resources such as Semantic Medline, a literature-based resource, and Medline search (for filtering spurious results) and inferred 8,772 potential drug-disease pairs. Our analysis revealed that 6,450 (73.5%) of the 8,772 potential drug-disease relations did not occur in a single sentence. Moreover, only 537 of the drug-disease pairs matched the curated gold standard in the Comparative Toxicogenomics Database (CTD), a trusted resource for drug-disease relations. Among the 537, nearly 75% (407) of the drug-disease pairs occur in multiple sentences. Our analysis revealed that the drug-disease pairs inferred from Semantic Medline or retrieved from CTD could be extracted from multiple sentences in the literature. This highlights the significance of the need for discourse-level analysis in extracting the relations from biomedical literature. In the third and fourth study, we focused on prioritizing drug repositioning candidates extracted from biomedical literature which we refer to as Literature-Based Discovery (LBD). In the third study, we used drug-gene and gene-disease semantic predications extracted from Medline abstracts to generate a list of potential drug-disease pairs. We further ranked the generated pairs, by assigning scores based on the predicates that qualify drug-gene and gene-disease relationships. On comparing the top-ranked drug-disease pairs against the Comparative Toxicogenomics Database, we found that a significant percentage of top-ranked pairs appeared in CTD. Co-occurrence of these high-ranked pairs in Medline abstracts is then used to improve the rankings of the inferred drug-disease relations. Finally, manual evaluation of the top-ten pairs ranked by our approach revealed that nine of them have good potential for biological significance based on expert judgment. In the fourth study, we proposed a method, utilizing information surrounding causal findings, to prioritize discoveries generated by LBD systems. We focused on discovering drug-disease relations, which have the potential to identify drug repositioning candidates or adverse drug reactions. Our LBD system used drug-gene and gene-disease semantic predication in SemMedDB as causal findings and Swanson’s ABC model to generate potential drug-disease relations. Using sentences, as a source of causal findings, our ranking method trained a binary classifier to classify generated drug-disease relations into desired classes. We trained and tested our classifier for three different purposes: a) drug repositioning b) adverse drug-event detection and c) drug-disease relation detection. The classifier obtained 0.78, 0.86, and 0.83 F-measures respectively for these tasks. The number of causal findings of each hypothesis, which were classified as positive by the classifier, is the main metric for ranking hypotheses in the proposed method. To evaluate the ranking method, we counted and compared the number of true relations in the top 100 pairs, ranked by our method and one of the previous methods. Out of 181 true relations in the test dataset, the proposed method ranked 20 of them in the top 100 relations while this number was 13 for the other method. In the last study, we used biomedical literature and clinical trials in ranking potential drug repositioning candidates identified by Phenome-Wide Association Studies (PheWAS). Unlike previous approaches, in this study, we did not limit our method to LBD. First, we generated a list of potential drug repositioning candidates using PheWAS. We retrieved 212,851 gene-disease associations from PheWAS catalog and 14,169 gene-drug relationships from DrugBank. Following Swanson’s model, we generated 52,966 potential drug repositioning candidates. Then, we developed an information retrieval system to retrieve any evidence of those candidates co-occurring in the biomedical literature and clinical trials. We identified nearly 14,800 drug-disease pairs with some evidence of support. In addition, we identified more than 38,000 novel candidates for re-purposing, encompassing hundreds of different disease states and over 1,000 individual medications. We anticipate that these results will be highly useful for hypothesis generation in the field of drug repurposing

    Preface

    Get PDF

    Systematising and scaling literature curation for genetically determined developmental disorders

