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Abstract 
 

The widespread availability of genomic sequencing has transformed the 

diagnosis of genetically-determined developmental disorders (GDD). 

However, this type of test often generates a number of genetic variants, 

which have to be reviewed and related back to the clinical features 

(phenotype) of the individual being tested. This frequently entails a time-

consuming review of the peer-reviewed literature to look for case reports 

describing variants in the gene(s) of interest. This is particularly true for newly 

described and/or very rare disorders not covered in phenotype databases. 

Therefore, there is a need for scalable, automated literature curation to 

increase the efficiency of this process. This should lead to improvements in 

the speed in which diagnosis is made, and an increase in the number of 

individuals who are diagnosed through genomic testing.  

 

Phenotypic data in case reports/case series is not usually recorded in a 

standardised, computationally-tractable format. Plain text descriptions of 

similar clinical features may be recorded in several different ways. For 

example, a technical term such as ‘hypertelorism’, may be recorded as its 

synonym ‘widely spaced eyes’. In addition, case reports are found across a 

wide range of journals, with different structures and file formats for each 

publication.  

 

The Human Phenotype Ontology (HPO) was developed to store phenotypic 

data in a computationally-accessible format. Several initiatives have been 

developed to link diseases to phenotype data, in the form of HPO terms. 

However, these rely on manual expert curation and therefore are not 

inherently scalable, and cannot be updated automatically.  

 

Methods of extracting phenotype data from text at scale developed to date 

have relied on abstracts or open access papers. At the time of writing, 

Europe PubMed Central (EPMC, https://europepmc.org/) contained 
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approximately 39.5 million articles, of which only 3.8 million were open 

access. Therefore, there is likely a significant volume of phenotypic data 

which has not been used previously at scale, due to difficulties accessing 

non-open access manuscripts.  

 

In this thesis, I present a method for literature curation which can utilise all 

relevant published full text through a newly developed package which can 

download almost all manuscripts licenced by a university or other institution. 

This is scalable to the full spectrum of GDD. Using manuscripts identified 

through manual literature review, I use a full text download pipeline and NLP 

(natural language processing) based methods to generate disease models. 

These are comprised of HPO terms weighted according to their frequency in 

the literature. I demonstrate iterative refinement of these models, and use a 

custom annotated corpus of 50 papers to show the text mining process has 

high precision and recall. I demonstrate that these models clinically reflect 

true disease expressivity, as defined by manual comparison with expert 

literature reviews, for three well-characterised GDD.  

 

I compare these disease models to those in the most commonly used genetic 

disease phenotype databases. I show that the automated disease models 

have increased depth of phenotyping, i.e. there are more terms than those 

which are manually-generated. I show that, in comparison to ‘real life’ 

prospectively gathered phenotypic data, automated disease models 

outperform existing phenotype databases in predicting diagnosis, as defined 

by increased area under the curve (by 0.05 and 0.08 using different similarity 

measures) on ROC curve plots. 

 

I present a method for automated PubMed search at scale, to use as input 

for disease model generation. I annotated a corpus of 6500 abstracts. Using 

this corpus I show a high precision (up to 0.80) and recall (up to 1.00) for 

machine learning classifiers used to identify manuscripts relevant to GDD. 

These use hand-picked domain-specific features, for example utilising 
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specific MeSH terms. This method can be used to scale automated literature 

curation to the full spectrum of GDD. I also present an analysis of the 

phenotypic terms used in one year of GDD-relevant papers in a prominent 

journal. This shows that use of supplemental data and parsing clinical report 

sections from manuscripts is likely to result in more patient-specific 

phenotype extraction in future.  

 

In summary, I present a method for automated curation of full text from the 

peer-reviewed literature in the context of GDD. I demonstrate that this 

method is robust, reflects clinical disease expressivity, outperforms existing 

manual literature curation, and is scalable. Applying this process to clinical 

testing in future should improve the efficiency and accuracy of diagnosis. 
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Lay Summary 
 

Genetic testing is used to diagnose rare disorders which present before or 

soon after birth (developmental disorders or DD). Tests which look at all of an 

individual’s genetic material (genome-wide testing) have become widely 

available and have increased the number of diagnoses that can be made for 

DD. However, a diagnosis is not made in a significant proportion of cases. 

One of the reasons for this may be that the large amount of data from a 

single genome-wide test is difficult to analyse. Locating a diagnostic genetic 

change (variant) in a genome-wide test file may be likened to finding the 

proverbial needle in a haystack. There are various methods used to narrow 

down the data which is analysed, for example excluding variants which are 

common in the general population. However, this still often leaves several 

candidate gene variants which may be the cause of an individual’s condition. 

These then need to be analysed in relation to the person’s phenotype. The 

phenotype is all physical characteristics which may be related to a genetic 

disorder, for example ‘absent kidney’, ‘extra fingers’. To do this, a genetic 

specialist reviews case reports relevant to the candidate variants (i.e. 

describing individuals with variants in the same gene) from the scientific 

literature, to see if the phenotype in these relates to the phenotype in the 

individual being tested. This is a time-consuming process. To aid this, a 

number of gene-phenotype databases have been developed. However, they 

still rely on biocurators manually reviewing the scientific literature, which is 

impractical to scale up to the thousands of described DD. In this thesis, I 

present a method to automate and scale up literature curation to cover the 

full spectrum of DD, which should increase the rate at which diagnoses are 

made using genome-wide testing in future.  

 

Using papers hand-selected from the literature, I show that disease models 

can be produced using text mining techniques. These models use 

standardised vocabulary so they can be used in computational applications, 

and they are weighted to show which phenotypic features are more common 
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for a condition. I test the processes used to generate these against manually 

annotated data to show that these are robust and high performance. I also 

test these models against those developed using manual curation. I show 

that models from the automated method are better at predicting a diagnosis 

using phenotypic data than those which are manually generated. I show that 

the structure of manuscripts describing DD may be utilised for separating out 

clinical information. I demonstrate that machine learning may be used to 

search the scientific literature to identify input papers for generating disease 

models.  

 

In summary, I demonstrate a method for scalable automated literature 

curation. This should be useful for improving diagnostic rates for DD in future. 
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Chapter 1 Introduction 
 

1.1 Motivation 
 

1.1.1 Traditional approach to diagnosis in genetic disease 
 

Genetically-determined developmental disorders (GDD) are conditions which 

arise during embryogenesis or early development. These result from 

functionally deleterious genetic copy number variants (CNV) or single 

nucleotide variants (SNV -otherwise defined as mutations) primarily 

responsible for some or all of the clinical features under investigation.  

 

Diagnosis of GDD has traditionally focused on the recognition of a 

constellation of phenotypic features in an individual which may be associated 

with a particular syndrome. This analysis would then direct genetic testing 

towards a given gene or set of genes. For example, an individual with widely 

spaced eyes (hypertelorism), bulbous nose, iris coloboma (gap in the 

structure of the iris) and frontal pachygyria (thickened area of cerebral cortex) 

may have Baraitser-Winter Cerebro-Fronto-Facial syndrome (1). Genetic 

testing will likely identify a mutation in the ACTB or ACTG1 genes (1).  

 

1.1.2 Application of genome-wide sequencing 
 

Diagnostic innovation in this area of medicine has largely been driven by the 

development of genome-wide sequencing. This was initially mostly in the 

form of exome (all of an individual’s protein-coding genes) sequencing (2,3), 

but whole genome sequencing is increasingly being used in clinical and 

research settings (4). This method has resulted in significant diagnostic yield, 

with the rate of diagnosis being 24-68% (mean 31%) according to one meta-

analysis (5).  
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However, the genotype-driven approach has limitations. The volume of data 

generated necessitates informatic filtering approaches to narrow down the 

number of variants (usually SNV in the context of genome-wide sequencing) 

subject to detailed analysis. This may include eliminating common variants, 

and prioritising those which have occurred de novo (not present in either 

parent), as these are known to be enriched in GDD (6).  

 

It is not usually possible to make a diagnosis based on the variants identified 

through this process alone. This is because variation with plausible disease-

linked features is also present in the healthy population. For example, an 

individual will carry, on average, 200 rare SNV (allele frequency <0.1%) and 

around 27 SNV which have not been found in any other person (7). 

Additionally, the rate of de novo SNV is approximately 74 per generation (8). 

 

1.1.3 Limitations of genotype-first approach 
 

Given the limitations of bioinformatic filtering, candidate variants identified 

through diagnostic genomic sequencing often require detailed clinical review. 

GDD display an extreme degree of locus and allelic heterogeneity, with 

thousands of genes linked to these types of conditions (9). This means it is 

not usually possible to assess candidate variants without searching for, and 

evaluating, a number of case reports in the peer-reviewed literature.  

 

This search and evaluation process is to determine if the phenotypic features 

of an individual might fit with those reported in association with variation in a 

particular gene (10). This may need to be repeated for many different genes, 

which is time-consuming and not always feasible in a busy clinical setting. 

Furthermore, technical limitations mean not all pathogenic variants are 

detected through genomic sequencing. In particular, there are a number of 

reports of SNV which have been missed through exome sequencing (11,12). 

Whilst whole genome sequencing may offer improved performance, 

coverage is still incomplete (4).  
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1.1.4 Phenotyping and genome-wide sequencing 
 

The traditional diagnostic method, using subjective assessment of phenotypic 

similarity to compare an individual patient and those described in case 

reports/series, itself has limitations. For example, the increased diagnostic 

rate associated with genomic sequencing has resulted in phenotypic 

expansion. This may associate novel clinical features with well characterised 

disorders (13,14). Milder presentations of disease than previously recognized 

may be identified (15,16). Additionally, many disorders may be associated 

with apparently non-specific phenotypes such as intellectual disability (17).  

 

1.1.5 Automated literature curation to improve diagnosis 
 

The current molecular diagnostic rate of 24-68% (mean 31%) (5) of genome-

wide sequencing means a diagnosis is not made in many cases of suspected 

GDD. A phenotype-driven approach to genomic diagnostics is likely to 

improve these figures. To address this, there is a need for a scalable, 

automated approach to extraction and analysis of phenotypic data from the 

peer-reviewed literature, which is the focus of this work. This should allow for:  

 

1) Enhanced efficiency of diagnosis by increasing the speed at which 

candidate variants can be clinically reviewed. 

2) Improvement in diagnostic rate through prioritisation of variants which fit 

the clinical phenotype. This may include integration with bioinformatic filtering 

pipelines and focused re-analysis of reduced coverage areas in genomic 

sequencing. 

3) Deeper phenotyping of disorders than is possible through manual literature 

review, potentially allowing for subtle disease-specific/discriminant features to 

be recognised. This may enable delineation and diagnosis of GDD currently 

thought to present in a non-specific manner.  
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Several different components need to be combined to create a pipeline for 

automated literature curation, such as scalable identification and download of 

relevant manuscripts, and accurate phenotype extraction from text, using a 

standardised vocabulary. Phenotype models created using this pipeline need 

to be tested against the current widely used data standards, particularly to 

determine if they may be used to replace manual literature curation.  

 

1.1.6 Principle hypothesis of this thesis 
 

Following on from the above, the central hypothesis of this thesis is:  

 

Development of automated literature curation may allow for accurate 

phenotypic models to be constructed for GDD, in a similar manner to manual 

curation.  

 

An automated approach would be easily scalable, straightforward to update 

and provide computationally tractable data. It may also allow for a more 

comprehensive overview of the phenotypic spectrum of a given GDD than is 

feasible using manual curation.  

 

In the subsequent sections, I review each of the components required to 

develop automated literature curation for GDD. This will inform the 

development of automated curation in subsequent chapters.   

 

1.2 Human phenotype ontology 
 

1.2.1 Standardisation of disease descriptors 
 

Phenotypic data in the peer-reviewed literature is not usually recorded in a 

computationally-tractable format. Plain text descriptions of similar clinical 

features may be recorded in several different ways, depending on the 

preference of the recording clinician or researcher. For example, a technical 
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term such as ‘hypertelorism’, may be recorded as its synonym ‘widely spaced 

eyes’. Automated literature curation consequently requires the use of a 

standardised vocabulary to define phenotypic features.  

 

Previous work in this area includes the London Dysmorphology Database, 

which used a tree-based structure to define term relationships (18). However, 

this did not define links between all terms, and could not incorporate multiple 

links to terms.  

 

The Human Phenotype Ontology (HPO) is a standardised, machine-readable 

vocabulary covering a wide spectrum of human disease (19). It can define 

relationships between terms in detail using the ontology structure. The HPO 

has become the de facto standard for phenotyping in GDD. Therefore, it is 

used throughout this work, and will be reviewed in more detail here.  

 

1.2.2 Ontology definition 
 

The term ‘ontology’ has been widely used across different disciplines, 

including philosophy and many scientific domains (20). The definition of an 

ontology has correspondingly varied. For the purposes of this work, an 

ontology is defined as the explicit representation of knowledge within a 

particular domain (21). An ontology consists of concepts described by a 

standardised vocabulary, any attributes these may have, and the 

relationships between them (19).  

 

1.2.3 Classes in human phenotype ontology 
 

The HPO consists of concepts, or classes, which are text descriptors of 

clinical abnormalities. These are known as HPO terms. Each term is given an 

identifier (HP ID), which is unique and persistent across versions of the 

ontology. A term may have one or more synonyms, recording different words 
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or phrases used to describe the same abnormality, which are included under 

the same HP ID (22).  

 

In the HPO, synonyms may include both biomedical technical descriptors and 

‘layperson’ phrases in common usage. Cross-references to equivalent or 

closely related classes in other vocabularies or ontologies are often included, 

for example to Unified Medical Language System (UMLS) biomedical 

concepts (23). A term may also include a more detailed text definition, for 

example the term ‘Hip dislocation’ is defined as ‘Displacement of the femur 

from its normal location in the hip joint’ (22). An example of an HPO term is 

given in Figure 1-1.  

 

Updates to the HPO may include defining deprecated terms as obsolete and 

removing them (although they remain in the ontology data for reference and 

may be mapped to other terms), or merging terms deemed to have similar 

meaning.  

 

 
Figure 1-1. Example of class in Human Phenotype Ontology (22). Drawn 
from data in hp.obo file (version 1.2), downloaded on 08/10/2021. 
UMLS:C0019555 – Unified Medical Language System (UMLS) biomedical 
concept (23); MSH:D006618 – MeSH (Medical Subject Headings) descriptor 
(23).  
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1.2.4 Structure of the human phenotype ontology 
 

The HPO is a directed acyclic graph. This means it contains directional 

relationships between terms in a tiered structure, all derived from a root node 

(22). This directionality of relationships means it is possible to travel ‘up’ or 

‘down’ the ontology, and refer to ‘parents’/’ancestors’ or 

‘children’/’descendants’ of terms.  

 

Figure 1-2. Example of all terms up to root for ‘Congenital hip dislocation’ 
in the HPO. Note all connections are directional. If a disease is annotated 
with a term, it will also be implicitly annotated with that term’s ancestors. 
For example, a disease annotated with ‘Congenital hip dislocation’ will 
also be annotated with ‘Abnormality of the hips’ and ‘Abnormality of the 
joints’ and all other terms shown. Adapted from Robinson et al. (19).  
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Terms in the ontology may also be referred to by ‘level’ or ‘depth’, depending 

on how many ancestors a term has. Parent terms define broader concepts 

than more specific child terms. A term may have more than one parent. 

Sibling terms (those with the same parents) are not connected, meaning 

there are no cyclic relations between terms, hence the definition of HPO as 

acyclic.  

 

Connections between terms in HPO are by ‘is-a’ (subclass-of) relationships 

e.g. ‘Broad eyebrow’ is-a ‘Abnormal eyebrow morphology’. Is-a connectors 

are transitive, which means annotated terms are inherited through all 

possible paths up to the root (22). An example of a term and its parents in the 

HPO is given in Error! Reference source not found..  
 

The root term of the HPO is ‘All’, however in practice the ontology is divided 

into five subontologies, each with their own root term. These are ‘Phenotypic 

abnormality’, ‘Mode of inheritance’, ‘Clinical modifier’, ‘Clinical course’ and 

‘Frequency’. Terms with the root ‘Phenotypic abnormality’ form the bulk of the 

HPO, and are used in this work.  

 

1.2.5 Limitations of the human phenotype ontology 
 

The HPO has been successfully used to describe the phenotype of GDD in 

many studies (24–26), and has become the de facto standard for recording 

phenotypic data in this disease domain. However, there are limitations to its 

use, both in clinical diagnostic/research settings and in scalable disease 

analyses.  

 

The same phenotypic feature for a given disease may be described in the 

free text of a manuscript using different words or phrases as mentioned in 

section 1.2.1. However, the same phenotypic feature may be recorded 

differently through manual input even when the HPO is used. For example, 

an individual may be described as having ‘Focal seizure with eyelid 
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myoclonia’ or ‘Focal myoclonic seizure’. Whilst the ontology structure may in 

theory mean it is simple to relate these terms – in fact one is a parent of the 

other – information which may be useful in disease discrimination or 

diagnosis is lost.  

 

Furthermore, clinically similar terms may only be related in the ontology by a 

high level, non-specific common ancestor. For example, the terms 

‘Premature closure of fontanelles’ and ‘Craniosynostosis’ have the common 

ancestor ‘Abnormality of skeletal morphology’. Finally, the use of a 

standardised vocabulary inevitably means newly defined phenotypic features 

will not be included. It is straightforward to submit terms to HPO for 

consideration of inclusion (22) to address this. However, in practice the 

process is time consuming. If a phenotypic feature is not available in the 

HPO at the time of recording, this may mean phenotyping of an individual is 

incomplete, or uses non-specific terms.  

 

1.3 Disease-phenotype databases in current usage 
 

1.3.1 Overview of disease-phenotype databases 
 

A number of initiatives have sought to address the challenge of collating and 

synthesising phenotypic data relating to genetic disease, from the peer-

reviewed literature. These utilise HPO terms to describe phenotypic features 

and link them to a specified condition. The manner in which phenotypic data 

is collected and even how a genetic disease is defined differ between the 

databases.  

 

An overview of the most prominent of these databases is given here, and 

their limitations with regard to phenotype data outlined. Automated literature 

curation in this work aims to address some of these shortcomings.  
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1.3.2 Online Mendelian Inheritance in Man 
 

The Online Mendelian Inheritance in Man (OMIM) (27) database evolved 

from a text catalogue of Mendelian disorders. Each entry is defined by a 

stable identifier, known as a MIM number. There are entries for genes, and 

for disease phenotypes. Gene entries are linked to relevant disease 

phenotypes, and each disease is mapped to only one gene.  

 

For each disease entry, the following information is included: disease name 

(and synonyms), MIM number, inheritance pattern, gene/locus (27). There is 

a focus on detailed free text descriptions in the database, including detailed 

descriptions of individual peer-reviewed manuscripts, with full references 

provided. Information from these papers is described under headings 

including ‘Clinical Features’ for phenotypic data and ‘Molecular Genetics’ for 

disease-associated mutations (27).  

 

OMIM also records phenotypic descriptors in a more standardised manner as 

a ‘Clinical Synopsis’. This is a list of HPO terms stratified by body system 

(e.g. ‘head & neck’, ‘respiratory’), together with an inheritance pattern and 

molecular basis (‘caused by mutation in {gene name}’) (27). Diseases are 

mapped to other data sources e.g. Orphanet (28).  

 

OMIM is maintained by manual biocuration at the McKusick-Nathans Institute 

of Genetic Medicine, The Johns Hopkins University School of Medicine, 

Baltimore, USA. The inclusion and curation criteria for OMIM are not publicly 

defined in detail. However, there is a statement on the OMIM website that 

‘priority for inclusion is given to papers that provide significant insight into the 

gene-phenotype relationship, expand our understanding of human biology, or 

contribute to the characterization of a disorder’ (29).  

 

OMIM is primarily accessed through a web interface; the database itself is 

not freely downloadable, although disease-phenotype annotations are 
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available through HPO (22). These consist of a disease with its MIM 

identifier, together with a list of HPO terms. The majority of the terms are not 

weighted, meaning there is no indication how commonly a given phenotypic 

feature is seen in association with a disorder.  

 

1.3.3 Orphanet 
 

Orphanet is an initiative which aims to collate information for rare diseases, 

to improve diagnosis and treatment (28). There are 41 countries in the 

network, coordinated at the French National Institute of Health and Medical 

Research in Paris, France (28). Orphanet offers a number of resources, of 

which the most pertinent to this work is the inventory of rare diseases. An 

entry in this inventory is for a clinical entity, which consists of a disease label 

(and synonyms) with a unique identifier – an ORPHAcode. Inheritance 

pattern, age of onset and mapping to other databases such as OMIM are 

included (27,28).  

 

A free text description of a disease is included, written by a clinical expert, 

with categories including ‘Clinical description’, ‘Etiology’ and ‘Genetic 

counseling’. Orphanet defines a clinical entity as ‘a group of rare disorders, a 

rare disorder or a subtype of disorder’ which means one clinical entity can be 

mapped to multiple genes (28).  

 

Phenotype annotations are provided as ‘Clinical signs and symptoms’, which 

consist of a list of HPO terms. These are uniformly weighted by HPO 

frequency terms, which include ‘Very frequent (present in 80-99% of cases)’, 

‘Frequent (30-79%)’ and ‘Occasional (5-29%)’ (22). Per-individual 

frequencies are not available. Orphanet provides a website which allows for 

download of clinical entity-phenotype data at scale - 

http://www.orphadata.org.  
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1.3.4 DECIPHER 
 

DECIPHER (DatabasE of genomiC variation and Phenotype in Humans 

using Ensembl Resources) is a database – which can be accessed 

interactively via a web interface – of genomic variants (including both SNV 

and CNV) associated with rare disease (30). These variants are uploaded by 

participating clinical genetics and genomics centres, and phenotype 

annotations can be added to the upload in the form of HPO terms.  

 

A number of bioinformatic tools are provided to analyse patient variants, 

including associated phenotype data. For example, a search by gene symbol 

gives a list of patients with variants in the gene. These variants can be 

filtered by consequence, inheritance and pathogenicity. HPO terms present 

in multiple patients are given as a list with the number of patients per term 

shown. It is also possible to see all the HPO terms annotated for a given 

patient variant (30).  

 

DECIPHER does not directly define disease entities, however there is 

gene/disease association information provided, linking to other databases 

such as OMIM (29) and Gene2Phenotype (31). DECIPHER does not allow 

for direct download of any files. However, it is possible to access genomic 

variant and phenotype data through a Data Access Agreement for research 

purposes.  

 

1.3.5 Gene2Phenotype 
 

Gene2Phenotype (G2P) was designed to facilitate diagnostic filtering of 

genome-wide data for SNV (31). The aim of this work – the development of 

automated literature curation – is ultimately designed to enable population of 

G2P entries with enhanced phenotype data. Diseases are defined in G2P 

through the linking of a gene with a disease phenotype, inheritance 

mechanism and mutation consequence. The confidence level of this 
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assertion is provided. Links to papers in the peer-reviewed literature are 

provided as evidence of the association.  

 

Phenotype data is recorded as HPO terms, with no weighting. G2P is curated 

in panels relevant to different disease domains, including cancer, eye and 

skin G2P. The developmental disorders G2P database (DDG2P) is focused 

on GDD. DDG2P is curated by Clinical Geneticists and Clinical Genetic 

Laboratory Scientists. There are over 2000 entries in this database, and it 

has not been possible to comprehensively add phenotypic data to all of them. 

Automated literature curation aims to address this.  

 

1.3.6 Disease definitions and mapping between datasets 
 

Each of the databases described above contains a substantial body of 

knowledge which, in theory, describes the same genetic disease-phenotype 

domain. However, disease entities are not uniformly described across the 

datasets. OMIM defines a disease name based on a phenotype grouping, 

e.g. ‘Generalized epilepsy with febrile seizures plus’ or eponymous syndrome 

e.g. ‘Schuurs-Hoeijmakers Syndrome’ (29). The curators of OMIM explicitly 

do not wish gene symbols to be part of the name for a condition and prefer 

instead to add sequential numbering to define separate diseases e.g. 

‘Intellectual developmental disorder, X-linked 29’ (32).  

 

The phenotype MIM number associated with a disease is stable and avoids 

the issues associated with heterogenous disease name conventions. 

However, the molecular basis of a disease is not clearly defined in OMIM, 

with only gene and inheritance pattern used. For example, disease 

phenotypes associated with SCN1A and an autosomal dominant inheritance 

pattern in OMIM include ‘Developmental and epileptic encephalopathy 6B, 

non-Dravet’, ‘Dravet syndrome’, ‘Febrile seizures, familial, 3A’ and ‘Migraine 

familial hemiplegic, 3’. Detailed review of the free text for each disease entry 

may or may not reveal a different mutation spectrum and underlying 
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molecular mechanism in these cases. For a number of diseases in OMIM, it 

could be argued that multiple entries for the same gene need to be merged, 

as they represent part of the same phenotypic spectrum. For diseases that 

are truly allelic, OMIM does not offer a straightforward way of differentiating 

between them on a molecular basis. 

 

Orphanet structures disease phenotype annotations into a ‘HPO-ORDO 

ontological module’ (HOOM), where ORDO is the Orphanet Rare Disease 

Ontology, which is designed to describe relationships between diseases and 

genes (28). This allows for associations to be made between clinical entities 

and phenotypic abnormality (HPO term), with frequency data and evidence 

for this assertion. However, this does not address the issue of Orphanet 

defining clinical entities as phenotype groupings which may be linked to 

multiple genes as discussed in section 1.3.3 (28). This means diseases 

linked to a unique ORPHAcode identifier do not map exactly to conditions 

associated with MIM numbers.  

 

G2P defines genetic diseases on a molecular basis, with phenotypic 

information associated with inheritance mechanism and mutation 

consequence for a given gene. Therefore, each entry is uniquely mapped to 

a single gene and disease names are not essential, although these are 

provided (31). Disease names in G2P may follow historical convention or an 

OMIM name in many instances. However, newer entries follow the gene-

phenotype dyad suggested by Biesecker et al. e.g. ‘CFTR-related cystic 

fibrosis’ (33). There are no unique identifiers per G2P entry, although these 

may be added in future. G2P entries may differentiate between allelic 

disorders with different mutation consequence e.g. loss of function vs gain of 

function. Allelic diseases with the same mutation consequence are recorded 

as separate entries with a flag ‘restricted repertoire of mutations’, with SNV-

specific information planned to be added.  
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The differences in disease definitions between these datasets, and the 

consequent difficulties mapping diseases between them, have been 

recognised. Several international initiatives have been devised to address 

this issue. The Mondo Disease Ontology defines diseases through semi-

automated merging of multiple source ontologies (34). It gives 1:1 

equivalence mappings across sources, e.g. OMIM and Orphanet (27,28). 

The Gene Curation Coalition (GenCC) was formed to harmonize gene-

disease validity assertions (35). This provides a database of unified disease 

definitions from sources including OMIM, Orphanet and G2P (27,28,31), with 

the confidence assertions of gene-disease association from these sources 

also documented.  

 

This work aims to develop automated literature curation with the aim of 

populating DDG2P entries with HPO terms weighted according to their 

frequency in relevant manuscripts. This should not only improve SNV filtering 

with G2P, but also feed into the knowledge base of unified disease-

phenotype initiatives as described above.   

 

1.4 Text mining on full text manuscripts 
 

To develop automated literature curation, it is one of the hypotheses of this 

thesis that it is preferable to use the full text of a manuscript. Phenotype data 

extraction from text at scale previously has relied on abstracts or full text 

open access papers (36,37). Unsurprisingly perhaps, there is a significant 

loss of information in biomedical text mining when using just the abstract. For 

example, information including protein-protein interactions (38) and 

polymorphism-drug keywords (39) may be present in the full text only. 

Named entity recognition (NER) on a corpus of 15 million papers covering a 

range of scientific domains in full text significantly outperformed abstract-only 

analysis (40). Open access full text may be used to address this, however 

only a small proportion of peer-reviewed manuscripts are available through 

this route.  
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At the time of writing, Europe PubMed Central (EPMC) (41) contained 

approximately 39.5 million articles, of which only 3.8 million were open 

access. To the authors’ knowledge, full text mining for phenotypes in the 

GDD domain has not been performed previously. Therefore, there is likely a 

significant volume of phenotypic data which has not been utilised at scale.  

 

Legal download is possible for all papers accessible through university-wide 

access agreements (42). Scalable access to parseable, high-quality full text 

downloads is not straightforward. However, the Cadmus package has been 

developed for this purpose, with a high rate of successful downloads (43), 

and will be discussed in further detail as part of this work.   

 

Another issue relevant to data extraction from the peer-reviewed literature is 

the heterogenous manner in which phenotypic information is presented. 

Manuscripts may have different underlying structures, which affects how 

easily they are parsed. For example, the American Journal of Human 

Genetics (AJHG) typically includes articles, which are subdivided into 

Introduction, Material and Methods, Results and Discussion; and reports 

which are single blocks of text (44). Therefore, parsing clinical information 

from articles is much more straightforward, as this can follow the structure of 

the manuscript. Extracting specific data from reports requires more advanced 

methods.  

 

Phenotypic information is not just found in free text. Papers describing GDD 

frequently include tabular data, and often these may be the only individual-

level patient descriptions in the manuscript. Additionally, supplemental files 

may contain detailed case reports, in free text or tabular form.  

 

 

 

 

 



 

Introduction 39 

1.5 Named entity recognition for phenotype data 
 

1.5.1 Overview of named entity recognition 
 

NER is the process of identifying parts of text which correspond to defined 

entities, for example genes, proteins, diseases and phenotypic features (45). 

Given the scale of the biomedical literature, with millions of papers in EPMC 

alone (41), NER has become an increasingly important technique for 

extracting information at scale, for application in fields including 

pharmaceuticals (46) and genomics (47).  

 

NER for biomedical text offers specific challenges (48). Entities are usually 

defined using domain-specific technical vocabularies. Compound or nested 

terms may be present e.g. ‘renal and pancreatic cancer’, ‘there was tortuosity 

of many of the arteries, although this was markedly more severe in the 

carotid artery’. Modifiers may be used as part of descriptions e.g. ‘subtle 

thickening of the macula with oedema’. Synonyms or non-standard 

metaphorical descriptors can be used e.g. ‘hitchhiker thumb’. Finally, 

ambiguous abbreviations are often present e.g. ‘ASD’ can refer to ‘atrial 

septal defect’ or ‘autism spectrum disorder’ (49).  

 

1.5.2 Corpora generation 
 

Biomedical text in NER needs to pass through several stages to allow 

accurate identification of defined entities. First, a corpus of domain-specific 

documents needs to be identified, for example through PubMed search. The 

challenge here is to create a corpus enriched for appropriate papers without 

including an excess of non-relevant work. It is possible to narrow down 

results using appropriate filters, however searches may still return thousands 

or millions of results. Manual assessment of all papers found using an 

appropriate strategy, as used for systematic review, remains the benchmark 

in this area, even when using highly filtered searches (50).  
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Corpora may be annotated with entities for the purposes of training/testing 

NER techniques. A gold-standard corpus is one which is annotated manually 

by experts according to well-defined guidelines (48). To aid development of 

biomedical NER, a number of annotated corpora have been made publicly 

available. Significant effort is required to generate these, meaning the volume 

of text included is often small, particularly for HPO/phenotype specific 

corpora. For example, Groza et al. released a corpus of 228 abstracts 

annotated with HPO terms, called the HPO Gold Standard (HPO GS) corpus 

(49). This example illustrates further some of the difficulties inherent in 

creating a gold standard corpus, with inconsistencies in manual annotation. It 

was annotated by three experts, who in fact created the HPO itself, using 

strict documented criteria. Despite this, Lobo et al. (51) identified 881 entities 

not annotated in the HPO GS, and added these to create a corpus 

designated HPO GS Plus.  

 

Larger corpora are available, however these are annotated using multiple 

biomedical source vocabularies/ontologies e.g. the MedMentions corpus 

containing 4000 abstracts (52) and the CRAFT corpus which utilises 97 full 

text papers (53). To increase the size of these corpora, computerized 

methods may be used for annotation ‘silver standard’, although this 

necessarily means a decrease in accuracy compared to manual methods 

(54).  

1.5.3 Sentence boundary detection, tokenization and part-of-
speech tagging 

 

NER requires text to be processed into a machine-readable form. This 

initially requires download of relevant abstracts/manuscripts and 

cleaning/parsing into a unified format. This will be discussed in further detail 

later in this work, with relevance to the Cadmus package (43).  

 

Once this step is complete, the text needs be divided into readable units. 

First, sentence boundaries need to be determined. In theory, this can be 
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simply achieved by splitting text at full stops (“.”). However, there are many 

instances in biomedical text where these do not indicate sentence 

boundaries, for example abbreviations (“e.g.”, “Am. J. Hum. Genet.”), 

numbers (“2.4”) and copy number variants (“1q21.1 deletion”) (55). Next, the 

sentences are split into units of meaning, called tokens (tokenization). These 

may be words, characters or parts of words (n-grams). This could be 

achieved by splitting on whitespace, but more ambiguous dividers may be 

present, e.g. parentheses (“Ca(2+)”), and hyphens (“intravenous feed-

dependent”) (55).  

 

Given the potential complexity of sentence boundary detection and 

tokenization for biomedical text, a number of specialist parsers have been 

developed for these tasks, with generally high performance achieved. For 

example, Verspoor et al. evaluated the performance of three sentence 

boundary detectors with an F1 score of 0.8-0.98; and four tokenizers, with F1 

of 0.88-0.95 (53). Part-of-speech (POS) tagging is then applied, assigning 

tokens to language classes, e.g. noun, verb adjective. This is important for 

the accuracy of NER, as it influences phrase construction. In one example, 

the phrase “history of significant left lower quadrant pain” was mistakenly 

parsed into “history of significant left” and “quadrant pain” due to erroneous 

tagging of “left” as a noun (56). Again, POS tagging benefits from training on 

domain-specific text for optimal performance (57).  

 

1.5.4 Dictionary-, rule- and machine learning-based NER 
 

NER methods in biomedicine can be broadly divided into three categories, 

dictionary-based, rule-based and machine learning-based. The above 

processing steps in general apply to both techniques. Dictionary-based NER 

maps text to a well-defined vocabulary. Rule-based systems use defined 

linguistic structural features to identify entities. Machine learning-based NER 

develops a representation of observed data using specified features by 

training on annotated text (48).  
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In practice, NER methods may use a hybrid of different approaches, 

particularly for dictionary + rule-based strategies. Examples of NER 

approaches used in the biomedical domain, particularly with relevance to 

phenotype data and GDD, will be reviewed here.  

 

1.6 Named entity recognition tools focused on the 
HPO 

 

1.6.1 Overview of NER tools 
 

In this section, I have reviewed several tools which may be used for NER in 

biomedical text. I have particularly focused on those which have been tested 

using the HPO. A number of other tools are available in this domain (58,59). 

These may use the full UMLS vocabulary, which includes the HPO (19,60). 

These could therefore be adapted for use in phenotype-specific NER, but in 

the absence of literature specifically testing this, they are beyond the scope 

of this thesis.  

 

1.6.2 NCBO annotator 
 

The NCBO (National Center for Biomedical Ontology) annotator is a highly 

configurable dictionary-based system which runs primarily as a web service, 

but is also available to install locally in linux via a virtual machine (61). It uses 

text metadata to annotate input with biomedical ontology concepts from the 

UMLS Metathesaurus (23) and NCBO BioPortal (62). The NCBO annotator 

uses a dictionary constructed of strings corresponding to ontology concepts.  

 

A concept identifier called Mgrep (63) is used to match input text to terms 

from the dictionary. These annotations may be expanded to related concepts 

e.g. using ontology parent-child relationships, MeSH (Medical Subject 

Headings) term siblings or cross-ontology mappings (61).  
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1.6.3 MetaMap 
 

MetaMap is a highly configurable system designed to identify concepts from 

the UMLS Metathesaurus in biomedical text (64). It can be installed to run 

natively on linux, although a licence is required from the National Library of 

Medicine (23). MetaMap utilises both dictionary and linguistic rule based 

analysis. Input text firstly undergoes tokenization, sentence boundary 

determination and POS tagging as described above. Input words are then 

looked up in the SPECIALIST lexicon (65), which includes biomedical 

concepts sorted into syntactic categories.  

 

Phrases are identified by the SPECIALIST parser (65). Tables containing 

variants of the words in these phrases are used to identify likely candidate 

terms. These are then evaluated to determine the best match to the text, with 

the option of weighting towards concepts which are semantically consistent 

with the adjacent text (64).  

 

1.6.4 OBO annotator 
 

The Open Biological and Biomedical Ontology (OBO) annotator matches 

biomedical concepts using indexed data structures (66). Lexical indexes are 

built by putting each concept in a reference ontology through stages including 

changing to lower case, tokenizing and using the stems of terms to generate 

lexical variants. Words in the input text are processed in a similar manner.  

 

A window including x number of words is then run over the text to match 

word sequences to the lexical index. If no match is found for a given size of 

window, the word sequence is subdivided, e.g. “brain and cerebellar atrophy” 

is cut to “brain atrophy” and “cerebellar atrophy”. The longest word sequence 

is chosen where more than one concept is present e.g. where “seizures” is 

contained in “myoclonic seizures”.  
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1.6.5 Monarch annotator 
 

The Monarch Initiative has developed a knowledge graph from multiple 

sources with input databases including information on, for example, animal 

models, gene expression, protein-protein interaction, as well as human gene-

disease phenotypes (OMIM, Orphanet) (27,28,67). The graph contains over 

33 million nodes and 160 million edges (67). The Monarch annotator is 

available through a web interface, which allows identification of ontology 

concepts in free text. However, the precise NER technique used has not 

been made publicly available (67).  

 

1.6.6 BioLarK 
 

Bio-LarK is a rule-based concept recognizer explicitly designed to identify 

HPO terms. It uses linguistic rules to normalise input terms and map lexical 

variants. These are mapped to indexed HPO terms. Conjunctive terms e.g. 

‘straight and narrow eyebrows’ can be optionally processed using pattern 

matching based on manually derived rules applied over sentence structure 

(49).  

 

1.6.7 Identifying Human Phenotypes 
 

Identifying Human Phenotypes combines machine learning and rule-based 

approaches (51). Input text is processed using a Conditional Random Field 

(CRF) model (68) trained on the HPO annotated corpus provided by Groza et 

al. (49). A CRF may be used to derive the conditional probability of a label (in 

this case an HPO concept) given a sequence of tokens from the input text.  

 

Entities recognized through this step then undergo a manual validation stage, 

which includes exact matching to concepts in an HPO dictionary, 

identification of sequences containing nested and compound terms. 
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Concepts containing punctuation errors, abnormal structure (according to 

position of POS tags) and stop words are removed (51).   

 

1.6.8 Neural concept recognizer 
 

Arbabi et al. developed a system called the Neural Concept Recognizer 

based on a convolutional neural network (CNN), trained on the HPO (69). 

Concepts in the ontology were represented as a matrix, with one concept per 

row. The model learned features of each concept which were novel 

compared to its ancestors. The embedding of each concept was ultimately 

the embedding of its parent (to represent its location in the embedding 

space) plus the raw concept embedding (to enable learning of the local 

location compared to the parent).  

 

Input text words were initially represented as a bag of character n-grams. 

Each of these was represented as a vector and their sum was used as a 

representation of the word (70). The word vectors for a given phrase in text 

then went through a convolutional layer, i.e. the dot product of the vector and 

a filter array of weights, to generate an encoded representation of the phrase.  

 

The dot product of this encoded representation and concept embeddings was 

used as a similarity score for mapping. Concept recognition in a sentence 

was performed by matching all one to seven word n-grams to concepts. For 

n-grams overlapping the same text, the shorter n-gram was retained if they 

match the same concept, and the longer n-gram if different concepts were 

mapped.  

 

1.6.9 BioBERT and PhenoTagger 
 

BioBERT (Bidirectional Encoder Representations from Transformers for 

Biomedical Text Mining) is a language representation model specific to the 

biomedical domain (71). It is based on BERT (72), which is a large 
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transformer-based language model, pre-trained on large general English 

corpora: Wikipedia and BooksCorpus (73). This uses bidirectional 

transformers to learn representations of words in context. Bidirectional in this 

case means sentences can be analysed both left-to-right and vice versa, 

which is more powerful for predicting meaning (74). This is enabled using 

masking, to predict randomly masked words in a sequence (72).  

 

After pre-training, BERT can be fine-tuned on text mining tasks. BioBERT 

uses the same structure and initial weights as BERT, but with pre-training on 

PubMed abstracts and PubMed Central full-text articles for higher 

performance in the biomedical domain (71). Other BERT models are 

available with a biomedical focus (75,76). However, BioBERT in particular 

has been utilised in the context of GDD and the HPO to develop a method 

called PhenoTagger (54).  

 

PhenoTagger is a method utilising a combination of BioBERT and dictionary-

based methods to identify HPO concepts (54). This uses a training corpus 

developed from 150,052 open access PMC articles relating to ‘disease and 

mutation’. A dictionary based tagger annotated HPO concepts in the corpus, 

and this was used to fine-tune BioBERT. This model was then used to 

identify HPO concepts in biomedical text.  
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1.7 Performance of NER methods on biomedical text 
 
Annotator Source Test Corpus Precision Recall 
NCBO  Shah et al., 

2009 (77) 

PubMed 0.77 n/a 

NCBO  Taboada et 

al., 2014 (66) 

CX 0.97 0.49 

NCBO  Groza et al., 

2015 (49) 

HPO GS  0.54 0.39 

NCBO  Lobo et al., 

2017 (51) 

HPO GS 0.69 0.46 

NCBO  Arbabi et al., 

2019 (69) 

HPO GS 0.80 0.49 

NCBO  Arbabi et al., 

2019 (69) 

UD 0.37 0.20 

NCBO  Oellrich et al., 

2015 (78) 

ShARe/CLEF 0.04 0.51 

OBO Taboada et 

al., 2014 (66) 

CX 0.94 0.61 

OBO Groza et al., 

2015 (49) 

HPO GS  0.69 0.44 

OBO Lobo et al., 

2017 (51) 

HPO GS+ 0.77 0.34 

OBO Arbabi et al., 

2019 

HPO GS  0.80 0.59 

OBO Arbabi et al., 

2019 (69) 

UD 0.29 0.20 

OBO Luo et al., 

2021 (54) 

HPO GS+ 0.81 0.57 

MetaMap Shah et al., 

2009 (77) 

PubMed 0.76 n/a 

MetaMap Reátegui & 

Ratté, 2018 

(79) 

i2b2  0.78 0.91 
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Annotator Source Test Corpus Precision Recall 
MetaMap Oellrich et al., 

2015 (78) 

ShARe/CLEF 0.04 0.35 

Bio-LarK Groza et al., 

2015 (49) 

HPO GS 0.65 0.49 

Bio-LarK Lobo et al., 

2017 (51) 

HPO GS  0.65 0.49 

Bio-LarK Arbabi et al., 

2019 (69) 

HPO GS  0.77 0.66 

Bio-LarK Arbabi et al., 

2019 (69) 

UD 0.29 0.22 

IHP Lobo et al., 

2017 (51) 

HPO GS  0.56 0.79 

IHP Lobo et al., 

2017 (51) 

HPO GS+   0.87 0.85 

NCR Arbabi et al., 

2019 (69) 

HPO GS  0.81 0.68 

NCR Arbabi et al., 

2019 (69) 

UD 0.27 0.29 

Doc2HPO Luo et al., 

2021 (54) 

HPO GS+ 0.77 0.62 

Doc2HPO  Liu et al., 

2019 (80) 

CN 0.47 0.76 

MI Luo et al., 

2021 (54) 

HPO GS+ 0.76 0.61 

PhenoTagger Luo et al., 

2021 (54) 

HPO GS+ 0.77 0.74 

Table 1-1. Comparison of precision and recall figures for example annotators 

used on biomedical text. Annotators used for HPO terms and/or GDD 

preferentially included where possible. Annotators: NCBO – NCBO Annotator 

(61), OBO – OBO Annotator (66), MetaMap (64) , Bio-LarK (49), IHP – 

Identifying Human Phenotypes (51), NCR - Neural Concept Recognizer (69), 

Doc2HPO – utilises MetaMap in concept recognition (80), MI – Monarch 

Initiative Annotator (67), Phenotagger (54). Test corpora: PubMed – 200 lines 
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chosen randomly from PubMed abstract downloads (77) CX - 50 PubMed 

abstracts for case reports describing ‘Cerebrotendinous Xanthomatosis’ (66), 

HPO GS – HPO Gold Standard (49); 228 abstracts cited by OMIM (27) 

describing GDD, annotated by three experts with HPO terms, UD - 39 clinical 

patient reports for undiagnosed diseases, ShARe/CLEF (81) – 99 annotated 

documents from corpus of clinical reports, HPO GS+ - HPO Gold Standard 

Plus (51); HPO GS with additional annotated entities, i2b2 – Informatics for 

Integrating Biology to the Bedside (82); 1237 clinical discharge summaries 

for individuals with obesity and diabetes, CN (80) – 18 clinical notes from 

New York-Presbyterian/Columbia University Irving Medical Center.  

 

Annotator Mean precision Mean recall 
NCBO 0.60 0.42 

OBO 0.72 0.46 

MetaMap 0.53 0.63 

Bio-LarK 0.59 0.47 

IHP 0.72 0.82 

NCR 0.54 0.49 

Doc2HPO 0.62 0.69 

Table 1-2. Mean precision and recall for selected NER methods. Annotators 
included only where >=2 test examples available. Annotators: NCBO – 
NCBO Annotator (61), OBO – OBO Annotator (66), MetaMap (64) , Bio-LarK 
(49), IHP – Identifying Human Phenotypes (51), NCR - Neural Concept 
Recognizer (69), Doc2HPO – utilises MetaMap in concept recognition (80). 

 

The performance of NER methods can be evaluated using precision and 

recall (P/R) metrics. Precision is the proportion of true matches in the 

retrieved instances. Recall is the proportion of all true matches returned. 

Table 1-1 gives P/R figures for the NER methods reviewed above. This 

illustrates some of the limitations with assessment of these techniques. 

Firstly, there is a lack of large gold standard corpora for testing, particularly in 

relation to HPO/phenotype annotations, as discussed previously. The HPO 
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GS corpus was used in many instances, comprising only 228 abstracts; no 

significant full text corpus was utilised.  

 

Secondly, markedly different results may be obtained for the same 

annotator/NER method. The replicability of NER performance may be 

expected to vary depending on which test corpora are used, for example 

patient notes and PubMed abstracts will likely have very different structures 

and described entities. This particularly affects machine-learning based 

methods. Domain-specific training has been shown to improve results (83). 

However, given the small size of many training corpora in the rare disease 

domain, there is a danger of over-fitting, with resulting poorer performance 

when extrapolating results from one corpora to another (84). 

 

In several cases, divergent results were obtained even for the same 

annotator apparently using equal corpora. For example, Groza et al. (49), 

Lobo et al. (51) and Arbabi et al. (69) evaluated the NCBO annotator (61) on 

the HPO GS (49) corpus with precision of 0.54, 0.69, 0.80 and recall of 0.39, 

0.46, 0.49. However, on closer inspection, only Groza et al. utilised the full 

corpus for testing. The other two groups split the corpus for the purposes of 

training machine learning NER methods, and hence used only a proportion of 

annotated abstracts.  

 

Additionally, many of the annotators shown here are highly configurable, and 

the settings used for testing are not given in the majority of examples above. 

Table 1-2 demonstrates the apparent significant differences in performance 

using mean P/R figures. There are instances where several annotators are 

tested on the same corpus by the same authors. For example, Arbabi et al. 

compared OBO, NCBO and BioLarK (69). However, there is no work directly 

comparing these to other annotators of interest, such as MetaMap, of which I 

am aware. Overall, it is clear that performance metrics for NER methods 

need to be compared using the same corpus and test criteria for meaningful, 

replicable analysis.  
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1.8 Phenotype models and similarity measures  
 

1.8.1 Disease models and comparisons 
 

Using the strategies described above, diseases, and particularly GDD, may 

be defined phenotypically using lists of standardised terms, in this case the 

HPO. These disease models may be useful in themselves, particularly if they 

synthesise different sources of information/publications. For example, the 

clinical synopses presented by OMIM may be used in variant interpretation.  

 

The full potential of these disease models, however, is realised through 

computational analyses, particularly through comparison of models. For 

example, HPO terms recorded for an individual suspected with GDD could be 

compared with disease models to help identify the correct diagnosis. Simple 

exact matching between lists of terms in this case may not always reflect true 

disease similarity. Clinically similar terms may be recorded differently 

between models, depending on user preference, e.g. “Intellectual disability” 

and “Intellectual disability, moderate”, and hence not be matched.  

 

Fuzzy matching, for close matches between the words/characters in a term, 

is also problematic as unrelated terms may share a significant number of 

characters, e.g. “Dental deformity” and “Sternal deformity” or “Hypoplastic 

palate” and “Hypoplastic pons”. However, given sufficient numbers of terms 

being compared, list matching may still be useful, particularly if weighting is 

applied to prioritise higher-ranked terms.  

 

More complex approaches utilise semantics, i.e. the relationship between 

concepts, taking advantage of the ontology structure. Strategies for 

phenotype comparison will be further discussed in the following sections.  
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1.8.2 Item-based comparisons 
 

Disease models may consist of groups of unweighted phenotypic descriptors, 

or items. In some cases, these may be weighted according to concept 

frequency – in the peer-reviewed literature (28) or in clinical studies (24) – to 

create ranked lists of phenotype descriptors. There are several properties of 

these type of itemisation or lists which need to be considered.  

 

Conjointness describes whether lists contain the same items (85). In the 

GDD domain, comparison lists of this kind will inevitably be non-conjoint, 

therefore, list-based phenotype comparators used need to have the capacity 

to handle these. Additionally, it would be preferable to use a measure which 

is top-weighted (85), i.e. prioritises higher ranked terms, as these are more 

likely to be characteristic for a disease.  

 

Most list comparators either require conjoint lists e.g. Kendall tau (86), but 

can be weighted (87) or are unweighted, but can use non-conjoint data (88). 

Webber et al. describe a method called rank-biased overlap (RBO) which can 

compare non-conjoint and weighted lists, by using the weighted mean 

overlap of terms at different evaluation depths (89), to address this.  

 

Other methods for item-based comparison include those based on 

information. For example, pointwise mutual information (PMI) is a measure of 

how likely events are to co-occur, given their individual probabilities (90). 

Konagurthu et al. describe a method based on the compressibility of the item 

groupings, and uses the size of a lossless encoding of each to generate a 

similarity metric (91). However, neither of these address the issue of non-

conjointness. 
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1.8.3 Semantic similarity 
 

List-based similarity methods, however, do not take advantage of the 

relationships between terms defined in an ontology such as the HPO. These 

can be utilised through approaches which define similarity based on the 

meaning or semantic content of terms (semantic similarity).  

 

Initial use of these methods in biomedical ontologies was primarily based on 

the Gene Ontology (92). These can be divided into node-based, utilising the 

terms themselves (93), or edge-based, using the links or relationships 

between terms (94). Semantic similarity methods using the HPO have mainly 

been based on node-based techniques, particularly utilising information 

content (IC).  

 

1.8.4 Information content  
 

Intuitively, terms in the HPO vary in their informativity, or specificity when 

used in semantic similarity methods. For example, a high-level term such as 

‘Abnormality of the cardiovascular system’ (HP:0001626) is likely to be 

annotated to many diseases, with a low specificity. In contrast, a low-level 

term such as ‘Limbal dermoid’ (HP:0001140) is likely to be rare and hence 

more informative. The specificity of a term in an ontology can be defined by 

its IC, which is related to frequency (95). The frequency is the number of 

times a term, and all of its ancestors, appears per annotated disease. 

Annotation of a term with its ancestors is assumed by the structure of the 

HPO (96).  

 

Use of these ancestral annotations means the true frequency of a term may 

be established. For example the high level term ‘Abnormality of the 

cardiovascular system’ (HP:0001626) mentioned above may well not be used 

for input annotation explicitly, however there will likely be many of its more 

specific children utilised, and therefore its true frequency is high (97). IC is 
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then calculated as –log2(frequency) for each term (96,98). This means that IC 

is potentially affected by the number of annotations and diseases in a 

dataset. If this number, N, is large enough, however, the IC will stabilise as N 

® ∞ (99,100).  

 

1.8.5 Most informative common ancestor (MICA) 
 

For a given pair of terms, Resnik proposed a similarity metric based on their 

most informative common ancestor (MICA) in the ontology (100) (Figure 1-3). 

This is the method used most commonly in relation to the HPO, and hence 

will be discussed further below. However, it should be noted that 

modifications have been made to Resnik’s method. For example, Lin adapted 

the measure to include an assessment of the closeness of comparison terms 

to the MICA (101). Schlicker et al. modified this further to include the 

specificity of the MICA (93). This addresses the issue that two high-level 

terms sharing a common ancestor may appear to have strong similarity using 

MICA, whereas intuitively two lower-level terms with a common ancestor 

should score higher, as they are more specific. These may prove useful 

when refining HPO-based disease model similarity comparisons in future.  

 

 
Figure 1-3. Most Informative Common Ancestor (MICA) semantic similarity 
metric. Adapted from Helbig et al. (98). MICA scores for sets of terms can be 
summed to create similarity scores for disease models. IC – information 
content.  
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1.8.6 Semantic similarity and HPO 
 

The initiation of the HPO allowed semantic similarity metrics to be developed 

in the human genetic disease phenotype domain. These primarily utilise the 

MICA method. For example, Köhler et al. proposed the ‘Ontological Similarity 

Search’ (96). Here, each input term from a query is matched to the maximum 

MICA amongst disease annotated terms, and the mean of these values for all 

queries used to create a similarity score. The sum of maximum MICA scores 

may also be used to generate a similarity metric (98) (Figure 1-3). 

 

The raw similarity score, however, is influenced by the number of annotations 

for a given disease. Larger numbers of annotations tend to result in a higher 

score (102). Therefore, Köhler et al. generate empirical p-values for each 

query-disease comparison, by comparing the similarity score with randomly 

generated models of the same size as the query (96). These are corrected 

for multiple testing using the Benjamini-Hochberg method for detecting the 

false discovery rate (103). This utilises the distribution of simulated p-values 

to reject those which lie below the line of a/N, where a is the threshold false 

discovery rate and N is the number of p-values generated.  

 

The MICA-based semantic similarity method has been used in a number of 

applications. For example, similarity scores were used to predict diagnoses 

for simulated patient models using OMIM data (29,96). Phenotypically similar 

patients in a developmental and epileptic encephalopathy cohort were found 

to have the same de novo missense SNV in AP2M1, with subsequent 

identification of other individuals with the same variant (98). Distinct 

phenotypic signatures have also been identified for a subset of epileptic 

encephalopathy genes (97). Mutations in different parts of the 

glycosylphosphatidylinositol-anchor biosynthesis pathway have been shown 

to result in discrete phenotype differences (104).  
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The above MICA semantic similarity methods use unweighted models, that is 

each HPO term occurs only once per disease/patient entity. Köhler 

demonstrated an adaptation of Resnik’s work to include weighting by 

repeating HPO terms according to their frequency per entity (which is defined 

according to the source used to generate these) (100,105).  

 

Adaptations to IC based measures using the structure of HPO have also 

been proposed. For example, Xue et al. outline a measurement called 

DisPheno where the edges of the HPO graph were weighted according to the 

information content of genes/diseases annotated to each term (106). 

Similarity was calculated according to the probability of terms in query and 

disease overlapping using PMI. This was reported as performing better than 

the methods of Resnik, Lin and Schlicker for patient-disease matching on a 

simulated dataset (93,100,101,106).  

 

1.8.7 Vector-based similarity 
 

Lists of ontology terms can be represented in vector space. Each entry in the 

vector can be a binary representation of term annotation per model, or can 

be used for another property, for example the IC. Vector-based similarity 

methods can then be applied in analysis.  

 

These include cosine similarity, where the cosine of the angle between 

vectors is used, and the Jaccard index, which is the ratio of the intersection 

and the size of the union of two sets (107). Mistry et al. showed that the IC 

method of Resnik and vector-based methods are correlated, using the Gene 

Ontology (92,100,108). Vector based similarity methods have not been used 

commonly with HPO, although Köhler showed similar performance using 

these to Resnik IC (105).  
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1.8.8 HPO diagnostic systems 
 

Systems for diagnostic prediction using semantic similarity and HPO have 

been made publicly available. The basic MICA-based method by Köhler et 

al., described above, has been incorporated into a web application called the 

Phenomizer (96), where users can manually input HPO terms to generate a 

list of suggested diagnoses. Zemojtel et al. incorporate the Phenomizer into a 

system called Phenotypic Interpretation of eXomes (PhenIX), where the input 

is a variant call format (VCF) sequencing file, as well as patient HPO terms. 

Genes within which variants (SNV) are found in the VCF file are ranked 

according to the semantic similarity of the input patient terms to those 

annotated to diseases in OMIM (27,109).  

 

James et al. describe a similar approach for the OMIM Explorer, where input 

phenotypes are used to prioritise SNV according to semantic similarity (110). 

This offers the additional functionality of a graphical interface where users 

can exclude clinically non-relevant genes, altering the underlying prioritisation 

scores.  

 

It should be noted that other systems have been created to leverage 

phenotypic data for variant prioritisation, although these are beyond the 

scope of this work. For example, Phevor integrates data from multiple 

ontologies (111), including HPO, to combine with input phenotype terms for 

ranking variants. The eXtasy system utilises genes annotated with functional 

data from multiple sources, including HPO terms mapped to descriptions of 

diseases in HGMD using Phenomizer, as well as variant effect prediction, to 

prioritize variants (96,112,113). PHIVE (Phenotypic Interpretation of Variants 

in Exomes) uses similarity for both human and mouse phenotypes to 

prioritise variants from sequencing data (114).  
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1.8.9 Automated disease-phenotype mapping 
 

The methods described above for text mining and matching of disease 

phenotypes largely rely on using manually identified manuscripts/abstracts, 

which is resource intensive and difficult to scale. Standardized vocabularies, 

such as the HPO, and text mining can be utilised to form comprehensive 

knowledge bases covering all diseases in a particular domain.  

 

For example, Collier et al. developed a system called PhenoMiner (36). They 

searched Europe PMC (41) for all OMIM disease names and their synonyms 

(27). Each paper identified through this search was annotated to its canonical 

disease name. NCBO annotator (61) was used to extract HPO terms from 

these papers, regardless of source, i.e. any organism or mode of study could 

be included.  

 

Association rule mining was used to identify rules describing the co-

occurrence of HPO terms and diseases (115). This is a technique where 

association rules are inferred from frequently occurring items in a transaction 

set, often used in retail analysis. For example, if a customer buys milk, there 

is a 60% chance they will buy bread. The disease-phenotype mapping from 

this technique was assessed on a sample of 200 terms by a panel of expert 

reviewers as 38% accurate (36). The same group further developed this 

concept into PheneBank (116). This used the co-occurrence of disease-

phenotype and gene-phenotype terms in Medline abstracts or excerpts from 

PubMed open access papers. Fisher Exact Testing was utilised to determine 

significant associations. The PheneBank database is available to search via 

a web interface (116). 

 

Hoehndorf et al. also used the co-occurrence of disease and phenotype 

terms to create the ‘human diseasosome’ (117). From an indexed database 

containing all Medline (23) abstracts, they identified approximately 5 million 

documents containing at least one HPO or Mammalian Phenotype Ontology 
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(MP) term or its synonym (22,118). They used AberOwl, which uses 

semantic querying to identify ontology concepts (119), to look for HPO, MP, 

and disease ontology (DO) (120) terms in these abstracts. Disease models 

were constructed by using PMI (90) scores to select highly associated 

phenotype terms. They demonstrated an increased number of terms per 

model compared to those in OMIM (27), and a similar performance when 

predicting disease-associated genes using semantic similarity (117).  

 

Xu et al. used prior knowledge from disease-phenotype associations in the 

UMLS (121) as a basis for learning linguistic patterns in Medline citations 

(122). An example pattern is {disease x} is characterized by {phenotype 

term}. The extraction corpus was 120 million sentences from Medline 

citations (23) indexed over a 40 year period. There was some correlation with 

OMIM disease genes for the extracted disease-phenotype pairs (27,122).  

 

The methods for automated phenotype mining described above all 

emphasise creating a large corpus for data extraction, over selection of high-

quality literature describing a relevant disease. Only the PhenoMiner system 

(36) describes filtering search results in biomedical databases, using OMIM 

disease names (27). However, it is likely these searches will still contain 

large numbers of non-relevant results. Indeed Collier et al. state that 

PhenoMiner includes phenotype concepts regardless of organism or type of 

study (36).    

 

1.8.10 Automated literature search 
 

It would seem reasonable to assume that the accuracy of disease-phenotype 

extraction from an automated extraction process would increase if the source 

data was enriched for relevant case reports/case series in humans. To my 

knowledge, this problem has not been addressed in the HPO/GDD domain. 

There are, however, studies looking at automated search from a medical 
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perspective, particularly in relation to identifying high-quality articles for 

systematic reviews.  

 

Aphinyanaphongs et al. assessed the performance of various classifiers 

compared to PubMed Boolean queries to identify high-quality manuscripts for 

selected medical applications. Approximately 400 articles were pre-selected 

as high-quality in the ‘treatment’ or ‘etiology’ categories by the American 

College of Physicians journal club according to defined criteria (123). 

Features used included MeSH terms and publication type. From a (train/test 

split) corpus of 16000 Medline articles containing the high-quality articles, 

they found the support vector machine (SVM) classifier had the highest 

performance, and achieved higher recall than Boolean queries for both 

‘treatment’ (0.80 vs 0.40) and ‘etiology’ (0.76 vs 0.28).  

 

Kilicoglu et al. used an ensemble learning method, using the results of 

several different machine learning classifiers, including Naïve Bayes and 

polynomial SVM, to identify high-quality, methodologically rigorous papers 

(124). Features included words in title + abstract, citation metadata and 

UMLS Metathesaurus (121) concepts in title + abstract. A corpus of (train/test 

split) 12000 documents designated as ‘rigorous’ or ‘non-rigorous’ as part of 

the development of the PubMed search filter function (23) was used. They 

found that the ensemble method outperformed any individual method, with 

precision of 0.75 and recall of 0.86.  

 

Kim et al. developed a system to identify high-quality articles for systematic 

reviews, using the hypothesis that articles commonly excluded from reviews 

covering multiple topics would be useful in training a classifier (125). They 

identified 7200 articles which had been included/excluded from 126 

systematic reviews. Features used for learning were words in title + abstract 

and MeSH terms. They showed that the performance of an SVM, as 

assessed by AUC (area under the receiver operating characteristic curve), 

was significantly higher when using the commonly excluded articles for 
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training. This has implications for a GDD-focused classifier, as there may be 

commonly excluded articles in this domain which could be utilised.  

 

Cohen et al. also explored the utility of using cross-topic inclusion/exclusion 

data for systematic reviews (126). A corpus of 50927 articles was used, 

describing multiple drug treatments, annotated as excluded or included 

according to individual systematic review criteria. For a given drug topic, an 

SVM model was trained on data from other systematic reviews, before being 

trained on topic-specific articles. They showed a performance enhancement, 

as assessed by AUC, for this method where topic-specific data was scarce. 

There was no impairment to performance with higher levels of topic-specific 

information (126). This may be relevant to a GDD classifier, given the often 

very small numbers of papers available for a given disorder.  

 

A different approach was explored by Bian et al, who assessed whether 

features related to a paper’s impact, i.e. whether it is likely to affect clinical 

practice, may be useful in developing a classifier (127). They chose time-

agnostic features, meaning these could be established soon after publication, 

rather than waiting for e.g. citation metrics. These included journal impact 

factor, number of associated grants, number of authors, and number of 

references. A corpus of articles identified as high impact in systematic 

reviews was used for positive examples. The results of PubMed (23) 

searches related to the systematic review criteria were used as a negative 

corpus. They showed that a decision tree classifier performed similarly to the 

PubMed Best Match algorithm – which is based on term frequency and 

machine learning classifiers – and the method of Kilicoglu et al. (124,128). 

Performance overall was poor, with precision of 0.39 and recall of 0.09. 

 

For well-characterised GDD, citation metrics may prove more useful than the 

immediate impact-based features described above. Bernstam et al. showed 

citation-based search was more effective than simple keyword search in 

PubMed for identifying high-quality articles (23,129,130). However, Bian et 
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al., using a similar impact-based classifier to that described above by the 

same group, found that adding or subtracting citation count from the feature 

list did not markedly affect performance (131).  

 

The datasets used in the examples given above are almost entirely affected 

by imbalance, where the useful/positive examples are significantly 

outnumbered by those which are non-relevant/negative. Extreme imbalance 

may be present in literature search in the biomedical domain. For example, 

Bian et al. used a corpus with 541 positive citations and 45,012 negative 

citations (127). Imbalanced data has been shown to negatively affect the 

performance of classifiers (132). There are several methods which could be 

used to alleviate this issue, when considering automated search for GDD-

relevant publications. PubMed keyword search + Boolean filters should help 

reduce imbalance in the data, prior to classification. It is likely that intelligent 

use of staged search criteria, for example adding “NOT Cancer” where a 

gene is highly studied by oncology focused groups, will be effective. 

Ensemble learning, where multiple machine learning classification methods 

are hybridized, has been shown to be increase performance when used on 

imbalanced data (133). Cost-sensitive learning may also be used, where 

costs are applied to different types of misclassification errors (134).  

 

Finally, it is noted that the peer-reviewed literature is not the only source of 

disease-phenotype annotations. Electronic health records (EHR) represent 

an increasingly rich resource of phenotypic data, particularly with the trend 

towards recording clinical information in a computationally readable form, 

rather than using handwritten notes (135). However, there are significant 

obstacles to the use of EHR in a research setting. These include 

safeguarding of confidentiality, and heterogenous data recording and 

management systems across different clinical providers (136). Using the 

HPO, text mining of EHR has been shown to enrich phenotypic annotations 

in OMIM (27,137,138).  
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1.8.11 Aims and organisation of the thesis 
 

The previous sections presented an overview of text mining in the context of 

phenotype data for GDD. Following on from this, I generated the following 

research questions, which this thesis aims to address: 

 

1. Is it possible to generate weighted disease models describing GDD 

from full text peer-reviewed literature? 

2. Do these models reflect true disease expressivity? 

3. How do the models compare to manually curated databases? 

4. Can these models be used for prediction of GDD diagnosis? 

5. Is it possible to identify GDD – relevant manuscripts using automated 

search alone? 

 

This thesis is divided into three major methodological chapters, in which the 

above questions are explored in detail. In the first of these – Chapter 2 – I 

outline the complexity of extracting phenotypic data from the biomedical 

literature. I show that weighted disease models can be created from the full-

text literature using several different NER methods. I describe the process of 

evaluating the performance of these NER techniques. I discuss the 

limitations of the HPO and strategies to address these. I also clinically 

evaluate the created disease models.  

 

In Chapter 3, I describe the utility of phenotypic disease models, and review 

diagnostic methods using these. I outline the process of creating a large set 

of disease models describing GDD. I use this set to analyse disease model 

structure, and explore the effects of modifications to the methods used to 

create them. I use similarity metrics to evaluate the performance of the full 

text-derived models to those from widely used manual curation in predicting 

GDD diagnoses. The process of disease model creation and analysis is 

summarised in Figure 1-4. 
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In Chapter 4, I present preliminary data describing methods to scale up 

disease model creation to the full spectrum of GDD. I analyse the data 

architecture of case reports/case series describing GDD, to inform document 

parsing. I evaluate different PubMed search strategies to create corpora pre-

enriched for GDD. I describe the process of using these searches to create a 

large corpus of annotated manuscripts, with relevance to GDD. I use this to 

test numerous machine learning classifiers for biomedical text and evaluate 

their performance. I explore the next steps to build upon this work in future. I 

discuss improvements to manuscript classification, text mining and disease 

evaluation, with reference to methodological studies from the literature which 

could be applied to these problems.  

 

 
Figure 1-4. Overview of disease model creation and evaluation. Analysis of 
each of these steps forms the majority of this thesis.  
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Chapter 2 Creation of weighted phenotypic 
disease models 

 

2.1 Introduction 
 

In this chapter, I present an iterative process used to develop the disease 

model concept, where these comprise lists of weighted HPO terms (22), 

describing GDD. I first use manually-extracted phenotype terms to create 

disease models as a pilot study or proof-of-concept. This mimics the widely 

used manually curated databases OMIM and Orphanet, which store disease 

models generated by manual curation (27,28). The phenotypic descriptors 

stored in these databases have been directly extracted from the peer-

reviewed literature by expert biocurators. These databases are widely used 

clinically, as it is likely this manual extraction method produces models which 

are reflective of true disease expressivity. OMIM and Orphanet are therefore 

useful sources of comparison for the disease models developed in this work.  

 

Other reported methods, using an automated approach, extract phenotype 

descriptors from a wide range of manuscripts with little discrimination, for 

example including animal models (36). The technique used here involves 

creating disease models using automated phenotype extraction on specific 

case reports/case series. This combination of disease phenotypes highly 

specific to a disease, which is scalable to the full spectrum of GDD using text 

mining, should prove useful in variant interpretation in future.  

 

Automation of disease model creation requires access to relevant text and 

accurate phenotype concept extraction. In this chapter, I demonstrate the use 

of the Cadmus package (43), developed at the University of Edinburgh for 

downloading full-text manuscripts at scale. I use data from this to create a 

test corpus for the purpose of testing NER methods. MetaMap (64), in 

particular, was chosen as it is straightforward to set up, highly configurable, 

regularly updated, and its reported performance was similar to other 
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techniques, as reviewed in section 1.7, and shown in Table 1-1. I evaluated 

MetaMap on my own corpus, and then used it to create disease models. 

These were analysed in detail to assess their relevance to reported 

phenotypes, or true disease expressivity, in the peer-reviewed literature.  

 

2.2 Development of literature-derived disease models 
 

2.2.1 Parsing the Human Phenotype Ontology 
 

For all analyses involving the Human Phenotype Ontology (22) structure in 

this work, a copy of the hp.obo flat file format (version 1.2) was used, 

downloaded on 08/10/2021. This was parsed using the Python package 

Ontobio (139), for example to derive parent/ancestor terms and 

child/descendant terms. An HPO term is a text description of a clinical 

abnormality; an HP ID is the unique identifier for a given term.  

 

Each HPO term entry may contain multiple synonyms, which may be clinical 

variants, description of a feature in common parlance or pejorative terms 

which are not preferentially used. Small changes in spelling may be included, 

for example to account for British vs American language. For example, the 

term ‘Cupped ear’ (HP:0000378) has the synonyms ‘Cup-shaped ears’, 

‘Capuchin ears’ and ‘Cupped ears’ (22). For all instances where the HPO is 

used for mapping in this work, the HP ID was used, as this is stable and 

includes all synonyms associated with a given term.  

 

Only terms which have the root ‘Phenotypic abnormality’ were used. This 

forms a sub-ontology of the HPO from the root term ‘All’ (HP:0000001). Other 

HPO terms derived from children of ‘All’ are modifiers and were not 

considered relevant to this work. There were 15985 terms and 14474 

synonyms in this sub-ontology. The HPO contains obsolete terms which are 

deprecated (22). These are usually mapped to an up-to-date term within the 
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HPO. The current term was used to replace any which were obsolete during 

mapping from other sources.  

 

2.2.2 Pilot study: comparison of literature-derived and 
DECIPHER phenotypes 

 

To test the hypothesis that phenotype descriptors extracted from the 

literature reflect true clinical expressivity, a pilot study was undertaken. This 

compared phenotypic terms extracted using manual annotation, and 

prospectively gathered clinical models in DECIPHER (30). 

 

2.2.2.1 Literature search for GDD 
 

Disease models for three exemplar GDDs – Tatton-Brown Rahman 

syndrome (caused by SNV in the DNMT3A gene), Shuurs-Hoeijmakers 

syndrome (PACS1) and GRIN2B-associated Neurodevelopmental Disorder 

(GRIN2B) – were generated from the peer-reviewed literature and from 

DECIPHER (30). These syndromes were selected firstly because they were 

well-represented in the literature (which in this case means being reported in 

more than one or two case reports/case series) and reported for multiple 

individuals in DECIPHER. Secondly, these conditions were chosen because 

they had subjectively diverse phenotypic profiles, meaning each disease 

phenotype was clinically recognisable and could be distinguished from the 

others.  

 

For the literature-derived models, a manual HGNC (HUGO Gene 

Nomenclature Committee) {gene symbol}[TI] search was performed on 

PubMed, as this strategy was thought to generate results enriched for 

relevant manuscripts, based on previous manual curation experience. 

Deprecated gene symbol or full gene name searches were not used, as 

these were thought to increase the number of search results without 
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significantly enriching for relevant case reports/case series, based on 

previous experience.   

 

Every abstract from this search was reviewed to determine if it contained 

case series/case reports describing the search condition. Manuscripts which 

included descriptions of more than one disease were excluded. This process 

identified seven, six, and eight relevant manuscripts for DNMT3A, PACS1 

and GRIN2B respectively. 

 

2.2.2.2 Manually created disease models 
 

The full text for each identified paper was mapped to HPO terms using 

Doc2HPO (80). This is a web application, with limited capacity for large text 

files. The full text for each manuscript identified was copied and pasted into 

Doc2HPO, in batches where necessary. Doc2HPO offers several matching 

options, with increasing accuracy paired with increased computational power. 

The most basic option – string-based matching – was used as the other 

options did not work with larger text inputs.  

 

Doc2HPO enables manual correction of mapped terms in text, via a graphical 

user interface, and this was used for each file to create an accurate 

download file of annotations per manuscript (80). A list of HPO terms per 

disorder was created by amalgamating the frequency per term from all 

papers describing a given disorder. Each term was therefore weighted by its 

frequency across all input manuscripts. This list can be described as a 

weighted disease model.  

 

For the DECIPHER (30) models, a gene symbol search was performed on 

www.deciphergenomics.org. In the ‘Matching patient variants’ tab, the filters 

‘De novo’ and ‘Pathogenic’/’Likely Pathogenic’ were applied, as these select 

SNV highly likely to be diagnostic. DECIPHER offers a ‘Phenotypes present 

in multiple matching patients’ tab, containing HPO terms together with their 
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frequency amalgamated across patients selected using the filters above. All 

of these HPO terms and frequencies were recorded to form a disease model. 

Comparison of the disease models generated revealed significantly more 

terms in the literature-derived models than recorded in DECIPHER (Table 

2-1). Of note, this table does not show all the literature-derived terms for 

each disease as these numbered 50-100. All the DECIPHER-derived terms 

are shown.  

 

This increased number of terms in the literature-derived models may reflect 

the difference in collection methods for the phenotype terms. Case reports in 

the literature are likely to contain as much detail as possible, to define the 

phenotypic spectrum of novel disorders. Clinicians inputting HPO terms for 

the purposes of interpretation of diagnostic sequence may only include the 

minimum number they deem sufficient for meaningful analysis. A rule-of-

thumb of five terms per patient has been suggested for this purpose (140).  

 

For the most frequent terms from the literature, there were a number of exact 

matches in the corresponding DECIPHER model ( 

Table 2-2). There were also a number of terms which were thought to be 

clinically similar but not exact matches, which is relevant to the construction 

and comparison of disease models.  

 

The terms in the literature-derived models appeared to reflect those expected 

clinically. For example, the model for the overgrowth syndrome associated 

with DNMT3A (Tatton-Brown Rahman) included the terms ‘Macrocephaly’ 

and ‘Tall stature’. There were multiple seizure-related terms in the GRIN2B 

model, and this is a known epilepsy-associated gene.  

 

These GDD were chosen because they are phenotypically diverse. The 

literature-derived terms reflected the diversity not only across the phenotypic 

spectra of individual disorders, but also across body systems. For example, 
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there were terms included describing growth and intellectual development, 

dysmorphic features, neurological disease and cardiac disease.  

There were a number of terms in the DECIPHER data which were not found 

in the literature-based models. In general, individuals are recorded on 

DECIPHER as part of investigations into an undiagnosed genetic disorder. 

DECIPHER is not a curated database for phenotypic data.  

 

It is possible that the terms on DECIPHER may reflect atypical examples of a 

condition, or some phenotypic features may be unrelated to the underlying 

diagnosis. This may also reflect an issue with the accuracy of the literature-

derived models. However, the overall subjective impression was of a 

significant number of overlapping terms.   

 

In conclusion, the results from the pilot study provided provisional evidence 

that phenotypic descriptors in literature-derived models were subjectively 

similar to clinically derived data. I am not aware of this direct literature-

derived to clinically-derived term comparison being performed previously. 

This supported pursuing an automated approach to constructing these 

models.  

 

Disease gene Number of 
relevant 
manuscripts 

Number of 
unique 
literature-
derived HPO 
terms 

Number of 
unique 
DECIPHER HPO 
terms 

DNMT3A 7 118 9 

PACS1 6 116 21 

GRIN2B 8 56 23 

Table 2-1. Summary of literature-derived and DECIPHER-derived disease 
descriptors found for three exemplar GDD. 
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DNMT3A – Tatton-Brown-Rahman syndrome 
 
DECIPHER-derived HPO terms DECIPHER 

frequency 
Literature-derived 
HPO terms 

Literature 
frequency 

Global developmental delay 5 Tall stature 7 
Macrocephaly 4 Intellectual 

disability 
7 

Tall stature 3 Generalized 
hypotonia 

6 

Frontal upsweep of hair 2 Narrow palpebral 
fissure 

6 

Joint hypermobility 2 Horizontal eyebrow 6 
Large for gestational age 2 Thick eyebrow 5 
Moderate global developmental 
delay 

2 Macrocephaly 4 

Proportionate tall stature 2 Joint hypermobility 4 
Synophrys 2 Thin upper lip 

vermilion 
4 

 
PACS1 – Shuurs-Hoeijmakers syndrome 

 
DECIPHER-derived HPO terms DECIPHER 

frequency 
Literature-derived 
HPO terms 

Literature 
frequency 

Constipation 4 Downslanted 
palpebral fissures 

5 

Global developmental delay 4 Bulbous nose 5 
Moderate global developmental 
delay 

4 Hypertelorism 4 

Cryptorchidism 3 Highly arched 
eyebrow 

4 

Delayed speech and language 
development 

3 Iris coloboma 4 

Epicanthus 3 Thin upper lip 
vermilion 

3 

Gastroesophageal reflux 3 Low-set ears 3 
Hypertelorism 3 Gastroesophageal 

reflux 
3 

Microcephaly 3 Seizures 3 
Thin upper lip vermilion 3 Downturned 

corners of mouth 
3 

Anteverted nares 2 Constipation 3 
Depressed nasal bridge 2 Wide mouth 3 
Downslanted palpebral fissures 2 Ventricular septal 

defect 
3 

Low-set ears 2 Single transverse 
palmar crease 

2 

Seizures 2 Pectus excavatum 2 
Severe global developmental delay 2 Optic nerve 

coloboma 
2 
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Short stature 2 Renal duplication 2 
Sleep disturbance 2 Scoliosis 2 
Telecanthus 2 Absent speech 2 
Thin vermilion border 2 Aggressive 

behavior 
2 

Ventricular septal defect 2 Anteverted nares 2 
 
GRIN2B – GRIN2B-associated Neurodevelopmental Disorder 

 
DECIPHER-derived HPO terms DECIPHER 

frequency 
Literature-derived 
HPO terms 

Literature 
frequency 

Global developmental delay 9 Global 
developmental 
delay 

4 

Severe global developmental delay 6 Epileptic spasms 3 
Seizures 5 Intellectual 

disability, mild 
3 

Delayed speech and language 
development 

4 Absent speech 3 

Generalized hypotonia 4 Feeding difficulties 2 
Intellectual disability, severe 4 Hypsarrhythmia 2 
Cerebral visual impairment 3 Generalized tonic-

clonic seizures 
2 

Abnormality of eye movement 2 Muscular hypotonia 
of the trunk 

2 

Abnormality of the nervous system 2 Muscular hypotonia 2 
Absence seizures 2 Infantile spasms 2 
Absent speech 2 Intellectual 

disability, moderate 
2 

Constipation 2 Microcephaly 1 
Epicanthus 2 Status epilepticus 1 
Failure to thrive 2 Intellectual 

disability, severe 
1 

Gastroesophageal reflux 2 Short attention 
span 

1 

Generalized-onset seizure 2 Seizures 1 
Macrocephaly 2 Sleep disturbance 1 
Moderate global developmental 
delay 

2 Hyperactivity 1 

Muscular hypotonia 2 Motor delay 1 
Pectus excavatum 2 Myoclonus 1 
Postnatal microcephaly 2 Poor eye contact 1 
Stereotypy 2 Mood swings 1 
Strabismus 2 Generalized tonic-

clonic seizures with 
focal onset 

1 

 



 

Creation of weighted phenotypic disease models 73 

Table 2-2. Comparison of HPO terms derived from clinically-derived patient 
data in DECIPHER and manual annotation of the peer-reviewed literature, 
describing three GDD. Terms highlighted in green are exact matches 
between datasets. Terms in orange are non-exact matches which are 
clinically similar. All terms for each DECIPHER model shown. The full list of 
literature-derived terms for DNMT3A (n=118), PACS1 (n=116), and GRIN2B 
(n=56) not displayed for brevity.  

 

2.2.3 Generation of 50 paper annotated test corpus 
 

To test the performance of different text-mining methods, a corpus consisting 

of the full text of 50 papers containing case series or case reports relevant to 

a variety of GDD was generated. The manuscripts were randomly selected 

from those identified during curation of the DDG2P database (31).  

 

Identifiers for each manuscript in the form of PubMed IDs (PMIDs) were used 

as input for the Cadmus full text retrieval package (43), which was developed 

at the University of Edinburgh as part of a wider project to optimise 

biomedical text mining and literature curation. The process used by Cadmus 

issummarised in the following paragraph. It should be noted that I used this 

package but was not involved in development of the source code. The 

summary here is for information regarding the method through which 

Cadmus obtains full text data.  

 

For each PMID, PubMed metadata was obtained. The metadata includes 

information such as the title, abstract, authors, journal title, publication type 

and MeSH terms. It may also include a doi reference. This metadata was 

then used to send requests for download for each paper to sources which 

authorise full text retrieval for research purposes. Typically, a publisher or 

other database will offer an API (Application Programming Interface) to 

enable this. Multiple sources were used to maximise the chances of 

download, including, but not limited to, Crossref, doi.org and EPMC. File 

formats for downloads generated through this process varied; these included 

HTML (Hypertext Markup Language), XML (Extensible Markup Language), 
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PDF (Portable Document Format) and plain text. Where multiple formats 

were retrieved, a series of quality assessments were used to identify the best 

full text version. The text was cleaned, using a format-specific method, and 

converted to a string. The abstract and references were identified using 

keyword matching, and parsed out to create a final ‘full text’ document. This 

document is referred to as the ‘full text’ throughout this work.  

 

Cadmus output was in the form of a Pandas dataframe which comprises 

metadata for each paper as well as full text, including: PMID, title, abstract, 

publication type and file formats downloaded (PDF/XML/HTML/plain text). A 

unique identifier for each paper was also included to allow for continuity in 

data processing. An outline of the process used is shown in Figure 2-1. 

 

 
Figure 2-1. Overview of Cadmus full text download pipeline. 

 

I then annotated the Cadmus-derived full text for each of the 50 papers. Text 

describing non-negated phenotypic features was highlighted using the Skim 
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PDF reader (141). Quantitative phenotypic features were excluded. This 

included quantitative statements which could be extrapolated to HPO terms, 

such as a small occipitofrontal head circumference measurement, which 

could be mapped to ‘Microcephaly’ (HP:0000252). Skim enables export of all 

highlighted text descriptors to a csv file (141). Exact string matching was 

used to map these text spans to HPO terms. Every instance where this was 

not successful was manually reviewed and assigned to an HPO term using 

the HPO website (22).  

 

A summary of the phenotypic terms included in this corpus is shown in  

Table 2-3. Of note, there were 12 terms highlighted in the text which did not 

map to HPO, even on manual review. These included ‘strephenopodia’ 

(medial deviation of the forefoot) and ‘triangular shaped conchae’. This 

illustrates the potential limitations of using a structured vocabulary, although 

it is straightforward to submit new terms to the HPO for consideration (22).  
 

Test corpus summary 

Number of papers annotated 50 

Total HPO terms 5450 

Unique HPO terms 866 

Mean HPO terms per paper 109 

Median HPO terms per paper 83 

 

Table 2-3. Summary statistics for annotated corpus of 50 papers for testing 
text named entity recognition methods.  

 

2.2.4 Named Entity Recognition – FlashText, SpaCY and 
MetaMap 

 

The performance of three NER methods was tested on the 50 paper test 

corpus, compared to manual annotation. These represent different levels of 

sophistication in terms of the matching algorithm used, and in specificity for 
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biomedical text. The use of these particular methods represents an evolution 

in my abilities to configure and use programmable text extraction methods. 

FlashText (142) was used as a type of basic exact string matching according 

to a defined list of terms, in this case the HPO. The algorithm prevents 

matching of partial strings within other words. SpaCy PhraseMatcher also 

matches strings from a defined list with more advanced tokenization and 

document processing (143). FlashText and SpaCy were more straightforward 

for me to use when starting from a non-computational background.  

 

MetaMap is a highly configurable NER program developed by the U.S. 

National Library of Medicine for the purpose of identifying concepts in 

biomedical text (64). This is a more complex, and more powerful technique 

than the two listed above. This represented a significant step up for me in my 

ability to utilise natural language processing techniques. The most up-to-date 

techniques, such as BioBERT, (71) require pre-training and detailed 

optimisation before implementation, and it was thought that this process 

would be too lengthy for my purposes in relation to this work.  

 

For FlashText and SpaCy, the Cadmus-derived full text for all 50 papers was 

concatenated into a single document. The FlashText algorithm version 2.7 

(142), was used for exact string matching. This matches only whole 

words/phrases and not substrings. The FlashText keyword_processor 

module uses a dictionary of defined terms to match those in text. The HPO 

terms used for this dictionary were all descendants of ‘Phenotypic 

abnormality’ (HP:0000118) and their synonyms, as described in section 

2.2.1.  

 

SpaCy is a highly configurable natural language processing system (143). 

SpaCy version 2.1.8 was first used to split the input text into tokens, 

according to linguistic rules. This tokenized document was then used as input 

for the SpaCy PhraseMatcher module, which is used for matching text to 

terms in large terminology lists. Again, the HPO terms used for this 
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terminology list were all descendants of ‘Phenotypic abnormality’ 

(HP:0000118) and their synonyms, as described in section 2.2.1. 

 

For MetaMap, the 2018 release was used to process each Cadmus-derived 

full text in the 50 paper test corpus via the command line in Linux, using the 

subprocess package to access this through Python. Running each text 

individually through MetaMap results in significant time constraints. 

Therefore, the multiprocessing Python package was used to assign input 

papers to different processors, with an output file generated for each paper. 

MetaMap output was in the form of UMLS concepts. These correspond to 

biomedical entities contained within the UMLS Metathesaurus (60). This 

includes multiple source vocabularies which standardize and codify terms 

related to, for example, diseases, genes and drugs. The HPO is one of the 

UMLS source vocabularies (22).  

 

MetaMap by default uses all source vocabularies contained within the UMLS 

Metathesaurus, with each term defined by a Concept Unique Identifier (CUI) 

(60). In this case, the source vocabulary was restricted to CUIs 

corresponding to the HPO (22), which is Category 0 under the UMLS 

Metathesaurus licence, which means it can be used for research purposes. 

 

MetaMap offers various output options. Fielded MetaMap Indexing (MMI) 

was used in this case as it is straightforward to parse, and contains detailed 

information about each matched concept. An example of MMI output is given 

in Figure 2-2. This comprises “|” separated output for each UMLS biomedical 

concept (60) identified in the text. Pertinent MMI output includes, for each 

concept: a unique identifier (CUI), a score for the relevance of the concept 

according to the MMI algorithm (based on word frequency and relevance of 

concept), the full text name of the concept, trigger information (the actual text 

mapped by MetaMap to a concept, with a negation flag; this may cover 

multiple spans of text), and positional information to identify triggers in the 

text.  
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The number of non-negated triggers for a CUI, as defined by MetaMap, was 

used as the frequency at which a concept is identified in the full text, for the 

purposes of term weighting. The UMLS Metathesaurus (Release 2020AA) 

provides direct mappings of CUI to HP ID. These were used to map all 

MetaMap output concepts to the HPO. In some cases, the CUI mapped to 

more than one HP ID. In this case, whichever term was higher-level in the 

ontology was mapped to the CUI. The “|” separated MMI output was parsed 

to give a list of tuples comprising (HP ID, non-negated frequency of concept) 

per CUI, for each full text document. This was merged with Cadmus-

generated metadata, to give a weighted list of HP IDs per PMID.  

 

 

 
 

2.2.5 Named Entity Recognition performance vs gold 
standard corpus 

 

HPO term + frequency lists generated by Flashtext, SpaCY and MetaMap 

after processing the 50 paper test corpus, as detailed in section 2.2.4, were 

compared to the list of terms from manual annotation. This was to assess the 

performance of each method. True positive (TP), true negative (TN) and false 

positive (FP) rates were calculated using the frequency per term and 

summed across all terms, for each method. Performance metrics were then 

generated using the following formulas: 

 

USER|MMI|26.12|Anophthalmos|C0003119|[cgab]|["Anophthalmia"-tx
-1-"anophthalmia"-noun-0,"Anophthalmia"-tx-1-"anophthalmia"-no
un-1]|TX|[248/12],[327/12];[248/12],[327/12]|C11.250.080;C16.1
31.384.159\n 
 

Figure 2-2. Example of fielded MetaMap Indexing (MMI) output. Adapted 

from National Library of Medicine (8). Blue highlight – UMLS Concept 

Preferred Name. Yellow highlight – UMLS Concept Unique Identifier (CUI). 

Green highlight – text from document mapped to UMLS concept. Orange 

highlight – negation flag: 1 if negated, 0 if not. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)⁄  

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄  

𝐹1	𝑠𝑐𝑜𝑟𝑒 = 	
𝑇𝑃

𝑇𝑃 (𝑇𝑃 + (0.5 × (𝐹𝑃 + 𝐹𝑁))⁄  

 

Precision is equivalent to positive predictive value, i.e. the proportion of terms 

returned which are true matches. Recall is equivalent to sensitivity, i.e. the 

proportion of true matches in the document which were returned. The F1 

score is the harmonic mean of the precision and recall. 

 

The results of this comparison are shown in Table 2-4. The performance of 

both PhraseMatcher and FlashText was similar, with a higher precision than 

recall, reflected by the same F1 score. The low recall for each of these 

methods means that between 44% and 47% of potential matches in the 

document were missed. MetaMap was uniformly superior to the other two 

methods, resulting in a 10 point higher F1 score. However, there were still 

35% of potential matches in the document missed.  

 
Text extraction method Precision Recall F1 
Flashtext 0.75 0.53 0.62 

PhraseMatcher 0.69 0.56 0.62 

MetaMap 0.84 0.65 0.73 

Table 2-4. Comparison of NER methods, using annotated 50 paper test 
corpus. 

 

For the unique phenotype terms in the test corpus, 180/866 (20.8%) were not 

recognised by any method (Figure 2-3). 91/866 (10.5%) exact matches were 

missed by MetaMap, but identified by PhraseMatcher. It was hypothesised 

that this discrepancy may be explained by MetaMap mapping phenotypic 

descriptors in text to different concepts, rather than to their exact matches in 

HPO.  
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To explore this, MetaMap (n=137) and annotated terms (n=180) which did 

not intersect were manually reviewed to determine if there were clinical 

correlates between the two sets. The full set of terms reviewed is in 

Supplementary Table 1. There were 35/137 (25.5%) terms in the MetaMap 

set which had clinical matches with manually annotated terms. This means 

that the true recall of MetaMap, from a clinical perspective, is likely higher 

than the figure generated previously, although it is difficult to apply this 

information in practice. 
 

 

Figure 2-3. Overlap of all unique terms using NER methods on annotated 50 

paper test corpus. 

 

Given the superior performance of MetaMap against the other methods 

tested, it was used to develop literature-derived disease models, using the 

configurable processing options as discussed below.  

 

2.2.6 Assessment of MetaMap processing options 
 

The 50 paper test corpus was processed using MetaMap (64) as detailed in 

section 2.2.4, with additional processing options added. All options were 
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reviewed, and only those which were thought likely to increase performance 

in full text analysis were added. These were used singly and in combination.  

 

The options were:  

1. Word sense disambiguation (WSD) – returns a single mapping for 

terms with ambiguous meanings. 

2. No derivational variants (NDV) – Stops derivational variants being 

used in concept mapping, for example hyperplastic and hyperplasia. 

3. Restrict to sources (R-) – concept mapping restricted to specific 

vocabularies within the UMLS Metathesaurus (60), for example the 

HPO (R-HPO).  

4. Blanklines off – prevents MetaMap from using any whitespace line as 

a separator for input. Normally this is the default behaviour. MetaMap 

recommends this option particularly for processing clinical text (64).  

5. Conjunction processing – recombining phrases with a conjunction e.g. 

‘lung and breast cancer’ would be processed as ‘lung cancer’, ‘breast 

cancer’ instead of the default ‘lung’ ‘and’ ‘breast cancer’.  

 

All MetaMap options had very similar F1 scores ( 

). However, there was variation in the balance between precision and recall.  

MetaMap options Precision Recall F1 score 
Word sense disambiguation, no derivational 

variants, restrict to HPO 

0.80 0.70 0.74 

Word sense disambiguation, restrict to HPO 0.81 0.69 0.74 

No derivational variants, restrict to HPO 0.79 0.70 0.74 

Blanklines off, restrict to HPO 0.76 0.73 0.74 

Restrict to HPO 0.77 0.71 0.74 

Blanklines off, word sense disambiguation, 

no derivational variants, conjunction 

processing, restrict to HPO 

0.79 0.69 0.74 

Blanklines off 0.82 0.67 0.74 

No options 0.84 0.65 0.73 

Conjunction processing, restrict to HPO 0.77 0.70 0.73 
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Adding options appeared to increase recall at the cost of precision. There 

was also significant processing time differences between options, with word 

sense disambiguation and no derivational variants, in particular, markedly 

slowing performance. Restricting source vocabulary to HPO with no other 

options was chosen as it offered a good balance between precision and 

recall, without a large decrease in processing speed. This configuration was 

used for all the other analyses in this work.  
 

 

 

 

 

 

MetaMap options Precision Recall F1 score 
Word sense disambiguation, no derivational 

variants, restrict to HPO 

0.80 0.70 0.74 

Word sense disambiguation, restrict to HPO 0.81 0.69 0.74 

No derivational variants, restrict to HPO 0.79 0.70 0.74 

Blanklines off, restrict to HPO 0.76 0.73 0.74 

Restrict to HPO 0.77 0.71 0.74 

Blanklines off, word sense disambiguation, 

no derivational variants, conjunction 

processing, restrict to HPO 

0.79 0.69 0.74 

Blanklines off 0.82 0.67 0.74 

No options 0.84 0.65 0.73 

Conjunction processing, restrict to HPO 0.77 0.70 0.73 
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2.2.7 Clinical assessment of MetaMap derived single gene 
disorder models 

 

The clinical relevance of disease models created using MetaMap was 

reviewed in more detail. To enable this, a further set of models were created 

for SOX2-, EFTUD2- and ASXL3-related disorders. Relevant case 

series/case reports were identified through PubMed search and processed 

using Cadmus and MetaMap as detailed in sections 2.2.3 and 2.2.4. The (HP 

ID, frequency) lists for each paper were merged, to create final disease 

models. As a comparison, phenotypic descriptors from expert literature 

reviews were used. The top five phenotypes present in multiple matching 

patients with pathogenic variants in DECIPHER (30) were also compared. 

Note there were no patients available for comparison in DECIPHER for 

SOX2.   

 

The literature-derived SOX2 model is shown in Figure 2-4. Clinically, the 

main clinical features of SOX2 disorder are anophthalmia and 

microphthalmia. Other associated phenotypic descriptors include coloboma, 

growth restriction, learning disability/global developmental delay, seizures, 

malformation of the hippocampus, pituitary hypoplasia, corpus callosum 

hypoplasia and genital abnormalities (144). All of these were included in the 

top 15 terms of the MetaMap SOX2 model (n=380) (Figure 2-4) except 

growth restriction and malformation of the hippocampus. However, the terms 

Table 2-5. Performance of MetaMap usage options. Evaluated against 50 

manually-annotated papers describing developmental disorders. Word sense 

disambiguation – disambiguate concepts with similar scores. Restrict to HPO 

– use only human phenotype ontology for mapping concepts. No derivational 

variants – compute word variants without using derivational variants. 

Blanklines off – process text as whole document. Conjunction processing – 

join conjunction-separated phrases. 
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‘Short stature’ (HP:0004322) and ‘Hypoplastic hippocampus’ (HP:0025517) 

were included in the model at lower frequency. 
 

 
Figure 2-4. Example disease model generated using MetaMap for SOX2-
related disorder. Top 15 most frequent terms shown (full model n=380 
terms). Terms generated from the full text of 38 relevant case reports/case 
series.  

 

SNV in EFTUD2 result in the disorder Mandibulofacial dysostosis with 

microcephaly (145). The literature-derived model in Figure 2-6 indeed has 

‘Mandibulofacial dysostosis’ (HP:0005321) and ‘Microcephaly’ (HP:0000252) 

as the highest weighted terms. The other main features of this disorder are 

intellectual disability, hearing loss and ear malformation, and these are 

included in the model (145). Of note ear malformation is represented by the 

general term ‘Abnormality of the pinna’ (HP:0000377) as well as more 

specific terms including microtia (HP:0008551), meaning small ears, 

‘Preauricular skin tag’ (HP:0000384), and ‘Pretragal ectopia’ (HP:0030024).  

 

The other characteristic features of this condition are cleft palate, choanal 

atresia, facial asymmetry, cardiac abnormalities, thumb abnormalities, 

oesophageal atresia, short stature, spinal abnormalities and seizures (145). 

All of these are present in the top 15 terms of the model, except cardiac, 

thumb and spinal abnormalities, and short stature. However, the terms 

‘Abnormality of cardiovascular system morphology’ (HP:0030680), ‘Atrial 

septal defect’ (HP:0001631), ‘Ventricular septal defect’ (HP:0001629), 

‘Abnormal thumb morphology’ (HP:0001172), ‘Proximal placement of thumb’ 
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(HP:0009623), ‘Scoliosis’ (HP:0002650) and ‘Short stature’ (HP:0004322) 

were in the model at lower frequencies.  

 

The top five terms in DECIPHER for EFTUD2-related disorder were 

‘Microcephaly’, ‘Preauricular skin tag’, ‘Moderate global developmental 

delay’, ‘Delayed speech and language development’ and ‘Facial asymmetry’ 

(30). These were all present in the top 15 terms of the literature-derived 

model (Fig. 2-6), except that delayed development was represented by the 

parent term ‘Global developmental delay’ in the model.  

The main features of ASXL3-related disorder are developmental 

delay/intellectual disability, speech delay, autism or autistic traits, feeding 

difficulties, hypotonia, failure to thrive, seizures, visual abnormalities such as 

strabismus and skeletal abnormalities, as well as dysmorphic features 

including prominent forehead, highly arched eyebrows and downslanted 

palpebral fissures (146). All of these are present in the top 15 model terms in 

Figure 2-5, except ‘Strabismus’ (HP:0000486) which is represented at a 

lower frequency.  

 

Figure 2-5. Example disease model generated using MetaMap for EFTUD2-
related disorder. Top 15 most frequent terms shown (full model n = 278 
terms). Terms generated from the full text of 12 relevant case reports/case 
series. 



 

Creation of weighted phenotypic disease models 86 

Notably, there are several terms in the top 15 which were not described in a 

comprehensive review of this condition (146). These are ‘Microcephaly’ 

(HP:0000252), ‘Premature birth’ (HP:0001622), ‘Trigonocephaly’ 

(HP:0000243) and ‘Nevus’ (HP:0003764). Of these, microcephaly is present  

in several of the reviewed papers (147,148), perhaps illustrating an error in 

manual literature review which is not missed using the automated method. 

The other features are not commonly associated with ASXL3-disorder, and 

may represent phenotypic expansion hitherto unnoticed without the benefit of 

deep computational phenotyping, or could be erroneous mappings by 

MetaMap (64,146).  

In DECIPHER, the top five terms were ‘Global developmental delay’, 

‘Feeding difficulties in infancy’, ‘Hypertelorism’, ‘Strabismus’, and 

‘Generalized hypotonia’ (30). Of these, all were present in the literature-

derived model except ‘Hypertelorism’. ‘Strabismus’ was present at a lower 

frequency, as above, with the other DECIPHER terms being in the top 15 of 

the model.  

 

In conclusion, detailed clinical assessment of literature-derived disease 

models showed that these were reflective of true disease expressivity. This 

Figure 2-6. Example disease model generated using MetaMap for ASXL3-
related disorder. Top 15 most frequent terms shown (full model n = 275 
terms. Terms generated from the full text of 13 relevant case reports/case 
series. 
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applied to both the phenotypic terms used and to the weighting, which 

reflected the most common features of a given disorder.  

 

2.2.8 Disease models for copy number variants 
 

Disorders resulting from copy number variation (CNV) are often more 

complex to define than those caused by single nucleotide variants (SNV). 

This is because CNV involve the gain or loss of multiple genes, and the 

precise genes involved are variable between individuals. There are, however, 

recurrent CNV which result in recognizable syndromes, although the 

phenotypic spectrum may still be broad.  

 

Literature-derived disease models were created, using methods as described 

in sections 2.2.3 and 2.2.4, for the well-characterised 16p11.2 deletion 

syndrome (Figure 2-7) and 22q11.2 deletion syndrome (Figure 2-8). This was 

to assess whether the literature-derived disease model concept may be 

applied to CNV syndromes as well as single gene disorders. As for SNV 

syndromes, expert literature reviews and the top five terms from DECIPHER 

were used as comparators.  

 

 
Figure 2-7. Example disease model generated using MetaMap for the 
16p11.2 deletion syndrome. Top 15 most frequent terms shown (full model n 
= 206). Terms generated from the full text of 8 relevant case reports/case 
series. 
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The main features of the 16p11.2 deletion syndrome are motor and speech 

impairment, (particularly apraxia), intellectual disability/global developmental 

delay, autism/autistic behaviour, macrocephaly, Chiari I malformation, 

seizures, vertebral abnormalities and obesity (149). Of these, all are present 

in the model (Figure 2-7), including the lower frequency terms ‘Macrocephaly’ 

(HP:0000256), ‘Arnold-Chiari type I malformation’ (HP:0007099) and 

‘Obesity’ (HP:0001513).  

 

The top five DECIPHER terms ‘Intellectual disability’, ‘Delayed speech and 

language development’, ‘Global developmental delay’, ‘Obesity’, and ‘Autism’ 

were present in the model. However, there are a number of terms in the 

literature-derived model which are not usually associated with this condition, 

including ‘Nephritis’ (HP:0000123) and ‘Neuroblastoma’ (HP:0003006).  

 

To explore this, the contribution of each input paper was assessed ( 

Table 2-6). This showed that ‘Nephritis’ (HP:0000123) and ‘Neuroblastoma’ 

(HP:0003006), in particular, were heavily weighted in the model by single 

papers which were especially focused on these conditions. It is easy to 

exclude these papers manually before phenotype extraction, but this is not 

scalable in a fully automated system. In future, different methods of weighting 

phenotypic descriptors may help to ameliorate this issue.  

Title 

Highest ranked HPO 

term Frequency 

Germline 16p11.2 Microdeletion Predisposes to 

Neuroblastoma. Neuroblastoma 41 

Human and mouse studies establish TBX6 in Mendelian 

CAKUT and as a potential driver of kidney defects 

associated with the 16p11.2 microdeletion syndrome. Nephritis 50 

Deep phenotyping of speech and language skills in 

individuals with 16p11.2 deletion. Speech apraxia 38 

16p11.2 deletion syndrome. Autistic behavior 10 

Ocular Findings in the 16p11.2 Microdeletion Syndrome: A 

Case Report and Literature Review. Hypertelorism 10 



 

Creation of weighted phenotypic disease models 89 

PRRT2-related phenotypes in patients with a 16p11.2 

deletion. Paroxysmal dyskinesia 28 

Intrauterine phenotypic features associated with 16p11.2 

recurrent microdeletions. 

Abnormality of the 

cardiovascular system 26 

Neurodevelopmental trajectory and modifiers of 16p11.2 

microdeletion: A follow-up study of four Chinese children 

carriers. Autistic behavior 9 

 

Table 2-6. Manuscripts used to create 16p11.2 deletion syndrome disease 
model, with highest ranked HPO term per paper shown. 

 

A similar process was undertaken for the 22q11.2 deletion syndrome (Figure 

2-8). This is characterized by features including congenital cardiac disease 

(especially ventricular septal defect, tetralogy of Fallot, interrupted aortic 

arch, and truncus arteriosus), abnormalities of the palate, immunodeficiency, 

dysmorphism and intellectual disability. Psychiatric disease is more common, 

particularly schizophrenia (150).  

 

These were all present in the model (Figure 2-8), with ‘Cleft palate’ 

(HP:0000175) and ‘Immune dysregulation’ (HP:0002958) at lower frequency. 

However, diabetes is not usually associated with this condition, and was the 

highest ranked term. There also seemed to be a predominance of 

cardiovascular terms.  

 

The DECIPHER top terms were ‘Intellectual disability’, ‘Ventricular septal 

defect’, ‘Micrognathia’, ‘Hypocalcaemia’ and ‘Delayed speech and language 

development’. These were all present in the literature-derived model, except 

‘Micrognathia’.  

 

Analysis of the manuscript contributions to the 22q11.2 deletion model ( 

Table 2-7) showed that papers focused on cardiovascular manifestations did 

contribute significantly to the frequency weighting. However cardiovascular 

disease is a well-known major feature of the condition (150), so this is 
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perhaps unsurprising. There was one paper included focusing on the risk of 

diabetes with 22q11.2 deletion, and this contributed the term ‘Type II 

diabetes mellitus’ (HP:0005978) at a much higher frequency than any other 

term across all manuscripts.  
 

 

Figure 2-8. Example disease model generated using MetaMap for the 
22q11.2 deletion syndrome. Top 15 most frequent terms shown (full model n 
= 181). Terms generated from the full text of 11 relevant case reports/case 
series. 

 

 

 

Title 

Highest ranked 

HPO term Frequency 

Complete Sequence of the 22q11.2 Allele in 1,053 Subjects with 

22q11.2 Deletion Syndrome Reveals Modifiers of Conotruncal 

Heart Defects. 

Tetralogy of 

Fallot 11 

Clinical features of 22q11.2 deletion syndrome related to hearing 

and communication. 

Hearing 

impairment 37 

Movement Disorder Phenotypes in Children With 22q11.2 

Deletion Syndrome. Dystonia 8 

Cognitive deficits in childhood, adolescence and adulthood in 

22q11.2 deletion syndrome and association with 

psychopathology. Autistic behavior 26 

Assessing auditory processing endophenotypes associated with 

Schizophrenia in individuals with 22q11.2 deletion syndrome. Schizophrenia 21 
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22q11.2 deletion syndrome and congenital heart disease. 

Tetralogy of 

Fallot 17 

Medical and dental characteristics of children with chromosome 

22q11.2 deletion syndrome at the Royal Children's Hospital, 

Melbourne. 

Abnormality of 

cardiovascular 

system 

morphology 14 

Lymphoproliferative disorder with polyautoimmunity and 

hypogammaglobulinemia: An unusual presentation of 22q11.2 

deletion syndrome. 

Abnormal 

pulmonary 

interstitial 

morphology 5 

Magnitude and heterogeneity of brain structural abnormalities in 

22q11.2 deletion syndrome: a meta-analysis. Psychosis 22 

The 22q11.2 Microdeletion in Pediatric Patients with Cleft Lip, 

Palate, or Both and Congenital Heart Disease: A Systematic 

Review. Cleft upper lip 1 

22q11.2 microdeletion and increased risk for type 2 diabetes. 

Type II diabetes 

mellitus 120 

 

Table 2-7. Manuscripts used to create 22q11.2 deletion syndrome disease 
model, with highest ranked HPO term per paper shown. 

 

 

2.3 Discussion 
 

2.3.1 Disease model creation 
 

In this chapter, I have demonstrated a method for creating disease models 

from full-text manuscripts in the peer-reviewed literature. The models were 

constructed using standardised vocabulary from the HPO, and terms 

weighted according to their frequency in the literature. I analysed the clinical 

similarity of these models to the phenotype of well-defined GDD.  
 

2.3.2 Pilot study – disease model proof-of-concept 
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First, I conducted a pilot study to determine proof-of concept for the text-

mining disease model concept. I showed that literature-derived phenotypic 

features reflect those seen in prospectively gathered clinical data, with a 

number of exact term matches between sets. However, this exercise also 

highlighted potential issues, where clinically similar phenotypic features were 

defined differently in each model. These were apparent on manual review, 

but pointed towards complexities in computational phenotype extraction and 

review, which were analysed further as part of the development of literature-

derived phenotyping in this work.  

 

2.3.3 Literature review for disease model creation 
 

Full-text derived models were created for conditions relating to SNV in SOX2, 

EFTUD2 and ASXL3, as well as from the CNV syndromes related to 16p11.2 

and 22q11.2 microdeletions. PubMed search was used to identify relevant 

papers. This used only the current HGNC gene symbol. Deprecated symbol 

and/or full gene name searches could be added in future for a potentially 

more comprehensive overview of a given condition. However, for an 

automated search this could significantly increase the number of non-

relevant search results. This could adversely affect the clinical accuracy of 

disease models generated.  

 

For case reports/case series identified, careful exclusion criteria were applied 

to minimise phenotypic noise. For example, manuscripts containing 

descriptions of more than one disease were not included. This reduced the 

potentially confounding effect of other disease descriptors being included in 

the models created. However, this meant the exclusion of potentially valuable 

phenotypic data. However, given the whole-manuscript nature of phenotypic 

extraction described here, it is likely that descriptors of other diseases were 

included. For example, authors may discuss related conditions to those being 

reported, in the introduction and discussion sections of a paper. These 

factors should be considered in the development of disease models derived 
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from automated literature search, as this is likely to result in increased 

phenotypic noise.  

 

In future work, all phenotypic descriptors extracted from a manuscript should 

ideally be associated with single individuals in case reports/case series. This 

would not only refine the disease model, but would also allow for exact 

frequencies per term to be used as weightings. One method of doing this 

may be to use tabular data; this is more complex to parse but often includes 

per-individual phenotypes.  
 

2.3.4 Cadmus for full-text download 
 

I used the Cadmus package (43) to download full-text manuscripts for the 

creation of disease models, leveraging university-wide permissions to access 

almost all of the biomedical literature. Most work in phenotype text mining 

has used only title + abstract (151), or in some cases open access full text 

(36), which represents a minority of the published literature (41). Therefore, 

the use of Cadmus in this work should allow for more comprehensive breadth 

of coverage of the relevant literature than previously possible. The use of full 

text should also enable greater depth of phenotyping compared to title + 

abstract (40). This ought to translate into more clinically accurate disease 

models, reflecting the full phenotypic spectrum of a given disorder. Cadmus 

also greatly simplifies the process of accessing full text, providing a corpus of 

parsed documents from a list of PMIDs, ready for phenotype extraction.  
 

2.3.5 NER method evaluation 
 

After full-text download, the next step in disease model construction is 

phenotypic feature extraction. Three methods were tested for this purpose – 

FlashText, SpaCY and MetaMap (64,142,143). These were chosen for 

pragmatic reasons, being straightforward to set up and use, compared to 

more complex NER techniques such as BioBert (71). Unsurprisingly, the 
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simpler string-matching methods FlashText and SpaCY were outperformed 

by MetaMap. The precision and recall figures obtained for MetaMap of 0.77 

and 0.71 also compare favourably to those reported in the literature, as 

reviewed in section 1.7. This is the case for similar rule-based methods such 

as the NCBO annotator, OBO annotator and Bio-LarK (49,61,66).  

 

However, similar performance metrics were also obtained for the most 

advanced HPO annotator I am aware of, PhenoTagger, which utilises BioBert 

(54,71). This had precision of 0.77 and recall of 0.74 when tested on a 

corpus of HPO-annotated abstracts (51,54). It is clear from the review in 

section 1.7. that very variable performance can be obtained from the same 

annotator using different corpora. Therefore, the results obtained here are 

not sufficient to directly compare to reported NER methods. Nevertheless, 

MetaMap appears to be at least comparable to other techniques, and was 

thought to be sufficiently performant to use for disease model creation.  
 

 

 

2.3.6 Test corpus – advantages and limitations 
 

The corpus created here for the purposes of testing NER methods comprises 

50 full text manuscripts. Phenotypic features in the text were directly 

annotated to HPO terms. As far as I am aware, this is one of the largest test 

corpora available which specifically uses full-text HPO terms. This is 

illustrated by the fact that most HPO-specific NER methods in the literature, 

reviewed in 1.7 utilise the ‘HPO Gold Standard’ (HPO GS) corpus, as created 

by Groza et al., and modified by Lobo et al. (49,51). This comprises 228 

abstracts.  

 

Given the advantages of using full text outlined above, it is likely that the 50 

paper full-text corpora here is enriched for HPO terms, compared to the ‘Gold 

Standard’, and offers a more in-depth performance test for NER methods.  
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The HPO GS did (in theory) utilise more rigorous annotation methods in its 

creation (49). Three expert annotators (the creators of the HPO) were used, 

two for the initial annotation and a third for a consistency/completeness 

check, paired with one of the others (49). Annotation was done according to 

a set of defined guidelines. However, one of these was that non-canonical 

phenotypes should not be annotated, e.g. include ‘hypoplastic nails’ but not 

‘nails were hypoplastic’ (49). This may be one of the reasons Lobo et al. were 

able to add 881 entities to the HPO GS (51). This case illustrates that manual 

annotation is essentially an imperfect process. The 50 paper test corpus 

demonstrated here is likely to be a useful resource not only for testing NER 

methods, but may also be used for training machine-learning based 

techniques in future. 
 

2.3.7 Clinical expressivity in disease models 
 

Clinical review of exemplar disease models created for SOX2, EFTUD2, 

ASXL3, 16p11.2 deletion and 22q11.2 deletion showed that they reflect true 

disease expressivity, as defined by comprehensive reviews of these 

conditions (144–146,149,150). In particular, weighting of terms according to 

their frequency in input manuscript appeared to prioritise the major features 

of each condition. Manual review of these models has limitations. Most of 

them contain hundreds of terms, more than the scope of phenotypic features 

covered in review papers. It is not possible to definitively assess whether a 

model of this size matches the true clinical phenotype of a disorder without 

detailed annotation of all disease-relevant manuscripts. Clinical review of the 

generated disease models was promising, in that they appeared to reflect 

true disease expressivity, particularly in relation to the top-ranked terms. 

Nonetheless, comparison of the full scope of these models is only possible 

using computational methods, which will be covered in Chapter 3.  
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2.3.8 Weighting bias from single manuscripts 
 

Whilst the exemplar disease models shown here appeared to reflect disease 

expressivity overall, there were individual high-ranked terms present which 

were clearly not part of the defined phenotypic spectrum. This was 

particularly true for the CNV models. One of the highest-weighted terms in 

the 16p11.2 deletion syndrome was ‘Neuroblastoma’ (HP:0003006). This 

was only present in the model because one of the input papers was 

‘Germline 16p11.2 Microdeletion Predisposes to Neuroblastoma’. Similarly, 

for the 22q11.2 deletion, the top term was ‘Type II diabetes mellitus’ 

(HP:0005978), included due to the paper ‘22q11.2 microdeletion and 

increased risk for type 2 diabetes’.  

 

This effect may be particularly pronounced for these CNVs, as they have 

been well-characterised for a relatively long period, therefore recently 

published reports are more likely to focus on a single phenotypic feature. The 

same is likely to be true for some single gene disorders, particularly those for 

which the phenotype was well defined prior to the molecular basis being 

discovered. In future work, it would be useful to refine term weighting to 

prevent single paper phenotypes skewing the model. Ultimately, extraction of 

phenotypic features on an individual basis, as discussed in section 2.3.3, 

should help ameliorate this issue.  

 

2.3.9 Conclusion 
 

In conclusion, I have presented here a method for generating weighted 

disease models for GDD from the full text of manuscripts in the peer-

reviewed literature. I tested several phenotype extraction methods, and 

showed that MetaMap (64) likely performs as well as other reported 

techniques. I assessed these models from a clinical perspective, and showed 

that they reflect true disease expressivity, with some caveats regarding the 
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accuracy of text mining. In the next chapter, I scale up the disease model 

concept, and test these against gold standard manual curation.  
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Chapter 3 Disease matching and evaluation 
 

3.1 Introduction 
 

Several literature-derived models discussed in section 2.2.7 appeared to 

clinically reflect true disease expressivity. Given these encouraging results, 

this chapter focuses on testing a set of these models at a larger scale to 

determine whether they maintain clinical utility.  

 

Phenotype models for GDD using HPO terms have previously been created 

using two methods: manual curation and automated disease-phenotype 

linking. Manual curation, for example OMIM and Orphanet (28,29), utilises 

disease-phenotype annotations extracted directly from relevant case 

reports/case series by expert reviewers. This method may be scaled up – in 

the version of OMIM used in this work, there were 5574 diseases annotated 

(29). However, this is a highly resource-intensive approach. Curation time 

needs to be spent not only documenting newly-described disorders, but also 

regularly updating existing entries. This represents a significant challenge 

given the volume of new publications describing GDD on a monthly basis 

(152).  

 

The disease models in these databases have limitations. OMIM does not 

generally directly link phenotype terms to the manuscript from which they 

were extracted, i.e. only amalgamated models are presented. Curation for 

these databases links phenotypic descriptors to disease entities. It is also 

useful to quantify the expressivity of these phenotypic features, i.e. how 

commonly a given phenotype is seen in association with a particular disease. 

HPO terms in OMIM do not usually have a frequency weighting to describe 

the most common features of a disease, although these are typically present 

in Orphanet, as discussed in sections 1.3.2 and 1.3.3.  
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Given the significant resources required to create and update manually-

curated disease-phenotype databases, studies have been undertaken to 

extract this information in an automated manner. For example, Kafkas et al. 

(153) used PMI (Pointwise Mutual Information) (90) to rank genotype-

phenotype associations for both HPO and the Mouse Ontology (22,118) in 

sentences extracted from a corpus of PubMed open access papers. Li et al. 

used a similar approach to generate autism-related gene-phenotype 

associations, although the corpus in this case was filtered using relevant 

search terms (154). Pilehvar et al. mapped phenotypic features to diseases 

by using Fisher Exact Testing to determine significant co-occurrence of 

disease-phenotype terms in Medline abstracts or paragraphs from PubMed 

open access articles (23,116). This study used the Mondo ontology (67) to 

define disease names, including GDD.  

 

The database created by Pilehvar et al. (116), PheneBank, is the most 

comprehensive automated GDD-phenotype curation work of which I am 

aware. However, this study and those of Kafkas et al. and Li et al. (153,154) 

have the significant limitation that the abstracts/manuscripts used were not 

filtered for human case reports/case series, meaning phenotype associations 

were likely made from other sources, for example animal models. The use of 

names only, i.e. text strings, to define disease entities also means the 

underlying molecular mechanism is not defined. This means, for example, 

that there is no way to differentiate between gene-specific phenotypes where 

the disease name relates to multiple genes.  

 

Pilehvar et al. did also extract gene-phenotype mappings (116), but there 

was no method of differentiating somatic from germline variation, therefore 

these were likely to include, for example, cancer-related manuscripts. In 

reality, these methods as demonstrated are not sufficiently clinically accurate 

for diagnostic use. A degree of manual curation is still needed, for example 

through selecting input manuscripts.  

 



 

Disease matching and evaluation 100 

The literature-derived disease models described in section 2.2.7 were 

generated using manually-selected manuscripts to ensure these contained 

single gene case reports/case series relevant to a particular GDD. It was 

hypothesised that this method could be scaled to a larger set of disorders 

whilst maintaining clinical utility. This increased number of models would also 

allow testing of this hypothesis using comparative similarity metrics.  

 

In this chapter, the process of generating a larger set of disease models is 

detailed. Several modifications to the process of generating disease models 

were also tested, to determine whether they increased performance. This 

was assessed through similarity to prospectively gathered clinical data from 

the DDD study (3).  

 

The larger disease model test set also allowed testing of the hypothesis that 

automated literature curation could produce data similar to the highly 

disease-specific curation used in OMIM and Orphanet (28,29), but in a less 

resource intensive manner. Literature-derived disease models in the test set 

are compared to those generated from manual curation in this chapter using 

several similarity metrics. The performance of models from each of these 

three datasets (literature-derived, OMIM, Orphanet) at predicting diagnoses 

from DDD is also assessed using ROC curves (3,28,29).  

 

3.2 Generation of larger scale disease model test set 
 

3.2.1 Generation of literature-derived disease test set 
 

The first step in testing the clinical utility of a larger set of disease models 

was their generation from literature sources. To enable this, a set of 99 GDD 

defined in the DDG2P database (31) were selected from the top 150 genes 

most frequently associated with diagnoses in the DDD study (6). Diseases 

were selected to include a range of different allelic requirements (monoallelic, 

biallelic, hemizygous and X-linked dominant), and for conditions which 
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already had phenotypic annotations in OMIM (29). Genes with more than 

three associated diseases were excluded. Each GDD was defined by a 

locus-genotype-mechanism-disease thread in DDG2P, derived from a DD 

gene-disease pairs and attributes file downloaded from 

www.ebi.ac.uk/gene2phenotype/downloads on 29/4/21.  

 

For each of these diseases, a literature review was undertaken using manual 

PubMed searches. The initial search was by gene symbol in title – {gene 

symbol}[TI] – as this strategy was found to be enriched for relevant GDD 

during curation of DDG2P. Of note, the ‘case report’[publication type] filter 

was not used as it is my experience that many case reports/case series in 

GDD are not tagged as such in PubMed. Case reports in rare disease often 

include a review of the previous literature, and this can lead to an article 

being tagged as ‘review’.  

 

If the search strategy returned less than 300 citations, every abstract in the 

results was reviewed to identify relevant case reports. If the initial search 

returned more than 300 citations, disease-specific modifier terms were added 

such as {gene symbol}[TI] AND {syndrome name} or {gene symbol}[TI] AND 

‘intellectual disability’. Only papers which described case reports/case series 

relating to a single gene were included. Reviews (without any novel data) and 

reports relating to CNV were not included. The PMID for each manuscript 

was added to the DDG2P data to form a locus-genotype-mechanism-

disease-evidence (LGMDE) thread for each disease.  

 

This PubMed search and review process identified 1018 PMID for the 99 

disease test set (Supplementary Table 2). These were used as input for 

Cadmus (43). There was a successful download in at least one format 

(HTML/XML/PDF/plain text) for 962/1018 papers (94.5%). There were no 

diseases with zero successful downloads. In several instances, there was a 

download in more than one format (Figure 3-1). Cadmus includes a quality 

assessment step to identify the best format to use in these cases. 
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Figure 3-1. Venn diagram of formats downloaded successfully by Cadmus 
per PMID. PMIDs identified for 99 disease test set used as input, with 
962/1018 total successful downloads.  

 

The Cadmus downloads were then used to construct a disease model per 

DDG2P entry using MetaMap (64), as described in section 2.2.4. Of note, 

Cadmus by default includes the abstract as ‘full text’ output if a download 

was unsuccessful. The abstract in this case was not used for phenotype 

extraction in this work. MetaMap was configured to restrict the UMLS source 

vocabulary to the HPO alone (22,60). No other output options were used, 

based on the analysis in section 2.2.6. The title and abstract for each PMID 

were derived from PubMed metadata contained in Cadmus output. These 

were also run through MetaMap to obtain weighted HPO term lists. 
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3.2.2 Parsing OMIM and Orphanet 
 

To allow comparison of literature-derived disease models to manual curation, 

the HPO annotated file genes_to_phenotype was downloaded from 

http://purl.obolibrary.org/obo/hp/hpoa/genes_to_phenotype.txt on the 22nd of 

April 2021. This contained disease-specific HPO term models derived from 

OMIM (mim2gene) (29) and Orphanet (28). Each GDD in the 99 disease set 

from DDG2P was manually annotated with a MIM number (one-to-one 

mapping), which is a unique identifier used in the OMIM database (29). This 

was used to match diseases in genes_to_phenotype and map phenotype 

annotations from these to the DDG2P set.  

 

Orphanet-defined disease entities may map to multiple genes. For example, 

the ORPHAcode 98938 (‘Colobomatous microphthalmia’) was associated 

with 14 genes at the time of writing (28). Only those within the set where 

there was a one-to-one gene-ORPHAcode correspondence were included. 

This meant there were only 43 entries in the Orphanet subset.  

 

Frequency annotations for each term in the OMIM and Orphanet sets were 

recorded as part of the model, where present. OMIM-derived terms mostly do 

not include frequency/weighting, whereas Orphanet terms are uniformly 

annotated. The frequency in both cases was recorded as an HPO frequency 

term e.g. ‘Very frequent’ (HP:0040281), which is defined in the HPO as 

‘present in 80 to 99% of the cases’ (22). 

 

3.2.3 Disease models from DDD study 
 

To enable comparison of literature-derived models to clinical data, a set of 

HPO terms per gene in the 99 disease set from the DDD study (6) was 

obtained, with permission. This study used exome sequencing in individuals 

with a suspected, undiagnosed GDD. HPO terms (non-weighted) were 

recorded for each proband, as part of the study, by recruiting clinicians at the 
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time of enrolment. For each gene in the 99 disease set, DDD probands with 

likely disease-related SNV were identified. The HPO terms per individual 

identified with one of these variants were amalgamated. This generated a set 

of DDD disease models where terms were weighted by frequency per 

proband.  

 

3.2.4 Unified disease model test set 
 

From the above work, a unified 99 disease dataset was created. Each entry 

in this consisted of a G2P-defined GDD with a corresponding literature-

derived (from both title+abstract and full text), OMIM and DDD model. 

(3,22,29,31). A model consisted of a list of HPO terms, with a frequency 

weighting if present. Orphanet models were included where available (28). 

This dataset was used for all further analyses in this chapter. 

 

3.3 Structure and vocabulary of full text models in 
disease test set 

 

An initial examination of the structure and vocabulary of models in the 99 

disease set was undertaken. This was to identify patterns which might inform 

similarity analyses in subsequent sections.  

 

3.3.1 HPO terms across disease test set 
 
An assessment of the vocabulary used across datasets was carried out. The 

HPO terms derived from the full text were compared to those from DDD and 

OMIM (Figure 3-2). The full text set contained more unique HPO terms 

overall, with 2869, compared to 1569 from DDD and 972 from OMIM. There 

was significant overlap with DDD and OMIM (Figure 3-2). This meant there 

were only 630 extra unique terms in the combined DDD + OMIM set 

compared to those derived from full text alone. 
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Figure 3-2. Venn diagram of unique terms in full text-derived, DDD, and 
OMIM vocabularies. Terms taken from all models in 99 disease test set. DDD 
– Deciphering Developmental Disorders study, OMIM – Online Mendelian 
Inheritance in Man.   

 

3.3.2 Disease model size using different data sources 
 

The disease model size was defined as the number of unique HPO terms 

contained within each model. It was hypothesised that model size correlates 

with phenotyping depth, where depth equates to a more comprehensive 

representation of the true phenotypic spectrum of a disorder.  
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Unsurprisingly perhaps, there were significantly more HPO terms per paper 

in the full text than in the title + abstract after phenotype extraction (Figure 

3-3A). This may indicate that there is increased depth of phenotyping using 

full text extraction as demonstrated in this work, compared to title+abstract 

alone, which has been more commonly used previously (49). Comparison to 

Source 
for term 
extraction 

Mean 
HPO 
terms 

Median 
HPO 
terms 

Full text 68 59 

Title + 

Abstract 

9 9 

Disease 
model 
source 

Mean 
HPO 
terms 

Median 
HPO terms 

Full text 

download 

198 192 

OMIM 38 32 

Figure 3-3. (A) Comparison of number of unique HPO terms extracted per 
paper, comparing title+abstract to the full text. For a sample of 962 papers, 
HPO terms were extracted using the full text download pipeline. For each 
manuscript, the number of unique terms extracted from the title+abstract 
were compared to the equivalent number from the full text. (B) 
Comparison of number of unique HPO terms in disease models. The 
disease set,  comprised 99 genetically-determined developmental 
disorders. For each of these, disease models were generated using the 
full text download pipeline. The number of unique HPO terms per 
literature-derived model was compared to the number of terms in the 
corresponding OMIM model. The OMIM models were generated through 
manual curation.  

A B 
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clinically-derived data is made later in this thesis (section 3.5) to determine if 

increased model size might mean better phenotypic coverage. 

 

This figure also demonstrates considerable variability in the number of terms 

per paper. It was hypothesised that the number of HPO terms extracted 

could be related to the length of the text used. Figure 3-4A shows that the 

density (number of HPO terms/number of words in text) for title + abstract 

was in fact higher than that of the full text. There was no obvious relationship 

A 

B 

C 

Figure 3-4. Relationship between words in title+abstract/full text and 
number of unique HPO terms. Density is the number of unique HPO 
terms/number of words in text. Number of words determined by whitespace 
separated tokens. TIAB -title + abstract; HPO – Human Phenotype 
Ontology. 
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between number of HPO terms and length of text for title + abstract (Figure 

3-4B). For the full text, there was more of a correlation between number of 

terms extracted and length of text (Figure 3-4C). However, there was still 

considerable variability, meaning the increased number of terms from full text 

was not simply a function of the size of the paper.  

 

There were also more terms per full text-derived disease model than in 

OMIM (Figure 3-3B). This may indicate that there is increased depth of 

phenotyping using automated phenotype extraction from full text, compared 

to manual curation. It is likely a proportion of these terms are false positives 

from the NER method. It should also be noted that NER misses a proportion 

of terms present in clinical data (Figure 3-2).  

 

There may be less terms in OMIM because manual annotators were not 

adding the full spectrum of terms present in the manuscripts analysed, or that 

less papers were used per disease to create models in the OMIM set 

compared to the literature searches used here. The number of references per 

OMIM model were not checked as OMIM do not publish a clear methodology 

defining how they extract phenotypic terms. It is possible a subset of papers 

are used, or even that manuscripts which are not referenced by OMIM are 

utilised, although this seems less likely.  

 

There did not seem to be a correlation between the size of disease models 

between datasets. It might have been expected there would be a relationship 

between, for example, disorders defined years ago with many published 

reports and the size of the corresponding disease model for both the 

literature-derived and OMIM sets. This may reflect generally less papers 

being used for curation in OMIM, as entries in this database generally include 

references sufficient to define a disorder rather than a completely 

comprehensive overview of all case reports/case series. The source papers 

used for phenotype curation were not available. Therefore, it was not 
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possible to test whether the differences in model sizes between these 

datasets was due to length of input text.  

 

In conclusion, phenotypic extraction from full text results in increased 

numbers of terms per disease compared to title+abstract mining and manual 

curation. This may reflect increased depth of phenotyping and/or increased 

phenotypic noise with an automated approach. Comparison is made to 

prospectively derived clinical data later in this work (section 3.5) to help 

clarify this. 

 

3.3.3 Frequency weightings in full text models 
 

Each full text disease model contains HPO terms weighted by their summed 

frequency across relevant case series/case reports. Normalization of these 

frequency weightings would be useful for inter- and intra-model comparison 

between the data sources in the 99 disease set (full text literature, G2P, 

OMIM, Orphanet, DDD) (3,28,29,31). In this case, normalization means 

adjusting frequency weightings to lie on the same scale. Without this, it is not 

possible to compare weighted terms between models. Therefore, an analysis 

of the frequency weightings for each model was undertaken.  

 

The distribution of frequencies was highly skewed, as shown in Figure 3-5. 

There were also a large number of terms per model with a frequency of one. 

Furthermore, there was no denominator for each frequency as the phenotype 

extraction was on a per-paper rather than per-individual basis. Therefore, it 

was not possible to determine if a high frequency value in itself meant a 

phenotypic feature was highly expressed in a particular disease. There were 

other potential sources of highly weighted terms, for example if an input 

paper had a particular focus on a given phenotype. Overall, these issues 

offered significant obstacles to normalization of frequency data across the 

set.  
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Figure 3-5. Ridgeplot of term weightings per model in 99 disease test set. 
Log10 transform applied to frequency values. Each model is represented as a 
density subplot. The subplot is generated using Gaussian kernel density 
estimation. Note probability density estimations of values near 0 will result in 
plots showing negative x-axis values; all input weightings are positive.   

 

Analysis was undertaken of the most frequent terms in the literature-derived 

models by weighting across the test disease model set (without collapsing 

terms) (Table 3-2). The top five terms appeared in 78-95% of all models. The 

terms themselves were expected common features in the GDD domain, 

including seizures, intellectual disability and autism.  

 

The terms ‘Intellectual disability’ (HP:0001249) and ‘Global developmental 

delay’ (HP:0001263) are not directly related in the HPO. However, they are 

clinically similar as they both refer to global impairment of learning. The same 

child may have global developmental delay as an infant, and develop 

intellectual disability when they are older. These terms could therefore be 

collapsed together, e.g. to ‘Intellectual disability’, for the purposes of disease 

model comparison. The same is true for ‘Autistic behavior’ (HP:0000729) and 

‘Autism’ (HP:0000717). This again illustrates the issue of equivalent features 

being recorded with different HPO terms.  
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HPO Term Frequency 
weighting 
across all 
literature-
derived 
models 

% models 
containing 
term 

Seizure 9016 87.88 

Intellectual disability 5520 94.95 

Global developmental delay 2173 93.94 

Autistic behavior 1858 79.80 

Autism 1439 77.78 

Gene Disease 
HPO 
term 

Frequency in 
literature-derived 
model 

SCN8A 
Epileptic encephalopathy, 

early infantile, 13 
Seizure 1635 

KCNQ2 
Epileptic encephalopathy 

early infantile type 7 
Seizure 974 

STXBP1 
Epileptic encephalopathy 

early infantile type 4 
Seizure 882 

SCN2A 
Infantile epileptic 

encephalopathy 
Seizure 841 

KCNQ2 
Benign neonatal epilepsy 

type 1 
Seizure 724 

KMT2B 
Complex early-onset 

dystonia 
Dystonia 613 

Table 3-2. Most frequent terms in literature-derived models by 
weighting across 99 disease test set. 

Table 3-1. Terms with weighting of >500 in individual literature-derived 
disease models, from 99 disease test set.  
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Examination of the top terms per model revealed a significant representation 

of epilepsy syndromes (Table 3-1). Predictably, ‘Seizure’ (HP:0001250) was 

the most frequent term for each of these, and contributed to this being the 

top-ranked term across all models (Table 3-1). ‘Dystonia’ (HP:0001332) also 

appeared frequently for the KMT2B-related dystonia syndrome.  

 

3.3.4 Heterogeneous recording of similar phenotypic features  
 

The comparison of weighted disease models constructed from full text to 

models derived from other sources was not straightforward. The example 

model for CHD7 in Figure 3-6 illustrates some of the issues.  

This describes the condition CHARGE syndrome, which is an acronym for 

Coloboma of the eye, Heart defects, Atresia of the choanae (choanal 

atresia), Restriction of growth and development, and Ear 

abnormalities/deafness.  

 

The top five ranked terms in the full text-derived model (‘Hearing impairment’ 

(HP:0000365), ‘Choanal atresia’ (HP:000453) ‘Coloboma’ (HP:0000589), 

‘Abnormality of cardiovascular system morphology’ (HP:0030680), and 

‘Abnormality of the ear’ (HP:0000598) are therefore very pertinent for this 

condition, although some of them are higher-level and less specific. 

However, a number of terms clinically relevant to these were also present in 

the same model, and this pattern is repeated across comparison datasets. 

This again shows that similar phenotypic features may be recorded in a 

heterogenous manner, and complicates comparison between models. This 

may be addressed to some extent using semantic similarity with the HPO 

structure at the cost of losing specificity with higher-level terms.  
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Figure 3-6. Example top five ranked terms in disease model for CHD7/ 
CHARGE syndrome (left column). Clinically related terms in remainder of 
disease model (n=540), OMIM model (n=71) and Orphanet model (n=82) 
shown. 
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3.4 Effects of modification to disease model 
generation 

 

Iterative modification of the process used to create disease models was 

undertaken, to identify features which may be used to refine automated 

literature curation. The performance of these changes was evaluated through 

comparison with DDD models (3). Increasing similarity of literature-derived 

models to DDD was thought to represent an improvement to the disease 

model creation process.  

 

DDD data here was used as a proxy for the ‘real life’ clinical expressivity of a 

given disorder. Therefore, DDD represents the ground truth for the 

phenotype of a condition here. This is not perfect, for example individuals 

were recruited to DDD because they were undiagnosed using conventional 

clinical evaluation and testing. This meant some individuals had atypical 

examples of well-characterised disorders. However, DDD represents a rich 

source of phenotypic data verified with molecular genetic testing. An intra-

model comparison was also undertaken, to assess internal consistency and 

potential bias.  

 

3.4.1 Rank biased overlap to assess disease model similarity 
 

Similarity between models was assessed using rank biased overlap (RBO). 

This is a method of comparing ranked lists which is top-weighted, can 

compare lists which contain differing members, and is monotonic with 

increasing depth of list (89). This method therefore does not take into 

account the HPO ontology structure.  

 

RBO allows for the top-weightedness parameter p to be fine-tuned to weight 

the score more or less towards higher-ranked items in the list. For this 

analysis, iterative similarity testing of different values of p was undertaken. 

From this process, the greatest discriminant power was found when p was 
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equal to 0.98, weighting towards the top 50 terms in a list. This value of p 

was used for all analyses in this work. RBO output is usually expressed as a 

min-max range, however for this work the extrapolated RBOEXT point score 

was used for ease of comparison (89). 

 

A Python implementation of RBO (rbo version 0.1) was used for all 

calculations in this work (155). For each model in one comparison set, RBO 

was calculated compared to all models in the other data source. DDD-

derived frequency was the amalgamated count per proband for a disease 

gene.  

 

Literature- and DDD-derived models were ranked according to term 

frequency. Literature-derived frequency was the number of times a term 

occurred across all input manuscripts for a given model. For example, if a 

term was mentioned 100 times in one manuscript, and once in another, the 

aggregate frequency would be 101 for the disease model.  

 

OMIM model terms are not generally annotated with a frequency, and where 

this is present, it is in a frequency range such as ‘Very frequent’ (99-80%) 

(22). To weight the terms in OMIM models for the purpose of list ranking 

used by RBO, the frequency of each term across the whole OMIM dataset 

was used.  

 

Comparison heatmaps using RBO for literature-derived and DDD comparison 

datasets (3) were used to visualise the effects of alterations to full text model 

generation in the following sections (Figure 3-7, Figure 3-10, Figure 3-12). 

Here, every disease in one dataset was compared to every disease in the 

other. This was to determine if a corresponding pair e.g. CHD7-full text vs 

CHD7-DDD is more similar than any other in the comparison. Similarity 

between corresponding models was indicated by a diagonal line seen from 

top left to bottom right.  
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3.4.2 Stratification of models by MetaMap score 
 

MetaMap provides a score for each biomedical concept identified, to quantify 

the confidence level for each mapping (156). This is based on the frequency 

of a concept in a document and its relevance to the text in context. Full text-

derived disease models for the 99 disease set were modified to assess the 

effect of stratification of phenotype terms by MetaMap score.  

 

Figure 3-7. Full text-derived models in 99 disease test set compared to 
DDD, using rank biased overlap. HPO terms in full text models subset 
according to MetaMap score.  

A B 

C D 
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The full text for each PMID was processed with MetaMap as described in 

section 2.2.4. For each PMID, the mapped HPO terms were divided into 

quartiles according to their individual MetaMap scores. Disease models were 

constructed as previously described, except these were divided into the top 

100%, 75%, 50% and 25% terms per PMID, by MetaMap score. These were 

compared to DDD models.  

 

There was no improvement in full text-DDD similarity with selection for higher 

MetaMap score (Figure 3-7). Rather, there was a tendency towards less 

similarity overall with selection for the top 25% score, although this may also 

be associated with a reduction in the number of terms per model.  

 

3.4.3 Collapsing clinically similar HPO terms 
 

Given the possibility of recording the same or similar phenotypic feature 

using different HPO terms (or CUIs), it was hypothesised that a method of 

collapsing together clinically relevant terms could increase the performance 

of literature-derived disease models, as measured by similarity to DDD and 

OMIM data.  

 

Collapsing terms could result in loss of informativity, but may also increase 

the power of HPO term-based models in disease similarity matching. For 

example, two individuals with the same disorder may have ‘Unilateral 

microphthalmos’ (HP:0011480) and ‘Bilateral microphthalmos’ (HP:0007633) 

respectively. It may be important to discriminate between bilateral and 

unilateral features, but in practice it could be more relevant to record 

‘Microphthalmia’ (HP:0000568) as a discriminant clinical feature of the 

condition.  

 

In theory, the structure of the HPO should make this straightforward, with 

similar terms being collapsed to their common ancestor. In the example 

given, ‘Microphthalmia’ is the parent term of ‘Unilateral microphthalmos’ and 
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‘Bilateral microphthalmos’. However, there are instances of clinically similar 

(using subjective medical judgement) terms which do not share an 

informative common ancestor in the HPO. Figure 3-8A shows clinically 

discriminant terms which share the high level, less informative common 

ancestor ‘Abnormality of skeletal morphology’ (HP:0011842). Therefore, 

collapsing terms solely using the HPO structure was not pursued.  

 

However, there was a subset of HPO terms identified which exactly included 

their parent, and which could be collapsed to this parent without losing 

significant discriminant power. These largely comprise include terms 

containing modifiers, for example relating to severity – ‘Intellectual disability, 

severe’ (HP:0010864) collapsing to ‘Intellectual disability’ (HP:0001249) 

(Figure 3-8B) – and to clinical descriptors – ‘Atypical absence seizure’ 

(HP:0007270) collapsing to ‘Absence seizure’ (HP:0002121). Iterative 

collapsing was also possible: ‘Midline facial capillary hemangioma’ 

(HP:0007601) to ‘Facial capillary hemangioma’ (HP:0000996) to ‘Capillary 

hemangioma’ (HP:0005306).  

 

This method, collapsing to parent HPO terms if the parent was exactly 

contained as a substring within the child, was scripted and applied to the 

whole HPO in an automated manner. This enabled testing of the hypothesis 

that this collapse process would increase the performance of literature-

derived disease models. The total list of collapsed terms generated was 

manually reviewed to ensure this process did not significantly reduce clinical 

informativity. A small list of terms were additionally identified for manual 

collapse from this, including ‘Autism’ and ‘Autistic behavior’.  

 

It should be noted, however, that this collapsing technique was not 

successful in many instances. The examples given above – ‘Unilateral 

microphthalmos’ (HP:0011480) and its parent ‘Microphthalmia’ (HP:0000568) 

– do not collapse. There are numerous shared characters in these, and a 

fuzzy matching strategy was trialled to address this, to collapse where a term 
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closely matched its parent (rather than an exact match as above). However, 

the results of fuzzy matching were not thought to be accurate enough for 

further use.  

 

The exact matching collapse method was applied to the literature-derived 

models from the 99 disease set. The total number of unique HPO terms after 

collapse was 2360, compared to 2869 without applying this. Table 3-3 shows 

the top five terms across all 99 disease models before and after collapse. 

The top terms were largely unchanged across both sets overall. The 

frequency weighting of ‘Seizure’ and ‘Intellectual disability were increased. 

‘Autism’ changed from the fifth most common to the third most frequent term. 

This was due to ‘Autistic behavior’ being collapsed into ‘Autism’. Arguably, 

‘Global developmental delay’ and ‘Intellectual disability’ are clinically very 

similar, and these could be manually collapsed, which would further increase 

the frequency of ‘Intellectual disability’.  

 

RBO heatmaps were constructed to visualise the difference in similarity 

scores between non-collapsed and collapsed full text models. The method for 

generating heatmaps as described in section 3.4.1 was used, except the 

similarity score for each collapsed model comparison was subtracted from 

the equivalent non-collapsed score. The heatmaps for full text vs DDD and 

full text vs OMIM did not show any appreciable difference using this method 

(Figure 3-9). Overall, the exact match collapse method did not appear to 

significantly alter the performance of full text-derived disease models when 

assessed using the RBO similarity metric. Therefore, this was not used for 

the disease models further described in this work.  
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i 

Figure 3-8. Clinical relatedness and collapsing HPO terms using ontology 
structure. (A) shows two terms which are clinically related but which have an 
uninformative common ancestor. (B) shows terms which contain their parent. 
These can be collapsed to the parent without significant loss of information. 

 
Non-collapsed Count Collapsed Count 

Seizure 9016 Seizure 9773 

Intellectual 
disability 

5520 
Intellectual 
disability 

6870 

Global 

developmental 

delay 

2173 Autism 3297 

Autistic behavior 1858 

Global 

developmental 

delay 
2307 

Autism 1439 Hypotonia 2158 

Table 3-3. Top five most frequent HPO terms in literature-derived models 
without and with iterative collapse method. Models from 99 disease test set 
corpus used. HPO – Human Phenotype Ontology. 
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3.4.4 Intra-model comparison by splitting PubMed IDs 
 

A comparison within disease models was undertaken by splitting each set of 

PMIDs per DDG2P entry in two (or n,n+1 where the list was of unequal 

length). This was to assess for internal consistency/bias. For example, if one 

paper used to construct a model described a significantly different 

phenotype, this would be seen in this analysis. Disease models were 

otherwise constructed using Cadmus and MetaMap as described in sections 

2.2.3, 2.2.4 and 3.2.1.  

 

The heatmap generated from this process showed that corresponding 

models were highly similar (Figure 3-10). This indicated that models in the 

disease test set were not unduly influenced by skewed input papers, for 

example those focused on a single phenotypic feature.  

 

A B 

Figure 3-9. RBO difference heatmap comparing all full text, to full text with 
HPO terms collapsed to parent, if parent exactly contained in child. A) 
Difference for full text/collapsed full text similarity scores compared to DDD 
set. B) Difference for full text/collapsed full text similarity scores compared to 
OMIM set. RBO scores for full text models containing all terms subtracted 
from score for collapsed models to assess difference. RBO scores calculated 
compared to DDD models. RBO – Rank Biased Overlap, HPO – Human 
Phenotype Ontology, DDD – Deciphering Developmental Disorders Study, 
OMIM – Online Mendelian Inheritance in Man. 
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Figure 3-10. Intra-model comparison of full-text derived disease models, with 
each list of PubMed IDs used to derive the model divided into two. Therefore, 
each comparison involves two sets of different papers.  
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3.4.5 Effect of removing single occurrence HPO terms 
 

Each full text-derived model contained a number of HPO terms which 

appeared only once (frequency weighting =1) (Figure 3-12). It was 

hypothesised that removing this long tail of low frequency terms would 

increase disease model similarity to DDD data, potentially removing 

phenotypic noise.  

Figure 3-11. Terms with frequency weighting of one across 99 disease set. 
A) Unique terms per model including and excluding single weighted terms. B) 
Percentage of single weighted terms per model. 

B A 

Figure 3-12. RBO difference heatmap comparing all full text, to full text with 
HPO terms occurring once removed. RBO scores for full text models 
containing all terms subtracted from score for model with single terms 
removed to assess difference. RBO scores calculated compared to DDD 
models. RBO – Rank Biased Overlap, HPO – Human Phenotype Ontology, 
DDD – Deciphering Developmental Disorders Study 
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A difference RBO heatmap was constructed to compare the similarity scores 

for full text-derived models to full text-derived models with single occurrence 

terms removed, according to the method in section 3.4.1. Removing terms 

with a single occurrence did not make an appreciable difference to the signal 

on this heatmap, when compared to the non-adjusted full models (Figure 

3-11).  

 

Figure 3-13. Exact model term overlap against RBO. For each pair of 
comparison models – A & B – the percentage of exact match terms (A in B / 
A) is shown. The corresponding RBO similarity score for A & B is also 
plotted. RBO scores multiplied by 100 to normalise to percentage range. FT 
– full text-derived, OMIM – Online Mendelian Inheritance in Man, DDD – 
Deciphering Developmental Disorders Study, RBO – Rank Biased Overlap. 
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The ROC curve for RBO full text vs DDD was not significantly affected either, 

with AUC of 0.84 with single frequency terms removed, compared to 0.85 

with all terms. It may be useful to simplify disease models by removing single 

occurrence terms in future, given they do not appear to significantly affect 

disease model expressivity.  

 

This generated the hypothesis that the signal from RBO based comparisons 

was dependent more on set overlap than term rankings, which could partially 

explain the similar results seen with the unweighted MICA method (98). To 

test this, the percentage of exact term matches across comparison datasets 

was plotted against the RBO score for each disease model, including the 

OMIM data (Figure 3-13). RBO scores did not clearly correlate to increasing 

set overlap. The RBO scores were in a broadly similar range regardless of 

high or low set overlap. This indicated that ranking of terms is an important 

determinant of similarity for this metric, not just set overlap. Of note, there 

was a significant overlap of exact match terms between the literature-derived 

and OMIM models. This indicates these were highly similar.  

 

In conclusion, the disease model modifications reviewed in this section did 

not significantly improve performance, as assessed by similarity to DDD. 

Therefore, these were not applied to the test dataset for analyses in the rest 

of this work.  

 

3.5 Comparison of automated and manually curated 
disease models using similarity metrics 

 

3.5.1 Similarity metrics for disease test set 
 

Following the analyses above, further comparison was made between the full 

text, DDD (6) and OMIM (29) datasets. This was to determine:  

1) The similarity of full text models to prospectively gathered clinical data, 

to assess if they reflect ‘real life’ phenotypic presentations.  
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2) Whether OMIM models, as an example of widely used manual 

curation, are more or less similar to DDD clinical data than those 

derived from full text. 

3) The similarity of full text and OMIM models, to directly compare the 

method presented here with a widely used manually curated set.  

 

Two similarity metrics were used for this comparison. One of these was RBO, 

as discussed in section 3.4.1 (89). The other was MICA-based semantic 

similarity using IC following the method of Resnik (100), as discussed in 

section 1.8.4. Heatmaps were generated as described in section 3.4.1. The 

comparisons computed were the literature-derived set vs the DDD set, OMIM 

vs DDD and literature vs OMIM (6,22).  

 

3.5.2 MICA-based semantic similarity 
 

For the MICA-based semantic similarity measure, the frequency of HPO 

terms combined across both comparison datasets, for example literature-

derived and DDD, were used to calculate the IC for each term following the 

method used by Helbig et al. (98). If f is the number of diseases annotated 

with an HPO term g, and n is the total number of diseases, the ICg is defined 

as – log2(f/n) (96).  

 

The MICA of two terms is the shared ancestral term in the ontology with the 

highest IC. The higher-level/less specific the ancestor, the lower the IC is 

likely to be. For a disease-disease comparison, a matrix m is created with 

HPO terms of one disease (l terms) as the rows, and the terms of the other (k 

terms) as the columns. Each position in the matrix (mij) is a comparison 

between pairs of HPO terms, and is populated with the MICA for that pair. 

The similarity score between diseases is computed by summing the average 

of the rows and the columns, with a normalisation measure (98). 

 



 

Disease matching and evaluation 127 

𝑠𝑖𝑚(𝐷!, 𝐷") = 	
1
2 (
1
𝑙 > max

!#$#%
𝑚$& +

1
𝑘>max

!#$#'
𝑚&$)

%

&(!

'

&(!

 

 

Semantic similarity scores between literature-derived, DDD and OMIM sets 

were performed using unweighted disease models, i.e. every term appeared 

uniquely per model.  

 

3.5.3 Similarity comparison between annotated models 
 

RBO ranked by term weight 

 

Figure 3-14. Disease model comparison heatmaps using rank biased overlap 
for literature-, OMIM- and DDD- derived models. Each model on the y axis is 
compared with every model in the DDD set. Disease/DDD models describing 
the same disorder are on the rightward downslanting diagonal. (A) compares 
OMIM and DDD models. (B) compares literature-derived and DDD models. 
(C) compares literature-derived and OMIM models. 99 diseases in 
comparison set. 
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RBO heatmaps showed a weak, but recognizable signal for literature-derived 

models vs DDD and OMIM vs DDD (Figure 3-14), showing that both curated 

sets appeared to besimilar to clinically-derived data. There was a much 

clearer signal for literature-derived models vs OMIM, showing that automated 

curation may create phenotypic data similar to that generated by expert 

manual curators. 

 

RBO scores for corresponding disease pairs 

 

 

A boxplot of these results (Figure 3-15) demonstrated slightly higher scores 

for OMIM compared to DDD than when using the full text models. This was 

significant, but the absolute difference in scores was small. There were 

significantly higher scores for full text vs OMIM, which reflects the strong 

signal seen on the heatmap.  

Figure 3-15. Boxplots of RBO similarity scores for corresponding 
disease pairs across different data sources for 99 disease set. This is 
the same data as seen in the diagonal on the heatmaps. P-values 
calculated using Wilcoxon signed-rank test.  
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 Unweighted MICA 

 

Comparison heatmaps using the unweighted semantic similarity/MICA 

method showed an identifiable signal between the full text and DDD models 

(Figure 3-16A). A faint signal was seen for OMIM against DDD, although 

Figure 3-16. Disease model comparison heatmaps using unweighted 
semantic similarity (MICA) for literature-, OMIM- and DDD- derived models. 
Each model on the y axis is compared with every model in the DDD set. 
Disease/DDD models describing the same disorder are on the rightward 
slanting diagonal. 

A 

B 
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similarity scores were more homogenous across all models for this set 

(Figure 3-16B).  

 

Unweighted MICA scores for corresponding disease 
pairs 

 
Figure 3-17. Boxplots of unweighted MICA similarity scores for 
corresponding disease pairs across different data sources for 99 disease set. 
This is the same data as seen in the diagonal on the heatmaps. P-value 
calculated using Wilcoxon signed-rank test. 

 

A boxplot (Figure 3-17) showed that full-text models generated significantly 

higher similarity scores compared to the ‘real life’ DDD clinical data than 

those from OMIM, using the unweighted MICA method.  

 

In conclusion, it appeared that full text-derived models were highly similar to 

manually curated OMIM data, using the RBO metric. This may be because of 

the significant degree of exact match overlap between these sets (Figure 

3-13). There were slightly discordant results between the two similarity 

methods when comparing to DDD data. Similarity scores were slightly higher 

for OMIM than the full text models (p = 0.034). However, with the unweighted 

MICA method, similarity scores were significantly higher for the full text 
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models (p = 1.84 x 10-8). It is possible that this reflected a greater 

discriminant power of the MICA-based method to determine clinical 

difference, given the utilisation of the ontology structure.  

 

3.5.4 Receiver operating characteristic curves for full text, 
DDD and OMIM comparisons 

 

To further test the full text models, it was hypothesised that these would be at 

least as performant as those derived from manual curation at predicting 

correct diagnoses in DDD. This was designed as a proxy for using curated 

disease models to predict a correct diagnostic gene using phenotype data 

alone, in a clinical setting. 

 

To assess this hypothesis, ROC (receiver operating characteristic) curves 

were generated from a matrix containing similarity scores (RBO or semantic 

similarity scores) for every disease in one dataset e.g. full text, compared to 

every disease in the other e.g. DDD. For a given disease, for a threshold x, 

where x is an integer between 1 and the number of diseases in the set (99), 

true positive, true negative, false positive and false negative figures were 

derived by determining if a corresponding disease pair similarity score, e.g. 

CHD7-full text vs CHD7-DDD was present in the top x scores across the 99 

diseases. This was repeated for each disease. The AUC was calculated 

using the numpy trapz module (157). 

 

The full text-derived models outperformed OMIM in both similarity metrics – 

ranked lists using RBO (89) and MICA-based semantic similarity (98) – as 

defined by an increase in the area under the curve (Figure 3-18). Of note, the 

MICA analysis did not use term weighting in this case. A similar semantic 

similarity evaluation using a subset of models from Orphanet showed 

comparable performance to those derived from full text when unweighted 

(Figure 3-19). 
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Figure 3-18. ROC curves using threshold ranking for literature-derived/OMIM 
disease models compared to real life terms in DDD study (3), across sample 
of 99 diseases, with a disease model and DDD model for each. Each disease 
model is compared to every model in the DDD set. (A) uses ranked biased 
overlap (RBO) (89) to compare ranked lists of terms. Literature-derived and 
DDD models were ranked according to model term frequency. OMIM models 
were ranked according to frequency of terms across all OMIM models. (B) 
uses mean most informative common ancestor (MICA) to compare models 
(96,98), with information content calculated according to Resnik (100). 
Unweighted models were used for comparison, meaning each term in a 
model appeared only once, and term frequencies were not utilised. (C) 
shows area under curve (AUC) for each model comparison. 

 

3.5.5 Weighting MICA comparison using Orphanet 
 

Unweighted models were used for the MICA comparisons above. These 

appeared to show that full text models outperformed manual curation in 

predicting diagnosis. Term weighting in disease models appeared to prioritise 

the main clinical features of a condition, as discussed in section 2.2.7 it was 

hypothesised that adding term weightings would increase the performance of 

full text-derived disease models, as defined by AUC.  
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To test this hypothesis, a comparison of weighted models using the Orphanet 

(28) subset was undertaken. This was because Orphanet models 

consistently had term weighting applied whereas those from OMIM did not 

(28,29). However, there was no straightforward method found for normalizing 

the frequency models between datasets. This was due to the different 

methods of recording frequency between datasets for literature and DDD vs 

OMIM and Orphanet; and the skewed distribution of frequency annotations in 

the literature set.  

 

For the Orphanet models, which consisted of a flat list of phenotype terms 

annotated with HPO frequency terms, the percentage range in HPO 

frequency annotation was mapped to the mean of this range. For example, a 

term annotated as Very frequent with the range 80 to 99% was mapped to 

89. Each term in a disease list was repeated according to the number of its 

frequency mapping value, thereby creating a model with weighting suitable 

for use in the MICA equation.  

 

For literature-derived and DDD models (6), frequency annotations were split 

into four bins using the numpy.histogram module (157), corresponding to the 

HPO terms ‘Very frequent’ (HP:0040281), ‘Frequent’ (HP:0040282), 

‘Occasional’ (HP:0040283) and ‘Very rare’ (HP:0040284) . Numerical 

frequency weighting according to these categories was then applied as per 

the Orphanet models. For models weighted in this manner, l row terms and k 

column terms in disease comparison matrix m (as discussed in section 3.5.2) 

therefore may contain repeats. This accordingly alters the MICA sum 

average (105). Comparisons using this weighted data were calculated for the 
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43 diseases in the Orphanet set vs equivalent DDD models, and for the 

corresponding 43 literature-derived models vs DDD.  

 

ROC curves for full text/Orphanet vs DDD when unweighted were very 

similar, indicating there was similarity between the two literature-based sets 

(Figure 3-19). Adding weighting actually decreased the area under the ROC 

curve (Figure 3-19). This may be because adding weighting to HPO terms 

does not increase the clinical disease similarity of a model. However, given 

the results in section 2.2.7, where top ranked terms reflected the most 

important features of the conditions analysed, this seems less likely.  

Figure 3-19. Precision curve using threshold ranking for full text-

derived/Orphanet disease models compared to real life terms in DDD 

study, across sample of 41 diseases. Orphanet models are weighted by 

HPO term frequency e.g. HP:0040281 (Very Frequent 99-80%). The full 

text and DDD model weightings were binned according to the mean of 

each HPO term frequency range. 
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Of note, the binning normalization method used here likely resulted in less 

accurate weighting for the full text-derived models. It is possible that a 

different method of normalization, if developed in future, would result in an 

increased AUC for the comparisons shown here.  This would particularly be 

true if the granularity of full text model weightings could be retained.  

 

3.6 Comparison of diseases in same biological 
pathway 

 

It was hypothesised that literature-derived disease models could also be 

used to identify diseases relating to genes in the same biological pathway. 

An exploratory analysis was carried out to test this. Three groups of GDD 

were selected, each of which was associated with similar phenotypes in 

multiple genes due to perturbation of the same underlying biological pathway. 

For each group, three genes were selected and a literature review performed 

using {gene symbol}[TI] PubMed search. Full text-derived disease models 

and an RBO heatmap were constructed as described in sections 2.2.3, 2.2.4 

and 3.4.1.   

 

The groups (and genes) chosen were ciliopathies (BBS1, BBS10, AHI1), 

RASopathies (HRAS, BRAF, SOS1), and Cornelia de Lange syndrome 

(SMC1A, HDAC8, NIPBL). An RBO heatmap (Figure 3-20) showed 

increased intra-group similarity, particularly for Cornelia de Lange, with no 

significant inter-group relationship. If proved at scale, this phenotype 

clustering using disease models could be directly applied to diagnostic 

bioinformatic variant filtering in the context of GDD. If phenotype matching 

could narrow down analysis to a group of genes in the same pathway, clinical 

resources could be focused earlier and in more detail on variants in these. 

This would improve speed and accuracy of diagnosis when filtering genomic 

data.  
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3.7 Discussion 
 

This chapter focused on the creation and analysis of an example set of 99 

literature-derived disease models. These were mapped to phenotypes in 

prospectively derived clinical data from the DDD study (3) as well as to 

manually curated diseases in OMIM and Orphanet (28,29). Comparative 

analysis was carried out using the RBO and MICA-based similarity metrics 

(89,98,100).  

 

 

 

Ciliopathies 

RASopathies 

Cornelia de 

Lange 

Figure 3-20. Rank biased overlap heatmap for full text-derived models 
describing genes from three well-defined groups of GDD. Mutations in genes 
within each group affect similar biological pathways, resulting in similar 
disease phenotypes. 
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3.7.1 Scaling disease model creation using full text 
downloads 

 

The set of 99 diseases was created with aim of showing proof-of-concept for 

the full-text mining phenotype disease model method presented here, over a 

larger sample size. This could then provide evidence for the utility of scaling 

up these models to cover the full spectrum of GDD.  

 

Cadmus allows access to downloadable full text of almost all the biomedical 

literature (43). This proved to have high performance on the set of 1018 

papers identified, with a 94.5% successful download rate. This package 

should prove useful not only to scaling up disease models for GDD, but to 

any researchers working on the applications of text mining. As discussed 

previously, the majority of the biomedical peer-reviewed literature is not open 

access (41). The full text manuscripts made accessible by Cadmus 

represents a huge hitherto untapped resource.  

 

The potential of using full text was demonstrated by the mean number of 

HPO terms per paper being 68 using the whole manuscript, versus nine 

when using the title + abstract alone. This increased depth of data extraction 

may result in better coverage of the full phenotypic spectrum of a disorder. 

These results support the hypothesis that using full text in the context of GDD 

allows access to knowledge which is not present in the abstract alone. This 

echoes the findings of Westergaard et al. (40), where full text mining 

outperformed abstract only across multiple scientific domains.  

 

The increased number of terms in literature-derived models (mean 198) 

compared to OMIM (mean 38) may also describe greater coverage of 

disease-specific phenotypic spectra. This may represent an increased 

proportion of terms per paper being extracted using text mining on the full 

manuscript. It may also be related to the generally larger number of 

manuscripts used to construct the literature-derived models compared to 
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OMIM. In the version of OMIM annotations used in this work, there were 

5574 diseases with a mean term annotation of 17 and median of 13 (29). 

Scaling up the literature-derived disease model concept could result in a 

similar broad coverage of disease to OMIM, but with greater depth of 

phenotyping.   

 

3.7.2 Structured vocabulary in the GDD domain 
 

The disease test set created here allowed for an analysis of the vocabulary 

used in the GDD domain. For these 99 conditions, a total of 3499 terms were 

used across all three comparison datasets. This compares with 15985 terms 

in the full HPO (version 1.2) (22). This disease set only covers a fraction of 

the thousands of GDD in DDG2P (31). However, these results indicate there 

may be a GDD domain-specific vocabulary which uses only part of the HPO. 

This is supported by the use of only 4158 unique HPO terms used for all 

DDD probands (unpublished data), compared to 15985 terms in the version 

of HPO used in this work. This result may inform the development of a GDD-

specific sub-ontology in future. This could improve the performance of, for 

example, MICA-based semantic similarity.  

 

3.7.3 Modification of disease model construction 
 

It was hypothesised that systematic modifications such as removing terms 

with a weighting of one, and selecting terms with a high MetaMap score, 

would improve performance as assessed by disease matching. However, this 

proved not to be the case, as shown in section 3.4. Therefore, the full models 

were used in this work.  

 

Of note the performance measure used, where increased similarity to DDD 

equalled improved disease models, could select against novel phenotype 

identification from full text. However, in the absence of a definitive truth set, it 

was thought likely that comparison to real clinical data should be a helpful 
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measure of whether disease models reflect true disease expressivity. It 

remains possible that adjustments to disease model construction could 

increase performance in future. This could include, for example, upweighting 

of terms which are highly discriminant between disorders.  

 

3.7.4 Utility of HPO structure 
 

The disease comparisons shown here not only act as a functional 

assessment of literature-derived models, but also allow for examination of the 

differences between list-based and ontology-based similarity metrics. The 

ROC curves generated using RBO (89) and MICA (98,100) were remarkably 

similar, as demonstrated in Figure 3-18, with the caveat that RBO used term 

weightings for ranking, whereas the MICA models were unweighted. This 

could indicate that the HPO-defined term relationships are not providing 

useful information for the purposes of disease similarity matching. For 

example, an interesting analysis in future would be to see how many of the 

MICA terms in this study were high-level, and therefore less specific, in the 

ontology.  

 

Use of a modified IC measure, such as that of Schlicker et al. (93), which 

accounts for the specificity of the MICA, may demonstrate improved 

performance using semantic similarity than RBO. Additionally, the IC 

measure (defined by Resnik (100)) is influenced by the corpus size used to 

generate it. The IC will stabilise as corpus size increases (99). Therefore, 

MICA-based semantic similarity may improve in disease matching if it is used 

in future on a scaled up set of thousands of GDD, such as the full DDG2P set 

(31).  

 

3.7.5 Comparative disease model similarity 
 

It was hypothesised that the literature-derived models described here could 

be as, or more, descriptive of true disease expressivity than those generated 
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by manual biocurators. As it was not straightforward to assess this through 

manual review of hundreds of terms per model, comparative similarity 

metrics were used. There was a noticeable similarity between corresponding 

literature-derived and OMIM models on the RBO heatmap in Figure 3-14B. 

There was significant overlap of exact match terms between these models 

(Figure 3-13). These results were encouraging, as they indicated that a 

computational, scalable method of literature mining is capable of extracting 

phenotype data which is at least comparable to that generated through 

resource-intensive manual curation.  

 

However, this did not provide evidence for whether the literature-derived 

models were similar to disease expressivity in a clinical setting, and how they 

would compare to manual curation in this context. Similarity analysis was 

therefore carried out in comparison to DDD data. This showed a recognizable 

RBO heatmap signal for literature vs DDD models, which was similar to that 

seen for OMIM vs DDD (Figure 3-14). The signal for OMIM vs DDD appeared 

weaker than literature vs DDD using the semantic similarity metric (Figure 

3-16). Overall, this provided evidence that literature-derived models were 

similar to prospectively gathered clinical data.  

 

It is possible that the similarity seen between sets was related to the larger 

number of terms in the literature-derived models, as shown in Figure 3-3B. 

There is evidence that highly-annotated entities result in increased semantic 

similarity score (102). However, as disease gene prediction was based on 

similarity scores across the 99 GDD set, this effect should have applied 

across all models. There is evidence that using empirically generated p-

values for similarity scores may increase their predictive power and correct 

for annotation number (96,98). Therefore, p-values could be beneficial if 

applied to these disease models in future. Nevertheless, it is also possible 

the weaker signal seen for OMIM vs DDD using semantic similarity was 

because the ontology-based metric was more effective at showing that these 
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models were less reflective of clinical expressivity than those derived from 

text mining.  

 

3.7.6 Disease model prediction by threshold ranking 
 

Following on from the results above, it was hypothesised that literature-

derived models may be used for prioritising disease genes from the DDD 

clinical set when using ranking thresholds. ROC curves were constructed to 

assess this. The AUC was 0.85 for both the RBO and MICA-based 

comparisons, indicating that this approach was effective (Figure 3-18). 

Furthermore, the AUC was greater than for the OMIM (29) models, implying 

that the literature-based method outperformed manual curation. The 

(unweighted) AUC was similar when compared to Orphanet (28) models 

(Figure 3-19), however it is difficult to extrapolate whether these are 

comparable to OMIM, as the analysis was on a subset of 41 models.  

 

These results should be directly applicable when considering integration of 

phenotype disease models into bioinformatic pipelines for genome-wide 

sequencing. All probands for this whom this type of test is requested should 

have a list of HPO terms recorded by the referring clinician. This list could be 

compared with a set of disease models, with a list of top-ranked models 

given as likely diagnoses according to similarity score. The ROC curve could 

be used to assess the sensitivity and specificity thresholds for this test. This 

process would require two steps for validation: scaling up disease models to 

cover all of DDG2P, and testing against individual level DDD data – 

aggregated phenotypes were used here.  

 

3.7.7 Term weighting and normalization  
 

It was hypothesised that adding term weighting to the MICA-based semantic 

similarity comparison should improve performance, given that this appeared 

to reflect disease expressivity, as shown in section 2.2.7. Normalization of 



 

Disease matching and evaluation 142 

term weightings in different formats across datasets, to enable comparison, 

was not straightforward, as shown in section 3.3.3. Indeed, a method where 

weightings were put into bins corresponding to HPO frequency terms 

resulted in reduced AUC for both literature-derived and Orphanet-derived 

models (Figure 3-19). It was not clear whether this result was due to the 

normalization method used, or if term weighting truly does decrease disease 

model matching efficacy.  

 

Nevertheless, the results here demonstrate a need for improved term 

weighting in future work. This may be aided by relatively simple measures 

such as a per-paper weighting, where a term is only counted once per 

manuscript. On the other hand, this problem would be solved if term 

extraction was linked to individuals described in case reports/case series. 

This would mean weighting could be easily normalized, expressed as a 

percentage for conversion to HPO frequency terms, and used for meaningful 

comparison between models.   

 

3.7.8 Conclusions  
 

In this chapter, I have demonstrated the construction of literature-derived 

disease models on a larger scale. This enabled testing of these models 

against clinically-derived and manual biocuration-derived datasets. Using 

several similarity metrics, I showed that the literature-derived models reflect 

disease phenotypes as defined by manual curation in OMIM and Orphanet 

(28,29). I also demonstrated that the full text models outperform OMIM when 

predicting diagnostic genes in DDD data.  

 

One of the strengths of this work is that the disease models are based on 

high-quality manuscripts, i.e. those which have been assessed as containing 

detailed case reports describing molecularly confirmed GDD. This should 

mean that the models better reflect true disease expressivity compared to 

automated manuscript-disease linking. For example, Pilehvar et al. used the 
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co-occurrence of a disease and phenotype in abstracts to create disease 

models (116). This likely includes phenotypes which are not clearly linked to 

a defined molecular disease mechanism.  

 

However, the careful selection of case reports/case series also acts as a 

significant bottleneck to scaling up disease model creation, as it is not 

feasible to perform a manual literature review for thousands of genes. In the 

next chapter, I present an exploratory analysis of methods to automate 

literature searching, including the development of a machine learning 

classifier for this purpose. I also evaluate the data architecture of published 

manuscripts, to inform parsing of clinical data in future.  
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Chapter 4  Parsing and automatic search of 
the peer-reviewed literature 

 

4.1 Introduction 

 

In the previous two chapters, I demonstrated the construction and testing of 

disease models using the full text biomedical literature. Here, I present 

preliminary analyses which will inform development of a text mining pipeline 

in future. This is designed to eventually feed into the development of an 

automated curation system for DDG2P, for use in clinical variant 

interpretation. First, I evaluate the data architecture of the peer-reviewed 

literature, to inform improved parsing of clinical information from text. 

Second, I demonstrate the development of a machine learning abstract 

classifier, for computational GDD-relevant manuscript identification. I then 

discuss the next steps to develop automated literature curation, following on 

from this work.  

 

4.2 Structure of manuscripts describing GDD in the 
peer-reviewed literature 

 

4.2.1 Background 

 

Phenotypic features extracted from full text manuscripts in the peer-reviewed 

literature may not always be relevant to the disorder/gene being reported. In 

this context, non-relevant features may include those generally describing a 

disorder, which may also be a different condition to that forming the focus of 

a case report. Relevant features are those tightly linked to an individual 

patient, and ideally to a specific SNV or CNV, in a case report/case series. 
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Therefore, it was hypothesised that parsing out descriptions of only the 

individuals being reported in a manuscript would allow for more precise 

phenotypic association to specific patients, and thereby increase the clinical 

accuracy of literature-disease models.  

 

To inform this, an analysis of the underlying structure of published case 

series/case reports describing GDD was undertaken. This was aimed at 

identifying features which could enable more accurate full text parsing in 

future. This strategy should represent an improvement on the disease 

models described previously in this work. These models utilised the full text 

as parsed using Cadmus (43). This removes the abstract and references 

only.  

 

4.2.2 Annotation of single journal output 

 

Manuscripts from a single journal covering a full calendar year were 

annotated. The AJHG (44) was chosen, as newly-described GDD are well 

represented in the journal. All AJHG abstracts from 2017-2018 were 

reviewed. Of these, papers describing childhood or earlier onset genetically 

determined disease were selected. Full-text manuscripts were then 

annotated using the published version online, using Hypothesis (158), a free, 

open source annotation tool. All supplemental files were reviewed, and those 

which contained free text case reports were annotated instead of the full text 

manuscript.  

 

Annotation was of text spans corresponding to phenotypic features. 

Compound terms e.g. ‘there was patellar and radial hypoplasia’ were 

separated into individual annotations. Hypothesis allows for tags to be added 

to each annotated text span. Each phenotypic feature was tagged as relevant 

or not relevant to the individuals newly described in the paper. The type of 

manuscript (‘Article’ or ‘Manuscript’) was also recorded per document to 

determine how this might affect parsing out clinical information. ‘Articles’ 
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have clearly defined results sections which are relatively straightforward to 

parse out; ‘Reports’ are a single block of text and it is less simple to parse 

these. 

 

4.2.3 Structure and relevance of phenotypic data in the 
literature 

 

Annotation of the AJHG corpus (Table 4-1) showed the minority of 

phenotypic data was in Articles, with most contained in Reports or 

Supplemental files. Articles and Reports contained a significant proportion of 

non-relevant phenotypic data (38% and 32% respectively). Non-relevant 

phenotypic descriptors included, for example, those relating to previously 

reported individuals in the literature with the same condition, or describing 

diseases caused by variants in related genes.  

 
Manuscript 
type 

Manuscript 
count 

Relevant/ total number 
of phenotype 
annotations 

Relevant 
annotations 
per document 
(median) 

Article 25 1277/2052 (62%) 67 

Report 43 1796/2623 (68%) 57 

Supp. 33 4726/5027 (94%) 124 

Total 101 7799/9702 (80%) 67 

Table 4-1. Distribution of Human Phenotype Ontology terms in AJHG 
manuscripts from year 2017-2018, describing childhood-onset genetic 
disorders. Relevant terms are those directly describing an individual or 
group of individuals with a genetically-determined condition forming part 
or whole of the research focus of the manuscript, as determined by my 
manual annotation. Non-relevant terms may include references to 
previously described individuals with the same or similar conditions. 
Supp – supplemental. AJHG – American Journal of Human Genetics. 
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Supplemental files had a much higher proportion of relevant data (94%), 

largely because these contained detailed individual level case reports. This 

demonstrates the value of parsing out relevant clinical reports/results from a 

manuscript, or using supplemental case reports where available, as the 

phenotypic data obtained is likely to be more relevant to the paper being 

analysed.  

 

4.2.4 Strategies for manuscript parsing using data 
architecture 

 

The results from this analysis of the data architecture of GDD-relevant 

manuscripts can be used for improved parsing of the full text in future. It 

should be straightforward to parse out clinical data from Articles. This is 

especially the case if they are in a structured document created using a 

markup language, such as HTML or XML. Here, the relevant sections would 

be contained within sections headed as, for example, ‘Results’ or ‘Case 

reports’. Regex patterns for string matching section titles could be used if the 

download is in a PDF format.  

 

Articles represented the minority (25%) of manuscripts here, however. If this 

pattern is replicated across the wider literature, it will necessitate a strategy 

for parsing reports. This would also apply to the commonly used format 

‘Letter to the Editor’. Reports are generally a single block of text, with no 

obvious handles for parsing. Extracting clinical information only from these 

will require the development of more advanced techniques. If it becomes 

possible to extract phenotype data per proband, rather than per manuscript, 

this could be applied to reports.  

 

Supplemental files, where present, should be utilised, given their enrichment 

for phenotypic data as shown in Table 4-1. The text for these should be 

relatively simple to parse, as they are often in the form of structured case 

series. However, the challenge here is identifying which files contain 
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phenotypic data. Most manuscripts have supplementary data included in a 

variety of formats, for example PDFs and spreadsheets. Many of these files 

do not contain phenotypic information. Therefore, a method needs to be 

developed to automatically identify the correct files for processing.  

 

4.2.5 Using data architecture to inform NER 

 

During the annotation process described above, each phenotypic feature was 

recorded as a text span only. This means these were not manually mapped 

to HPO terms (22). Accurate biomedical NER is challenging, due to the often 

complex manner in which phenotypic features are recorded in text. This is 

discussed in section 1.5. Exact matches to HPO terms in text represent only 

a proportion of available phenotype data, as demonstrated in section 2.2.5. 
To analyse this issue further, the fraction of annotated text spans which could 

be mapped to HPO in the AJHG corpus, using simple string matching, was 

assessed. This aimed to give a more comprehensive overview of the need 

for more advanced NER methods in the GDD domain. This should inform the 

development of NER in this field in future.  

 

4.2.6 Mapping HPO to AJHG corpus 

 

To determine the proportion of annotations which could be mapped using 

simple methods, exact string matching and fuzzy matching using cosine 

similarity were applied to the list of phenotypic text spans. Exact string 

matching was using FlashText (142) as described in section 2.2.4.  

 

Cosine similarity was applied following a customised method utilising Scikit-

learn version 1.0.1 (159,160). In brief, for each paper, the annotated text 

spans were converted to three-grams, which consist of all possible three 

character combinations. All text spans were then converted to a sparse TF-

IDF (term frequency-inverse document frequency) matrix using Scikit-learn 
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TfidfVectorizer (160). In this case, TF-IDF multiplies the frequency of an n-

gram in a text span by its inverse frequency per document in all text spans 

per paper. This therefore upweights less common n-grams per text span. The 

same process was applied to all HPO terms and synonyms (22). For each 

text span, the TF-IDF vector was compared with all HPO vectors using 

cosine similarity. This is a measure of the cosine of the angle between two 

vectors. The top cosine similarity value for each comparison was returned for 

each text span. After manual review, a value of >= 0.8 was chosen as the 

cosine similarity threshold for matching. Matched HPO terms below this did 

not accurately match the annotated text.  

 

4.2.7 Exact/fuzzy string matching in AJHG corpus 

 

The proportion of terms annotated as phenotypic features which a) mapped 

exactly to HPO b) mapped closely to HPO using a fuzzy matching score and 

c) did not map easily, indicating a need for more sophisticated NER methods 

such as MetaMap (64), were assessed.  

 

 

Manuscript type 

Total annotations 
with exact match to 
HPO 

Total annotations 
with match to HPO 
above cosine 
similarity threshold 
0.8 

Article 680/2052 (33%) 1216/2052 (59%) 

Report 854/2623 (33%) 1659/2623 (63%) 

Supplemental 3172/5027 (63%) 3214/5027 (64%) 

Total 4706/9702 (49%) 6089/9702 (63%) 

Table 4-2. Proportion of text spans in annotated AJHG corpus which map 
to HPO terms, using exact and fuzzy matching. HPO – Human Phenotype 
Ontology, AJHG – American Journal of Human Genetics. 



 

Parsing and automatic search of the peer-reviewed literature
  150 

Annotations which exactly matched HPO were present in 49% of terms 

overall (Table 4-2). Close HPO matches to annotated text, as defined by a 

cosine similarity score of >=0.8 were found in 63% of cases (Table 4-2). This 

shows that a significant proportion of phenotypic features in a manuscript can 

be identified using relatively simple techniques. However, this also confirms 

the necessity for using more advanced text extraction methods such as 

MetaMap (64) for a significant performance advantage, as described in 

section 2.2.5.  

 

 

 

4.2.8 Linguistic analysis of phenotypic descriptors 

 

Cosine similarity matching in the AJHG corpus allowed for assessment of the 

linguistic structure of annotated text. Table 4-3 demonstrates examples of 

Figure 4-1. Distribution of fuzzy matched annotated phenotypic 
descriptors across AJHG corpus. Annotations were matched to HPO 
terms using cosine similarity. A higher cosine similarity indicates a closer 
match to an HPO term. A cosine similarity of 1.0 is an exact match. AJHG 
– American Journal of Human Genetics, HPO – Human Phenotype 
Ontology.  
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high-scoring cosine matches to HPO. Word order changes compared to 

canonical terms prevent identification of the corresponding term (‘language 

delayed’, ‘delayed language’). However, these are relatively simple to 

capture using fuzzy matching. Compound phrases such as ‘Small, low set 

ears’ match to only one HPO term ‘Low set ears’ (HP:0000369) using this 

technique. More advanced NER may be expected to pick up the other: 

‘Microtia’ (HP:0008551) (synonym is ‘Small ears’).  

 

 

 

HPO term Matched phenotype 
annotation 

Cosine similarity 

Wide nasal bridge 

 

Wide nasal bridge and 

ridge 

0.854010 

Language delayed Delayed language 0.853888 

Neonatal asphyxia  Perinatal asphyxia  0.853581 

Low set ears Small, low set ears 0.853545 

HPO term Matched phenotype annotation Cosine 
similarity 

Purpura Non-purposeful use of hands 0.300348 

Thin skin Skin is remarkably thin 0.321925 

Myopathic face  EMG had some features of a 

myopathic process 

0.350894 

Cat-like cry Rett-like hand automatisms 0.362302 

Small 

cerebellum 

Cerebellum was of slightly reduced 

size 

0.368094 

Ischemic 

stroke 

Perinatal hypoxic-ischemic event 0.371900 

Table 4-4. Selected terms in AJHG corpus with cosine similarity <0.4. 
AJHG – American Journal of Human Genetics.  

Table 4-3. Examples of text in AJHG corpus annotated as phenotypic 
features, mapped to HPO terms using cosine similarity. AJHG – American 
Journal of Human Genetics. 
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Perhaps more relevant to the development of NER are the difficult-to-match 

examples (Table 4-4). These include the use of subjective modifiers in 

between phenotype descriptors (‘remarkably’, ‘some features of’, ‘slightly 

reduced’). ‘Non-purposeful use of hands’ requires the linking of an object 

(‘hands’) with a dysfunction (‘non-purposeful’). This may be straightforward 

for the reader, but is not easy to assess computationally. There is also 

inferred meaning in the phrase ‘Rett-like hand automatisms’. This carries the 

implicit assumption that the reader is familiar with the phenotypic features of 

Rett syndrome. These may include hand stereotypies such as hand wringing, 

clapping, and washing automatisms (161). Additionally, there is no HPO term 

for ‘Hand stereotypies’. Therefore, there is a significant challenge for an NER 

method. First, it would need to recognise that ‘Rett-like hand automatisms’ 

maps to the phenotypic features of a particular GDD. Then it needs to identify 

a matching HPO term from this. Possible maps include ‘Stereotypy’ 

(HP:0000733) or ‘Stereotypical hand wringing’ (HP:0012171).  

 

4.2.9 Conclusions 
 

The analysis of one year of AJHG manuscripts here represents a 

comprehensive overview of GDD-relevant literature. The results demonstrate 

a number of features which should be useful in developing automated 

literature curation in future. I show that parsing out clinical data from full text 

should improve the accuracy of phenotype extraction. This is because there 

are a significant proportion of phenotypic descriptors which are not relevant 

to newly-described probands in each manuscript. ‘Articles’ are more 

straightforward to parse for this purpose than ‘Reports’.  

 

The use of a corpus solely from one journal may have introduced some 

biases. It is possible that other journals may record phenotypic information 

differently. The manuscripts analysed from AJHG largely pertained to rare, 

newly described disorders. These papers may include detailed literature 

review and comparison to other previously published reports. Manuscripts 
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describing rare complications of well-known disorders in other journals may 

not include phenotypic descriptors from previous work. It is also possible that 

manuscripts from other journals may be structured differently, although the 

single paragraph ‘Report’ or ‘Letter to the Editor’ format is common across 

many publishers. The same is true for manuscripts with structured headings 

such as ‘Introduction’, ‘Results’, ‘Discussion’.  

 

It is clear that supplementary case reports should be used, where available, 

in place of the full text manuscript. The supplementary data is enriched for 

relevant phenotype descriptors. Additionally, I further demonstrate the need 

for advanced NER methods as simple string matching misses a significant 

proportion of terms in this corpus. I gave some examples of edge cases, or 

phenotypic annotations which do not easily map to HPO. It would be 

interesting to test the performance of the most up-to-date NER techniques on 

this corpus, to see if these are correctly analysed.  

 

4.3 Scaling up manuscript identification 

 

4.3.1 Background 

 

The disease models described in earlier chapters were generated using 

hand-selected manuscripts containing case series/case reports describing 

GDD. This was to test phenotypic extraction without the complicating factor 

of non-disease-relevant input. The importance of this was demonstrated in 

section 2.2.8. This showed that individual input papers could significantly 

alter the clinical relevance of weighted disease models. However, to scale up 

the disease model method to cover all 2000+ GDD, accurate automated 

identification of case series/case reports would be required. Here, I present 

preliminary work towards this goal.  
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I assessed different PubMed search strategies. From these, a custom 

annotated corpus was created, labelling manuscripts (rather than entities 

within them as previous) as relevant or not to GDD. Features derived from 

this were used to assess supervised learning abstract classifiers.  

 

4.3.2 Searching PubMed at scale 

 

Automating literature curation requires an accurate, scalable method of 

searching for peer-reviewed manuscripts. PubMed contains over 33 million 

citations (23), only a small proportion of which will describe GDD. Therefore, 

a robust search strategy and classification method is required to correctly 

identify relevant papers.  

 

In my experience manually curating DDG2P, a gene symbol search in 

PubMed is often effective in identifying case series and case reports 

describing GDD. Permutations of this search with different filters, using all 

2164 genes in DDG2P were performed. These used modified Python scripts 

kindly provided by Jamie Campbell (162). In brief, Biopython (version 1.79) 

(163) Entrez search (23) returned a list of PMID and metadata for a given 

string search term.  

 

The input used was every gene symbol in the DDG2P DD gene-disease pairs 

and attributes file downloaded from 

www.ebi.ac.uk/gene2phenotype/downloads on 29/4/21. Modifier tags were 

added to the {gene symbol} search to determine how these affected the 

number of PMID returned per gene. These were: search in title only ({gene 

symbol}[TI]), search in title + abstract only ({gene symbol}[TIAB]), and search 

in title + abstract only, where ‘Gene’ appears in the MeSH headings (23) 

(Gene[MESH] {gene symbol}[TIAB]).  
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4.3.3 Identification of effective PubMed search strategy 

 

The results of these searches are shown in  

Table 4-5. Using {gene symbol} alone to search resulted in almost 14 million 

results, which is a significant proportion of PubMed overall, and is unlikely to 

be enriched for GDD-relevant papers. The number of results was highly 

influenced by the small number of genes which returned a large number of 

citations (Error! Reference source not found.). Adding filters reduced the 

number of results, at the cost of more genes having no citations returned. 

Using {gene symbol}[TI] (symbol in the title only) achieved the best balance 

between generating a parsable, manageable number of results – 

approximately 400,000 for 2164 genes in this case– with searches which do 

not identify any papers at all for a gene – 30/2164 for the title search. These 

missed genes would require a different search strategy, for example using 

the associated disease name could be considered.  

 

Search term Total results Genes with zero 
results 

{gene symbol} 13,872,488 8 

{gene symbol}[TI] 411,783 30 

{gene symbol}[TIAB] 2,342,061 9 

Gene[MESH] {gene 

symbol}[TIAB] 

136,370 100 

 

Table 4-5. PubMed results for all (2164) genes in DDG2P database, using 
gene symbol + differing filters. DDG2P – Developmental Disorders 
Gene2Phenotype, TI – search in title, TIAB – search in title + abstract, 
Gene[MeSH] – include only results with Gene in MeSH metadata.  

 

4.3.4 Filtering gene searches with high results 
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The distribution of results per gene for the {gene symbol}[TI] search showed 

significant right skewing (Error! Reference source not found.).Therefore, 

only a minority of genes returned individually large numbers of citations. This 

should mean parsing out relevant papers for the majority of genes with lower 

numbers of results is more straightforward.  

 

Table 4-6 shows the top five genes by number of results. These include gene 

symbols which are also words (PIGS, SET), chemical symbols (CA2 for 

calcium, usually Ca2+), highly studied molecules (MTOR, mTOR pathway) or 

acronyms (NHS or National Health Service). This helps explain why these 

genes return high numbers of results.  

 

 

Further specific search strategies may be useful in these instances. For 

example, for the NHS gene, a search for NHS[TI] AND “gene” cut the number 

of results from 10270 to 41, a number of which were case reports/case series 

describing the GDD Nance-Horan syndrome. Using the disease name could 

also be effective – a search for NHS[TI] AND “Nance-Horan syndrome” 

returned 24 results, of which all but three were relevant case reports/case 

Figure 4-2. Distribution of results per {gene symbol}[TI] search for 2164 
genes in DDG2P. PMID – PubMed ID, DDG2P – Developmental Disorders 
Gene2Phenotype. Log transform used for number of results per gene. 
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series. Similarly, the mTOR pathway is highly studied, particularly in the 

context of cancer. A search for MTOR[TI] NOT “Cancer” reduced the results 

to 6867 compared to 11678 using MTOR[TI] alone. This particular technique 

has the issue that it may exclude GDD reports which do mention cancer as a 

feature of a given disorder. Overall these examples illustrate that an extra 

step to focus searching for genes with high numbers of results may be helpful 

when applied to a classification method.  

 

Gene symbol Results from {gene symbol}[TI] 
search 

PIGS 46901 

CA2 40345 

SET 21054 

MTOR 11678 

NHS 10270 

 

Table 4-6. Top five genes by number of results returned from {gene 
symbol}[TI] search in 2164 gene DDG2P set. DDG2P – Developmental 
Disorders Gene2Phenotype. 

 

4.3.5 Annotation of papers to test classification strategies 

 

Following the identification of {gene symbol}[TI] as an effective PubMed 

search strategy, this was used to create a corpus of annotated citations. This 

was to enable testing of automated classification strategies in identifying 

papers for text extraction. First, the top diseases in DDG2P by number of 

diagnoses in DDD were reviewed, and entries selected to represent more 

common GDD, as well as to include a variety of allelic requirements 

(monoallelic, biallelic, hemizygous and X-linked dominant). Genes with more 

than two associated diseases were excluded.  
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From this list of diseases, the PMIDs from a PubMed {gene symbol}[TI] 

search, as described in section 4.3.2, were used to generate a corpus of 

papers for annotation. If a {gene symbol}[TI] search returned more than 100 

results, only the first 100 were included for annotation, otherwise all results 

were used. Each PMID was mapped to a corresponding DDG2P entry 

according to gene symbol.  

 

A Python script, kindly provided by Jamie Campbell, was modified and  

used to analyse the metadata for each PMID in the annotation set (164). The 

title and abstract were reviewed and assigned to one of three groups: 1 – 

Relevant paper containing case reports/case series describing the correct 

DDG2P entry, without including any other disease phenotypes. 2 – Relevant 

to the corresponding DDG2P entry, but not suitable for text extraction, e.g. 

included more than one gene/disease, included allelic disorders, included 

phenotypic data for CNV, or reviewed the condition rather than providing 

novel case reports. 0 – Not relevant to the corresponding DDG2P entry. 

Where an abstract was not available, the full text was reviewed by performing 

a manual PubMed search.  

 

4.3.6 Annotated PubMed citations corpus 

 

125 well-defined diseases in DDG2P were identified, including 109 genes. 

These formed the basis of a {gene symbol}[TI] search in PubMed (Table 4-7). 

38 diseases returned more than 100 results. The search returned 6578 

papers overall. The results were reviewed and annotated to create a gold 

standard corpus of relevant (to GDD) and non-relevant papers.  

 
Diseases 

in set 

Genes in 

set 

Allelic requirement 

Monoallelic Biallelic X-linked 

dominant 

Hemizygous 

125 109 87 26 7 5 
Table 4-7. Summary of DDG2P entries used to test classification and 
PubMed search strategy. DDG2P – Developmental Disorders 
Gene2Phenotype. 
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Table 4-8. Annotations for papers returned from {gene symbol}[TI] PubMed 
search for genes in 125 disease test set. Papers marked as relevant if 
contained case report/case series describing corresponding DDG2P entry 
only. Non-relevant papers were subset into those which described a human 
genetic disease which did not correspond to a given DDG2P entry or 
contained reports of more than one disease; and those which did not contain 
any human disease phenotype data. DDG2P – Developmental Disorders 
Gene2Phenotype. 

 

In the annotated set, 23% were deemed relevant, and 69% non-relevant ( 

Table 4-8). A further 7% of papers were not suitable for text extraction, but 

did contain phenotypic data relevant to the DDG2P disease entry, for 

example those including case reports for more than one disorder. Examples 

of each of the three classification categories are given in Table 4-9.  

 

 

 

 

 

 

 

 

 

 

 

Total annotated 
papers 

Relevant 
papers 

Genetic disease 
manuscripts 
not suitable for 
text extraction 

Non-relevant 
papers 

6578 1536/6578 

(23%) 

472/6578 (7%) 4570/6578 

(69%) 
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Gene DDG2P 
disease 
Name 

PMID Title Classification 

KIF1A NESCAV 

Syndrome 

25253658 KIF1A mutation in 

a patient with 

progressive 

neurodegeneration 

1 

KIF1A NESCAV 

Syndrome 

28332297 Hereditary spastic 

paraplegia caused 

by compound 

heterozygous 

mutations outside 

the motor domain 

of the KIF1A gene 

2 

KIF1A NESCAV 

Syndrome 

27484852 KIF1A mediates 

axonal transport of 

BACE1 and 

identification of 

independently 

moving cargoes in 

living SCG 

neurons 

0 

 

Table 4-9. Example manual classifications of citations returned for KIF1A[TI] 
PubMed search. Results classified after review of title + abstract (not shown). 
Classification categories: 1 – Relevant paper containing case reports/case 
series describing the correct DDG2P entry, without including any other 
disease phenotypes. 2 – Relevant to the corresponding DDG2P entry, but 
not suitable for text extraction, e.g. included more than one gene/disease, 
included allelic disorders, included phenotypic data for CNV, or reviewed the 
condition rather than providing novel case reports. 0 – Not relevant to the 
corresponding DDG2P entry. 
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4.3.7 Feature selection in GDD manuscripts 

 

The process of annotating relevant manuscripts described above allowed 

identification of groups of papers sharing a common theme/subject, to inform 

the development of features for machine learning classification. In this 

context, features are computationally tractable parts of the title, abstract or 

metadata thought to be descriptive of the manuscript’s relevance to GDD.  

 

Themes identified included : corrections/erratum, generation of induced 

pluripotent stem cells, GWAS (genome-wide association studies), cancer 

studies and mouse models. Therefore, these represent papers which are not 

relevant to GDD text extraction. Additionally, MeSH terms thought to be 

applicable to GDD were identified, for example ‘Phenotype’, ‘Intellectual 

disability’, ‘X-linked’, ‘Exome’. The PubMed metadata was also utilised, for 

example where ‘Case report’ was included in ‘Publication type’. Finally, a 

number of features thought to be specific to GDD case series/case reports 

and accurate text mining were identified. For example, where only one gene 

was mentioned in the title, and when the disease name (exact or fuzzy 

match) was present in the title.  

 

33 classification features were designed to capture these, using regex or 

exact string matching for key phrases in the title, abstract or MeSH terms. 

These phrases were developed both from analysis of the annotated corpus 

and from background clinical knowledge. Examples of these features 

included:  

1. ‘Mouse’ OR ‘Mice’ NOT IN title 

2. ‘Pluripotent stem cell line’ OR ‘iPSC’ NOT IN title 

3. ‘Leukaemia’ OR ‘leukemia’ OR ‘carcinoma’ OR ‘lymphoma’ NOT IN 

abstract 

4. {Disease name} IN title 

5. {Fuzzy match to disease name} IN title 

6. ‘Exome’ IN MeSH terms 
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7. ‘Genes’ AND ‘Dominant’ OR ‘Heterozygote in MeSH terms 

As above, the features which related to manuscripts which should be 

excluded, e.g. mouse models, were coded as NOT IN. Features relevant to 

GDD papers, e.g. including ‘Exome’ were coded as IN. These features were 

applied computationally to the whole annotated corpus and coded as 1 

(present) or 0 (not present).  

 

The performance of these features individually was assessed using positive 

and negative predictive values (PPV/NPV). Where a manuscript was 

manually annotated as relevant, and a feature was positive (coded as 1), this 

corresponded to a true positive (TP) result, or a false negative (FN) where 

the feature was coded as 0. True negatives (TN) corresponded to manually 

annotated non-relevant manuscripts with negative (coded as 0) features, and 

false positives (FP) where the feature was positive (coded as 1). PPV and 

NPV were then calculated according to the following equations: 

 

𝑃𝑃𝑉 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

𝑁𝑃𝑉 = 	
𝑇𝑁

𝑇𝑁 + 𝐹𝑁 

Table 4-10 demonstrates the performance of the top 15 classifiers, sorted by 

NPV. Most of the top NPV classifiers excluded only small numbers of 

manuscripts. The most successful features in excluding larger numbers of 

papers (>1000) with a high NPV were for mouse-related terms in the 

abstract, and animal study-related MeSH terms. A feature describing papers 

with more than one gene in the title (which cannot be used for text extraction 

currently using the methodology previously described) also excluded >1000 

papers.  

 

In contrast, the top classifiers by PPV ( 

Table 4-11) mostly included clinically-relevant MeSH terms. The PPV values 

were generally lower than NPV. The full list of features and their performance 

against the annotated corpus is shown in Supplementary Table 3.  



 

Parsing and automatic search of the peer-reviewed literature
  163 

Classification 
feature 

TP FP TN FN PPV NPV 

Erratum not in 

publication type 
1535 4989 54 0 0.24 1.00 

>1 gene in 

PubMed 

metadata 

1535 5039 4 0 0.23 1.00 

Corrected not in 

PubMed 

metadata 

1535 5042 1 0 0.23 1.00 

IPSC not in 

abstract 
1535 4972 71 0 0.24 1.00 

IPSC not in title 1535 4998 45 0 0.23 1.00 

GWAS not in title 1535 4989 27 0 0.24 1.00 

Mouse not in title 1535 5016 311 4 0.23 0.99 

Review not in 

abstract 
1531 4732 66 1 0.24 0.99 

Correction not in 

title 
1534 4977 54 1 0.25 0.98 

Cancer not in title 1534 4989 492 12 0.24 0.98 

>1 gene in title 1523 4551 1053 27 0.25 0.98 

GWAS not in 

abstract 
1508 3990 229 7 0.27 0.97 

Mouse not in 

abstract 
1528 4814 1124 49 0.24 0.96 

Cancer not in 

abstract 
1486 3919 770 37 0.27 0.95 

Animals not in 

MeSH 
1498 4273 1756 90 0.26 0.95 

Table 4-10. Performance of string-based classifiers for selecting non-relevant 
papers in annotated n=6578 set. Top 15 results sorted by NPV shown. TP – 
true positive, FP – false positive, TN – true negative, FN – false negative, 
PPV – positive predictive value, NPV – negative predictive value.  
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Classification 
feature 

TP FP TN FN PPV NPV 

Disease name in title 290 115 4928 1245 0.72 0.80 

Exome in MeSH 188 83 4960 1347 0.69 0.79 

Fuzzy match to 

disease name in title 
601 279 4764 934 0.68 0.84 

Intellectual disability 

in MeSH 
329 168 4875 1206 0.66 0.80 

Infant in MeSH 437 254 4789 1098 0.63 0.81 

Case report in 

publication type 
763 486 4557 772 0.61 0.86 

Dominant in MeSH 150 105 4938 1385 0.59 0.78 

Phenotype in MeSH 513 372 4671 1022 0.58 0.82 

Recessive in MeSH 49 37 5006 1486 0.57 0.77 

X-Linked in MeSH 30 23 5020 1505 0.57 0.77 

Mutation in MeSH 1028 1103 3940 507 0.48 0.89 

Family in MeSH 57 65 4978 1478 0.47 0.77 

Animals not in MeSH 1445 3287 1756 90 0.31 0.95 

Humans in MeSH 1259 3048 1995 276 0.29 0.88 

Mouse not in abstract 1486 3919 1124 49 0.27 0.96 

 

Table 4-11. Performance of string-based classifiers for selecting relevant 
papers in annotated n=6578 set. Top 15 results sorted by PPV shown. TP – 
true positive, FP – false positive, TN – true negative, FN – false negative, 
PPV – positive predictive value, NPV – negative predictive value. 

 

4.3.8 Supervised learning abstract classifiers 

 

It was hypothesised that automation of abstract identification would be 

effective using a supervised machine learning classifier. This learns a 

predictive function from labelled training data, in this case PMIDs with the 

features and relevancy annotations described above. The function can then 
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be used to predict the likely relevancy of new input examples. The 

performance of a number of different supervised learning algorithms was 

assessed.  

 

First, a binary matrix was constructed on Cadmus (43) output using Boolean 

filtering for the features described above. Each entry corresponded to a 

PMID, classified as relevant (1) or non-relevant (0) (to include papers 

annotated as 2 – related to the corresponding DDG2P entry, but not suitable 

for text extraction). Each feature was coded as present (1) or absent (0). 

Additionally, for each PMID, the corresponding DDG2P allelic requirement 

was coded as a feature i.e. monoallelic (1/0), biallelic (1/0) and X-linked (1/0).  

 

Using Scikit-learn version 1.0.1 (160), the annotated papers were split into a 

75% training set and 25% test set. The following Scikit-learn classifiers were 

used on these data: K Nearest Neighbours, Linear SVM, RBF (radial-basis 

function kernel) SVM, Gaussian Process, Decision Tree, Random Forest, 

Neural Net (multi-layer perceptron), AdaBoost, Naive Bayes, QDA (quadratic 

discriminant analysis). Given the skew towards non-relevant papers in the 

dataset, the balanced_accuracy_score metric as well as precision, recall and 

F1 score were used to evaluate the results. True positive/negative and false 

positive/negative classifications were also assessed.  

 

4.3.9 Classification of disease-relevant manuscripts 

 

The results for these classifiers are shown in Table 4-12. The most 

performant by F1 score was Gaussian Process (0.78), although Random 

Forest was very close to this (0.77). Interestingly, there were two classifiers – 

Naïve Bayes and QDA – which had almost perfect recall. These had 

negligible false negative predictions, which could be a useful property in a 

multi-step classification system.  
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Classifier TP FP TN FN Accuracy Precision Recall F1 
score 

Nearest 

Neighbours 
260 115 1170 100 0.82 0.69 0.72 0.71 

Linear SVM 237 71 1214 123 0.80 0.77 0.66 0.71 

RBF SVM 222 84 1201 138 0.78 0.73 0.62 0.67 

Gaussian 

Process 
285 89 1196 75 0.86 0.76 0.79 0.78 

Decision Tree 266 97 1188 94 0.83 0.73 0.74 0.74 

Random 

Forest 
286 100 1185 74 0.86 0.74 0.79 0.77 

Neural Net 228 62 1223 132 0.79 0.79 0.63 0.70 

AdaBoost 230 57 1228 130 0.80 0.80 0.64 0.71 

Naive Bayes 356 974 311 4 0.62 0.27 0.99 0.42 

QDA 360 924 361 0 0.64 0.28 1.00 0.44 

 

Table 4-12. Performance of supervised learning classifiers for selecting 
relevant papers in annotated n=6578 set. Results from test set of 1645 
papers (75%/25% train/test split) SVM – support vector machine, RBF – 
radial-basis function kernel, QDA – quadratic discriminant analysis. TP – true 
positives, FP – false positives, TN – true negatives, FN – false negatives.  

 

4.3.10 Analysis of feature importance 

 

The Random Forest algorithm was one of the highest performing classifiers 

tested (Table 4-12). This classifier uses averaged signals from different 

randomized decision trees. An advantage of this method is that it allows for 

assessment of how much particular features are contributing to performance. 

One method of doing this is the mean decrease in impurity. The decision 

trees in Random Forest are derived from a measure of how well a feature 

separates examples of different classes within nodes of a tree. This can be 
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used to quantify the discriminative value of each feature, based on how often 

they were used to split nodes (165,166).  

 

Scikit-learn version 1.0.1 (160) was used to calculate this metric – the mean 

decrease in impurity – for the annotated set (Figure 4-3). This showed the 

most important features, in order, were: ‘case report’ in publication type, 

fuzzy match to disease name in title, ‘mutation’ in MeSH terms, ‘infant’ in 

MeSH terms, ‘phenotype’ in MeSH terms, and ‘intellectual disability’ in MeSH 

terms. That the highest performing feature is ‘case report’ acts as a sense 

check that the classifier is working as expected. These features can be used 

to inform optimisation of this classifier in future.  

 

 
Figure 4-3. Random forest classifier feature importance. Calculated using 
mean decrease in impurity across all trees. ID – intellectual disability. 
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4.3.11 Discussion 

 

This section demonstrates the development and testing of a supervised 

learning classifier for GDD-relevant abstracts. The data shown were 

preliminary. Nonetheless, the performance figures obtained were 

encouraging, and compare favourably to similar approaches in the literature. 

For example, Pham et al. developed an abstract screening system using 

Random Forest assisted by manual review, with an F1 score of 79% (167).  

 

The maximum F1 obtained here (Table 4-12) was 78%. This is likely 

explained in part because the features used were domain-specific and 

carefully selected after review of thousands of abstracts. Using prior 

knowledge to select features in this manner has proven successful in other 

domains, for example predicting sensitivity to medications (168).  

 

Nevertheless, there is considerable scope for improvement in the 

performance of the abstract classifier. The machine learning algorithms used 

were not modified from their default settings. Fine tuning of their 

hyperparameters should result in performance improvement. There is also 

scope to optimise the features used. Only 13 MeSH terms were used, of 

which four were highly discriminant (Figure 4-3). It is likely that further MeSH 

terms relating to GDD could be identified to use as features. Another 

possibility is using the entire list of MeSH terms per paper as a feature, 

although this may reduce domain specificity.  

 

Another improvement would be optimising the disease name feature (Figure 

4-3). Here the disease name used was only that defined by DDG2P. This 

database includes a number of synonyms for the disease name, which could 

be used to refine this feature. Furthermore, disease names from other 

sources, e.g. OMIM (27) could be added for further improvements. In this 

case, it may be beneficial to use terms from a unified disease ontology such 

as MONDO (67), to ensure consistent mapping of diseases across datasets. 
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Topic modelling could also be used to identify patterns in relevant and non-

relevant papers, which could be utilised in feature selection (169).  

 

An additional source of features could be the full text of manuscripts as 

downloaded by Cadmus (43). For example, the number of HPO terms 

extracted could be higher in papers describing GDD. However, this is much 

more computationally intensive than using the title and abstract. Therefore, 

this strategy may be best reserved for a filtered, enriched corpus in a multi-

stage system. This will be further discussed below. The exceptions to this are 

manuscripts types such as ‘Letter to the Editor’ which do not have an 

abstract. Full text features may be particularly useful in these cases.  

 

The ratio of relevant to non-relevant papers in the annotated corpus was 

approximately 1:4 (Table 4-8). This therefore represents skewed data, 

although this degree of skewing is relatively small. However, this masks a 

high degree of skew on a per disease basis. The relevant:non-relevant ratio 

for these was between 5:1 and 1:100. There are various methods for 

optimising classification on skewed data which could be applied, for example 

using ensemble learning (170). This combines the results of several different 

classifiers.  

 

The results presented here could inform the structure of a multi-stage 

classification system. First, there were a small number of manuscripts which 

could be easily excluded at first pass. These included erratum/corrections, 

papers describing induced pluripotent stem cells, and GWAS studies. String 

matching of terms describing these groups had an NPV of 1 (Table 4-10). 

Second, a ‘exclusion’ step could cut down non-relevant results, particularly 

for those genes which return large numbers of citations. This might utilise the 

Naïve Bayes and QDA classifiers, which excluded around 20% of papers 

with almost zero error (Table 4-12). A classifier with a high precision such as 

Gaussian Process or Random Forest (Table 4-12) could then be used on an 
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enriched dataset. However, these would need to be trained and optimised on 

this new data.  

 

It would also be beneficial to improve the PubMed searches used to derive 

data for classification. The {gene symbol}[TI] search appeared to generate a 

corpus enriched for GDD-relevant papers. However, 30 genes did not return 

any results at all (Table 4-5). An expanded search could be used in these 

cases, for example looking at the abstract as well as the title. Additionally, the 

{gene symbol}[TI] search will inevitably miss relevant papers. For example, a 

paper entitled ‘Genetic heterogeneity in Noonan syndrome: evidence for an 

autosomal recessive form’ (171) would not be included. These could be 

searched for through other strategies, such as using the disease name alone. 

However, this will inevitably include incorrect citations. In this case, Noonan 

Syndrome is linked to multiple different genes.  

 

The {gene symbol}[TI] search uses part of the structure of G2P to identify 

diseases. A disease is defined in G2P using a locus-genotype-mechanism-

disease-evidence thread (31). PubMed search for GDD may be improved by 

incorporating more of this disease definition, for example {gene symbol} AND 

{monoallelic}.  

 

In conclusion, I demonstrate here the development and testing of abstract 

classifiers in the GDD domain. There is scope for optimisation of this system. 

However, the results demonstrate that an accurate automated literature 

search is feasible. This is an essential step towards scaling up the disease 

model concept to cover all GDD. Automated search would also make 

updating phenotypic data straightforward. In the next section, I outline 

possible future directions of enquiry to take the work here forward.  
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4.4 Future directions 

 

4.4.1 Introduction 

 

In this thesis, I have presented a method designed to automate literature 

curation. I demonstrated that disease models can be generated from the full 

text literature. These models reflected clinical expressivity. They were similar 

to manually curated data, as well as prospectively derived clinical 

phenotyping. However, further study is needed to refine the techniques used, 

and instigate a robust pipeline covering the full spectrum of GDD. Broadly 

speaking, this future work covers methodological improvements which could 

be made to disease model creation, and to phenotype matching/similarity. 

These will be discussed in the following sections. 

 

4.4.2 Alternative data sources in full-text manuscripts and 
parsing 

 

Literature-derived disease models in this work were derived from full text 

manuscripts downloaded using Cadmus (43). Supplemental case reports, 

where available, are enriched for phenotypic data (Table 4-1). Use of 

supplementary files should increase the depth of phenotyping and clinical 

accuracy of the disease model method. Tabular data is also likely to be a rich 

source of phenotypic information.  

 

Accessing tables could be a significant challenge, given the heterogeneity 

with which information is presented (172). PDFs are likely to present 

particular difficulties, given the lack of parseable data structure in these. 

However, this problem is an active area of research. For example, Khusro et 

al. and Anand et al. proposed deep learning methods for table extraction in 

PDFs (173,174). Supplementary data may also contain tables, often in a 

more parseable format, such as spreadsheets.  
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Another source of information in full text manuscripts which was not utilised 

in this work is quantitative data. This is likely to be difficult to extract and 

parse at scale. For example, a text span could read ‘the head circumference 

was 36 cm at 3 months’. Here, the number 36 needs to be extracted, related 

to ‘cm’ to define it as a measurement, and to ‘head circumference’ to define 

the entity being measured. This then needs to be related to the age at 

measurement – ‘3 months’. This could be applied to a reference growth chart 

to allow mapping of the implied term ‘Microcephaly’. Overcoming the 

challenge of extracting quantitative data is likely to have clinical benefits. For 

example, quantitative information from the DDD study was used to identify 

likely diagnoses caused by SNV in a gene previously not associated with 

GDD (175).  

 

4.4.3 Improved NER using BioBERT 

 

MetaMap (64) was used for named entity recognition/phenotype extraction in 

this work. Performance as assessed by precision and recall (0.77, 0.71) 

appeared to be similar to more advanced methods such as PhenoTagger 

(0.77, 0.74), which uses BioBERT (54,71), although these were tested on 

different corpora. Although PhenoTagger utilises more sophisticated NER 

than MetaMap, it is possible that its performance was impaired due to the 

lack of domain-specific training data. PhenoTagger was trained on a set of 

150 052 open access articles generated using the search string ‘disease and 

mutation’ in EPMC (41,54). A ‘silver standard’ annotated corpus was created 

using dictionary-based matching in this set. However, a ‘disease and 

mutation’ search is likely to identify a significant proportion of articles which 

do not describe GDD.  

 

The abstract classifier discussed in 4.3.11, together with Cadmus, could be 

utilised to create a GDD-enriched training corpus. MetaMap could be used to 

annotate this corpus to create a ‘silver standard’ set. This could be used to 
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train a more domain-specific BioBERT model, which is likely to improve 

performance (71,83).  

 

4.4.4 Weighting of phenotypic features 

 

HPO terms used to create disease models in this work were weighted by 

their frequency across all input papers. These appeared to reflect true 

disease expressivity. However, there was evidence that individual papers 

could significantly bias weighting (section 2.2.8). Additionally, this measure 

was difficult to normalize (section 3.3.3). In future, different methods of 

weighting could be explored. For example, terms could be counted only once 

per PMID. This would not account for diseases which have highly-studied 

phenotypic features. For example, at the time of writing a PubMed search for 

“22q11.2 deletion” AND “schizophrenia” returned 400 results. Another 

approach could be to correct for terms appearing more frequently in longer 

papers through adjusting weighting by the number of tokens in a manuscript.  

 

An interesting experiment could be to see how disease models change with 

date of publication. Reports on GDD typically follow a pattern of first 

molecular confirmation, larger generalized case series, then focus on 

individual specialty-specific phenotypic features as with 22q11.2 deletion 

above. It may be useful to create disease models using a defined time 

window, for example the first few years after molecular characterization. This 

could help to define the core phenotypic features of a particular disorder.  

 

4.4.5 Enhancement of semantic similarity 

 

MICA-based semantic similarity methods for comparing phenotype models 

would seem to have the inherent advantage of using an ontology structure to 

assess relationships between terms. However, these performed similarly to a 

list-based method in section 3.5.4. It is possible that adjustments to the 
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ontology structure may increase the performance of MICA-based similarity 

methods. For example, Ross et al. used automated literature curation to add 

new post-translationally modified protein forms to the Protein Ontology (176). 

It is possible that new GDD ontology classes could be learned using machine 

learning-based text mining approaches.  

 

Improvements could also be made by adjusting the manner in which 

information content is calculated for MICA models. For example, using the 

methods of Lin or Schlicker et al. to account for the closeness of terms to the 

MICA or the specificity of the MICA respectively (93,101). Another important 

step is likely to be selecting disease-disease matches by empirical p-values, 

generated using randomly-sampled data (98). The use of p-values helps 

correct for semantic similarity metrics tending to generate a higher score for 

highly-annotated entities (102,177). Adding p-values has been shown to 

improve the performance of semantic similarity measures using the HPO 

(22,96).   

 

4.4.6 Bayesian phenotype networks 

 

An interesting application of literature-derived disease models would be to 

use these with Bayesian networks (BN). These are probabilistic graphical 

models where nodes represent variables in a given domain, with edges 

representing the conditional probability for these variables (178). Intuitively, 

this probability-based inference is similar to the process used in clinical 

decision making.  

 

BN have been shown to be effective in an number of medical applications, 

including diagnosis (178). Bauer et al. integrated the HPO into a BN to 

compare disease models from Orphanet to individual patient phenotypes 

(28,179). They showed this outperformed MICA-based semantic similarity 

metrics when predicting GDD diagnosis. This appeared to be partly due to 

the resilience of BN against phenotypic noise, where a patient is annotated 
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with HPO terms not relevant to their condition. Using a BN with literature-

derived disease models would potentially be a useful way to leverage 

phenotypic data in diagnosis.  

 

4.4.7 Individual-level phenotype matching 

 

As discussed above, one of the ultimate goals of this work is to use 

phenotypic data to identify a diagnosis in individual patients with suspected 

GDD. This would require generation of literature-derived disease models for 

all GDD in DDG2P. It is likely this would require a version of the abstract 

classifier discussed in section 4.3.11.  

 

A large-scale test of this system could then be performed using DDD data 

(24). For thousands of individuals in this study, a list of candidate disease-

associated variants was identified using bioinformatic filtering. These were 

then sent to the recruiting centre, and in many cases one SNV was deemed 

diagnostic after clinical review. Therefore, a test of the power of literature-

derived disease models would be to see if they can be used to correctly 

identify the diagnostic variant from the filtered list. If this method proves 

effective, it could be directly applied to diagnosis in suspected GDD.  

 

In most cases, however, the number of HPO terms used to describe an 

individual referred for genome-wide sequencing is low. This is because the 

terms need to be manually added by the referring clinician. To address this, 

text mining in electronic health records could be used. This is a rapidly 

expanding field of research in the GDD domain (180,181). For example, Hully 

et al. used a large EHR database to identify individuals with a phenotype 

matching KCNA2-related disease, confirmed on sequencing (182). The data 

from EHR could also be added to literature-derived models, potentially 

increasing their clinical relevance and predictive power. Slater et al. 

demonstrated that adding data mined from hospital notes to literature-derived 
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models improved differential diagnosis of common disease in the critical care 

setting (183).  

 

4.4.8 Redefining phenotypic space 

 

Another interesting avenue for future research would be to use methods 

other than the HPO to define phenotypic space in the GDD domain. 

Representing the HPO as a network could allow for analysis of disease 

models using graph-based measures. For example, Menche et al. showed 

that the overlap of common diseases modelled in a network correlated with 

biological similarity (184). A network model of GDD could also demonstrate 

phenotypic clustering, for example for diseases caused by SNV in the same 

biological pathway. This could be used for variant interpretation. For 

example, if a patient presented with a phenotype fitting with a particular 

cluster, genes in that group could be analysed for diagnostic variants. This 

could even lead to disease discovery, if a gene was identified through this 

method previously not associated with GDD.  

 

4.4.9 Application to Clinical Genetics 

 

When automated curation as described here is in a fully operational form, the 

impact on Clinical Genetics practice is potentially significant. First, from a 

computational perspective, these models could be used in bioinformatics 

filtering pipelines, for example following the work of Aitken et al. (185). This 

would allow phenotypic data to be directly used in identifying candidate 

disease-causing variants from genome-wide sequencing data. There is 

potential for a novel genotype-phenotype comparison system to be 

constructed for this purpose. This would build on the disease model and 

similarity metric methods mentioned in this thesis.  
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There are several systems which already use phenotype information for 

filtering genomic sequencing data. These include, for example, the Exomiser 

with PhenIX (109,186) and the OMIM explorer (110). Manual biocuration is 

used as the source data for these, such as OMIM (27). It would be 

straightforward to substitute literature-derived models into these systems. 

This would potentially enhance performance given the increase in 

phenotyping depth with full text mining compared to manual curation (section 

3.3.2).  

 

Secondly, these disease models may directly affect the clinical assessment 

of genetically-determined disease. Variant interpretation ultimately relies on a 

judgement of whether the phenotype of an individual being tested reflects 

that seen with similar variants in the peer-reviewed literature. Literature-

derived disease models should make this process more efficient and 

accurate, through a comprehensive synthesis of known phenotypic data for a 

given disease.  

 

There is also a potential direct impact on clinical decision-making. For 

example, knowledge of the phenotypic spectrum of a specific disorder may 

influence parental decision making when GDD are diagnosed in utero. In 

particular, the likelihood of severe complications manifesting is often an 

important factor. Accurate literature-derived disease models describing the 

frequency of phenotypic features should help inform decision-making in this 

situation.
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Appendix 
 

Publication of work from this thesis 

 

Part of the work from this thesis has been published, as a preprint on 
medRxiv ( https://doi.org/10.1101/2021.11.04.21265878) and in the journal 
Database:  

Creation and evaluation of full-text literature-derived, feature-weighted 
disease models of genetically determined developmental disorders, 
Database (Oxford). 2022 Jun 7;2022:baac038.  doi: 
10.1093/database/baac038. PMID: 35670729.  

 

The supplemental data includes the PMIDs used to create disease models.  

 

Implementation and source code 

 

Source code for the creation of disease models and semantic similarity 
analysis is available at https://github.com/tmyates/literature_to_pheno. 
Further source code and datafiles, which would allow for replication of the 
entire study, are maintained in private storage.  
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MetaMap not in annotated Annotated not in metamap 

decreased head circumference dysgenesis of the hippocampus 

abnormal nasal morphology cerebral white matter atrophy 

short 4th toe flared nostrils 

oral-pharyngeal dysphagia abnormal myelination 

hyperplasia of the maxilla kinetic tremor 

knee flexion contracture melanoma 

ablepharon bradykinesia 

clubbing of toes reduced visual acuity 

generalized osteoporosis supraventricular tachycardia 

primum atrial septal defect abnormality of the hand 

malignant gastrointestinal tract tumors vocal cord dysfunction 

steppage gait abnormality of hindbrain morphology 

fatigue femur fracture 

acute megakaryocytic leukemia cerebral hemorrhage 

chorioretinal coloboma hypogonadotropic hypogonadism 

hashimoto thyroiditis increased reactive oxygen species production 

patellar hypoplasia iron accumulation in globus pallidus 

abnormal lung morphology focal aware tonic seizure 

recurrent urinary tract infections neonatal seizure 

giant hypertrophic gastritis deviation of the 2nd toe 

abnormality of the cardiovascular system recurrent ear infections 

morphological abnormality of the vestibule of the inner ear dermoid cyst 

chronic kidney disease scrotal hypoplasia 

paralysis abnormality of the seventh cranial nerve 

t-cell acute lymphoblastic leukemias memory impairment 

hypoplasia of the cochlea moderate global developmental delay 

abnormality of the face cough 

scaling skin intestinal polyp 

postaxial hand polydactyly internal carotid artery hypoplasia 

congenital pseudoarthrosis of the clavicle gastrointestinal hemorrhage 

severe muscular hypotonia genu recurvatum 

sparse and thin eyebrow abnormality of the vestibulocochlear nerve 

head-banging sudden unexpected death in epilepsy 

pulmonary insufficiency psychotic mentation 

cortical cataract short phalanx of the 4th toe 

vascular dilatation hyperalaninemia 

cleft upper lip abnormality of thyroid physiology 

small intestinal polyp deep cerebral white matter hyperdensities 
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episodic tachypnea talipes valgus 

aneurysmal bone cyst microphthalmia 

equinovarus deformity hypoplasia of the olfactory bulb 

alveolar rhabdomyosarcoma pruritus 

morphological abnormality of the middle ear joint stiffness 

intention tremor 2-3 finger syndactyly 

optic nerve coloboma hypoplasia of the vestibular nerve 

keratoconjunctivitis sicca ovarian carcinoma 

tongue thrusting linear earlobe crease 

infertility 11 pairs of ribs 

testicular dysgenesis emphysema 

transudative pleural effusion low hanging columella 

abnormality of metabolism/homeostasis cleft lip 

abnormality of the skin prominent supraorbital ridges 

generalized myoclonic seizure dysmetria 

thyroid dysgenesis abnormality of subcutaneous fat tissue 

toe syndactyly spinal canal stenosis 

hyperkinetic movements ebstein anomaly of the tricuspid valve 

morphological central nervous system abnormality hypermelanotic macule 

paroxysmal supraventricular tachycardia glioma 

cutaneous melanoma abnormality of the nail 

hypoplastic nipples aortic aneurysm 

chronic lung disease 2-3 toe syndactyly 

transient myeloproliferative syndrome fundic gland polyposis 

mesiodens mask-like facies 

joint contracture of the hand simple ear 

abnormality of the thyroid gland constrictive median neuropathy 

toxemia of pregnancy diminished mental health 

gonadotropin deficiency malnutrition 

severe generalized osteoporosis convulsive status epilepticus 

small scrotum pyloric stenosis 

hypokinesia hallux valgus 

neural tube defect migraine 

poor fine motor coordination neoplasm of the gastrointestinal tract 

cavernous hemangioma prominent digit pad 

skin tags abnormality of the vertebral column 

facial paralysis psychomotor retardation 

abnormality of the pituitary gland mitochondrial respiratory chain defects 

truncal obesity cerebral cortical atrophy 

rigidity constriction of peripheral visual field 
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hip contracture abnormal incisor morphology 

cerebral edema hypoplasia of the vestibule of the inner ear 

right ventricular failure avascular necrosis 

abnormality of the lower limb pontocerebellar atrophy 

abnormality of the palmar creases leg dystonia 

skin rash hemihypertrophy of lower limb 

melanocytic nevus small cerebral cortex 

breast hypertrophy prominent nose 

increased body weight transient ischemic attack 

missing ribs spastic paraparetic gait 

trigonocephaly abnormal pons morphology 

chronic active hepatitis abnormal number of hair whorls 

abnormal renal morphology downturned corners of mouth 

burkitt lymphoma otitis media 

fibular deviation of toes renal agenesis 

neonatal hypoglycemia prominent ear helix 

palate telangiectasia abnormal cochlea morphology 

aplasia/hypoplasia of the mandible abnormality of the vestibular window 

megalencephaly severe infection 

secundum atrial septal defect lacticaciduria 

choanal stenosis abnormal autonomic nervous system physiology 

piebaldism flexion contracture of finger 

abnormal skull morphology axial muscle weakness 

acute monocytic leukemia abnormal emotion/affect behavior 

fair hair hip dysplasia 

recurrent infections of the middle ear abnormality of the clivus 

bilateral cleft lip immunodeficiency 

focal dystonia hydrops fetalis 

disinhibition abnormality of tibia morphology 

nasal speech overweight 

hematological neoplasm incomplete partition of the cochlea 

malignant mesothelioma renal dysplasia 

acute otitis media acute promyelocytic leukemia 

facial tics asthenia 

abnormality of eye movement hand muscle weakness 

agenesis of cerebellar vermis aplasia/hypoplasia of the cochlea 

delayed eruption of teeth abnormal palate morphology 

excessive daytime somnolence weak cry 

corneal stromal edema iron accumulation in substantia nigra 

dyssynergia gastrostomy tube feeding in infancy 
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prune belly urethral valve 

abnormal electroretinogram muscle fibrillation 

thoracic hypertrichosis obstructive sleep apnea 

abnormal peripheral nervous system morphology tube feeding 

excessive salivation delayed skeletal maturation 

impacted tooth tonic seizure 

apraxia speech apraxia 

alzheimer disease delayed fine motor development 

retinopathy bilateral postaxial polydactyly 

arrhinencephaly abdominal aortic aneurysm 

difficulty walking flushing 

renal tubular acidosis primary microcephaly 

crohn's disease talipes equinovarus 

epidermoid cyst neoplasm of the lung 

abnormality of vision motor regression 

lip telangiectasia hepatosplenomegaly 

clubbing large intestinal polyposis 

muscle spasm coxa valga 

hair-pulling abnormal subcutaneous fat tissue distribution 

 

achilles tendon contracture 

appendicular hypotonia 

amenorrhea 

protruding tongue 

abnormal gallbladder morphology 

long toe 

migrating focal seizure 

venous malformation 

optic disc coloboma 

preeclampsia 

neurofibromas 

babinski sign 

abnormal cerebral cortex morphology 

nephropathy 

hypoxemia 

widely-spaced incisors 

absent earlobe 

esophageal carcinoma 

retinal degeneration 

palilalia 

biparietal narrowing 
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cerebral hypoplasia 

decreased circulating gonadotropin concentration 

multifocal epileptiform discharges 

pica 

myotonia 

focal emotional seizure 

tented upper lip vermilion 

osteoporosis 

bilateral cleft lip and palate 

supernumerary tooth 

fractured humerus 

transposition of the great arteries 

hepatic failure 

aplasia/hypoplasia of the cerebral white matter 

fibroma 

laryngeal cleft 

prominent subcalcaneal fat pad 

abnormal basal ganglia mri signal intensity 

forceps delivery 

thick cerebral cortex 

drowsiness 

pes valgus 

abnormality of the kidney 

broad finger 

delayed ability to walk 

hypoplasia of the frontal lobes 

mild global developmental delay 

myoclonic seizure 

cholangiocarcinoma 

abnormality of the hairline 

mixed hearing impairment 

lower limb hypertonia 

chronic gastritis 

stuttering 

pulmonic stenosis 

long thumb 

tracheoesophageal fistula 

coronary artery aneurysm 

fetal distress 

hemiparesis 
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esodeviation 

clubbing of fingers 

hemiatrophy 

abnormality of the autonomic nervous system 

abnormality of dental eruption 

hypoglycemia 

myotonia of the upper limb 

abnormality of the vestibular nerve 

oral cleft 

hair follicle neoplasm 

recurrent skin infections 

fused lumbar vertebrae 

cortical dysplasia 

thin corpus callosum 

increased csf alanine concentration 

punctate periventricular t2 hyperintense foci 

receptive language delay 

facial cleft 

iridodonesis 

abnormal respiratory system physiology 

abnormality of the nose 

aplasia of the olfactory bulb 

multiple cafe-au-lait spots 

continuous spike and waves during slow sleep 

abnormal aortic arch morphology 

retrognathia 

weak grip 

abnormal finger flexion creases 

wide nose 

enuresis 

simplified gyral pattern 

hypoplastic hippocampus 

communicating hydrocephalus 

neoplasm of the large intestine 

sparse eyebrow 

myoclonic absence seizure 

fusion of middle ear ossicles 

athetosis 

thin skin 

cerebral white matter hypoplasia 



 

Appendix  185 

abdominal obesity 

clonus 

aplasia/hypoplasia of the patella 

motor seizure 

prominent nipples 

specific learning disability 

shock 

paroxysmal bursts of laughter 

pseudoarthrosis 

abnormality of the ear 

aplasia of the semicircular canal 

dysgraphia 

arteriovenous fistula 

diminished ability to concentrate 

recurrent otitis media 

flexion contracture of digit 

hypoplasia of the semicircular canal 

thin eyebrow 

neonatal respiratory distress 

systemic lupus erythematosus 

pyelonephritis 

abnormality of the dentition 

interictal epileptiform activity 

abnormal ear morphology 

dyspnea 

clonic seizure 

duodenal polyposis 

anophthalmia 

abdominal mass 

abnormality of the gingiva 

decreased circulating iga level 

everted lower lip vermilion 

prominent nasal tip 

abnormal cerebral ventricle morphology 

cerebral ischemia 

bronchomalacia 

nevus 

microretrognathia 

 Supplementary table 1. Comparison of Metamap-extracted and annotated terms from test corpus, where 

there was no exact match between sets. Clinically similar terms highlighted in green.  
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Gene 
symbol 

Gene 
MIM Disease name 

Disease 
Mim Allelic requirement Mutation consequence PubMed IDs 

CHD2 602119 EPILEPTIC ENCEPHALOPATHY 615369 monoallelic loss of function 

31993582  31677157  
29740950  29529558  
28960266  28910737  
26754451  26262932  
25672921  24614520 

SCN2A 182390 NONSPECIFIC SEVERE ID 613721 monoallelic loss of function 30062040 

DNMT3A 602769 Microcephalic primordial dwarfism 618724 monoallelic gain of function 30478443 

KMT2C 606833 INTELLECTUAL DISABILITY 617768 monoallelic loss of function 29069077 

CNOT3 604910 CNOT3 syndrome 618672 monoallelic loss of function 32720325 31201375 

PPP2R5D 601646 INTELLECTUAL DISABILITY 616355 monoallelic dominant negative 26576547 25972378 

ITPR1 147265 Gillespie Syndrome 206700 biallelic loss of function 29663667 29169895 

CHD4 603277 Syndromic INTELLECTUAL DISABILITY with or without congenital heart disease 617159 monoallelic loss of function 27616479 31388190 

GRIN2B 138252 EPILEPTIC ENCEPHALOPATHY 616139 monoallelic all missense/in frame 

24272827 30151416 
27605359 23934111 
28377535 31085877 

GNAS 139320 MCCUNE-ALBRIGHT SYNDROME 174800 mosaic activating 

1594625 15126527 1944469 
31852070 29104223 
26188235 17878646 
16264125 

GRIN2B 138252 MENTAL RETARDATION, AUTOSOMAL DOMINANT 6 613970 monoallelic loss of function 20890276 23718928 

CSNK2A1 115440 CSNK2A1 syndrome 617062 monoallelic activating 
29383814 28725024 
27048600 

ITPR1 147265 SPINOCEREBELLAR ATAXIA 29, CONGENITAL NONPROGRESSIVE 117360 monoallelic all missense/in frame 

27062503 22986007 
31632679 29196976 
28826917 28659154 

TLK2 608439 TLK2 syndrome 618050 monoallelic loss of function 29861108 33323470 

SLC6A1 137165 EPILEPSY WITH MYOCLONIC-ATONIC SEIZURES 616421 monoallelic loss of function 

29315614 25865495 
30132828 27600546 
31176687 29961511 
31516630 

TBL1XR1 608628 Intellectual disability with autism spectrum disorder 616944 monoallelic loss of function 
25425123 29777588 
25102098 



 

Appendix  187 

ITPR1 147265 Gillespie Syndrome, monoallelic 206700 monoallelic dominant negative 
27108798 31340402 
30249237 28698159 

SMARCA4 603254 RHABDOID TUMOR PREDISPOSITION SYNDROME 2 613325 monoallelic loss of function 

20137775 33836796 
31190001 29204511 
25060813 

CLTC 118955 Epilepsy and intellectual disability 617854 monoallelic loss of function 26822784 31776469 

BCL11A 606557 INTELLECTUAL DISABILITY 617101 monoallelic loss of function 
27453576 28960836 
32903878 

MORC2 616661 MORC2 - axonal neuropathy and neurodevelopmental disorder 619090 monoallelic all missense/in frame 

26497905 28771897 
32693025 30624633 
33844363 

NFIX 164005 MARSHALL-SMITH SYNDROME 602535 monoallelic dominant negative 
32701632 24924640 
28442439 

KDM5C 314690 MENTAL RETARDATION SYNDROMIC X-LINKED JARID1C-RELATED 300534 hemizygous loss of function 

16538222 21575681 
18697827 19826449 
15586325 18203167 

KCNQ2 602235 BENIGN NEONATAL EPILEPSY TYPE 1 121200 monoallelic loss of function 

10323247 17872363 9430594 
11572947 9425895 11175290 
28503627 28038823 
24375629 23290024 
22884718 20119593 
19818940 18640800 
18353052 18246739 
15596769 15178210 
12847176 10774989 

HECW2 617245 Neurodevelopmental disorder with hypotonia, seizures, and absent language 617268 monoallelic all missense/in frame 

27334371 27389779 
33205896 32814609 
29807643 29395664 

TRAF7 606692 Developmental Delay Congenital Anomalies and Dysmorphic Features 618164 monoallelic all missense/in frame 29961569 32376980 

SIN3A 607776 SYNDROMIC INTELLECTUAL DISABILITY 613406 monoallelic loss of function 
27399968 33437032 
30267900 

TBL1XR1 608628 Pierpont syndrome 602342 monoallelic activating 
28687524 30365874 
26769062 

TRIP12 604506 TRIP12-related intellectual disability with/without autism spectrum disorder 617752 monoallelic loss of function 
27848077 28251352 
31814248 

CHD3 602120 Macrocephaly and impaired speech and language 618205 monoallelic all missense/in frame 
30397230 33571694 
33358638 32483341 

FBN1 134797 WEILL-MARCHESANI SYNDROME AUTOSOMAL DOMINANT 608328 monoallelic all missense/in frame 
12525539 28696036 
25142510 23897642 

TRRAP 603015 Autism and Syndromic Intellectual Disability 618454 monoallelic all missense/in frame 30827496 30424743 
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EBF3 607407 Intellectual Disability, Ataxia, and Facial Dysmorphism 617330 monoallelic loss of function 

28017370 28017373 
28017372 28487885 
29162653 

PHIP 612870 Developmental delay, ID, obesity and dysmorphic features 617991 monoallelic loss of function 
29209020 27900362 
31167805 

GNAS 139320 ALBRIGHT HEREDITARY OSTEODYSTROPHY 103580 monoallelic loss of function 

1505964 2122458 8072545 
8702665 11095461 9328353 
10487696 11073544 
17299070 30349702 
25502941 20015054 
18806481 

KANSL1 612452 CHROMOSOME 17Q21.31 MICRODELETION SYNDROME 610443 monoallelic loss of function 
22544363 22544367 
33361104 28211987 

PACS1 607492 INTELLECTUAL DISABILITY 615009 monoallelic activating 

23159249 30113927 
29550517 28975623 
28111752 26842493 
25522177 

PTPN11 176876 NOONAN SYNDROME 1 163950 monoallelic activating 

12161469 19449407 
12529711 12325025 
15240615 11992261 
15384080 11704759 

SPTAN1 182810 EPILEPTIC ENCEPHALOPATHY EARLY INFANTILE TYPE 5 613477 monoallelic dominant negative 

22258530 20493457 
33578420 33206935 
32811770 31515523 
30548380 29986434 
29050398 22656320 
22429196 

SMARCA4 603254 COFFIN SIRIS 614609 monoallelic all missense/in frame 

32686290 31160358 
30973214 28608987 
24700502 

CDK13 603309 Syndromic INTELLECTUAL DISABILITY with or without congenital heart disease 617360 monoallelic all missense/in frame 

29222009 29393965 
27479907 28807008 
29021403 

MEF2C 600662 
MENTAL RETARDATION-STEREOTYPIC MOVEMENTS-EPILEPSY AND/OR CEREBRAL 
MALFORMATIONS 613443 monoallelic loss of function 

20513142 23001426 
30922778 30376817 
29468350 29104469 
28456137 28794905 
27255693 22449245 

SMC1A 300040 CORNELIA DE LANGE SYNDROME TYPE 2 300590 x-linked dominant all missense/in frame 

24124034 28102598 
32532882 22106055 
26354354 20635401 

PTEN 601728 PTEN Hamartoma Tumor Syndrome 158350 monoallelic loss of function 

11238682 9140396 9425889 
12844284 15805158 9832031 
9241266 10353779 9467011 
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9832032 10777358 17286265 
9259288 10051160 

SMC1A 300040 SMC1A-related Epileptic Encephalopathy 301044 x-linked dominant loss of function 

26358754 26752331 
28166369 31185419 
26386245 31098032 
28677859 

KIF1A 601255 NESCAV SYNDROME 614255 monoallelic all missense/in frame 

25265257 26125038 
26486474 30385166 
25253658 21376300 
32096284 26354034 

KAT6B 605880 GENITOPATELLAR SYNDROME 606170 monoallelic dominant negative 

22265014 30900427 
28696035 22265017 
31871732 

KDM6A 300128 KABUKI SYNDROME 2 300867 x-linked dominant loss of function 

24527667 30509212 
24664873 27028180 
23076834 33674768 

KCNQ2 602235 EPILEPTIC ENCEPHALOPATHY EARLY INFANTILE TYPE 7 613720 monoallelic loss of function 

23774309 24107868 
31199083 24371303 
22169383 28687180 
12742592 31418850 
28728838 27602407 
28631195 29687029 
30107960 23621294 
23692823 28832002 
22275249 27861786 
25880994 22926866 
25566516 30530441 
31152295 25092550 
31951342 

EHMT1 607001 Kleefstra syndrome 610253 monoallelic loss of function 

28361100 19264732 
23232695 28498556 
27123477 16826528 

TAF1 313650 Dysmorphic Features, Intellectual Disability, and Neurological Manifestations 300966 hemizygous loss of function 

32396742 31646703 
31341187 30805980 
32714589 26637982 

GATAD2B 614998 NONSPECIFIC SEVERE ID 615074 monoallelic loss of function 

23644463 31949314 
32688057 31205050 
30482549 30346093 
28077840 

SYNGAP1 603384 MENTAL RETARDATION AUTOSOMAL DOMINANT TYPE 5 612621 monoallelic loss of function 

21237447 28721930 
30685520 28576131 
30800045 26110312 
26079862 29381230 
23141534 31395010 
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30572772 23161826 
26989088 30556619 
19196676 23708187 

KAT6B 605880 SAY-BARBER-BIESECKER-YOUNG-SIMPSON SYNDROME 603736 monoallelic loss of function 

23436491 24458743 
30353918 22077973 
27696664 28232779 
28758091 26334766 

DYNC1H1 600112 SPINAL MUSCULAR ATROPHY, LOWER EXTREMITY-PREDOMINANT, AD 158600 monoallelic all missense/in frame 

28554554 22459677 
25484024 29306600 
27066557 30122514 
25609763 27331017 
22368300 28193117 
24307404 

SMARCA2 600014 NICOLAIDES-BARAITSER SYNDROME 601358 monoallelic all missense/in frame 

32694869 22366787 
32657847 31288860 
28948053 27665729 
22822383 

PTPN11 176876 LEOPARD SYNDROME TYPE 1 151100 monoallelic all missense/in frame 

23799168 21747628 
27484170 17875892 
24790373 25884655 
19659470 15520399 
19054014 26377839 
22822385 19768645 
24820750 25917897 
21677813 21365175 
16733669 21910226 
17927788 19864201 

SRCAP 611421 FLOATING-HARBOR SYNDROME 136140 monoallelic dominant negative 

22965468 30425916 
22265015 30304910 
23621943 25433523 
23165645 26788936 
24375913 23763483 

WDR45 300526 WDR45-RELATED NEURODEGENERATION WITH BRAIN IRON ACCUMULATION 300894 x-linked dominant loss of function 

23176820 31466010 
27030146 29600274 
30612247 28551038 
26790960 30539914 
29981852 26022463 
28932395 29171013 
27957548 28361255 
29082105 27681470 
29681108 30713886 
26609730 28371320 
26240209 
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TCF20 603107 TCF20 syndrome 618430 monoallelic loss of function 

25228304 28135719 
30739909 27436265 
30819258 

WAC 615049 Desanto-Shinawi syndrome 616708 monoallelic loss of function 
26757981 26264232 
33387902 32214004 

IQSEC2 300522 MENTAL RETARDATION X-LINKED TYPE 1 309530 x-linked dominant loss of function 

31415821 23674175 
24306141 26793055 
27665735 20473311 
31829726 29026562 
28295038 28815955 
30666632 30206421 
26733290 31490346 

KMT2B 606834 Complex early-onset dystonia 617284 monoallelic loss of function 

33816656 33300088 
33150406 32877735 
32546208 32634684 
32241076 31338059 
31216378 31165786 
31061210 30935829 
30253925 29653907 
29396090 28921672 
28520167 27992417 
27839873 

FBN1 134797 MARFAN SYNDROME 154700 monoallelic loss of function 

8428751 8504310 1631074 
7611299 7762551 18412115 
1301946 15287423 15032979 
8040326 8101042 9101298 
8406497 11175294 17366579 
11702223 9837823 1569206 
8136837 9241263 7633409 
20082464 10441597 7911051 
20979188 8281141 1852208 

NFIX 164005 SOTOS SYNDROME 2 614753 monoallelic loss of function 

22301465 29897170 
32193017 31369202 
28584646 26193383 
25118028 22982744 

SETD5 615743 MENTAL RETARDATION, AUTOSOMAL DOMINANT 23 615761 monoallelic loss of function 

25138099 28905509 
28549204 27375234 
28881385 24680889 
31656537 

PURA 600473 INTELLECTUAL DISABILITY 616158 monoallelic loss of function 

32089526 25439098 
29150892 29097605 
25342064 27148565 
29307761 31911028 
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SCN2A 182390 INFANTILE EPILEPTIC ENCEPHALOPATHY 613721 monoallelic all missense/in frame 

28489313 29635106 
25457084 19783390 
25772804 23935176 
23988467 24579881 
28379373 25459969 
28254201 22591750 
24659627 28709814 
24814476 29625812 
15028761 31966371 
26311622 23827426 
24710820 23550958 
30203812 19786696 
31439038 31204721 
26291284 

TCF4 602272 PITT-HOPKINS SYNDROME 610954 monoallelic loss of function 

22670824 20184619 
29695756 27132474 
18728071 19235238 
17436255 23528641 
22045651 19938247 
30848346 29604340 
20205897 17436254 

CACNA1A 601011 EPILEPTIC ENCEPHALOPATHY 617106 monoallelic all missense/in frame 

28927557 28742085 
29366381 33557884 
33445191 33425808 
33349592 32692472 
32170034 31468518 
26739101 25735478 
20097664 

FOXP1 605515 MENTAL RETARDATION WITH LANGUAGE IMPAIRMENT AND AUTISTIC FEATURES 613670 monoallelic loss of function 

29090079 29330474 
24214399 20950788 
28884888 28735298 
25853299 30092897 

SHANK3 606230 PHELAN-MCDERMID SYNDROME 606232 monoallelic loss of function 

22892527 17173049 
32202324 30537371 
29939863 29719671 
29423971 28963116 
28754298 27554343 
25931020 26045941 
23612248 21378602 
20385823 18615476 

DNMT3A 602769 
Tatton-Brown Rahman syndrome (OVERGROWTH SYNDROME WITH INTELLECTUAL 
DISABILITY) 615879 monoallelic loss of function 

24614070 29900417 
32435502 31905446 
31685998 28941052 
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28449304 28432085 
27701732 27991732 

CTNNB1 116806 MENTAL RETARDATION, AUTOSOMAL DOMINANT 19 615075 monoallelic loss of function 

25326669 28514307 
26968164 24614104 
30929091 27915094 

AHDC1 615790 XIA-GIBBS SYNDROME 615829 monoallelic loss of function 

29696776 29230160 
31182893 32256298 
30622101 30858058 
31812316 30152016 
27148574 30729726 
24791903 

PUF60 604819 PUF60 syndrome 615583 monoallelic loss of function 

27804958 28327570 
32851780 30569551 
30352594 28471317 
28074499 

ASXL3 615115 BAINBRIDGE-ROPERS SYNDROME 615485 monoallelic loss of function 

29305346 23383720 
29445472 29367179 
31638014 29316359 
24044690 28100473 
27075689 27901041 
28955728 31180560 
32240826 

EP300 602700 RUBINSTEIN-TAYBI SYNDROME TYPE 2 613684 monoallelic loss of function 

17299436 20014264 
19353645 33442921 
33043588 30076641 
29506490 29133209 
28027063 27581590 
27964710 27465822 
27648933 27386132 
26374735 26279656 
25712426 24476420 
24352918 

POGZ 614787 INTELLECTUAL DISABILITY 616364 monoallelic loss of function 

31136090 26763879 
27148570 26942287 
31347273 28480548 
31782611 32103003 
30879264 27103995 
25694107 26739615 

DYRK1A 600855 MENTAL RETARDATION AUTOSOMAL DOMINANT TYPE 7 614104 monoallelic loss of function 

21294719 25641759 
28053047 31263215 
29034068 31803247 
25707398 26922654 
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23099646 25944381 
25920557 

KMT2D 602113 KABUKI SYNDROME 147920 monoallelic loss of function 

27530205 28404210 
29283410 21607748 
29482518 25142838 
20711175 21671394 
25972376 31935506 
25944076 24739679 
30569626 29914387 
27573763 27302555 
28295206 

HNRNPU 602869 EPILEPTIC ENCEPHALOPATHY 617391 monoallelic loss of function 

33914968 32319732 
29858110 28944577 
28815871 28393272 

KAT6A 601408 MENTAL RETARDATION, AUTOSOMAL DOMINANT 32 616268 monoallelic loss of function 

25728775 27133397 
30245513 25728777 
31754438 29899504 
30775047 32041641 

SATB2 608148 GLASS SYNDROME 612313 monoallelic loss of function 

29436146 31021519 
30648748 31420882 
31392730 17377962 
24301056 29739092 
28139846 25885067 
30848049 28787087 
28211976 28151491 
27774744 26596517 
31333717 24363063 
30575289 

SMAD4 600993 Juvenile polyposis/hereditary hemorrhagic telangiectasia syndrome 175050 monoallelic loss of function 

33370972 32944796 
32556653 30196345 
27375208 26159157 
25931195 25705527 
24312718 26181832 
23239472 22617360 
22331366 21572342 
22056587 21465659 
20685751 20101697 
18355998 15990641 
15754356 15031030 
31394615 12116240 
11920286 10455879 
10398437 9811934 9582123 

STXBP1 602926 EPILEPTIC ENCEPHALOPATHY EARLY INFANTILE TYPE 4 612164 monoallelic loss of function 
21062273 26212315 
26384463 32105008 



 

Appendix  195 

29929108 28944233 
18469812 20887364 
26865513 21762454 
22596016 29544889 
27069701 24315539 
19557857 29718889 
29264391 31387522 
27184330 21770924 
21364700 26514728 
30654231 24170257 
25714420 24189369 
23763664 20876469 
31344879 23531706 
24623842 25631041 
25418441 24095819 
23533165 23409955 
29896790 21204804 

ADNP 611386 MENTAL RETARDATION, AUTOSOMAL DOMINANT, 28 615873 monoallelic loss of function 

27031564 32275126 
30107084 25169753 
28407407 31127536 
29724491 24531329 
28221363 28475273 
29475819 

BCOR 300485 MICROPHTHALMIA SYNDROMIC TYPE 2 300166 x-linked dominant loss of function 

29974297 32748437 
15957158 15004558 
28317252 29974297 
15770227 19367324 
31048080 

EFTUD2 603892 MANDIBULOFACIAL DYSOSTOSIS WITH MICROCEPHALY 610536 monoallelic loss of function 

25387991 26507355 
24470203 25735261 
27670155 23188108 
23879989 23239648 
31413053 22305528 
30343593 28643921 

FOXG1 164874 CONGENITAL VARIANT OF RETT SYNDROME 613454 monoallelic loss of function 

18571142 21441262 
19564653 19578037 
32757993 31316448 
30533527 29396177 
28851325 28781028 
28661489 27029630 
27001178 26364767 
26344814 25266269 
24836831 24388699 
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22129046 22091895 
21953941 

ARID1B 614556 MENTAL RETARDATION, AUTOSOMAL DOMINANT 12 135900 monoallelic loss of function 

30349098 22426309 
22405089 33936271 
33714239 32618029 
32339967 31981384 
32161024 30933046 
31628733 31421289 
31105273 29504208 
28323383 27474218 
27570168 27511161 
27672547 26395437 
26376624 24569609 

KMT2A 159555 WIEDEMANN-STEINER SYNDROME 605130 monoallelic loss of function 

27777327 32311999 
24818805 22795537 
24886118 27320412 
28815892 25929198 
31044088 27759909 
29203834 31250358 
31168168 30549396 
30841869 25810209 

SMAD4 600993 MYHRE SYNDROME 139210 monoallelic activating 

33428109 31837202 
31654632 27302097 
24715504 22711472 
22585601 22243968 
22158539 

SCN8A 600702 EPILEPTIC ENCEPHALOPATHY, EARLY INFANTILE, 13 614558 monoallelic dominant negative 

22365152 16236810 
33827760 33915942 
33007625 32920374 
32853054 32846312 
32040247 32509551 
31672125 31675620 
31402610 31335965 
31174070 31026061 
31010614 30968951 
30851583 30685519 
30171078 30078772 2972606 
29677576 29432985 
29263050 29128679 
29121005 28923014 
28676440 28702509 
28084268 27875746 
27900360 27210545 
26677014 26553437 
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26252990 26235738 
25725044 25785782 
25799905 25568300 

NSD1 606681 SOTOS SYNDROME 117550 monoallelic loss of function 

12525543 16222665 
11896389 33029244 
30719864 30461603 
30332768 29164086 
28457852 27834868 
25887879 24795065 
23341071 21834047 
21677402 21677396 
20420030 19876911 
19545651 17565729 
16547423 16247291 
16232326 15742365 
15362962 14627693 

MED13L 608771 INTELLECTUAL DISABILITY 616789 monoallelic loss of function 

25758992 28645799 
25712080 29511999 
25137640 29159987 
24781760 29959045 
23403903 28371282 

ANKRD11 611192 KBG SYNDROME 148050 monoallelic loss of function 

30088855 27667800 
23494856 28250421 
28449295 25464108 
27900361 25652421 
23184435 21782149 
25838844 30877071 
29224748 

CREBBP 600140 RUBINSTEIN-TAYBI SYNDROME TYPE 1 180849 monoallelic loss of function 

7630403 27311832 20684013 
11331617 30737887 
12566391 33747050 
32839936 31637876 
31566936 30892814 
30770747 30633342 
30614040 29745126 
27342041 27165009 
26956253 26603346 
26275701 25768348 
25388907 20949605 
20583168 20689175 
19852432 12114483 

CHD7 608892 CHARGE SYNDROME 214800 monoallelic loss of function 

16400610 17334995 
18978652 17661815 
15300250 17937444 
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18074359 33844462 
32699053 31929333 
32625235 32509017 
32126561 31037873 
31315586 29945602 
29531775 29434620 
28609304 26901670 
27081570 26921530 
26741373 26929907 
26590800 26551301 
26187070 25606431 
24578717 24550764 
23495722 23333604 
23024289 22517486 
22302456 21041284 
20943277 20624498 
19159393 19021638 
18484313 18505430 
18445044 18073582 

 

 
Supplementary Table 2. DDG2P disease entries with PubMed IDs used to create 99 

disease test set.  
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Feature TP FP TN FN Sens Spec PPV NPV 

Erratum not in metadata 1535 4989 54 0 1 0.01 0.24 1 

Intellectual disability in MeSH 329 168 4875 1206 0.21 0.97 0.66 0.8 

Infant in MeSH 437 254 4789 1098 0.28 0.95 0.63 0.81 

Phenotype in MeSH 513 372 4671 1022 0.33 0.93 0.58 0.82 

X-linked in MeSH 30 23 5020 1505 0.02 1 0.57 0.77 

Dominant in MeSH 150 105 4938 1385 0.1 0.98 0.59 0.78 

Recessive in MeSH 49 37 5006 1486 0.03 0.99 0.57 0.77 

Humans in MeSH 1259 3048 1995 276 0.82 0.4 0.29 0.88 

Cancer in MeSH 33 568 4475 1502 0.02 0.89 0.05 0.75 

Genetics in MeSH 1256 3315 1728 279 0.82 0.34 0.27 0.86 

Animals not in in MeSH 1445 3287 1756 90 0.94 0.35 0.31 0.95 

Exome in MeSH 188 83 4960 1347 0.12 0.98 0.69 0.79 

Mutation in MeSH 1028 1103 3940 507 0.67 0.78 0.48 0.89 

Family in MeSH 57 65 4978 1478 0.04 0.99 0.47 0.77 

Erratum not in publication type 1535 4989 54 0 1 0.01 0.24 1 

Corrected not in publication type 1535 5042 1 0 1 0 0.23 1 

Review not in publication type 1460 4807 236 75 0.95 0.05 0.23 0.76 

Case report in publication type 763 486 4557 772 0.5 0.9 0.61 0.86 

Comment not in publication type 1530 4990 53 5 1 0.01 0.23 0.91 

Multiple genes not in metadata 1535 5039 4 0 1 0 0.23 1 

Correction not in title 1534 4989 54 1 1 0.01 0.24 0.98 

Disease name in title 290 115 4928 1245 0.19 0.98 0.72 0.8 

Mouse not in title 1531 4732 311 4 1 0.06 0.24 0.99 

Mouse not in abstract 1486 3919 1124 49 0.97 0.22 0.27 0.96 

GWAS not in title 1535 5016 27 0 1 0.01 0.23 1 

GWAS not in abstract 1528 4814 229 7 1 0.05 0.24 0.97 

Multiple genes not in title 1508 3990 1053 27 0.98 0.21 0.27 0.98 

IPSC not in title 1535 4998 45 0 1 0.01 0.23 1 

IPSC not in abstract 1535 4972 71 0 1 0.01 0.24 1 

Review not in abstract 1534 4977 66 1 1 0.01 0.24 0.99 

Cancer not in title 1523 4551 492 12 0.99 0.1 0.25 0.98 

Cancer not in abstract 1498 4273 770 37 0.98 0.15 0.26 0.95 

Fuzzy match to disease name in title 601 279 4764 934 0.39 0.94 0.68 0.84 
 

 

 

 

 

Supplementary Table 3. Performance of individual features against annotated 

corpus of GDD-relevant manuscripts. GWAS – genome-wide association study. 

IPSC – induced pluripotent stem cells. TP – true positive. FP – false positive. TN 

– true negative. FN – false negative. Sens – sensitivity. Spec – specificity. PPV – 

positive predictive value. NPV – negative predictive value.  



 

Bibliography  200 

Bibliography 
 

1. Verloes A, Di Donato N, Masliah-Planchon J, Jongmans M, Abdul-
Raman OA, Albrecht B, et al. Baraitser-Winter cerebrofrontofacial 
syndrome: delineation of the spectrum in 42 cases. Eur J Hum Genet. 
2015 Mar;23(3):292–301.  

2. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, et 
al. Targeted capture and massively parallel sequencing of 12 human 
exomes. Nature. 2009 Sep 10;461(7261):272–6.  

3. Deciphering Developmental Disorders Study. Large-scale discovery of 
novel genetic causes of developmental disorders. Nature. 2015 Mar 
12;519(7542):223–8.  

4. 100,000 Genomes Project Pilot Investigators, Smedley D, Smith KR, 
Martin A, Thomas EA, McDonagh EM, et al. 100,000 Genomes Pilot on 
Rare-Disease Diagnosis in Health Care - Preliminary Report. N Engl J 
Med. 2021 Nov 11;385(20):1868–80.  

5. Clark MM, Stark Z, Farnaes L, Tan TY, White SM, Dimmock D, et al. 
Meta-analysis of the diagnostic and clinical utility of genome and exome 
sequencing and chromosomal microarray in children with suspected 
genetic diseases. NPJ Genom Med. 2018;3:16.  

6. Deciphering Developmental Disorders Study. Prevalence and 
architecture of de novo mutations in developmental disorders. Nature. 
2017 Feb 23;542(7642):433–8.  

7. Gudmundsson S, Singer-Berk M, Watts NA, Phu W, Goodrich JK, 
Solomonson M, et al. Variant interpretation using population databases: 
lessons from gnomAD. arXiv:210711458 [q-bio] [Internet]. 2021 Nov 4 
[cited 2022 Jan 2]; Available from: http://arxiv.org/abs/2107.11458 

8. Conrad DF, Keebler JEM, DePristo MA, Lindsay SJ, Zhang Y, Casals F, 
et al. Variation in genome-wide mutation rates within and between 
human families. Nat Genet. 2011 Jun 12;43(7):712–4.  

9. European Bioinformatics Institute. gene2phenotype [Internet]. [cited 
2022 Jan 2]. Available from: https://www.ebi.ac.uk/gene2phenotype/ 

10. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. 
Standards and guidelines for the interpretation of sequence variants: a 
joint consensus recommendation of the American College of Medical 
Genetics and Genomics and the Association for Molecular Pathology. 
Genet Med. 2015 May;17(5):405–23.  

11. Lionel AC, Costain G, Monfared N, Walker S, Reuter MS, Hosseini SM, 
et al. Improved diagnostic yield compared with targeted gene 
sequencing panels suggests a role for whole-genome sequencing as a 
first-tier genetic test. Genet Med. 2018 Apr;20(4):435–43.  

12. Carss KJ, Arno G, Erwood M, Stephens J, Sanchis-Juan A, Hull S, et al. 
Comprehensive Rare Variant Analysis via Whole-Genome Sequencing 
to Determine the Molecular Pathology of Inherited Retinal Disease. Am J 
Hum Genet. 2017 Jan 5;100(1):75–90.  



 

Bibliography  201 

13. Wang X, Posey JE, Rosenfeld JA, Bacino CA, Scaglia F, Immken L, et 
al. Phenotypic expansion in DDX3X - a common cause of intellectual 
disability in females. Ann Clin Transl Neurol. 2018 Oct;5(10):1277–85.  

14. Rech ME, McCarthy JM, Chen CA, Edmond JC, Shah VS, Bosch DGM, 
et al. Phenotypic expansion of Bosch-Boonstra-Schaaf optic atrophy 
syndrome and further evidence for genotype-phenotype correlations. Am 
J Med Genet A. 2020 Jun;182(6):1426–37.  

15. Sullivan JA, Stong N, Baugh EH, McDonald MT, Takeuchi A, Shashi V. 
A pathogenic variant in the SETBP1 hotspot results in a forme-fruste 
Schinzel-Giedion syndrome. Am J Med Genet A. 2020 
Aug;182(8):1947–51.  

16. Di Donato N, Kuechler A, Vergano S, Heinritz W, Bodurtha J, Merchant 
SR, et al. Update on the ACTG1-associated Baraitser-Winter 
cerebrofrontofacial syndrome. Am J Med Genet A. 2016 
Oct;170(10):2644–51.  

17. Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, Schwarzmayr T, et 
al. Range of genetic mutations associated with severe non-syndromic 
sporadic intellectual disability: an exome sequencing study. Lancet. 
2012 Nov 10;380(9854):1674–82.  

18. Guest SS, Evans CD, Winter RM. The Online London Dysmorphology 
Database. Genet Med. 1999 Aug;1(5):207–12.  

19. Robinson PN, Köhler S, Bauer S, Seelow D, Horn D, Mundlos S. The 
Human Phenotype Ontology: a tool for annotating and analyzing human 
hereditary disease. Am J Hum Genet. 2008 Nov;83(5):610–5.  

20. Guarino N. Formal Ontology in Information Systems. Proceedings of 
FOIS’98, Trento, Italy, 6-8 June 1998. 1998;3–15.  

21. Fung KW, Bodenreider O. Knowledge Representation and Ontologies. 
In: Richesson RL, Andrews JE, editors. Clinical Research Informatics 
[Internet]. London: Springer London; 2012 [cited 2022 Jan 3]. p. 255–75. 
(Health Informatics). Available from: 
http://link.springer.com/10.1007/978-1-84882-448-5_14 

22. Köhler S, Gargano M, Matentzoglu N, Carmody LC, Lewis-Smith D, 
Vasilevsky NA, et al. The Human Phenotype Ontology in 2021. Nucleic 
Acids Research. 2021 Jan 8;49(D1):D1207–17.  

23. Sayers EW, Bolton EE, Brister JR, Canese K, Chan J, Comeau DC, et 
al. Database resources of the national center for biotechnology 
information. Nucleic Acids Res. 2021 Dec 1;gkab1112.  

24. Wright CF, Fitzgerald TW, Jones WD, Clayton S, McRae JF, van 
Kogelenberg M, et al. Genetic diagnosis of developmental disorders in 
the DDD study: a scalable analysis of genome-wide research data. 
Lancet. 2015 Apr 4;385(9975):1305–14.  

25. Urreizti R, Lopez-Martin E, Martinez-Monseny A, Pujadas M, Castilla-
Vallmanya L, Pérez-Jurado LA, et al. Five new cases of syndromic 
intellectual disability due to KAT6A mutations: widening the molecular 
and clinical spectrum. Orphanet J Rare Dis. 2020 Feb 10;15(1):44.  

26. Kumar R, Palmer E, Gardner AE, Carroll R, Banka S, Abdelhadi O, et al. 
Expanding Clinical Presentations Due to Variations in THOC2 mRNA 
Nuclear Export Factor. Front Mol Neurosci. 2020;13:12.  



 

Bibliography  202 

27. Amberger JS, Bocchini CA, Scott AF, Hamosh A. OMIM.org: leveraging 
knowledge across phenotype–gene relationships. Nucleic Acids 
Research. 2019 Jan 8;47(D1):D1038–43.  

28. Orphanet © INSERM. Orphanet: an online rare disease and orphan drug 
data base [Internet]. Available from: http://www.orpha.net 

29. OMIM® McKusick-Nathans Institute of Genetic Medicine Johns Hopkins 
University (Baltimore, MD). Online Mendelian Inheritance in Man 
[Internet]. Available from: https://omim.org/ 

30. Firth HV, Richards SM, Bevan AP, Clayton S, Corpas M, Rajan D, et al. 
DECIPHER: Database of Chromosomal Imbalance and Phenotype in 
Humans Using Ensembl Resources. The American Journal of Human 
Genetics. 2009 Apr;84(4):524–33.  

31. Thormann A, Halachev M, McLaren W, Moore DJ, Svinti V, Campbell A, 
et al. Flexible and scalable diagnostic filtering of genomic variants using 
G2P with Ensembl VEP. Nat Commun. 2019 Dec;10(1):2373.  

32. Rasmussen SA, Hamosh A, Amberger J, Arnold C, Bocchini C, O‘Neill 
MJF, et al. What’s in a name? Issues to consider when naming 
Mendelian disorders. Genetics in Medicine. 2020 Oct;22(10):1573–5.  

33. Biesecker LG, Adam MP, Alkuraya FS, Amemiya AR, Bamshad MJ, 
Beck AE, et al. A dyadic approach to the delineation of diagnostic 
entities in clinical genomics. Am J Hum Genet. 2021 Jan 7;108(1):8–15.  

34. Mungall CJ, McMurry JA, Köhler S, Balhoff JP, Borromeo C, Brush M, et 
al. The Monarch Initiative: an integrative data and analytic platform 
connecting phenotypes to genotypes across species. Nucleic Acids Res. 
2017 Jan 4;45(D1):D712–22.  

35. DiStefano MT, Goehringer S, Babb L, Alkuraya FS, Amberger J, Amin 
M, et al. The Gene Curation Coalition: A global effort to harmonize gene-
disease evidence resources [Internet]. Genetic and Genomic Medicine; 
2022 Jan [cited 2022 Jan 5]. Available from: 
http://medrxiv.org/lookup/doi/10.1101/2022.01.03.21268593 

36. Collier N, Groza T, Smedley D, Robinson PN, Oellrich A, Rebholz-
Schuhmann D. PhenoMiner: from text to a database of phenotypes 
associated with OMIM diseases. Database. 2015;2015:bav104.  

37. Wei CH, Allot A, Leaman R, Lu Z. PubTator central: automated concept 
annotation for biomedical full text articles. Nucleic Acids Res. 2019 Jul 
2;47(W1):W587–93.  

38. Samuel J, Yuan X, Yuan X, Walton B. Mining online full-text literature for 
novel protein interaction discovery. In: 2010 IEEE International 
Conference on Bioinformatics and Biomedicine Workshops (BIBMW) 
[Internet]. HongKong, China: IEEE; 2010 [cited 2022 Jan 5]. p. 277–82. 
Available from: http://ieeexplore.ieee.org/document/5703812/ 

39. Garten Y, Altman RB. Pharmspresso: a text mining tool for extraction of 
pharmacogenomic concepts and relationships from full text. BMC 
Bioinformatics. 2009 Feb 5;10 Suppl 2:S6.  

40. Westergaard D, Stærfeldt HH, Tønsberg C, Jensen LJ, Brunak S. A 
comprehensive and quantitative comparison of text-mining in 15 million 
full-text articles versus their corresponding abstracts. PLoS Comput Biol. 
2018 Feb;14(2):e1005962.  



 

Bibliography  203 

41. European Bioinformatics Institute. Europe PubMed Central [Internet]. 
[cited 2022 Jan 6]. Available from: https://europepmc.org/ 

42. Intellectual Property Office UK. Exceptions to copyright [Internet]. [cited 
2021 Oct 22]. Available from: 
https://www.gov.uk/government/uploads/system/uploads/attachment_dat
a/file/375954/Research.pdf 

43. Campbell, Jamie, Lain, Antoine, Simpson, Ian. 
biomedicalinformaticsgroup/cadmus: First Release of Cadmus (v1.0.0) 
[Internet]. Zenodo. Available from: 
https://doi.org/10.5281/zenodo.5618052 

44. Cell Press. American Journal of Human Genetics [Internet]. [cited 2022 
Jan 6]. Available from: https://www.cell.com/AJHG/ 

45. Perera N, Dehmer M, Emmert-Streib F. Named Entity Recognition and 
Relation Detection for Biomedical Information Extraction. Front Cell Dev 
Biol. 2020;8:673.  

46. Korkontzelos I, Piliouras D, Dowsey AW, Ananiadou S. Boosting drug 
named entity recognition using an aggregate classifier. Artif Intell Med. 
2015 Oct;65(2):145–53.  

47. Lee K, Wei CH, Lu Z. Recent advances of automated methods for 
searching and extracting genomic variant information from biomedical 
literature. Brief Bioinform. 2021 May 20;22(3):bbaa142.  

48. Campos D, Matos S, Luis J. Biomedical Named Entity Recognition: A 
Survey of Machine-Learning Tools. In: Sakurai S, editor. Theory and 
Applications for Advanced Text Mining [Internet]. InTech; 2012 [cited 
2022 Jan 6]. Available from: http://www.intechopen.com/books/theory-
and-applications-for-advanced-text-mining/biomedical-named-entity-
recognition-a-survey-of-machine-learning-tools 

49. Groza T, Kohler S, Doelken S, Collier N, Oellrich A, Smedley D, et al. 
Automatic concept recognition using the Human Phenotype Ontology 
reference and test suite corpora. Database. 2015 Feb 
27;2015(0):bav005–bav005.  

50. Agoritsas T, Merglen A, Courvoisier DS, Combescure C, Garin N, 
Perrier A, et al. Sensitivity and predictive value of 15 PubMed search 
strategies to answer clinical questions rated against full systematic 
reviews. J Med Internet Res. 2012 Jun 12;14(3):e85.  

51. Lobo M, Lamurias A, Couto FM. Identifying Human Phenotype Terms by 
Combining Machine Learning and Validation Rules. BioMed Research 
International. 2017;2017:1–8.  

52. Mohan S, Li D. MedMentions: A Large Biomedical Corpus Annotated 
with UMLS Concepts. arXiv:190209476 [cs] [Internet]. 2019 Feb 25 
[cited 2022 Jan 8]; Available from: http://arxiv.org/abs/1902.09476 

53. Verspoor K, Cohen KB, Lanfranchi A, Warner C, Johnson HL, Roeder C, 
et al. A corpus of full-text journal articles is a robust evaluation tool for 
revealing differences in performance of biomedical natural language 
processing tools. BMC Bioinformatics. 2012 Aug 17;13:207.  

54. Luo L, Yan S, Lai PT, Veltri D, Oler A, Xirasagar S, et al. PhenoTagger: 
A Hybrid Method for Phenotype Concept Recognition using Human 
Phenotype Ontology. Bioinformatics. 2021 Jan 20;btab019.  



 

Bibliography  204 

55. Tomanek K, Wermter J, Hahn U. A reappraisal of sentence and token 
splitting for life sciences documents. Stud Health Technol Inform. 
2007;129(Pt 1):524–8.  

56. Fan JW, Friedman C. Deriving a probabilistic syntacto-semantic 
grammar for biomedicine based on domain-specific terminologies. J 
Biomed Inform. 2011 Oct;44(5):805–14.  

57. Tsuruoka Y, Tateishi Y, Kim JD, Ohta T, McNaught J, Ananiadou S, et 
al. Developing a Robust Part-of-Speech Tagger for Biomedical Text. In: 
Bozanis P, Houstis EN, editors. Advances in Informatics [Internet]. 
Berlin, Heidelberg: Springer Berlin Heidelberg; 2005 [cited 2022 Jan 7]. 
p. 382–92. (Hutchison D, Kanade T, Kittler J, Kleinberg JM, Mattern F, 
Mitchell JC, et al., editors. Lecture Notes in Computer Science; vol. 
3746). Available from: http://link.springer.com/10.1007/11573036_36 

58. Gorrell G, Song X, Roberts A. Bio-YODIE: A Named Entity Linking 
System for Biomedical Text. 2018 [cited 2022 Oct 18]; Available from: 
https://arxiv.org/abs/1811.04860 

59. Fraser KC, Nejadgholi I, De Bruijn B, Li M, LaPlante A, Abidine KZE. 
Extracting UMLS Concepts from Medical Text Using General and 
Domain-Specific Deep Learning Models. 2019 [cited 2022 Oct 18]; 
Available from: https://arxiv.org/abs/1910.01274 

60. Bodenreider O. The Unified Medical Language System (UMLS): 
integrating biomedical terminology. Nucleic Acids Res. 2004 Jan 
1;32(Database issue):D267-270.  

61. Jonquet C, Shah NH, Musen MA. The open biomedical annotator. 
Summit Transl Bioinform. 2009 Mar 1;2009:56–60.  

62. Whetzel PL, Noy NF, Shah NH, Alexander PR, Nyulas C, Tudorache T, 
et al. BioPortal: enhanced functionality via new Web services from the 
National Center for Biomedical Ontology to access and use ontologies in 
software applications. Nucleic Acids Res. 2011 Jul;39(Web Server 
issue):W541-545.  

63. Dai M, Shah NH, Xuan W, Musen MA, Watson SJ, Athey BD, et al. An 
efficient solution for mapping free text to ontology terms. AMIA summit 
on translational bioinformatics. 2008;21.  

64. Aronson AR, Lang FM. An overview of MetaMap: historical perspective 
and recent advances. J Am Med Inform Assoc. 2010 May;17(3):229–36.  

65. McCray AT, Aronson AR, Browne AC, Rindflesch TC, Razi A, Srinivasan 
S. UMLS knowledge for biomedical language processing. Bull Med Libr 
Assoc. 1993 Apr;81(2):184–94.  

66. Taboada M, Rodríguez H, Martínez D, Pardo M, Sobrido MJ. Automated 
semantic annotation of rare disease cases: a case study. Database 
(Oxford). 2014;2014:bau045.  

67. Shefchek KA, Harris NL, Gargano M, Matentzoglu N, Unni D, Brush M, 
et al. The Monarch Initiative in 2019: an integrative data and analytic 
platform connecting phenotypes to genotypes across species. Nucleic 
Acids Res. 2020 Jan 8;48(D1):D704–15.  

68. Okazaki N. CRFsuite: a fast implementation of Conditional Random 
Fields [Internet]. [cited 2022 Jan 8]. Available from: 
http://www.chokkan.org/software/crfsuite/ 



 

Bibliography  205 

69. Arbabi A, Adams DR, Fidler S, Brudno M. Identifying Clinical Terms in 
Medical Text Using Ontology-Guided Machine Learning. JMIR Med 
Inform. 2019 May 10;7(2):e12596.  

70. Bojanowski P, Grave E, Joulin A, Mikolov T. Enriching Word Vectors 
with Subword Information. TACL. 2017 Dec;5:135–46.  

71. Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, et al. BioBERT: a pre-
trained biomedical language representation model for biomedical text 
mining. Wren J, editor. Bioinformatics. 2019 Sep 10;btz682.  

72. Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of Deep 
Bidirectional Transformers for Language Understanding. 
arXiv:181004805 [cs] [Internet]. 2019 May 24 [cited 2022 Jan 11]; 
Available from: http://arxiv.org/abs/1810.04805 

73. Zhu Y, Kiros R, Zemel R, Salakhutdinov R, Urtasun R, Torralba A, et al. 
Aligning Books and Movies: Towards Story-like Visual Explanations by 
Watching Movies and Reading Books. arXiv:150606724 [cs] [Internet]. 
2015 Jun 22 [cited 2022 Jan 11]; Available from: 
http://arxiv.org/abs/1506.06724 

74. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et 
al. Attention is All you Need. In: Guyon I, Luxburg UV, Bengio S, 
Wallach H, Fergus R, Vishwanathan S, et al., editors. Advances in 
Neural Information Processing Systems [Internet]. Curran Associates, 
Inc.; 2017. Available from: 
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053
c1c4a845aa-Paper.pdf 

75. Liu F, Shareghi E, Meng Z, Basaldella M, Collier N. Self-Alignment 
Pretraining for Biomedical Entity Representations. 2020 [cited 2022 Oct 
18]; Available from: https://arxiv.org/abs/2010.11784 

76. Alsentzer E, Murphy J, Boag W, Weng WH, Jindi D, Naumann T, et al. 
Publicly Available Clinical BERT Embeddings. In: Proceedings of the 
2nd Clinical Natural Language Processing Workshop [Internet]. 
Minneapolis, Minnesota, USA: Association for Computational 
Linguistics; 2019 [cited 2022 Oct 18]. p. 72–8. Available from: 
http://aclweb.org/anthology/W19-1909 

77. Shah NH, Bhatia N, Jonquet C, Rubin D, Chiang AP, Musen MA. 
Comparison of concept recognizers for building the Open Biomedical 
Annotator. BMC Bioinformatics. 2009 Sep 17;10 Suppl 9:S14.  

78. Oellrich A, Collier N, Smedley D, Groza T. Generation of silver standard 
concept annotations from biomedical texts with special relevance to 
phenotypes. PLoS One. 2015;10(1):e0116040.  

79. Reátegui R, Ratté S. Comparison of MetaMap and cTAKES for entity 
extraction in clinical notes. BMC Med Inform Decis Mak. 2018 Sep 
14;18(Suppl 3):74.  

80. Liu C, Peres Kury FS, Li Z, Ta C, Wang K, Weng C. Doc2Hpo: a web 
application for efficient and accurate HPO concept curation. Nucleic 
Acids Research. 2019 Jul 2;47(W1):W566–70.  

81. ShARe/CLEF. ShARe/CLEF corpus [Internet]. Available from: 
https://sites.google.com/site/shareclefehealth/ 



 

Bibliography  206 

82. Uzuner O. Recognizing obesity and comorbidities in sparse data. J Am 
Med Inform Assoc. 2009 Aug;16(4):561–70.  

83. Wilcox A, Hripcsak G, Friedman C. Using Knowledge Sources to 
Improve Classification of Medical Text Reports. KDD-2000 Workshop on 
Text Mining. 2000;2.  

84. Collier N, Tran M vu, Paster F. The impact of near domain transfer on 
biomedical named entity recognition. In: Proceedings of the 5th 
International Workshop on Health Text Mining and Information Analysis 
(Louhi) [Internet]. Gothenburg, Sweden: Association for Computational 
Linguistics; 2014 [cited 2022 Jan 19]. p. 11–20. Available from: 
http://aclweb.org/anthology/W14-1103 

85. Fitchett S, Cockburn A. AccessRank: predicting what users will do next. 
In: Proceedings of the SIGCHI Conference on Human Factors in 
Computing Systems [Internet]. Austin Texas USA: ACM; 2012 [cited 
2022 Jan 14]. p. 2239–42. Available from: 
https://dl.acm.org/doi/10.1145/2207676.2208380 

86. Kendall MG. Rank Correlation Methods. Journal of the Institute of 
Actuaries. 1949;75(1):140–1.  

87. Shieh GS. A weighted Kendall’s tau statistic. Statistics & Probability 
Letters. 1998 Jul;39(1):17–24.  

88. Fagin R, Kumar R, Sivakumar D. Comparing Top k Lists. In: 
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on 
Discrete Algorithms. USA: Society for Industrial and Applied 
Mathematics; 2003. p. 28–36. (SODA ’03).  

89. Webber W, Moffat A, Zobel J. A similarity measure for indefinite 
rankings. ACM Trans Inf Syst. 2010 Nov;28(4):1–38.  

90. Church KW, Hanks P. Word Association Norms, Mutual Information, and 
Lexicography. Comput Linguist. 1990 Mar;16(1):22–9.  

91. Konagurthu A, Collier J. An information measure for comparing top k 
lists. arXiv:13100110 [cs, math] [Internet]. 2013 Sep 30 [cited 2022 Jan 
14]; Available from: http://arxiv.org/abs/1310.0110 

92. The Gene Ontology Consortium, Carbon S, Douglass E, Good BM, Unni 
DR, Harris NL, et al. The Gene Ontology resource: enriching a GOld 
mine. Nucleic Acids Research. 2021 Jan 8;49(D1):D325–34.  

93. Schlicker A, Domingues FS, Rahnenführer J, Lengauer T. A new 
measure for functional similarity of gene products based on Gene 
Ontology. BMC Bioinformatics. 2006 Dec;7(1):302.  

94. Cheng J, Cline M, Martin J, Finkelstein D, Awad T, Kulp D, et al. A 
Knowledge-Based Clustering Algorithm Driven by Gene Ontology. 
Journal of Biopharmaceutical Statistics. 2004 Dec 29;14(3):687–700.  

95. Cover TM. Elements of information theory. John Wiley & Sons; 1999.  
96. Köhler S, Schulz MH, Krawitz P, Bauer S, Dölken S, Ott CE, et al. 

Clinical Diagnostics in Human Genetics with Semantic Similarity 
Searches in Ontologies. The American Journal of Human Genetics. 
2009 Oct;85(4):457–64.  

97. Galer PD, Ganesan S, Lewis-Smith D, McKeown SE, Pendziwiat M, 
Helbig KL, et al. Semantic Similarity Analysis Reveals Robust Gene-
Disease Relationships in Developmental and Epileptic 



 

Bibliography  207 

Encephalopathies. The American Journal of Human Genetics. 2020 
Oct;107(4):683–97.  

98. Helbig I, Lopez-Hernandez T, Shor O, Galer P, Ganesan S, Pendziwiat 
M, et al. A Recurrent Missense Variant in AP2M1 Impairs Clathrin-
Mediated Endocytosis and Causes Developmental and Epileptic 
Encephalopathy. The American Journal of Human Genetics. 2019 
Jun;104(6):1060–72.  

99. Zhou Z, Wang Y, Gu J. A New Model of Information Content for 
Semantic Similarity in WordNet. In: 2008 Second International 
Conference on Future Generation Communication and Networking 
Symposia [Internet]. Hinan, China: IEEE; 2008 [cited 2022 Jan 14]. p. 
85–9. Available from: http://ieeexplore.ieee.org/document/4813554/ 

100. Resnik P. Using Information Content to Evaluate Semantic Similarity in a 
Taxonomy. arXiv:cmp-lg/9511007 [Internet]. 1995 Nov 29 [cited 2021 
Nov 1]; Available from: http://arxiv.org/abs/cmp-lg/9511007 

101. Lin D. An Information-Theoretic Definition of Similarity. In: Proceedings 
of the Fifteenth International Conference on Machine Learning. San 
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.; 1998. p. 296–
304. (ICML ’98).  

102. Kulmanov M, Hoehndorf R. Evaluating the effect of annotation size on 
measures of semantic similarity. J Biomed Semant. 2017 Dec;8(1):7.  

103. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A 
Practical and Powerful Approach to Multiple Testing. Journal of the 
Royal Statistical Society: Series B (Methodological). 1995 
Jan;57(1):289–300.  

104. Carmody LC, Blau H, Danis D, Zhang XA, Gourdine JP, Vasilevsky N, et 
al. Significantly different clinical phenotypes associated with mutations in 
synthesis and transamidase+remodeling glycosylphosphatidylinositol 
(GPI)-anchor biosynthesis genes. Orphanet J Rare Dis. 2020 
Dec;15(1):40.  

105. Köhler S. Improved ontology-based similarity calculations using a study-
wise annotation model. Database [Internet]. 2018 Jan 1 [cited 2021 Nov 
1];2018. Available from: 
https://academic.oup.com/database/article/doi/10.1093/database/bay02
6/4953405 

106. Xue H, Peng J, Shang X. Predicting disease-related phenotypes using 
an integrated phenotype similarity measurement based on HPO. BMC 
Syst Biol. 2019 Apr;13(S2):34.  

107. Gan M. Correlating information contents of gene ontology terms to infer 
semantic similarity of gene products. Comput Math Methods Med. 
2014;2014:891842.  

108. Mistry M, Pavlidis P. Gene Ontology term overlap as a measure of gene 
functional similarity. BMC Bioinformatics. 2008 Aug 4;9:327.  

109. Zemojtel T, Köhler S, Mackenroth L, Jäger M, Hecht J, Krawitz P, et al. 
Effective diagnosis of genetic disease by computational phenotype 
analysis of the disease-associated genome. Sci Transl Med. 2014 Sep 
3;6(252):252ra123.  



 

Bibliography  208 

110. James RA, Campbell IM, Chen ES, Boone PM, Rao MA, Bainbridge 
MN, et al. A visual and curatorial approach to clinical variant 
prioritization and disease gene discovery in genome-wide diagnostics. 
Genome Med. 2016 Feb 2;8(1):13.  

111. Singleton MV, Guthery SL, Voelkerding KV, Chen K, Kennedy B, 
Margraf RL, et al. Phevor combines multiple biomedical ontologies for 
accurate identification of disease-causing alleles in single individuals 
and small nuclear families. Am J Hum Genet. 2014 Apr 3;94(4):599–
610.  

112. Sifrim A, Popovic D, Tranchevent LC, Ardeshirdavani A, Sakai R, 
Konings P, et al. eXtasy: variant prioritization by genomic data fusion. 
Nat Methods. 2013 Nov;10(11):1083–4.  

113. Stenson PD, Mort M, Ball EV, Howells K, Phillips AD, Thomas NS, et al. 
The Human Gene Mutation Database: 2008 update. Genome Med. 
2009;1(1):13.  

114. Robinson PN, Köhler S, Oellrich A, Sanger Mouse Genetics Project, 
Wang K, Mungall CJ, et al. Improved exome prioritization of disease 
genes through cross-species phenotype comparison. Genome Res. 
2014 Feb;24(2):340–8.  

115. Borgelt C, Kruse R. Induction of Association Rules: Apriori 
Implementation. In: Härdle W, Rönz B, editors. Compstat [Internet]. 
Heidelberg: Physica-Verlag HD; 2002 [cited 2022 Jan 19]. p. 395–400. 
Available from: http://link.springer.com/10.1007/978-3-642-57489-4_59 

116. Pilehvar MT, Bernard A, Smedley D, Collier N. PheneBank: a literature-
based database of phenotypes. Wren J, editor. Bioinformatics. 2021 Nov 
12;btab740.  

117. Hoehndorf R, Schofield PN, Gkoutos GV. Analysis of the human 
diseasome using phenotype similarity between common, genetic and 
infectious diseases. Sci Rep. 2015 Sep;5(1):10888.  

118. Eppig JT, Blake JA, Bult CJ, Kadin JA, Richardson JE, The Mouse 
Genome Database Group. The Mouse Genome Database (MGD): 
facilitating mouse as a model for human biology and disease. Nucleic 
Acids Research. 2015 Jan 28;43(D1):D726–36.  

119. Hoehndorf R, Slater L, Schofield PN, Gkoutos GV. Aber-OWL: a 
framework for ontology-based data access in biology. BMC 
Bioinformatics. 2015 Dec;16(1):26.  

120. Schriml LM, Mitraka E, Munro J, Tauber B, Schor M, Nickle L, et al. 
Human Disease Ontology 2018 update: classification, content and 
workflow expansion. Nucleic Acids Research. 2019 Jan 8;47(D1):D955–
62.  

121. Bodenreider O. The Unified Medical Language System (UMLS): 
integrating biomedical terminology. Nucleic Acids Research. 2004 Jan 
1;32(90001):267D – 270.  

122. Xu R, Li L, Wang Q. Towards building a disease-phenotype knowledge 
base: extracting disease-manifestation relationship from literature. 
Bioinformatics. 2013 Sep 1;29(17):2186–94.  

123. American College of Physicians. American College of Physicians 
Journal Club [Internet]. Available from: 



 

Bibliography  209 

https://www.acponline.org/clinical-information/journals-publications/acp-
journal-club 

124. Kilicoglu H, Demner-Fushman D, Rindflesch TC, Wilczynski NL, Haynes 
RB. Towards Automatic Recognition of Scientifically Rigorous Clinical 
Research Evidence. Journal of the American Medical Informatics 
Association. 2009 Jan 1;16(1):25–31.  

125. Kim S, Choi J. An SVM-based high-quality article classifier for 
systematic reviews. Journal of Biomedical Informatics. 2014 
Feb;47:153–9.  

126. Cohen AM, Ambert K, McDonagh M. Cross-Topic Learning for Work 
Prioritization in Systematic Review Creation and Update. Journal of the 
American Medical Informatics Association. 2009 Sep 1;16(5):690–704.  

127. Bian J, Abdelrahman S, Shi J, Del Fiol G. Automatic identification of 
recent high impact clinical articles in PubMed to support clinical decision 
making using time-agnostic features. Journal of Biomedical Informatics. 
2019 Jan;89:1–10.  

128. Collins M. Updated algorithm for the PubMed best match sort order. 
NLM Tech Bull [Internet]. 2017;414:e3.  

129. Bernstam EV, Herskovic JR, Aphinyanaphongs Y, Aliferis CF, Sriram 
MG, Hersh WR. Using citation data to improve retrieval from MEDLINE. 
J Am Med Inform Assoc. 2006 Feb;13(1):96–105.  

130. Brin S, Page L. The anatomy of a large-scale hypertextual web search 
engine. Computer networks and ISDN systems. 1998;30(1–7):107–17.  

131. Bian J, Morid MA, Jonnalagadda S, Luo G, Del Fiol G. Automatic 
identification of high impact articles in PubMed to support clinical 
decision making. J Biomed Inform. 2017 Sep;73:95–103.  

132. Japkowicz N, Stephen S. The class imbalance problem: A systematic 
study. Intelligent data analysis. 2002;6(5):429–49.  

133. Krawczyk B, Woźniak M, Schaefer G. Cost-sensitive decision tree 
ensembles for effective imbalanced classification. Applied Soft 
Computing. 2014 Jan;14:554–62.  

134. Zhou ZH, Liu XY. ON MULTI-CLASS COST-SENSITIVE LEARNING. 
Computational Intelligence. 2010 Jul 27;26(3):232–57.  

135. Hasanzad M, Aghaei Meybodi HR, Sarhangi N, Larijani B. Artificial 
intelligence perspective in the future of endocrine diseases. J Diabetes 
Metab Disord. 2022 Jun;21(1):971–8.  

136. Cowie MR, Blomster JI, Curtis LH, Duclaux S, Ford I, Fritz F, et al. 
Electronic health records to facilitate clinical research. Clin Res Cardiol. 
2017 Jan;106(1):1–9.  

137. Garcelon N, Burgun A, Salomon R, Neuraz A. Electronic health records 
for the diagnosis of rare diseases. Kidney International. 2020 
Apr;97(4):676–86.  

138. Shen F, Zhao Y, Wang L, Mojarad MR, Wang Y, Liu S, et al. Rare 
disease knowledge enrichment through a data-driven approach. BMC 
Med Inform Decis Mak. 2019 Dec;19(1):32.  

139. Ontobio. Ontobio Ontology Library [Internet]. [cited 2020 Feb 7]. 
Available from: https://ontobio.readthedocs.io/en/latest/index.html 



 

Bibliography  210 

140. Köhler S, Øien NC, Buske OJ, Groza T, Jacobsen JOB, McNamara C, 
et al. Encoding Clinical Data with the Human Phenotype Ontology for 
Computational Differential Diagnostics. Current Protocols in Human 
Genetics [Internet]. 2019 Sep [cited 2022 Jan 14];103(1). Available from: 
https://onlinelibrary.wiley.com/doi/10.1002/cphg.92 

141. Skim. Skim App [Internet]. Available from: https://skim-
app.sourceforge.io 

142. Singh V. Replace or Retrieve Keywords In Documents at Scale. 
arXiv:171100046 [cs] [Internet]. 2017 Nov 9 [cited 2021 Dec 8]; 
Available from: http://arxiv.org/abs/1711.00046 

143. Honnibal, Matthew, Montani, Ines. spaCy 2: Natural language 
understanding with Bloom embeddings, convolutional neural networks 
and incremental parsing.  

144. Williamson KA, FitzPatrick DR. The genetic architecture of 
microphthalmia, anophthalmia and coloboma. Eur J Med Genet. 2014 
Aug;57(8):369–80.  

145. Lines M, Hartley T, MacDonald SK, Boycott KM. Mandibulofacial 
Dysostosis with Microcephaly. In: Adam MP, Ardinger HH, Pagon RA, 
Wallace SE, Bean LJ, Gripp KW, et al., editors. GeneReviews® 
[Internet]. Seattle (WA): University of Washington, Seattle; 1993 [cited 
2022 Jan 23]. Available from: 
http://www.ncbi.nlm.nih.gov/books/NBK214367/ 

146. Balasubramanian M, Schirwani S. ASXL3-Related Disorder. In: Adam 
MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJ, Gripp KW, et al., 
editors. GeneReviews® [Internet]. Seattle (WA): University of 
Washington, Seattle; 1993 [cited 2022 Jan 23]. Available from: 
http://www.ncbi.nlm.nih.gov/books/NBK563693/ 

147. Contreras-Capetillo SN, Vilchis-Zapata ZH, Ribbón-Conde J, Pinto-
Escalante D. Global developmental delay and postnatal microcephaly: 
Bainbridge-Ropers syndrome with a new mutation in ASXL3. Neurologia 
(Engl Ed). 2018 Sep;33(7):484–6.  

148. Dinwiddie DL, Soden SE, Saunders CJ, Miller NA, Farrow EG, Smith 
LD, et al. De novo frameshift mutation in ASXL3 in a patient with global 
developmental delay, microcephaly, and craniofacial anomalies. BMC 
Med Genomics. 2013 Sep 17;6:32.  

149. Taylor CM, Smith R, Lehman C, Mitchel MW, Singer K, Weaver WC, et 
al. 16p11.2 Recurrent Deletion. In: Adam MP, Ardinger HH, Pagon RA, 
Wallace SE, Bean LJ, Gripp KW, et al., editors. GeneReviews® 
[Internet]. Seattle (WA): University of Washington, Seattle; 1993 [cited 
2022 Jan 23]. Available from: 
http://www.ncbi.nlm.nih.gov/books/NBK11167/ 

150. McDonald-McGinn DM, Sullivan KE, Marino B, Philip N, Swillen A, 
Vorstman JAS, et al. 22q11.2 deletion syndrome. Nat Rev Dis Primers. 
2015 Nov 19;1:15071.  

151. Karakülah G, Dicle O, Koşaner O, Suner A, Birant ÇC, Berber T, et al. 
Computer based extraction of phenoptypic features of human congenital 
anomalies from the digital literature with natural language processing 
techniques. Stud Health Technol Inform. 2014;205:570–4.  



 

Bibliography  211 

152. Bamshad MJ, Nickerson DA, Chong JX. Mendelian Gene Discovery: 
Fast and Furious with No End in Sight. Am J Hum Genet. 2019 Sep 
5;105(3):448–55.  

153. Kafkas Ş, Hoehndorf R. Ontology based text mining of gene-phenotype 
associations: application to candidate gene prediction. Database 
[Internet]. 2019 Jan 1 [cited 2022 Jan 30];2019. Available from: 
https://academic.oup.com/database/article/doi/10.1093/database/baz01
9/5365528 

154. Li S, Guo Z, Ioffe JB, Hu Y, Zhen Y, Zhou X. Text mining of gene–
phenotype associations reveals new phenotypic profiles of autism-
associated genes. Sci Rep. 2021 Dec;11(1):15269.  

155. Chen C. Python Implementation of Rank Biased Overlap [Internet]. 
[cited 2021 Jun 1]. Available from: https://pypi.org/project/rbo/ 

156. National Library of Medicine. Fielded MetaMap Indexing (MMI) Output 
Explained [Internet]. 2015 [cited 2021 Nov 30]. Available from: 
https://lhncbc.nlm.nih.gov/ii/tools/MetaMap/Docs/MMI_Output_2016.pdf 

157. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, 
Cournapeau D, et al. Array programming with NumPy. Nature. 2020 Sep 
17;585(7825):357–62.  

158. Hypothesis. Hypothesis annotation software [Internet]. [cited 2021 Mar 
9]. Available from: https://web.hypothes.is 

159. van den Berg C. Super Fast String Matching in Python [Internet]. [cited 
2021 Mar 12]. Available from: 
https://bergvca.github.io/2017/10/14/super-fast-string-matching.html 

160. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, 
et al. Scikit-learn: Machine Learning in Python. arXiv:12010490 [cs] 
[Internet]. 2018 Jun 5 [cited 2021 Dec 28]; Available from: 
http://arxiv.org/abs/1201.0490 

161. Kaur S, Christodoulou J. MECP2 Disorders. In: Adam MP, Ardinger HH, 
Pagon RA, Wallace SE, Bean LJ, Gripp KW, et al., editors. 
GeneReviews® [Internet]. Seattle (WA): University of Washington, 
Seattle; 1993 [cited 2022 Feb 2]. Available from: 
http://www.ncbi.nlm.nih.gov/books/NBK1497/ 

162. Campbell J. Automated PubMed Search script [Internet]. Available from: 
https://github.com/biomedicalinformaticsgroup/gene2phenotype/blob/mai
n/1.gene_search_to_pmids.ipynb 

163. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. 
Biopython: freely available Python tools for computational molecular 
biology and bioinformatics. Bioinformatics. 2009 Jun 1;25(11):1422–3.  

164. Campbell J. Automated PubMed Metadata script [Internet]. Available 
from: 
https://github.com/biomedicalinformaticsgroup/gene2phenotype/blob/mai
n/2.pmids_to_medline_to_df.ipynb 

165. Menze BH, Kelm BM, Masuch R, Himmelreich U, Bachert P, Petrich W, 
et al. A comparison of random forest and its Gini importance with 
standard chemometric methods for the feature selection and 
classification of spectral data. BMC Bioinformatics. 2009 Jul 10;10:213.  



 

Bibliography  212 

166. Nembrini S, König IR, Wright MN. The revival of the Gini importance? 
Bioinformatics. 2018 Nov 1;34(21):3711–8.  

167. Pham B, Jovanovic J, Bagheri E, Antony J, Ashoor H, Nguyen TT, et al. 
Text mining to support abstract screening for knowledge syntheses: a 
semi-automated workflow. Syst Rev. 2021 Dec;10(1):156.  

168. Koras K, Juraeva D, Kreis J, Mazur J, Staub E, Szczurek E. Feature 
selection strategies for drug sensitivity prediction. Sci Rep. 2020 Jun 
10;10(1):9377.  

169. Liu L, Tang L, Dong W, Yao S, Zhou W. An overview of topic modeling 
and its current applications in bioinformatics. Springerplus. 
2016;5(1):1608.  

170. Krawczyk B. Learning from imbalanced data: open challenges and 
future directions. Prog Artif Intell. 2016 Nov;5(4):221–32.  

171. van Der Burgt I, Brunner H. Genetic heterogeneity in Noonan syndrome: 
evidence for an autosomal recessive form. Am J Med Genet. 2000 Sep 
4;94(1):46–51.  

172. Holub K, Hardy N, Kallmes K. Toward Automated Data Extraction 
According to Tabular Data Structure: Cross-sectional Pilot Survey of the 
Comparative Clinical Literature. JMIR Form Res. 2021 Nov 
24;5(11):e33124.  

173. Khusro S, Latif A, Ullah I. On methods and tools of table detection, 
extraction and annotation in PDF documents. Journal of Information 
Science. 2015 Feb;41(1):41–57.  

174. Anand R, Paik HY, Wang C. Integrating and querying similar tables from 
PDF documents using deep learning. arXiv:190104672 [cs] [Internet]. 
2019 Jan 15 [cited 2022 Feb 4]; Available from: 
http://arxiv.org/abs/1901.04672 

175. Aitken S, Firth HV, McRae J, Halachev M, Kini U, Parker MJ, et al. 
Finding Diagnostically Useful Patterns in Quantitative Phenotypic Data. 
The American Journal of Human Genetics. 2019 Nov;105(5):933–46.  

176. Ross KE, Natale DA, Arighi C, Chen SC, Huang H, Li G, et al. Scalable 
Text Mining Assisted Curation of Post-Translationally Modified 
Proteoforms in the Protein Ontology. CEUR Workshop Proc. 2016 
Aug;1747:http://ceur-ws.org/Vol-1747/BIT103_ICBO2016.pdf.  

177. Wang J, Zhou X, Zhu J, Zhou C, Guo Z. Revealing and avoiding bias in 
semantic similarity scores for protein pairs. BMC Bioinformatics. 2010 
Dec;11(1):290.  

178. Kyrimi E, McLachlan S, Dube K, Neves MR, Fahmi A, Fenton N. A 
comprehensive scoping review of Bayesian networks in healthcare: 
Past, present and future. Artif Intell Med. 2021 Jul;117:102108.  

179. Bauer S, Kohler S, Schulz MH, Robinson PN. Bayesian ontology 
querying for accurate and noise-tolerant semantic searches. 
Bioinformatics. 2012 Oct 1;28(19):2502–8.  

180. Son JH, Xie G, Yuan C, Ena L, Li Z, Goldstein A, et al. Deep 
Phenotyping on Electronic Health Records Facilitates Genetic Diagnosis 
by Clinical Exomes. The American Journal of Human Genetics. 2018 
Jul;103(1):58–73.  



 

Bibliography  213 

181. Ganesan S, Galer PD, Helbig KL, McKeown SE, O’Brien M, Gonzalez 
AK, et al. A longitudinal footprint of genetic epilepsies using automated 
electronic medical record interpretation. Genetics in Medicine. 2020 
Dec;22(12):2060–70.  

182. Hully M, Lo Barco T, Kaminska A, Barcia G, Cances C, Mignot C, et al. 
Deep phenotyping unstructured data mining in an extensive pediatric 
database to unravel a common KCNA2 variant in neurodevelopmental 
syndromes. Genetics in Medicine. 2021 May;23(5):968–71.  

183. Slater LT, Karwath A, Williams JA, Russell S, Makepeace S, Carberry A, 
et al. Towards similarity-based differential diagnostics for common 
diseases. Computers in Biology and Medicine. 2021 Jun;133:104360.  

184. Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J, et 
al. Disease networks. Uncovering disease-disease relationships through 
the incomplete interactome. Science. 2015 Feb 20;347(6224):1257601.  

185. Aitken S, Firth HV, Wright CF, Hurles ME, FitzPatrick DR, Semple CA. 
IMPROVE-DD: Integrating Multiple Phenotype Resources Optimises 
Variant Evaluation in genetically determined Developmental Disorders 
[Internet]. Genetic and Genomic Medicine; 2022 May [cited 2022 Sep 
23]. Available from: 
http://medrxiv.org/lookup/doi/10.1101/2022.05.20.22275135 

186. Smedley D, Jacobsen JOB, Jäger M, Köhler S, Holtgrewe M, Schubach 
M, et al. Next-generation diagnostics and disease-gene discovery with 
the Exomiser. Nat Protoc. 2015 Dec;10(12):2004–15.  

 


	Cover Sheet.pdf
	tmy_md_final_submission.pdf