    Get PDF
    The widespread availability of genomic sequencing has transformed the diagnosis of genetically-determined developmental disorders (GDD). However, this type of test often generates a number of genetic variants, which have to be reviewed and related back to the clinical features (phenotype) of the individual being tested. This frequently entails a time-consuming review of the peer-reviewed literature to look for case reports describing variants in the gene(s) of interest. This is particularly true for newly described and/or very rare disorders not covered in phenotype databases. Therefore, there is a need for scalable, automated literature curation to increase the efficiency of this process. This should lead to improvements in the speed in which diagnosis is made, and an increase in the number of individuals who are diagnosed through genomic testing. Phenotypic data in case reports/case series is not usually recorded in a standardised, computationally-tractable format. Plain text descriptions of similar clinical features may be recorded in several different ways. For example, a technical term such as ‘hypertelorism’, may be recorded as its synonym ‘widely spaced eyes’. In addition, case reports are found across a wide range of journals, with different structures and file formats for each publication. The Human Phenotype Ontology (HPO) was developed to store phenotypic data in a computationally-accessible format. Several initiatives have been developed to link diseases to phenotype data, in the form of HPO terms. However, these rely on manual expert curation and therefore are not inherently scalable, and cannot be updated automatically. Methods of extracting phenotype data from text at scale developed to date have relied on abstracts or open access papers. At the time of writing, Europe PubMed Central (EPMC, https://europepmc.org/) contained approximately 39.5 million articles, of which only 3.8 million were open access. Therefore, there is likely a significant volume of phenotypic data which has not been used previously at scale, due to difficulties accessing non-open access manuscripts. In this thesis, I present a method for literature curation which can utilise all relevant published full text through a newly developed package which can download almost all manuscripts licenced by a university or other institution. This is scalable to the full spectrum of GDD. Using manuscripts identified through manual literature review, I use a full text download pipeline and NLP (natural language processing) based methods to generate disease models. These are comprised of HPO terms weighted according to their frequency in the literature. I demonstrate iterative refinement of these models, and use a custom annotated corpus of 50 papers to show the text mining process has high precision and recall. I demonstrate that these models clinically reflect true disease expressivity, as defined by manual comparison with expert literature reviews, for three well-characterised GDD. I compare these disease models to those in the most commonly used genetic disease phenotype databases. I show that the automated disease models have increased depth of phenotyping, i.e. there are more terms than those which are manually-generated. I show that, in comparison to ‘real life’ prospectively gathered phenotypic data, automated disease models outperform existing phenotype databases in predicting diagnosis, as defined by increased area under the curve (by 0.05 and 0.08 using different similarity measures) on ROC curve plots. I present a method for automated PubMed search at scale, to use as input for disease model generation. I annotated a corpus of 6500 abstracts. Using this corpus I show a high precision (up to 0.80) and recall (up to 1.00) for machine learning classifiers used to identify manuscripts relevant to GDD. These use hand-picked domain-specific features, for example utilising specific MeSH terms. This method can be used to scale automated literature curation to the full spectrum of GDD. I also present an analysis of the phenotypic terms used in one year of GDD-relevant papers in a prominent journal. This shows that use of supplemental data and parsing clinical report sections from manuscripts is likely to result in more patient-specific phenotype extraction in future. In summary, I present a method for automated curation of full text from the peer-reviewed literature in the context of GDD. I demonstrate that this method is robust, reflects clinical disease expressivity, outperforms existing manual literature curation, and is scalable. Applying this process to clinical testing in future should improve the efficiency and accuracy of diagnosis

    The value of semantics in biomedical knowledge graphs

    Get PDF
    Knowledge graphs use a graph-based data model to represent knowledge of the real world. They consist of nodes, which represent entities of interest such as diseases or proteins, and edges, which represent potentially different relations between these entities. Semantic properties can be attached to these nodes and edges, indicating the classes of entities they represent (e.g. gene, disease), the predicates that indicate the types of relationships between the nodes (e.g. stimulates, treats), and provenance that provides references to the sources of these relationships.Modelling knowledge as a graph emphasizes the interrelationships between the entities, making knowledge graphs a useful tool for performing computational analyses for domains in which complex interactions and sequences of events exist, such as biomedicine. Semantic properties provide additional information and are assumed to benefit such computational analyses but the added value of these properties has not yet been extensively investigated.This thesis therefore develops and compares computational methods that use these properties, and applies them to biomedical tasks. These are: biomarker identification, drug repurposing, drug efficacy screening, identifying disease trajectories, and identifying genes targeted by disease-associated SNPs located on the non-coding part of the genome.In general, we find that methods which use concept classes, predicates, or provenance improves achieve a superior performance over methods that do not use them. We thereby demonstrate the added value of these semantic properties for computational analyses performed on biomedical knowledge graphs.<br/

    MilkMine: text-mining, milk proteins and hypothesis generation

    Get PDF
    The vast and increasing volume of biological data can make it a struggle for scientists to keep up-to-date with the latest research and as a consequence they may miss significant biological links, particularly those that extend outwith their own area of expertise. MilkMine is an attempt to provide a single informatics resource to help milk protein scientists mine this information mountain more effectively, by integrating standard experimental data types with data generated by emerging text-mining techniques. A method was initially developed to identify milk-related terminology from peer-reviewed biological literature and this was used to complement the Unified Medical Language System (UMLS), a large thesaurus of biological concepts, their variant names and their types. The resultant enriched ontology was then mapped to the free text of peer-reviewed biological literature using the MMTx program producing a database of semantically enriched sentences. A co-occurrence relation extraction algorithm was written to identify relationships between milk proteins and peptides, and other biological concepts, such as diseases or biological processes. Using these literature relation sets new hypotheses can be generated using the basic principle that if “A is linked to B”, and if “B is linked to C” then we can infer an association between A and C. Filtering and downstream processing of the many generated relationships promotes significant interactions. These literature relations and hypotheses are integrated with biological data into the MilkMine database. The MilkMine database is built upon on a generic data warehousing system, InterMine. This tool enabled the integration of traditional data types, such as protein sequence or structural data, from a variety of sources (e.g. UniProt). However, the standard InterMine model was also extended by the author to include other data sources (e.g. the Protein Data Bank) and to incorporate the output of the text-mining algorithm. This integration of otherwise disparate information allows more complex querying of the data, across many data types. For example, protein sequences are mapped to instances of the names, synonyms or symbols of the protein in text, therefore a raw fragment of amino acid sequence (e.g. a particular binding region) can be used to search the MilkMine database for literature information as well as the interactions and hypotheses of those proteins that contain the sequence. The MilkMine resource is accessible online (www.bioinformatics.ed.ac.uk/milkmine) through a professional level query interface offering many features such as an interactive query builder, standard ready-to-run queries, bulk downloads and the ability to store user preferences and query histories. Evaluation of MilkMine showed that the text-mining algorithm, as well as the data integration, could provide the user with interesting connections for further study

    Development Of Database And Computational Methods For Disease Detection And Drug Discovery

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore