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Abstract

Drug repositioning is the discovery of new indications for approved or failed drugs.

This practice is commonly done within the drug discovery process in order to ad-

just or expand the application line of an active molecule. Nowadays, an increasing

number of computational methodologies aim at predicting repositioning oppor-

tunities in an automated fashion. Some approaches rely on the direct physical

interaction between molecules and protein targets (docking) and some methods

consider more abstract descriptors, such as a gene expression signature, in order

to characterise the potential pharmacological action of a drug (Chapter 1).

On a fundamental level, repositioning opportunities exist because drugs per-

turb multiple biological entities, (on and off-targets) themselves involved in mul-

tiple biological processes. Therefore, a drug can play multiple roles or exhibit

various mode of actions responsible for its pharmacology. The work done for my

thesis aims at characterising these various modes and mechanisms of action for

approved drugs, using a mathematical framework called description logics.

In this regard, I first specify how living organisms can be compared to com-

plex black box machines and how this analogy can help to capture biomedical

knowledge using description logics (Chapter 2). Secondly, the theory is imple-

mented in the Functional Therapeutic Chemical Classification System (FTC -

https://www.ebi.ac.uk/chembl/ftc/), a resource defining over 20,000 new cat-

egories representing the modes and mechanisms of action of approved drugs. The

FTC also indexes over 1,000 approved drugs, which have been classified into the

mode of action categories using automated reasoning. The FTC is evaluated

against a gold standard, the Anatomical Therapeutic Chemical Classification

System (ATC), in order to characterise its quality and content (Chapter 3).

Finally, from the information available in the FTC, a series of drug reposi-

tioning hypotheses were generated and made publicly available via a web appli-

cation (https://www.ebi.ac.uk/chembl/research/ftc-hypotheses). A sub-

https://www.ebi.ac.uk/chembl/ftc/
https://www.ebi.ac.uk/chembl/research/ftc-hypotheses


set of the hypotheses related to the cardiovascular hypertension as well as for

Alzheimer’s disease are further discussed in more details, as an example of an

application (Chapter 4).

The work performed illustrates how new valuable biomedical knowledge can

be automatically generated by integrating and leveraging the content of publicly

available resources using description logics and automated reasoning. The newly

created classification (FTC) is a first attempt to formally and systematically

characterise the function or role of approved drugs using the concept of mode

of action. The open hypotheses derived from the resource are available to the

community to analyse and design further experiments.
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CHAPTER 1

Review of computational drug

repositioning approaches

Key points

• Drug repositioning is the discovery of new indications for approved or failed

drugs.

• Repositioning opportunities exist because drugs perturb multiple biologi-

cal entities (on and off-targets) themselves involved in multiple biological

processes. As the drug discovery pipelines are focused on one disease of

interest, a therapeutic application for a drug to other areas can be missed.

• A variety of predictive computational approaches have been developed to

identify drug repositioning opportunities, each based around a biological

concept of interest, or abstraction process over the data.

• For my thesis, I decided to investigate drug repositioning using the concept

of mode of action. This notion is of interest as it can represent the various

biological functions a drug can play in an organism and help to identify new

therapeutic applications.

Author’s comment

This chapter is a review of the computational methods developed in the last

decade, presenting their relative strengths and weaknesses. This state-of-the-art

analysis helped me to define the rationale for my thesis.
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Living organisms, just as machines, are subject to dysfunction. Sometimes

an internal abnormality can impair the correct functioning or sometimes external

forces, such as the interaction with the environment, can damage a body. If

not fixed, malfunctions accumulate and will eventually result in the death of the

entity, namely the cessation of all functions. Since prehistoric times (Wikipedia,

2014g), humans have been interested in preventing and handling dysfunctions,

in order to extend the lifespan of objects or to improve the quality of their own

existence. When the aim is to fix living bodies, this practice goes by the name of

medicine, or the art of preventing, diagnosing and treating diseases.

Alleviating an impairment is a daunting task, from both a biological and legal

perspective. In this regard, doctors can rely on a number of tools, engineered

throughout the years. Among the most commonly used ones such as medical

devices, are the active small molecules, the drugs. Drugs are of primary interest,

as they can impact the treatment of complex processes with molecular roots,

such as cancer or pain for instance, in a relatively controllable and safe manner.

However, in order to be usable in clinics, a candidate drug has first to go through

a development phase which takes nowadays at least a dozen years and can cost

up to a billion dollars (DiMasi, 2001). This process involves a myriad of different

people, from biologists to law attorneys.

As my interests revolve primarily around pharmacology and computer sci-

ences, I decided to focus my efforts on the molecular side of the problem. More

precisely, I decided to systematically characterise and understand the multiple

roles any drug can play in the human body, using computational means. My

work will be extensively described throughout this manuscript and finds an ap-

plication in a topic named drug repositioning, which is the object of this chapter.

1.1 Relevance of drug repositioning

Drug repositioning (also referred as drug repurposing, re-profiling, therapeutic

switching and drug re-tasking) is the identification of new therapeutic indications

for known drugs. These drugs can either be approved and marketed compounds

used daily in a clinical setting, or they can be drugs that have been “shelved”,

namely molecules that did not succeed in clinical trials or for which projects have

16



been discontinued for various reasons. In one sentence, drug repositioning can

be defined as renewing failed drugs and expanding successful ones (Barratt and

Frail, 2012).

One motivation behind drug repositioning is the possibility to further market

and extend the application line or patent life of a drug, therefore increasing

the revenue stream generated from it. Another aim is the treatment of rare

or neglected diseases; usually such conditions are difficult to address for financial

reasons, yet there might exist some safe and active molecules already developed for

other indications, deemed suitable for this scenario (Men et al., 2010). I refer the

reader to some recent excellent reviews (Ashburn and Thor (2004), Dudley et al.

(2011a), Hurle et al. (2013)) in order to fully appreciate the economical market

behind this approach, as well as legal challenges coming along. I limited myself, in

the context of this work, to exploring the subject from an academic perspective:

characterising the various roles approved drugs can play using computational

means, without necessarily seeking business opportunities.

1.1.1 Opportunities for finding new indications

Many drugs have been successfully repositioned in the past; classical examples

such as sildenafil (Viagra) and thalidomide will be presented in the coming sec-

tions. But first, the scientific legitimacy of the idea behind drug repurposing

should be discussed: how is it possible for a drug to play multiple roles? What is

the molecular rationale? Why does the drug discovery process not automatically

identify such opportunities?

In order to be able to answer these questions, I will briefly present the tradi-

tional drug development pipeline, which produced most of the recent therapeutic

chemicals (Swinney and Anthony, 2011).

The fundamental idea behind the discovery of a new medicine has not evolved

much since prehistoric times (Wikipedia, 2014g); it still consists mostly of a trial

and error process, hence the term discovery. The operation starts by picking

a disease of interest, selected in terms of market size or clinical needs. Then a

large collection of chemicals is experimentally tried to see if any relevant effect

in regards to the chosen condition can be produced. This procedure is called

screening. There exist mostly two types of screening: target-based and pheno-

typic. The former optimises the selection of the chemicals on the ability to bind

17



a biological entity (usually a protein), called the target and that is relevant for

the pathological process studied. The more specifically the chemical interacts

with the active site of the target, the cleaner the action of the chemical will be

(key-lock model - see Figure 1.1).

(A)

(B)

(C)

Binding site

Target protein (lock)

Ligand (key)

Figure 1.1: Key-lock model. (A) Illustration of the analogy. (B) Schematic represen-
tation of the interaction between a ligand and a protein (receptor, enzyme, transporter,
etc.). One aim of drug discovery is to find alternative molecules (i.e. drugs) capable of
either mimicking the action of the natural ligand or reversing it. In theory, the more
specific the molecule is to the binding site, the more accurate the pharmacological re-
sponse will be. (C) Computer generated representation of the interaction between a
ligand and a protein. (Source http://en.wikipedia.org/wiki/File:Docking.jpg)

On the other hand, a phenotypic screen does not make any assumptions about

the underlying pathological mechanism and proteins involved. A cell line or

model organism representative of the disease is directly used to read the results of

the screening. Both methods help to efficiently discover active chemicals, whose

structures are then further optimised for efficacy (so called lead optimisation).

Now drug repurposing opportunities can be derived from three key observations

(Barratt and Frail, 2012) about the traditional workflow presented above and

summarised in Figure 1.2.

The first observation appreciates the limits of the key-lock model and the

“magic bullet” concept (Wikipedia, 2014e). In practice, it is challenging to design
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Protein
(main target)

Process or 
Phenotype

Small molecule

Process or 
Phenotype

Protein 
(off-target)

Process or 
Phenotype

Disease
(main indication)

Disease
(alternative indication)

Disease
(alternative indication)

binds
binds

relevant

involvement

relevant
relevant

involvementinvolvement

(A)

(B)

(C)

Figure 1.2: Drug discovery process and opportunities for drug repositioning (in blue;
logical connection at the origin of the opportunity are dashed). (A) Traditional drug
discovery workflow: from biological evidence showing the involvement of a protein in
a process relevant to a particular disease of interest, a series of chemicals are screened
for bioactivity. Potent and safe molecules will become drugs indicated for the disease.
Paul Ehrlich postulated that chemicals should be as specific as possible against the
target (organism or protein), in order to increase the control over the pharmacology.
The concept of “magic bullet” describes such an ideal therapeutic compound. (B)
Repositioning hypothesis: often, a small molecule binds to other proteins (so called
off-targets), themselves potentially involved in other pathologies. (C) Repositioning
hypothesis: the main protein target can be involved in a series of alternative biological
processes and relevant for another disease.

a molecule that will interact with a single protein only (Paolini et al., 2006) (Li

et al., 2010). Most of the drugs will bind to multiple proteins in an organism and

can therefore produce a variety of unwanted effects (concerns between 35 to 62% of

the chemicals - sometimes described as “drug promiscuity”). This characteristic

is well-known and referred to as off-target effect or polypharmacology. Identifying

the off-target proteins interacting with known drugs can provide repurposing

opportunities.

The second observation values evidence that molecular targets are themselves

involved in multiple biological processes and capable of performing multiple func-

tions. Historically speaking, one protein target was assumed to be responsible
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for one biological role. Hitting the right protein, such as a receptor or an enzyme

known to be directly involved in the disease was a straightforward way to gen-

erate relevant phenotypic outcomes, as illustrated in Figure 1.2. However, this

approach overlooks the fact that proteins function in the context of signalling

pathways and networks (Hopkins, 2008) (Barabasi and Oltvai, 2004), the pertur-

bations experienced by one node cascading on to its neighbours due to molecular

dynamism. Therefore understanding and appreciating the involvement of the

protein target in the biological system can help to identify a new role for a drug.

The last observation derives from the very strategy used by drug discovery

programs. As a disease or condition is the starting point of the screening, iden-

tified chemicals are by definition optimised in this regard. Compounds will be

tested during the expensive clinical trials for the main indication mostly and ob-

viously not for all possible diseases. It is therefore possible for a compound to

be used for different purposes, yet not be identified as such. Related to this,

new usages can be discovered during clinical practice, and the prescription of the

drug can evolve accordingly even if the alternative indication is not legally ap-

proved. This practice is known as off-label prescription (Wikipedia, 2014c) and

demonstrates the potential of a drug to address various indications.

To conclude, these three observations alone justify the potential existence of

repositioning opportunities, especially for the drugs discovered via the target-

based or phenotypic screening. Meaningful repurposing options appear to be

strongly dependent on the available biomedical knowledge, as well as our under-

standing of the molecular system.

1.1.2 Drug repositioning faces legal and scientific chal-

lenges

In theory, it is possible for a chemical to be active for multiple therapeutic indica-

tions. Yet in practice, several obstacles can impair the development of a potential

new usage.

The first factor to handle is serendipity. Biology is complex and capricious,

exemplified by diseases such as cancers or dementias (Ashburn and Thor, 2004).

A drug rarely keeps its original indication (Barratt and Frail, 2012); it gets re-

oriented throughout the years when more data becomes available and its in vivo

pharmacology better understood. Famous repurposing and discovery stories were
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mostly due to chance and unexpected results (e.g. Viagra, as will be discussed),

therefore it can be difficult to forecast any relevant opportunities.

Other challenges come from the corporate and legal aspect around drug dis-

covery. Indeed, in order to be commercially valid, a molecule needs much more

than just to exhibit powerful pharmacological features. If the intellectual prop-

erties around the molecule are expired or close to be, there might be no incentive

to continue the research on an alternative indication, as no profit would derive

from it. Re-indicating a drug is also not part of the standard regulatory proce-

dures, therefore administrative problems can happen, delaying or preventing the

new usage of the compound. Moreover, some unnecessary safety concerns could

appear when the drug is tested for the new indication. Indeed, the repositioning

would potentially target a different group of patients, with different physiolog-

ical conditions, and it is not to be excluded that an unforeseen adverse event

could happen during the trials over the new population, hence compromising the

original indication.

The dosage at which the drug is administered could also be a potential obsta-

cle; the molecule still needs to preserve a good efficacy and show some activity at

low concentration. Depending on the anatomical part of the body targeted, the

formulation should also be reconsidered for efficacy. These factors can alter the

pharmacokinetic profile of the drug and compromise the safety of the patient.

To conclude, the molecular opportunities for drug repositioning are contrasted

by practical challenges. Even if a compound is found to be active and safe for

a new indication, additional factors, in particular legal issues and intellectual

property, have to be considered in order to successfully bring the molecule to the

market.

1.2 Drug repositioning and indication discov-

ery: success stories

I discussed briefly in the previous section the theoretical legitimacy of drug repo-

sitioning and its potential limitations. I will now present three success stories,

exemplifying the theory and showing evidence that repositioning can happen in

practice. These case-scenarios are of particular interest as they each illustrate

a different reason behind the repurposing. Understanding the logic backing the
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findings is paramount in order to build successful predictive methods later on.

1.2.1 Sildenafil: repositioning from clinical side-effects

The National Health Service (NHS) defines angina as a chest pain that occurs

when the blood supply to the muscles of the heart is restricted. It usually happens

because the arteries supplying the heart become hardened and narrowed (NHS-

Choices, 2014a). Sildenafil (see structure in Figure 1.3) was originally developed

for this condition in the late 1980s. The working hypothesis was that an inhi-

bition of the activity of the phosphodiesterase-5 (PDE5), an enzyme controlling

the relaxation of the coronary arteries, should increase the blood flow and release

the symptoms in the patient. Unfortunately, during the clinical trials, the drug

lacked efficacy in regard to angina and development was discontinued, until pa-

tients shyly started to report an unusual side-effect: prolonged erections (personal

discussion with molecule’s investigator). Pfizer’s scientists therefore decided to

investigate the drug for this indication and a worldwide study of 3,700 men con-

firmed the effectiveness of the molecule (New-York-Times-Archives, 1998). As the

pharmacokinetic profile was suitable, the drug was repurposed towards erectile

dysfunction accordingly. Viagra became a blockbuster drug, with annual sales

higher than 1.5 billion dollars (Renaud and Xuereb, 2002) during the first years

of its release. The molecule was first-in-class for this indication and impacted

the social life of millions of humans (Renaud and Xuereb, 2002). The story does

not end here; the drug is currently used for pulmonary arterial hypertension too,

after demonstrating a successful improvement in patients during clinical trials

(Ghofrani et al., 2006).

What can be learned from this story? Firstly, the repositioning opportuni-

ties came from secondary functions of the enzyme targeted. PDE5 was known

to be involved in the erection process (Krall et al., 1988), therefore the oppor-

tunity could have been logically identified rather than being discovered by pure

chance. In this regard, characterising the systematic function of protein targets

can therefore lead to repositioning hypotheses. Secondly, it was necessary to wait

for clinical trials in order to observe the true behaviour of the drug. This observa-

tion stresses the known difficulty of moving from cell-based assays into the human

body: physiology is complex and the expected outcomes are not necessarily met

in practice. Lastly, the more is known about the compound’s pharmacology, the
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(A) Sildenafil

(C) Raloxifene
(B) Thalidomide

Figure 1.3: Examples of drug successfully repurposed. (A) Sildenafil molecular struc-
ture and picture of tablets used for administration. (B) Thalidomide molecular struc-
ture. The teratogenic effect of the drug is illustrated on the picture. (C) Molecular
structure of the raloxifene. Illustration are from Wikipedia, chemical structures from
the ChEMBL database.

more roles the molecule can play, as shown with the indication for the pulmonary

arterial hypertension, which appeared years later. An understanding of the in-

ternal logic of biological organisms should therefore help to predict such cases.

1.2.2 Thalidomide: repositioning a hazardous drug

The story of thalidomide illustrates how a drug can surprisingly come back from

being a hazardous drug retracted from the market into a novel and unique thera-

peutic agent. The chemical started its life in 1957 in Europe, as a sedative, sleep-

inducing agent, structurally close to barbiturates (see thalidomide structure on

Figure 1.3). Because of these pharmacological properties, thalidomide was mar-

keted to treat morning sickness in pregnant women. The drug was assumed to be

safe, based on an in vivo studies in rodents (Stephens and Brynner, 2009). Trag-

ically, this was not the case for humans; the drug caused severe skeletal birth

defects in children born from women taking the drug. Over 15,000 newborns
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were affected, suffering from anatomical malformations (see Figure 1.3). Because

of this disastrous side-effect, the molecule was quickly withdrawn and triggered

important reforms in the drug regulatory system (Stephens and Brynner, 2009).

The story could have ended here, if it were not for an incidental discovery by Ja-

cob Sheskin. The practitioner was trying to treat patients affected by erythema

nodosum leprosum, a particularly painful inflammatory condition characterised

by red nodules under the skin. An evening of 1964, an affected patient could not

sleep as the pain was so intense. Sheskin decided to ultimately use some thalido-

mide, as the compound was known for its potent sleep-inductive properties and

was available in this hospital. The drug worked and the patient was well rested

in the morning. And as a general surprise, all pain and soreness disappeared

overnight too. Intrigued by the idiosyncratic effect of the drug, Sheskin further

studied the action of thalidomide in clinical trials (Barratt and Frail, 2012) and

successfully showed that the drug can indeed treat erythema nodosum leprosum

in two weeks’ time in most subjects. Thalidomide found a new life and became

the first and only drug approved for this indication. Just as for the sildenafil

molecule, the potential of the chemical is still being unveiled: at the time of

writing, thalidomide sales are reaching over 200 million dollars per year, mostly

deriving from yet another off-label use for multiple myeloma, among other indi-

cations (Ashburn and Thor, 2004). The thalidomide story teaches us that a drug

can be harmful in one patient population (pregnant women) and highly benefi-

cial in another. Correctly identifying the molecular processes affected can help

to predict adverse effects and reorient the drug accordingly. The root cause of

the discovery is here again serendipity, yet a better understanding of the proteins

interacting with the molecule could have been helpful to predict the opportunity

(Sampaio et al., 1991).

1.2.3 Raloxifene: expanding the application line

The last case discussed is less striking and unexpected than the two previous

ones. Raloxifene (structure on Figure 1.3) is a selective oestrogen receptor mod-

ulator (often abbreviated as SERM) marketed as Evista by Eli Lilly. Similarly

to other oestrogen modulators, such as tamoxifen, the original indication during

preclinical developments was breast cancer (Ashburn and Thor, 2004). Despite

early studies showing the positive effect of anti-oestrogens on osteoporosis in rats
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in 1987 (Jordan et al., 1987), raloxifene’s potential for this usage was not ex-

perimentally confirmed until 1994 (Black et al., 1994). Eventually, the molecule

successfully passed clinical trials in 1999, with osteoporosis as a unique indication.

However, the polypharmacology of the drug, particularly its action against breast

cancer, was still under investigation. Finally, in 2007, the FDA approved ralox-

ifene as a preventive agent for breast cancer in post-menopausal women (FDA,

2007), therefore extending the line of application of the drug back to its origi-

nally thought indication. In summary, raloxifene started its life as a breast cancer

agent, was repositioned against osteoporosis, likely for strategic and commercial

reasons, and eventually got approved for its breast cancer preventive properties.

This drug is an example of smart and continuous development, expanding from

one indication to another. The fundamental reasons behind the repositioning are

grounded on early-stage experimental evidence and not due to a surprising effect

appearing in clinical trials. The drug’s polypharmacology was known and the

indication of the molecule derived accordingly. Raloxifene is a good example of

“educated repositioning” or indication discovery. The available information can

help to appreciate and understand what the chemical might do from empirical

evidence.

1.3 Computational approaches towards drug repo-

sitioning

The theory and the clinical cases presented the reality of drug repositioning. I

briefly commented on the fundamental reasons enabling new usages and stressed

the importance of serendipity in this process. Now the fantasy of many scientists

working in the drug discovery domain is to be able to formally predict such

repositioning scenarios and unveiling new pharmacology in an automated fashion.

In order to reach this distant goal or at least get closer to it, several com-

putational approaches have been developed throughout the years. This section

summarises the previous work done on the topic and motivates the novel way

I explored, based on a formal representation of the mode of action. I chose to

classify the different computational approaches based on the biomedical concepts

used as the centre of the methodology. Some recent reviews (Ashburn and Thor,

2004) (Dudley et al., 2011a) (Hurle et al., 2013) of the field can also provide com-
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plementary information to the interested reader, as well as a different perspective

and logical structure of the topic.

Abstracted to the extreme, the goal of a repositioning initiative is to establish

a link between a drug and a disease. This edge represents the indication or a

prescription possibility for the molecule. In order to computationally forward

new indication hypotheses, it is possible to use the biomedical concepts depicted

on Figure 1.4 as proxy.

These various biomedical concepts represent different abstraction levels over a

biological system, to the biochemical reality and on the top of which it is possible

to derive a value for computation or comparison. Usually, a similarity metric

is derived from the property studied (e.g. chemical structure or gene expression

level), which serves as a descriptor to rank the information and predict the new

indication, materialised by a new link between a drug and a disease or a molecular

target. Approaches can be roughly divided into groups, named after the central

property of the analysis. Some alternative methods rely on a combination of

concepts and are presented at the end of this section.

The abstraction process and its relation to biomedical knowledge will be fur-

ther discuss in Chapter 2 and with the black box machine model (section 2.2.1.2).

1.3.1 Chemical structure-based approaches

Traditionally speaking, orally active drugs are mostly small lipophilic molecules

(Lipinski et al., 1997). It therefore intuitively makes sense to directly look at

the chemical structure to compare the similarity among drugs: similar structures

are deemed to lead to similar biological outcomes. This rule of thumb goes by

the name of similar property principle (Johnson and Maggiora, 1990) and is at

the core of any quantitative structure-activity relationship (QSAR) study. A

variety of methodologies exist to calculate the structural similarity between two

chemicals, such as fingerprints or clustering algorithms (Eckert and Bajorath,

2007). These methods can be used to perform ligand-based virtual screenings:

from a set of known active ligands, trying to find in a database of interest the

structurally related molecules, supposedly bioactive too.

In the context of drug repositioning, one can search only among approved

compounds for instance. This approach was successfully used by Noeske et al.

(2006) implementing an unsupervised machine learning algorithm (self-organising
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Figure 1.4: Conceptual map of the relationship between the different biomedical
concepts. Relation related to the drug and its action are in orange, diseases in grey
and biological concepts are in blue. Computational drug repositioning methods are
based on either one or a series of such concepts in order to forward new indications for
a drug, ultimate goal (red edge).

map) in order to cluster chemicals based on their structure. Molecular scaffolds

were represented as vectors and used as input for the clustering step. The authors

identified cross-activities for the metabotropic glutamate receptor antagonists,

on other protein targets such as the dopamine D2, histamine H1 and muscarinic

acetylcholine receptors. The off-target predictions were experimentally validated

in vitro and shown to be active, yet not necessarily pharmacologically relevant

due to weak binding. The new knowledge on off-target binding from this study

can lead the way to potential new usage for the drugs, by further modifying and

optimising the molecular structure for instance.

Another interesting approach related to structural similarity for off-target

identification comes from the work done by Keiser et al. (2009). For this project,

known ligands were grouped based on their known target binding partners and

chemical features. The method is called similarity ensemble approach and cal-

culates whether a molecule will bind to a target based on the chemical features

it shares with those of known ligands, using a statistical model to control for
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random similarity (Lounkine et al. (2012) - adaptation of BLAST for chemical

structures). In the case of drug repositioning, the molecules tested were only

approved drugs. The results revealed a series of off-target cases from the similar-

ity analysis. A retrospective investigation showed the validity of the approach;

then some predicted off-target bindings were experimentally validated, providing

insightful clues about the pharmacological mechanism of some drugs. In some

cases, such as for fabahistin, the off-target affinity (5-HT5A) was even better than

for the known canonical receptor (H1), opening doors for meaningful alternative

indications (see Figure 1.5).

Serotonin (Drug B)

H1 histamine receptor

binds

Mebhydrolin (Drug A)

5-Hydroxytryptamine 
(serotonin) receptor 5A

binds

binds

similarity

Figure 1.5: Drug repositioning using the chemical structure. Compounds with similar
structures have similar biological activities (similarity principle). Drug A shares some
similarity with molecule B, indicated by the blue areas. This observation leads to the
conclusion that molecule A could be active on the canonical target of molecule B, and
indicated accordingly. See Keiser et al. (2009) for full details on example. Structures
obtained from the ChemSpider database.

Chemical-based approaches are intuitive and build on the accepted similar

property principle (see Figure 1.5 for summary). However in practice, small

changes made to a molecular structure can lead to drastically different biolog-

ical outcomes. Moreover, the predictions made by the various methodologies

have little overlap between them, stressing the difficulty to select the adequate

one for the right scenario (Eckert and Bajorath, 2007). Some compounds also

undergo chemical modifications by the cell before being pharmacologically active,

therefore the structure as recorded in databases can compromise the value of a

predictive statistical model. Finally, by using potent and optimised molecules as
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starting point to infer new ligands or to train a model, there is a high risk that the

predictions will manifest weak experimental pharmacology for the new indication.

Indeed, such inferred compounds are not “dissimilar” enough to have an unex-

pected binding conformation with the protein and any differences in structure

against the endogenous ligand will only reduce potency.

1.3.2 Gene expression and functional genomics-based ap-

proaches

Living systems can be understood by looking at the behaviour of their gene

expression in a particular setting. Depending on the state of the system, cer-

tain genes are going to be over or under expressed, identifiable from the relative

number of their messenger RNA (mRNA) molecules transcribed. Differentially

expressed genes can serve as a proxy to characterise a molecular effect, called

the gene expression signature. This type of experiment is usually performed on

a microarray, containing probes for the genes of interest (see Figure 1.6A). The

approach provides a straightforward read of the condition studied and has been

successfully used to find new indications for marketed drugs. In particular, the

Connectivity Map (Lamb et al., 2006), was behind most recent repositioning

stories (see Figure 1.6 for summary of the method).

The idea behind the CMap states that the action of a drug can be captured

and compared by looking at the gene expression profile resulting from its ad-

ministration onto a biological system. In this regard, the initiative recorded the

molecular signatures of 164 FDA-approved molecules over 5 different cancer cell

lines. The data is freely available and can help to perform various type analyses,

for instance related to the understanding of the molecular mechanism of a drug.

Closer to my concerns, Iorio et al. (2010) used the resource for drug reposi-

tioning, by comparing small molecules on the basis of their CMap gene expression

signatures: compounds with similar signatures were assumed to be functionally

related, as they perturb the cell in a similar fashion. On this basis, the researchers

identified communities of drugs sharing known protein targets and mechanism of

actions. Interestingly, inside these hubs, most of the drugs were also sharing the

same or similar therapeutic indications; yet outliers were present. Such cases were

interpreted as repositioning opportunities, as these compounds appeared similar

on the signature level (same gene expression profile), yet were clinically used for
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Figure 1.6: Drug repositioning using gene expression. (A) Example of result ob-
tained from a gene expression experiment. Some of the probed genes are up-regulated
(green), some of them down-regulated (red). (B) and (C) The gene expression data
from the Connectivity Map provides a signature which can relate drugs on their func-
tional aspect. For instance drug X and Y are considered similar because they share a
significant amount of genes up and down related. (D) An analogue reasoning can be
made with the relation drug-disease: disease signature can be treated by drugs with an
anti-correlating signature.

different purposes. Based on these considerations, the authors discovered that fa-

sudil, a potent vasodilator, can also be used as an enhancer of cellular autophagy.

The prediction was experimentally verified on standard cell assays. The novelty

of the methodology lies in the way variable gene expression data from different

cell lineages was integrated in order to derive meaningful metrics.

Messenger RNA expression can reflect the activity of a drug, but it can also

be used to characterise disease states. Following this assumption, Sirota et al.

(2011) used a set of experiments from the Gene Expression Omnibus (GEO) in

order to capture disease signatures from gene expression profiles. They further

integrated this data with similarity values between drugs, derived from the CMap.

The authors were able to find clusters of related diseases, appearing to negatively

correlate with the signatures of the drugs currently used to treat them. The anti-

correlation was used to predict the anti-ulcer drug cimetidine as a candidate for
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the treatment of lung cancer. The efficacy of the molecule for the new indication

was demonstrated in vitro and in vivo on a mouse model. The analysis also

identified topiramate, currently used as an anticonvulsant, as an active agent for

the treatment of inflammatory bowel disease (Dudley et al., 2011b), for which no

cure currently exists. The relevance of the pharmacology in respect to the new

usage was extensively confirmed in vivo in a rodent model. This study highlights

a powerful feature of transcriptomics: even when little molecular information

is known about the exact underlying pathology, gene expression signatures can

help to efficiently abstract away from mechanistic details and correctly identify

potential treatments.

A homologous approach has been used to overcome cancer cell resistance in

leukaemia (Wei et al., 2006). Glucocorticoids are usually administered as treat-

ment, yet sometimes the cancer cells of some patients develop a resistance to

them. The gene expression profile of cells sensitive to the traditional treatment

was compared against the signature of resistant cells, in order to characterise the

molecular differences. Then using CMap data, the authors predicted rapamycin

as a novel agent to overcome the resistance, as the two gene expression profiles

were correlated. The prediction was experimentally confirmed, providing further

insight regarding the new mechanism of action. Rapamycin, an immunosuppres-

sant agent indicated to prevent rejection in organ transplantations, might find

here a new life for the treatment of lymphoid malignancies. A similar method-

ology, based again on anti-correlation of disease state against drug signature

from the CMap, connected ursolic acid to skeletal muscle atrophy (Kunkel et al.,

2011). The molecule improved the muscular mass and reduced adiposity in a

clinical study on humans and mouse.

Gene expression analysis has led to numerous success stories, thanks to the

valuable resource that is the CMap. The technique does not require much prior

knowledge about the action of the drug or the pathology behind a phenotype; the

creation of signatures from direct mRNA readout helps to simply retrieve unex-

pected drug-disease associations. Another important lesson from transcriptomics

and the likely reason behind these successful results is the functional aspect:

drugs are solely characterised based on their role and action in the biological

system, represented by a gene expression signature. The chemical structure is

disregarded and almost irrelevant for such analyses.

Despite impressive results, the technique suffers from drawbacks, currently
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subject to improvements (LINCS, 2014). First, the expression profile of the

drug or disease must be available. The CMap provides a relatively small list

of molecules. This collection is far from being representative of all approved and

experimental drugs, limiting the compounds that can be investigated. Second,

gene expression profiles can arguably define a disease state or a drug response;

tissues are not considered in the CMap, the resource was only developed by

recording the response of cancer cells, and is not necessarily relevant for all dis-

ease types. Finally, transcriptomics data also present considerable challenges in

terms of statistical analysis, as recognised by the authors of the CMap project

(Lamb et al., 2006).

1.3.3 Protein structure and molecular docking-based ap-

proaches

Most bioactive small molecules mediate their effects by interacting with proteins.

This interaction can be analysed using computer software modelling the three

dimensional (3D) structure of the target and the drug. This practice is known

as molecular docking and commonly applied within drug discovery pipelines; the

method helps to identify and optimise binding affinities in the active site of the

target (e.g. pocket of an enzyme) in order to increase the potency of the drug

developed (Haupt and Schroeder, 2011). Because of the popularity of molecular

docking, it is not surprising to find drug repositioning attempts based upon this

approach. As most of the compounds are known to interact with more than one

protein (see section 1.1.1), the aim is to identify these potential off-targets, by

screening against the 3D structure of proteins present in a given database. If

the predicted off-targets are disease relevant, then the drug could be repositioned

accordingly.

In this respect, a series of recent studies focused on binding sites and compared

their relative similarities (Haupt and Schroeder (2011) - see Figure 1.7 for a sum-

mary). Looking only at the structure of protein’s active sites guarantees to be as

close as possible to the biochemistry and physical reality of the interaction. From

over 6,000 binding site structures De Franchi et al. (2010) identified the synapsin

I, protein involved in the regulation of neurotransmitter release as a new target

of the drug staurosporine, known to bind the Pim-1 kinase (De Franchi et al.,

2010). The finding was experimentally verified in vitro, yet the pharmacological
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relevance of the new target remains to be shown.

binds

binds

Similarity of 
binding site

Protein YProtein X

Molecule Z

Figure 1.7: Drug repositioning using protein structure and binding site. The 3D
structure of proteins and their respective binding sites can be compared using a scoring
function. On this basis, it is assumed that similar binding sites can bind the same
ligand. For instance, knowing that protein X has a similar binding site to the one in
protein Y, and that molecule Z binds to protein X, one can forward the hypothesis
stating that molecule Z should bind to protein Y too. Illustrations from the Protein
Data Bank.

Zahler et al. (2007) performed an inverse screening (docking one compound

over multiple binding sites) to characterise the off-target binding landscape of

kinase inhibitors. This class of drugs, largely used in cancer therapy, has a no-

torious “promiscuous” behaviour. The virtual screening revealed a new enzyme,

PDK1, as an off-target of indirubin. Here again, the prediction was validated in

vitro via a phenotypic cell proliferation assay demonstrating the validity of the

approach and providing insights regarding kinase inhibitors’ side-effects.

Finally Kinnings et al. (2009) addressed drug resistant tuberculosis using

molecular docking methods. The bacteria behind the condition can indeed some-

times resist the first-line drugs, and in such cases, the eradication of the pathogen

becomes difficult. The authors followed a workflow called selective optimisa-

tion of side activities (SOSA), a technique developed to progressively move away

from the original indication and optimise a compound across protein families

(Wermuth, 2006). Briefly, the methodology is composed of the following steps:

binding site extraction from 3D structure of protein sequences, identification of
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similar binding sites across the proteome using a search algorithm, and finally

manual docking analysis to make sure the physical interaction is possible. From

this pipeline, the group predicted the approved drugs entacapone and tolcapone

(prescribed for Parkinson’s disease) to be potent against the enoyl-acyl carrier

protein reductase, an enzyme essential for the synthesis of fatty acid in Mycobac-

terium tuberculosis. The drugs were experimentally proven to be active in vitro,

using commercially available tablets. Even more interestingly, the new mode of

action introduced with these two compounds could bypass the drug resistance

encountered in Mycobacterium tuberculosis, and provide a valuable treatment for

affected patients.

Despite the mentioned successes, molecular docking strategies for drug repo-

sitioning suffer from drawbacks. First, 3D structural data must be available.

Databases such as the Protein Data Bank (PDB) contain numerous records,

however they are still very far from covering the whole proteome (Haupt and

Schroeder, 2011). Secondly, it can be challenging to automatically recognise a

binding site, in particular when the protein structure was crystallized without

the ligand. Finally, as all methodologies generate a large number of false posi-

tives, experimental and manual validations are the only solution to evaluate the

predictions. Sometimes a single amino acid difference will totally change the

pharmacology of the binding site (Kruger et al., 2012), a difficult problem to

handle when the structures are analysed and aligned in an automated fashion.

In conclusion, protein-based approaches are arguably the closest methodology

to the actual physical interaction between a drug and a protein target. Docking

approaches provide a detailed low level picture of the biochemical complex, yet

still suffer from challenges on the modelling side. The identification of off-target

proteins does not necessarily always yield repositioning opportunities, and the

results always have to be interpreted in a broader biological context.

1.3.4 Phenotype and side-effect-based approaches

The phenotype can be defined as the set of characteristics or traits attributed to an

organism. Examples of phenotypes are the morphology, developmental, biochem-

ical or physiological properties (Wikipedia, 2014f). This concept is widely used

in biological sciences, to express the high level observations made when looking

at a living organism. The phenotype is arguably the most primitive interaction
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between the biomedical scientist and its object of study: while travelling across

the world, Darwin built the evidence for evolution from the phenotype of barna-

cles (Darwin and Bynum, 2009). Gregor Mendel first described inheritance based

on the traits observed in pea plants (Mendel, 1866). None of these scientists

had any idea about the actual molecular mechanism responsible for the observed

patterns, yet their phenotypic observations were strong enough to forward valid

conclusions. This exercise is still very commonly applied in clinical settings. Ev-

ery time a doctor diagnoses a patient, he or she primarily relies on a phenotypic

characterisation of the signs and symptoms present in the patient. As mentioned

earlier in this chapter (section 1.1.1), phenotypic-driven screenings are also rou-

tinely performed within drug discovery pipelines. It actually appears to be the

best technique to bring new medicine to market, according to a recent study

(Swinney and Anthony, 2011). This successfulness can be attributed to the fact

that a phenotypic observation is a more accurate representation of the underlying

system; the physiological context is preserved, as opposed to target-based assays,

therefore in vitro lead compounds have better chances to stay active when scaling

to animal models and eventually clinical trials (Duran-Frigola et al., 2012).

Back to drug repositioning concerns, side-effects can also be seen as pheno-

types. The sildenafil story emphasises their importance: no matter how potent

a drug is in animal model or in in vitro assays, its true pharmacology will only

appear during the clinical trials. Accurately characterising these side-effects can

help to reposition a drug or reveal new interaction partners, as highlighted by

two studies, summarised here (see Figure 1.8).

Drugs with similar target binding profiles cause similar side-effects (Fliri et al.,

2005) (Fliri et al., 2007). Starting from this rationale, Campillos et al. (2008) de-

fined the side-effect profiles for approved drugs, then used similarity among these

to identify the drug’s off-targets. The side-effects were first extracted using text-

mining from package inserts, in order to build a statistical model informing about

the likelihood for two drugs to have a common target. The authors then focused

on compounds from different therapeutic categories, yet with a high probability

of sharing a target according to the model. They experimentally tested 20 of

such predictions, validating 13 of them, 11 with an inhibition constant under

10 micromolars. The originality of the method demonstrates the molecular rel-

evance of side-effects, and their potential to identify off-targets and reassign a

therapeutic molecule to a new indication. An interesting aspect of this approach
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Figure 1.8: Drug repositioning using phenotype information. Knowledge about the
phenotypic outcome triggered by a drug can be used in order to establish relative
similarities. (A) The diagram illustrates a theoretical example using reported side-
effects: the more side-effects are commonly shared by two drugs, the more similar these
two drugs are. The similarity can be used to either derive potential off-targets or new
indications.

is the representation of side-effects. Just as any phenotypic manifestation, words

or terms, derived from observations, are still the best way to express them. For

this study, the authors used the Unified Medical Language System (UMLS) (Bo-

denreider, 2004), a controlled vocabulary provided by the National Institute of

Health (NIH). From the experimental validation shown by the research group, one

can infer that ontologies and controlled vocabularies indeed have the potential to

generate sound predictions.

Another approach was presented by Yang and Agarwal (2011). The authors

used side-effects from the database SIDER (Kuhn et al., 2010) to link diseases and

extract drug repositioning opportunities. Chemicals were linked to pathologies us-

ing the information available in pharmacogenomics knowledge base (PharmGKB)

(Whirl-Carrillo et al., 2012). The approach values evidence showing that drugs

used to treat similar diseases have similar side-effects. In this respect, side-effects

can be indicators of a common underlying mode of action, and two drugs sharing a

significant number of side-effects can be used to treat the same pathology. Some-

times a side-effect can also be deleterious in one case and beneficial in another.

For instance hypotension is usually thought of as an unfavourable side-effect,

yet the compounds producing such an action could be used as antihypertensive

agents. Following this hypothesis, a predictive model (Naive Bayes) was then

built in order to assign drugs to diseases on the basis of side-effects. The high
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performance of the evaluation demonstrated the relevance of the methodology.

The authors further developed a tool to predict new indications for compounds

under development in a systematic fashion. No experimental validation was pre-

sented, yet a robust evaluation of the methodology was performed.

Fifty years ago, the phenotype was at the centre of drug discovery. With the

advent of molecular biology, it was progressively replaced by the target-based

paradigm (Duran-Frigola et al., 2012). Phenotype-based approaches are still in-

teresting for drug discovery, as they report the effect of a given substance on the

level of whole organisms, which may be more representative for clinical applica-

tions. Thanks to the recent development of ontologies and methods (Hoehndorf

et al., 2007) (Hoehndorf et al., 2011b), it seems that the biomedical community

has now better way to record, capture and align phenotypic information.

1.3.5 Genetic variation-based approaches

Closer to the molecular level, genetic variations can also provide valuable in-

sights regarding drug repositioning opportunities. Due to the recent implemen-

tation of high-throughput DNA sequencing methods and analysis pipelines, it

indeed becomes increasingly cheaper to sequence individuals and study their

genotypes. From the information generated, one can isolate common muta-

tions in the DNA that are significantly associated with a phenotypic trait. This

method is known as genome-wide association study (GWAS) and is typically

used to relate a single-nucleotide polymorphism (SNP) to a disease. The data

about SNPs and their association to pathologies is indexed in databases, such

as the one provided by National Human Genome Research Institute (http:

//www.genome.gov/gwastudies/). Using this resource, Sanseau et al. (2012)

performed an analysis to unveil potential new indications for protein targets

from GWAS. The logic behind the approach is that the association between a

SNP and a trait from a GWAS can be extrapolated as a relation between a gene

and a disease (if the only traits considered are diseases - see Figure 1.9). Then

knowing that a drug targets the given gene product, one would expect for the

indication of the drug to be the same as the trait studied in the GWAS. For in-

stance, in the gene encoding 3-hydroxy-3-methylglutaryl-CoA (HMGCR), a SNP

was significantly associated with the trait LDL cholesterol (Kathiresan et al.,

2008). A class of drugs, the statins, are known to target this gene product and
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are indicated as cholesterol lowering agents (hypercholesterolemia). The authors

identified 97 of such cases, where the SNPs support the current drug indication

and give more confidence to the biological role of the protein. On the contrary, for

123 associations, the authors reported a mismatch between the trait associated

with the gene and the current indication of the drug; these associations have been

inferred as repositioning opportunities. For example, denosumab is a monoclonal

antibody indicated for the treatment of osteoporosis and bone cancer. Its main

target, the protein TNFSF11 (tumour necrosis factor superfamily, member 11)

contains a SNP paired with Crohn’s disease (Franke et al., 2010). Based on this

evidence, denosumab could be tested for this later condition. Another example

reported by the authors is nepicastat, a small molecule indicated for cocaine ad-

diction and post-traumatic stress disorder. The target of the compound, DBH

(dopamine beta-hydroxylase), has been associated with the trait smoking cessa-

tion in a GWAS (Furberg et al., 2010). This result suggests a new and unreported

use for nepicastat, as a drug for smokers willing to stop.

The methodology presents some pitfalls, as shown by the prediction made for

NOS2 (nitric oxyde synthase 2) inhibitors to be active against psoriasis; clinical

trials unfortunately failed to show any significant effects. The gene-disease rela-

tion is indeed complex in practice, and sometimes more information is needed to

appreciate the potential effect of a drug. Moreover, since GWAS does not pro-

vide any information regarding the direction of the pharmacological effect and

it is difficult to know for instance whether an agonist or antagonist should be

used to produce an outcome. Despite these restrictions and because of the im-

pressive recent progress made in genome sequencing, this approach, or a related

methodology, might gain in importance in the coming years.

1.3.6 Disease network-based approaches

Traditionally, diseases have been grouped together, on the basis of the cause of

the pathology (e.g. infection) or the biological dysfunction observed (e.g. un-

controlled cell growth) for instance. As similar diseases are treated in a similar

fashion, a better characterisation of the relation holding between pathologies can

generate drug repositioning hypotheses. I will briefly present some of the work

done in this direction, on the construction of a “diseasome” or network of rela-

tionships between diseases (see Figure 1.10 for summary).
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Figure 1.9: Drug repositioning using genetic information. (A) Single-nucleotide poly-
morphism (SNP) are associated with a phenotypic trait, here LDL cholesterol. The
gene where the SNP is found (HMGCR) encodes for a protein, targeted by statins
(drug class). Statins are indicated as cholesterol lowering agents, which is confirmed
by the trait associated with the SNP. (B) Sometimes the trait associated with the SNP
diverges from the indication of the drug, as shown on the diagram (post-traumatic
stress disorder against smoking cessation). In such cases, a repositioning hypothesis
can be generated. Examples are detailed in the text. See Sanseau et al. (2012) for more
explanations.

Chiang and Butte (2009) defined diseases from the list of drugs used in their

therapies and off-label indications. Despite being fairly simplistic, the rationale is

backed by successful examples and commonly performed in clinical settings. The

authors performed an associative indication transfer, namely, given two similar

diseases, proposing to use a drug indicated only for one of them as a therapy

for the other. From 700 diseases and 2,000 drugs, over 150,000 new associations

were generated. Interestingly, the new indications are in agreement with clinical

trials data, the predicted new usage has often been reported by doctors (12 fold

enrichment against random). For instance, atorvastatin, a cholesterol lowering

agent, was predicted to be active for asthma, Crohn’s disease and myocardial

infarction; all these associations have been positively reported in clinical trials,

proving confidence in the methodology. For the same drug, some of the new
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Figure 1.10: Drug repositioning using disease relationships (diseasome). The similar-
ity between two diseases (A) can be calculated by looking at the shared drugs used for
the treatment of these diseases (B) or at the commonly shared pathways (C). When
applied to all diseases, one can build a “diseasome” or disease map, useful to relate
indications and find drug repositioning opportunities.

associations have no clinical evidence, such as activity in breast cancer and os-

teosarcoma. Accordingly, it is possible to investigate the action of the drug for

these pathologies. This work illustrates one possible approach relating diseases;

two other methodologies presented now respectively construct the network from

shared pathways and functional modules. The first one (Li and Agarwal, 2009)

built a map linking diseases from public resources (e.g. Reactome, Kegg pathways

and text-mining). Diseases with commonly deregulated pathways were deemed to

be similar. The properties of the resulting graph were analysed and the authors

showed how their work can provide new insights about disease relationships. No

analysis for repositioning opportunities were performed, yet the map can serve

as a starting point to identify similar conditions, on which one can perform an

indication transfer as before. Finally, Suthram et al. (2010) constructed a disease

graph from gene expression profiles and protein networks. An analysis revealed 59

functional modules, shared by half of the diseases studied. These modules relate

pathologies on their molecular basis and help to better understand the internal

wiring of the system. Similarly to other methods, once the disease network is cre-

ated, drug repositioning hypotheses can be generated. As a conclusion, despite
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not directly addressing drug repositioning, disease maps can provide valuable in-

sight regarding the usage of a drug. Such approaches also question the current

way of classifying diseases, by considering molecular information as signature or

definition.

1.3.7 Machine learning and concepts combination approaches

The approaches presented before mostly focus on one of the concepts of the map

shown on Figure 1.4 and orient their analysis around it. It is also perfectly possible

to use a combination of these biomedical descriptors to train a machine-learning

algorithm and then generate predictions out of the statistical model (see Figure

1.11). Two recent studies address drug repositioning from this perspective. In

both cases, first a series of biomedical heuristics is defined, then the model is

trained on known data and predictions are made.

Drug YDrug X

Disease A Disease B

Similarities based on various descriptors

Similarities based on various descriptors

indication indication

new indication?

Figure 1.11: Drug repositioning using a combination of descriptors. A machine
learning algorithm is trained over a series of features, such as chemical similarity, shared
target proteins, etc. After evaluation of the model, some repositioning predictions can
be generated from the statistical learning.

The first method presented is called PREDICT (Gottlieb et al., 2011). In or-

der to train the machine-learning algorithm, the authors decided to represent sep-

arately drug-drug and disease-disease associations. Drug-drug associations were

characterised from fingerprinting of their chemical structure and the reported and

predicted list of side-effects. These drug-drug associations were further enriched
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with information related to the targets of the drugs: the sequence similarity, dis-

tance in the protein-protein interaction network and semantic similarity of their

GO annotations. The disease-disease associations were more simply characterised

based on their semantic similarities calculated over the Human Phenotype On-

tology (HPO) from the annotations present in the Online Mendelian Inheritance

in Man (OMIM) database. From these gold-standard associations, the authors

trained a logistic regression classifier to recognise real associations from fake ones.

The model was evaluated against the predictions made by other methodologies,

such as guilt-by-association and CMap approaches (Lamb et al., 2006), presented

earlier in this chapter. The evaluation shows little overlap between the various

methodologies; it is difficult to align the various datasets, as often the diseases

and drugs considered are different. Some drug repositioning predictions were

then generated and evaluated from clinical trials data. Around a third of the

predictions were reported as already investigated, giving confidence in the out-

come of the methodology. In the last part of their work, the authors substituted

the disease-disease associations based on phenotypic similarity with gene expres-

sion profiles. The idea behind this step was to test the developed method for

personalised medicine: assuming one has access to the gene expression profile

of a patient, can PREDICT find the best drug to administer to the individual?

Results were encouraging; the method reports high recall and specificity (area

under curve of 0.92 obtained from receiver-emitter curve), providing a tangible

proof-of-concept for the algorithm.

The second method presented (Napolitano et al., 2013) is very similar to

PREDICT. The main difference comes from the machine-learning methodology,

which was Support Vector Machine (SVM) in this study. The algorithm was

used to predict therapeutic categories of the Anatomical Therapeutic Chemi-

cal Classification System (ATC), misclassification being re-interpreted as drug

repositioning hypotheses. The researchers also incorporated structural similarity,

protein-protein interaction network distance and gene expression data as starting

features to train the SVM. After standard machine-learning evaluation proce-

dures, the authors derived repositioning predictions. The main hypotheses were

anthelmintics compounds to be active as antineoplastic agents and antineoplastic

drugs to be used as systemic antibacterials.

Machine-learning based approaches to drug repositioning provide a way to

combine various descriptors into one statistical model, with the aim of increasing
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the accuracy of the predictions. The techniques presented however face some

important pitfalls. One of them is the interpretation of the repurposing hypothe-

ses: the statistical model is a black box, hiding the rational evidences of why

a compound was chosen. Most of the hypotheses end up being evident cases,

easily explainable for a biologist by looking at the chemical structure or known

off-targets of the compounds. This result is maybe due to an over-training of

the machine. Finally, one can question the biomedical meaningfulness of inte-

grating a large number of descriptors; since diseases are subtle and unique, too

much information risks blurring the outcome by overlooking important biological

mechanistic details.

1.3.8 Summary

A variety of approaches have been tried in order to computationally repurpose

drugs. The field is still in its infancy, as revealed by two factors.

First, it is still not clear which method provides the best results and why. The

only absolute way to evaluate the predictions is when a drug will be routinely

indicated in the clinic from a hypothesis generated in silico; as far as I know,

there is no compelling story illustrating this yet. It is not surprising; developing

a new drug is a long process, taking over twelve years to achieve and trapped with

legal and economic hurdles. Knowing that the first study reported by PubMed

for the keyword search “computational drug repositioning” dates to 2006 (An

and Jones, 2006), or 7 years before the time of writing, it seems realistic not to

find any clinical examples yet.

Secondly, each method addresses the drug repositioning problem from a dif-

ferent angle or biomedical concept, which complicates the evaluation process.

Objectively integrating the results from the various approaches is a difficult task,

as the starting datasets are about different molecules and diseases and produce

different type of outcomes. It would be beneficial for the community to have a

standard dataset, covering the legal indications, as well as the known and con-

firmed alternative ones. Computational methods could use such a resource to

benchmark their performance and evaluate their predictive power and perform

error analysis. Immaturity also means creativity in this case, illustrated by the

numerous methods implemented. Table 1.1 and 1.2 provide a summary of the

approaches presented, alongside their respective strengths and weaknesses.
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Biomedical

concept

Rationale Biomedical advantages Technical advan-

tages

Biomedical pitfalls Technical pitfalls References

Chemical

structure

Similar chemical struc-

tures have similar bio-

logical outcomes (simi-

lar property principle)

Off-target identification,

straightforward interpretation,

can be used on new chemical

structures with unknown

activities

Fast algorithm avail-

able to encode and

search for chemical

structures (finger-

print), large number of

structures available

Prediction can have

weak binding, not

necessary pharmaco-

logically active, small

changes made to a

molecular structure

can change a lot

the biological out-

come, compounds may

undergo chemical mod-

ifications by the cell

(pro-drugs), therefore

original structure is

not so helpful

Chemical structures in-

formation in databases

is sometimes erroneous

Noeske et al. (2006),

Keiser et al. (2009)

Gene expres-

sion (mRNA)

A biological state can

be defined by the list

of genes under or over-

expressed (signature)

in the given state. It

is possible to define

disease states and drug

states (CMap) and

analyse their relative

similarities.

Systematic characterisation of

the biological function, no

previous knowledge required

about diseases or protein tar-

gets

Assay well understood

and cheap, CMap data

freely available and ex-

tending

Too simplistic to char-

acterise some states,

important mechanistic

aspect can be over-

looked

Selection of the repre-

sentative genes is chal-

lenging, CMap data

were recorded on can-

cer cell, might not feat

all types of diseases or

it can bias the signa-

ture

Iorio et al. (2010),

Sirota et al. (2011),

Dudley et al. (2011b),

Wei et al. (2006),

Kunkel et al. (2011),

Lamb et al. (2006)

Protein Computational mod-

elling of the physical

binding of a drug to a

protein

Off-target identification,

straightforward interpretation,

can be used with chemical

structures with unknown

activities, close to biochemical

reality

Numerous tools avail-

able to perform dock-

ing studies

Predicting a binding

is challenging because

of molecular dynamics,

high number of false

positive predictions

Structural databases

are not complete,

not all proteins are

considered

Ashburner et al.

(2000), Haupt and

Schroeder (2011),

De Franchi et al.

(2010), Zahler et al.

(2007), Kinnings et al.

(2009)

Table 1.1: Summary of drug repositioning approaches.



Biomedical

concept

Rationale Biomedical advantages Technical advan-

tages

Biomedical pitfalls Technical pitfalls References

Genetic Genomic identification

of phenotypic traits

Potentially closer to individual

patients (SNP)

Large amount of SNP

information already

available and growing

everyday, decreasing

cost of sequencing

Does not provide

mechanistic details nor

context

Genome data analysis

is still challenging

Sanseau et al. (2012)

Disease Similar diseases receive

similar treatment

Systemic characterisation and

classification

Various methodologies

can build the diseases

map

Does not directly ad-

dress drug reposition-

ing

Highly rely on curated

knowledge

Chiang and Butte

(2009), Li and Agarwal

(2009), Suthram et al.

(2010)

Combination Training of a machine-

learning algorithm

from a series of de-

scriptors

Incorporation of multiple di-

mensions, providing a more

consistent representation of the

biological phenomenon

Numerous machine-

learning program

and methodologies

available

Biological interpreta-

tion difficult (black

box approach), risk of

over training the sys-

tem, does not provide

mechanistic details

Choice of the heuristics

is challenging

Gottlieb et al. (2011),

Napolitano et al.

(2013)

Biological pro-

cess and molec-

ular function

Formal representation

of the mode and mech-

anism of action

Systemic characterisation of

the biological role, mechanistic

description

Large amount of infor-

mation available, data

integration

Predictions can have

weak binding, not

necessary pharmaco-

logically active

Highly rely on curated

knowledge

Croset et al. (2013c)

Table 1.2: Summary of drug repositioning approaches (continued).



To conclude, computational drug repositioning appears as a topic of growing

interest in the scientific community, as inferred from Figure 1.12. A series of

methods have been developed in the last 5 years, summarised and discussed in

this chapter. Drug repositioning is a subset of a larger problem type: indication

discovery and network biology (Hopkins, 2008). In can be summarised as taking

advantage of our increasing knowledge about systemic behaviour to computation-

ally design smart drugs. Various abstraction level can be considered, as shown

by the series of biomedical concepts used as starting points (see Figure 1.4).

The conclusions drawn from this state-of-the-art review oriented my work and

motivated me to explore drug repositioning from the perspective of biological

processes and molecular functions. More precisely, I aimed at logically model the

regulatory events to derive a functional classification of drugs.

Time (years)
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u
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computational 
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Figure 1.12: Evolution trend of the documents related to drug repositioning. Stan-
dardised frequency: number of documents indexed on PubMed for a search divided by
the total number of articles published the same year. The higher, the more popular a
topic is. The frequency increases with the time for both searches, showing a growing
interest in the domain.

1.4 Thesis: biological process and molecular func-

tion for drug repositioning

The previous section (1.3) gave an overview of the various computational tech-

niques developed for drug repositioning within the last decade. I believe that the
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most promising results appear to come from gene expression analyses (section

1.3.2), driven by the large amount of public data available and encouraging in

vivo results. Additionally, gene expression provides a functional insight about

a biological state, valuable in practice: from a drug indication perspective, it is

indeed much more pertinent to know what a molecule does (role or function)

rather than what it physically looks like (structure).

Following this philosophy, I argue in favour of the mode of action (MoA), as

a means to formally define the function of a drug. The concept brings unique

assets, such as bridging from the molecular to the phenotype level, as well as

providing a discrete mechanistic understanding of the role of a drug.

In this section, I will introduce my thesis, namely the vision and the ratio-

nale behind the approach of using curated knowledge of biological processes and

molecular functions to characterise the drug repositioning landscape. Processes

and functions provide a flexible abstraction layer in between biochemistry and

systems biology. My thesis work is based on a computational characterisation of

the mode of action of marketed drugs. This notion is particularly relevant to drug

repositioning, as the concept provides mechanistic insights regarding the broad

pharmacological action of a drug. Moreover, a compound can also have several

modes of action, representing the various biological processes the molecule can

perturb from its polypharmacology.

1.4.1 Rationale

Knowing the potential role a drug can play in a living organism such as a human

body enables one to logically re-use the compound for a different indication.

Moreover, a drug binds to multiple proteins, themselves involved into multiple

biological processes (see section 1.1.1). Therefore a drug can potentially play a

multitude of roles, or in other words can have several MoAs, which are accountable

for its polypharmacology.

In practice, the biological roles of drugs are described as mechanism or mode

of actions. The mechanism of action can be defined as the biochemical interac-

tion that gives rise to the pharmacological effect of a drug. For instance, the

term phosphodiesterase-5 binding is the mechanism through which the sildenafil

molecule produces its action. Similarly, the MoA defines in a more abstract fash-

ion the broad activity of the molecule on an organism. The terms pro-penile erec-

47



tion agent and vasodilator both are valid MoAs of the same sildenafil molecule.

Another example of MoA is anti-blood coagulant, representing the capacity of a

drug to inhibit or decrease the extent of blood coagulation (see Figure 1.13 for

example).

Chemical 
compound

perturbs 
some

involved in 
some

Mode of Action

Protein Biological process

Mechanism of Action

Ximelagatran perturbs 
some

involved in 
some

Anticoagulant

Thrombin
Positive 

regulation of 
blood coagulation

“Direct thrombin inhibitor”

(A)

(B)

Figure 1.13: Schematic representation of the concept of mechanism and mode of
action. (A) The mechanism of action can be defined as the physical activity of the
ligand on a protein target. The mode of action characterises the pharmacology of
the small molecule in the context of the organism. (B) Examples related to blood
coagulation illustrating the usage of the mechanism and mode of action concepts.

The concepts of mode and mechanism of action are broadly used in drug

discovery; they help to classify drugs into therapeutic groups. Even more impor-

tantly, a chemical is assigned as a treatment to a disease because it exhibits a par-

ticular MoA. One example is the case of high blood pressure, a common medical

condition leading to an increased risk of heart attacks and strokes (NHS-Choices,

2014b). In order to chemically decrease the blood pressure, several biological so-

lutions can be considered. A first approach could remove the excess of salt from

the body, thereby decreasing the tension in the blood vessels. An alternative

solution could inhibit the vasoconstrictive signalling of a hormone. Finally, it is

also possible to act directly on the cells physically narrowing the vessels and pre-

venting their unwanted action this way (Ong et al., 2007). Now if a chemical was
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known to be capable of producing any of these biological actions, it would then

be possible to indicate it for the treatment of the hypertension. This logic puts

emphasis on the mechanistic details of the pharmacological effect. The MoA ex-

plicitly characterises the function of the drug in the cellular machinery, and helps

to appreciate its overall effect. As opposed to statistical methods and black box

techniques, the explicit reasons why a particular drug shows a particular outcome

can be derived from curated knowledge in a systematic fashion.

A MoA-based approach comes with unique theoretical advantages. First, it

provides a systematic high-resolution picture of the function of drugs, just like

gene expression experiments. Moreover, this characterisation of the function is

discrete and granular. Unlike gene expression data (CMap), the function of the

molecule is not vaguely summarised in a gene expression signature. MoAs are

discrete categories, and a compound can be put in many of them, as illustrated

with hypertension. In this respect, the MoA can be seen as the equivalent of

a protein’s functional annotations (Ashburner et al., 2000), but for drugs. Fi-

nally, the MoA provides a unique level of abstraction over biological systems: it

logically links the biochemical mechanistic interaction, as studied with docking

and chemical similarity, to a high level phenotypic process, such as a disease or a

side-effect.

1.4.2 Towards the specification, implementation and anal-

ysis

The computational use of the MoA to repurpose drugs comes with obstacles.

I gave in the previous section some informal examples of MoAs: vasodilator,

anti-blood coagulant, anti-ageing agent, etc. However, in order to provide helpful

information, all MoAs (or a large number at least) have first to be unambiguously

and formally defined. From these examples and Figure 1.13, the reader can see

that MoAs are terms, boxes or categories; classical mathematical frameworks

used in biology and bioinformatics, such as statistics, do not provide any means

to address this concern.

A MoA describes logical events happening inside the complex cellular machin-

ery: intuitively, an anti-blood coagulation agent is a type of compound capable

of modifying the activity of a protein target somehow involved in the blood co-

agulation. Therefore representing the axioms or logical links underlying these
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statements can set the basis to derive new MoA categories, as shown in Figure

1.13. However, the definition of MoAs from this perspective will necessarily rely

on existing knowledge or data. From the example before, it is indeed necessary

yet sufficient to know first that a drug binds a particular protein and secondly

that this protein is involved in the coagulation process in order to formally derive

the MoA of the compound.

The implementation of the rationale is described in the rest of this document

and organised as follow.

1.4.2.1 Chapter 2 - Description logics and biomedical knowledge (Spec-

ification)

Before representing MoAs and using them to classify drugs, the specifications of

the system have first to be clearly determined. How are the logical connections

between biological processes and molecules going to be represented? Will the

system scale and work even with large biomedical input size? What is meant

by biological knowledge? How does it fit currently available biomedical data?

These questions will be addressed in Chapter 2, introducing description logics as

a mathematical framework of choice to perform the MoA implementation later

on. I propose an analogy considering living organisms as machines to describe a

portion of the biomedical knowledge, relevant to drug discovery.

1.4.2.2 Chapter 3 - The Functional Therapeutic Chemical Classifica-

tion System (Implementation)

The specification finds an implementation in Chapter 3, with the Functional

Therapeutic Chemical Classification System (FTC). The classification features a

representation of over 20,000 modes and mechanisms of action categories, inside

which approved drugs have been automatically classified. The work done was

evaluated against existing solutions and is publicly available via a web application.

As expected, on average drugs are present in numerous MoA categories. This

observation can be used to perform different types of analysis and generate drug

repositioning hypotheses.
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1.4.2.3 Chapter 4 - Systematic drug repositioning analysis

The content of the FTC is analysed in Chapter 4 from different perspectives.

First, the relationship between the concepts of a drug’s structure, function and

indication is discussed in this chapter. Secondly a list of drug repositioning hy-

potheses is derived from this preliminary characterisation, covering a wide range

of therapeutic areas. The hypotheses are used to analyse in a systematic fashion

the drugs’ off-label uses. Finally hypertension and Alzheimer’s disease have been

selected as use-cases in order to further investigate drug repositioning opportu-

nities.

1.4.2.4 Chapter 5 - Outlook and future work

The outcomes of the thesis work are put into perspective: what part of the drug

discovery process has been covered? What are the next logical steps for future

work? Can the MoA representation be further improved and how? The pitfalls

encountered during the work are discussed and I present my vision towards a

simpler knowledge representation system for the biomedical domain. Chapter 5

also discusses alternative analyses that can be performed with the content of the

FTC, in particular against gene expression data.
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CHAPTER 2

Description logics and

biomedical knowledge

(Specification)

Key points

• Organisms can be compared to complex black box machines, namely devices

with a hidden and unknown internal functioning.

• This analogy helps to define the study, needs and representation of biomed-

ical knowledge.

• Description logics (DLs), part of a mathematical framework developed to

formalise concepts, can be used to study the molecular black box machine

and query over recorded biological knowledge. DLs provide the means to

represent terms and logically link biological modules.

• The framework presented integrates with current life-science information,

such as biomedical ontologies (OBO) and databases, and is theoretically

highly scalable (EL++ or OWL2 EL profile).

• The notions introduced and discussed set the groundwork for the repre-

sentation of the mode of action and the implementation of a new resource

built on these principles: the Functional Therapeutic Chemical Classifica-

tion System (FTC).
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Author’s comment

This chapter is a summary and record of my experience with the Web Ontology

Language (OWL2) and knowledge representation for the biomedical domain. I

present a theoretical analysis of the representation of the mode of action and

its scalable implementation. A software library to assist the development of

programmatic solutions (Brain) is briefly presented in this chapter. I invite the

reader to refer to the original publication (Croset et al., 2013b) for more detail if

wanted.

2.1 Introduction

Science (from Latin scientia, meaning knowledge) is a systematic enterprise that

builds and organises knowledge in the form of testable explanations and predic-

tions about the universe (Wikipedia, 2014i). More specifically, biomedical sciences

handle the subset of knowledge related to living organisms. Understanding the bi-

ological world is relevant to society as it provides, among other things, a valuable

insight to treat and cure diseases. In order for our knowledge to grow, discoveries

and evidence have to be recorded, structured and shared with the community

and society. Traditionally, biological knowledge is preserved in a narrative fash-

ion, inside textual documents, such as a journal article for example. However,

natural language is ambiguous, informal, and impairs an efficient reuse of the in-

formation. More recently, with the advent of computer systems, some biological

knowledge is stored in a structured way inside databases or ontologies (Brooks-

bank et al., 2014). Biological entities and concepts have identifiers, enhancing

the dissemination and reuse of the information, as well as enabling an efficient

integration of multiple datasets. Despite the improvements made towards a more

meaningful and consistent representation, I argue that the logic in biologic is still

under-represented. Indeed, it would be valuable to formally derive and prove new

facts from existing ones, the same way it is done in algebra for instance. This

chapter presents an original approach towards this goal, using description logics

(DLs) as a mathematical framework.

In this regard, I first illustrate how the study of organisms is analogous to the

theoretical study of a black box machine. From this simple fundamental model
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and its requirements, I then explain how DLs can, to some extent, capture the

internal logic of the cellular machinery. Finally I discuss how this approach can be

combined with existing biomedical data, in order to implement automated and

scalable solutions. This theoretical work serves as the basis to formally define

the concepts of mode and mechanism of action, central points in deriving drug

repurposing hypotheses.

2.2 Biomedical knowledge

Life sciences addresses the study of living organisms. Just as in any other sci-

entific discipline, biological researchers first collect data and evidence, which will

then be turned into knowledge based on human interpretation (Antezana et al.,

2009). In order to be efficiently reused, understood and shared with the scientific

community, some of this knowledge can be represented by a process known as

formalisation.

2.2.1 Contemporary formalism in biomedical sciences

Formalism can be described as an abstraction process by the human brain in

order to model a system in mathematical terms. Formalising a problem helps to

better analyse its complexity. Mathematical models (e.g. equations) are powerful,

as they can eventually predict outcomes, once the system is understood well

enough. Different scientific disciplines employ different formalisms, depending on

the problem studied and research questions being asked.

2.2.1.1 Formalism varies among natural sciences

When I was a college student, I always found biology to differ from other natural

sciences such as chemistry or physics for instance. The latter disciplines were built

around a particularly strong mathematical scaffold; fundamental phenomena, like

the speed of a body, were concisely captured by a function such as v = d/t.

Chemical reactions were simplified in the form of an equation such as H2O =

HO- +H+ for instance. Despite being approximations of natural processes, these

models and equations were useful to learn the discipline. Moreover, once the

core concepts were understood, some supplementary layers of complexity were

logically added on the top of the known things: static representations of chemical

55



(A) (B)

Figure 2.1: Examples of capture of information in biology. (A) A flask containing
hundreds of individuals of the species Drosophila melanogaster. The population is
identified with a label on the container. (B) Schema of a canonical plant cell, similar
to the one found in textbooks. Parts of interest are annotated with terms, following a
descriptive approach. Pictures from Wikipedia and courtesy of Sarah H Carl.

reactions were transformed into dynamic ones, or it was possible to derive the

trajectory of a projectile from its speed and direction, for example.

The formal representation of a system is important, as it clarifies the meaning

of the concepts of interest for the community. For instance, speed has a very ex-

plicit and clear definition captured by its equation, which can be unambiguously

understood and interpreted accordingly. Finally, the most important feature of

a formal system is, I believe, that it enables predictions to be made. It becomes

possible to infer behaviours and results on the sole basis of the theory. Com-

plex systems can be built and fully understood, relying solely on fundamental

principles.

The study of biomedical sciences was not guided by such strong mathematics.

Core concepts such as evolution or gene were mostly described in a textual way,

a sentence usually defining the meaning; it was impossible to combine concepts

in order to create new ones. As biological organisms obey the law of physics

and chemistry, one would therefore assume that these frameworks could assist

in the study of the living world on their own. They do to some extent; it is for

instance possible to represent and model the series of chemical reactions related

to a biological pathway using standard chemistry (Le Novere et al., 2006). How-

ever, biomedical sciences present particular challenges that cannot adequately be
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solved by the traditional molecular formalism. First of all, biological bodies are

extremely complex from a chemical perspective, either in terms of size or types

of compound present (3 x 1027 atoms in the adult body and a minimum of 25

atom types) (Nielsen, 1999). Secondly, some high level phenomena have an un-

known molecular basis, and it becomes therefore impossible to capture formally

the system while solely relying on chemistry. Phenotypes and diseases are good

examples of this category.

Because of these obstacles among other things, biomedical sciences are tradi-

tionally less formalised than their counterparts, the biological knowledge being

often captured by a textual description inside a document, or sometimes with the

help of a conceptual schema (Lazebnik, 2002). Figure 2.1 and 2.2 present exam-

ples of media used to convey, record and communicate life sciences knowledge.

(A) (B) (C)

Figure 2.2: Formalisation in biomedical sciences. (A) Diagram showing the evolu-
tionary taxonomy of invertebrates. Drawn by Jean-Baptiste Lamarck’s in 1815. (B)
Mechanistic illustration of the cardiovascular system. Arrows illustrate the flow of blood
and the logical connection between the annotated parts. (C) MAPK/ERKsignalling
pathway. Schema of the cascade of molecular events leading to activation of transcrip-
tion factors. The logic of the system is informally captured using arrows, colours and
shapes. Images from Wikipedia.
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Nowadays, with the advent of computers and the Internet, knowledge about

known biological entities and concepts are further stored inside public databases.

Often, a manual curation step over the published literature improves the con-

sistency and correctness of the data (Brooksbank et al., 2014). The structured

information makes it easier for the community to retrieve the data and to perform

statistical analyses on it. Nonetheless, this framework is not fully formalised; for

example it is not possible to mathematically prove why a drug could be useful

for a disease, such as one can logically derive with a series of steps the value of

the variable x out of the following equation: 2x = 4 + x.

How can one further formalise biomedical knowledge to assist the development

of new medicines and the study of the living world? A naive approach would try

to simplify the system life scientists are working with into a meaningful analogy

(Lazebnik, 2002). In this regard, I will present how the study of a living organism

can be compared to the study of a black box machine, namely a device for which

nothing about the internal workings is known (see Figure 2.3).

(A) (B)

Blackbox
Input Output Input Output

Cell

Figure 2.3: Black box model. (A) Schematic representation of a black box. Given
an input, an observable output is produced. The internal workings are supposedly
not understood. (B) Cells or organism are black boxes: they can carry various and
observable functions from an input, yet the internal workings are not necessarily fully
understood.

2.2.1.2 Organisms as complex machines

From the perspective of drug discovery, an organism (word related to organi-

sation) can be broadly simplified as an assembly of molecules functioning as a

stable whole. This characteristic makes organisms similar to a machine in the

generic sense, which can be described as an assembly of parts functioning to meet

a particular goal ; in the case of the organism, the intrinsic goal is survival or

reproduction. Based on these definitions, biomedical sciences can be seen as
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the sciences of preventing and repairing dysfunctioning organisms - or molecular

machineries.

According to this analogy, the study of a living organism can therefore be

compared to the study of a complex black box machine, composed of a large

number of physical parts carrying a certain number of internal functions and

acting together in an organised fashion.

Now assuming that a certain community has access to such a machine and

wants to study it for various reasons, how can it theoretically be done? The

analogy becomes insightful at this stage, as there are plenty of complex man-made

devices the reader can relate to, and which will serve to illustrate the thought

process. I will consider an airplane as example, because it is a complicated device

with a straightforward goal: safely flying in the air. A similar exercise can be

performed with a radio (Lazebnik, 2002).

Supposing that a fully functional airplane was found somewhere and the only

thing known about it was that the device is capable of flying. The aim is to

understand as accurately as possible how the machine works, in order to have

enough knowledge to be able to fix it in case it gets broken or malfunctions in the

future. In order to address this problem, I and Lazebnik (2002) argue in favour

of a straightforward descriptive approach, in line with the way biological sciences

are performed, namely describing the device in as much detail as possible.

The first task done would be to schematise the device, as shown in Figure

2.4-A. Then the fundamental physical parts would get annotated with arbitrary

names (Figure 2.4-B). With an increased understanding of the physical modules

composing the airplane, it would then be possible to discover the roles played by

the various parts of the machinery. Objects would receive functional annotations,

namely an explanation of what they do in the overall flying process, as shown on

Figure 2.4-C. Up to this step, the system would be characterised as a collection of

discrete physical and functional modules, each isolated from one another. Finally,

in order to appreciate the machine as a whole, it would become mandatory to

link the modules based on their relation types. Figure 2.4-D shows the high level

logical organisation of the machine, which integrates the parts to understand the

overall process.
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(A)

Cockpit
Command and Control

Turbine Engine
Thrust Generation

Wing
Lift GenerationFlap

Lift Increase and Drag

Cockpit

Turbine Engine

WingFlap
(B)

(C)

(D)

Cockpit
Command and Control

Turbine Engine
Thrust Generation

Wing
Lift GenerationFlap

Lift Increase and Drag
Lift Fly

Thrust

controls part of

Figure 2.4: Study of an airplane using a descriptive approach. (A) The device is first
schematised. (B) Physical parts are annotated with terms and concepts. (C) Physical
parts receive functional annotations. (D) The different modules are linked based on
their relative roles.

Unveiling the internal logic of the black box machine using this descriptive

methodology would later allow extensive querying of the model of the system and

simulation of its behaviour. For instance, assuming a problem was identified with

the lift of an airplane, preventing it from flying. From the model, it would be

possible to retrieve all the known parts directly or indirectly involved in the lift

process, derive a list of potentially faulty components and suggest ideas on how
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to logically repair it and restore its ability to fulfil its primary goal, flying.

The black box machine analogy allows one to better understand the require-

ments of a formal descriptive framework in order to capture biomedical knowl-

edge. From a drug discovery point of view, organisms can be fundamentally re-

duced to machines. The descriptive process of studying such machines I presented

is analogous to the approach researchers use to study organisms, understand dis-

eases and find treatments for them.

In order to move from an informal characterisation into a defined framework,

it is first necessary to determine what is required for a descriptive approach to

successfully capture biology. The next section will identify some of the concrete

needs for biomedical knowledge, derived from the theoretical model of the molec-

ular black box machine and its study.

2.2.2 Requirements for biomedical knowledge formalisa-

tion

In order to be efficiently reused and shared, biomedical knowledge has to be for-

malised. One way to investigate the living world consists of considering organisms

as complex machines; descriptions and annotations of the parts of the machine

then help to represent the knowledge and understand better the functioning of

the whole device. However, in order to be meaningful, this descriptive approach

needs to fulfil a series of criteria introduced in the following sections.

2.2.2.1 Mathematical framework

Extending a mathematical field is a key feature of any formal framework. Math-

ematics help to accurately formulate problems and provide the generic means to

solve them. In the case of biomedical knowledge, the ultimate aim is to reduce

the burden of diseases for society. To achieve this goal, a formal framework must

first be able to capture biological information. Secondly and more importantly,

it should be possible to further exploit the framework to deduce and prove as-

sumptions over it. For instance, the mathematical branch of geometry handles

questions related to shapes and space. Even if this framework provides only a

simplified view of reality, geometry provides the formal means to attest to the

validity of a building’s blueprints or optimise land exploitation. Similarly, in
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the biomedical domain, one should expect to be able to deduce implicit facts

or formulate new hypotheses regarding potential treatments directly out of the

mathematical formalisation, which is currently not the case. Connecting descrip-

tive biomedical knowledge with mathematics also insures that the framework can

benefit from the latest progress in the field. It helps different communities to

work together on the same issues from different angles. Formulating biomedical

knowledge in mathematical terms also opens the door for computer sciences to

assist later on with the implementation of a digital solution.

2.2.2.2 Definitions

The annotation of the parts of the machine requires the usage of a new and specific

vocabulary. Words and concepts can be ambiguous, especially when the system

analysed is complex such as a living body. A recent illustration of the importance

of definitions in biology is the debate over the ENCODE project conclusions

(Editorial, 2013); different scientists have different interpretations of the word

function, which shift the explanation of the results. Semantics, the investigation

of the meaning of symbols and words, can assist in this task and help to specify

the intended meaning of a concept. Moreover, a formal framework for biomedical

knowledge should be able to define any type of things: real-life objects, such

as molecule, protein or cell for example. Abstract biological processes like blood

coagulation or diseases such as cancer should also be part of the framework, as

they are essential concepts in biomedicine. Finally, in order to appreciate the logic

of the machine as a whole, it is mandatory to be able to link concepts and words,

in order to show how parts of the machinery interact together. The meaning

of such relations should be explicit and unambiguous, just as the definitions of

concepts.

2.2.2.3 Hierarchies and abstraction

In practice, organisms are probably more analogous to Rube-Goldberg machines

than airplanes (see Figure 2.5), with an internal logic sometimes difficult to under-

stand on its own; this results in practice in a tangled network of chemical wiring,

which can be abstracted and simplified into functional modules (Hartwell et al.,

1999) (Ravasz et al., 2002) (Machado et al., 2011) (Fisher and Henzinger, 2007).

Biomedical knowledge has to deal with entities ranging from chemical drugs to
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high level concepts such as species or biological processes. All these layers have to

be integrated and linked in order to understand the machine as a whole. In this

regard, it is critical for the formal framework to support abstraction and enable

the representation of hierarchical information.

Taxonomies have always been at the heart of biological sciences; take for in-

stance the work of Carl Linnaeus and the Systema Naturae (von Linné and Lange,

1770). Classifications are further used to organize species, protein and chemical

families, to name a few examples. Historically speaking, categorical information

has provided a good and intuitive framework to capture biomedical knowledge;

therefore, any attempt for further formalisation must be able to handle this type

of data, as well as to leverage its use.

Figure 2.5: Rube Goldberg machine: over-engineered machine that performs a very
simple task in a very complex fashion, usually including a chain reaction (Wikipedia,
2014h). The picture shows the “Self-Operating Napkin”. When the spoon soup is
raised, a cascade of events are triggered ending as the napkin coming toward the man’s
face. The task performed is relatively trivial, yet many steps are needed to execute
it. Organisms are assumed to be analogue to Rube Goldberg machines because of evo-
lution; the internal wiring is not necessarily straightforward and progressively evolved
and changed (Ravasz et al., 2002). Illustration from Wikipedia.

2.2.2.4 Distributed and scalable

Studying a system as elaborate as an organism requires the collaboration of a

large number of persons, working in parallel on different facets of the problem.

All these individuals must be able to access and share their knowledge, in order to
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communicate and be aware of the latest progress. Disseminating information has

been usually performed via printed literature, which is being replaced at the time

of writing by the World Wide Web and the Internet. This shift of infrastructure

allows the processing of more and more information in a digital context, where

computers can perform an increasing amount of the work in an automated fashion.

This characteristic is particularly interesting for biomedical information, as it is

possible to use computers as part of the formalisation process. However, this

approach leads to challenges, in particular scaling issues. As organisms are of

high complexity, it is therefore important to opt for a formal solution able to

cope with problems of large input size. It is assumed that biomedical knowledge

will only grow bigger with time, so a mathematical framework should take care of

this concern, in order to be future-proof. Finally, it is supposed that biomedical

knowledge is and always will be incomplete; in order to be powerful enough, the

mathematical formalisation has to able to handle missing information.

2.2.2.5 Molecular dynamism

One of the characteristics of living forms is their dynamism; as organisms are

made of molecules, they are subject to the laws of chemistry and molecular dy-

namics. Organisms can be defined in chemical terms as semi open systems (Meng

et al., 2004), which emphasises a strong relationship with the environment. For-

malisms coming from chemistry, such as conservation of mass (Wikipedia, 2014b)

or thermodynamics (Wikipedia, 2014j) can represent and solve such systems, yet

they are not suited to handle more abstract concepts from the biomedical domain.

An ideal formal framework for biomedical knowledge would appreciate the impact

and interaction with the environment, yet this requirement is extremely challeng-

ing in regards to the number of chemical reactions to be considered (Meng et al.,

2004). Moreover, the chemical formalisation strongly relies on kinetic parame-

ters to capture behaviour, which makes them vulnerable to missing knowledge.

Finally, another concern is the effect of chemical concentration in regards to the

function. For instance, the action of a drug strongly depends on its administered

dosage. Understanding in detail the biological machinery and deriving correct

predictions out of it implies considering molecular dynamics.

Formalising biomedical sciences can be done using a descriptive methodology;

this approach has been used since the origin of the field and is an intuitive way
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to represent biological systems and facts. I have presented in this section the

theoretical requirements deriving from the descriptive methodology and more

generally biomedical sciences. The next section illustrates how DLs can address

some of these requirements in order to mathematically formulate and further use

biomedical knowledge.

2.3 Description logics for biomedical knowledge

representation

Description logics (DLs) are part of a family of formal languages used to represent

the knowledge of a domain of interest. The plural form of the word logic indicates

that a multitude of languages exist, each one of them characterised by a certain

type of expressivity, as it will be seen later in this chapter.

Briefly summarised, the framework provides means to group and categorise

sets of things based on shared properties, and allows hierarchical classifications

to be built. More complex logical structures, such as roles, are further available

in order to enrich the modelling. While using DLs, the formalisation results in a

graph structure, which evolved from semantic networks (Allen and Frisch, 1982).

This characteristic is important for the biomedical domain, as it matches ongoing

graph and network representations, as it will be discussed in the coming sections.

DLs are well characterised from a theoretical point of view and implemented

in the Web Ontology Language (OWL), a standard supported by the World Wide

Web Consortium (W3C). For these reasons and because they address most of the

requirements presented before, DLs are an ideal mathematical framework that

can be used to formalise some biomedical knowledge.

2.3.1 Problems addressed by description logics

According to Gruber, DLs help to specify a conceptualisation (Gruber et al.,

2009). In the case of life sciences, the conceptualisation is the molecular machin-

ery, finding its specification being the task of the researcher. In this regard, DLs

come with a series of tools to define words and concepts, and in particular their

associated meaning or semantic. This feature allows terminologies to be built to

describe the molecular black box machine. For instance, it is possible to capture
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the relative difference in meaning between these three following abstract biolog-

ical concepts using DLs: positive regulation, negative regulation and regulation.

This task appears trivial for humans, yet the main motivation behind DLs is to

be able to express such things in an unambiguous and formal manner, in order

to deduce less evident information later on. With DLs, the interpretation of the

meaning of a concept comes from its relation to other concepts. For example, the

concept mammal is more generic than the concept human; this is asserted in DLs

by stating that every instance of human is also a mammal. The mathematical

interpretation is that the set of humans is a subset of mammals. An is a relation

could also be drawn between the two concepts if they were represented as nodes

(see Figure 2.6). This feature enables DLs to unambiguously define the meaning

of words from a mathematical perspective. It is also possible to define in a similar

way the meaning of relations and to use them to represent the logic and wiring

of the molecular machine later on. Taken together, these theoretical properties

alone address the needs for a mathematical framework (section 2.2.2.1), capable

of handling definitions (section 2.2.2.2) and abstraction (section 2.2.2.3).

(A) (B)

Human

Mammal Mammal

Human

is a

Figure 2.6: Example of problem addressed by description logics. (A) The concept
Human is more specific than the concept Mammal (all humans are mammals), which
can be represented as embedded sets. (B) Same logic captured, representing the con-
cepts as nodes and the relation as edge. The mathematical meaning of (A) (sets of
instances) is more accurate than the meaning of (B), yet both representation can exist
in practice, in particular in biology.

The relations between entities and concepts are meant to formally express the

known truth about a domain of interest (Stevens et al., 2007) (Krötzsch, 2012)

(Hitzler et al., 2009). This type of construct is called an axiom. A set of axioms

constitute a knowledge base (also called ontology). The main interest of a knowl-
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edge base is the possibility to use the meaning of the axioms to deduce implicit

things. Consider as an example the question, “What are the different types of

mammals?”. From the example before, Human would be logically deduced from

the connection between the two categories (Figure 2.6).

From the formal representation it becomes possible to generate proofs and ask

queries over the knowledge base; this operation is called reasoning and consists

of two tasks: subsumption and consistency checking. Briefly the structure of the

knowledge base arises from subsumption; concepts get classified into a taxonomy

based on the axioms. Consistency checking can detect inconsistencies or contra-

dictions that might be present in the knowledge base and report them. These

services will be presented in details later in this chapter. It is important at this

point to understand that the axioms of the knowledge base can be used to either

generate more knowledge or to assess the validity of the current representation

in a formal fashion. Reasoning tasks can be performed by humans and, more

interestingly, by computers too. In fact, DLs have been developed for this very

reason, to render domain knowledge computer understandable. The tight connec-

tion between computers and DLs is adequate for biomedical sciences, where it is

expected to face large-scale data, beyond a sole human brain’s capability to han-

dle at once. The interoperability with computers makes DLs adequate to address

the requirement for a distributed and scalable framework (section 2.2.2.4).

DLs are efficient at representing terminologies and logical relations, yet they

are unfortunately not appropriate to represent dynamic and temporal knowledge

(Kim et al., 2008). This framework presents limits in regards to the molecular

dynamicity requirement (section 2.2.2.5) and cannot handle well this facet of the

machine. Work-around solutions will be presented later to the reader (Chapter

3).

Because DLs appear to address well a majority of the requirements for biomed-

ical knowledge formalisation, I believe the framework to be suitable for the study

of the molecular machinery. DLs can help to annotate and connect the logical

parts in order to create a knowledge base, useful to understand the overall func-

tioning of the system. Reasoning services allow for the querying and further use

of the knowledge in a formal fashion, as expected from any mathematical frame-

work. Finally the computer implementation of DLs are well studied, therefore

part of the work can be automated, in order to come up with a scalable solution.

Scalability guarantees the long-term success of the framework, but comes at the
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cost of expressivity.

2.3.2 Expressivity and complexity

Wikipedia defines expressivity as the breadth of ideas that can be represented and

communicated. Consider for instance a molecule of methane; this concept can be

represented in at least three different ways, more or less expressive and detailed,

as shown in Figure 2.7.

CH4

(A) (C)

H H

H

H

C

(B)

Complexity and expressivity

Figure 2.7: Complexity and expressivity. Increasingly expressive and complex rep-
resentation of a methane molecule. (A) Molecular formula. (B) Representation of
the chemical bounds and their types between the atoms. (C) Representation using
molecular orbitals. Images from Wikipedia.

What abstraction level is the correct one? It depends on the type of questions

being asked on the model; all these three representations are legitimate and useful

in practice for different purposes. The main difference between these models is

their expressivity. Model 2.7-A for instance is less expressive than model 2.7-C; it

conveys less detailed information, yet it is easier to understand and maybe more

suited to study different types of problems. DLs are a family of logics, and just as

with the methane molecule and depending on the type of axioms considered, they

can model concepts in a more or less expressive fashion. In this respect, a scalable

solution is a trade-off between expressivity and complexity. One would like to be

68



as expressive as possible in order to study the molecular machine, yet able to deal

with the very large input size of biomedical information. Fortunately, one of the

strength of DLs is that their computational complexity has been particularly well

studied (W3C, 2014b) (ter Horst, 2005). It is possible to work with a restricted

set of axiom types, guaranteeing an acceptable complexity, appropriate for large-

scale implementation. These fragments of DLs are also called profiles or subsets;

one of them, the EL++ profile, is particularly interesting for biomedical sciences

(Baader et al., 2005) (Baader et al., 2008) (Hoehndorf et al., 2011a). I will focus

in the rest of this chapter on this very fragment, as it is possible to reason over an

EL++ knowledge base in polynomial time. This characteristic makes reasoning

tasks a tractable or so called easy problem (Cobham, 1965), which ensures that

the framework can still work and scale for extremely large datasets. Despite

offering a limited expressivity, the EL++ profile provides the means to address a

good portion of the requirements for biomedical knowledge formalisation, as will

be presented in the coming section.

In the quest to formalising biological information, DLs have the very clear

advantage of a well characterised computational complexity, ensuring the creation

of realistic practical solutions with the help of a computer, and not theoretically

limited by the size of the data. On the contrary, the computational complexity of

simulating and modelling biological systems at the level of the chemical reaction

is less neatly defined (Meng et al., 2004) (Gillespie, 2007) and appears much more

complex and challenging; the fuzziness around the hardness of this task leaves an

unanswered question as to whether modelling based only on chemical formalism

will scale to systems as large as a cell.

2.3.3 DLs’ components and relation to life sciences

Because of scalability concerns, it is wise to stay within the boundaries of rela-

tively low complexity (section 2.3.2). To address that matter, I have presented

the EL++ profile as good candidate language, combining a decent expressivity for

biomedical knowledge yet featuring constructs of an acceptable computational

complexity. I will now present these constructs and components and explain

how they relate to the life science domain. DLs are a theoretical framework and

find a computer implementation as the Web Ontology Language (OWL2) (W3C,

2014c). The EL++ family is more specifically implemented in the OWL2 EL pro-
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file (discussed later). Despite being very close conceptually, these two frameworks

have a few differences on the terminological level; I will therefore also mention

the OWL2 equivalent names and symbols as a reference. OWL2 will be briefly

discussed later in this chapter.

2.3.3.1 Description logics entities

In order to represent the domain knowledge, DLs offer three kind of core entities,

or building blocks: named individuals, roles and classes. These entities are used to

represent the world, and in this case, the components of the molecular machine.

The first question that comes to mind is why these three types? The choice

is purely arbitrary and likely derives from ancient Greece and the early work on

categorisation done by philosophers such as Parmenides and Aristotle (Wikipedia,

2014d). It appears that these three types can represent quite a lot of information,

and they are fairly intuitive for humans to understand and reason over. They are

an acceptable way to abstract the world around us.

Named Individuals

OWL2 terminology: individuals

The first building block handles individuals. Individuals refer to real-life in-

stances and objects: this squirrel in a tree, this single molecule of water or glucose,

this pen on a desk are all examples of individuals. Individuals are at the centre

of DLs modelling. Everything else gravitates around them; all the further rep-

resentation is done in regards to them. Every object can be considered as an

individual.

Surprisingly, individuals are very rarely represented in life sciences. For ex-

ample when one speaks about a particular protein, the reference is made towards

the canonical version of the protein and not to the very one instance mixed with

the millions of identical others. The same applies for diseases and species; the

life scientist is concerned with extracting generic patterns and categories and

reasoning at a more abstract level. This can be achieved by considering sets of

individuals, so called classes or concepts.

Classes or concepts

OWL2 terminology: classes

70



The second building block type handles concepts and terminologies. DLs

concepts are interpreted as mathematical sets, namely groups of objects or in-

dividuals. Concepts represent an abstraction over instances and fit biological

reasoning well. For example, the concept human contains at least two individu-

als, the reader and myself (and assuming I am not the reader). Most biomedical

ideas can be described as a concept, including not only material entities such as

molecules (e.g, P53 or paracetamol) but also immaterial processes or functions

(e.g, blood coagulation or catalytic activity). This characteristic makes DLs con-

cepts very suitable to describe the molecular machine. The difference between a

DL concept and its members is illustrated in figure 2-8-A.

(A) (B)

Concept Human

John Mary

Role

Individual

Individual

knows

John Mary

Figure 2.8: Description logics core entities: (A) Concepts and Individuals: a concept
or class is a set containing some individuals. On the example shown, Human is a
concept, John and Mary are both distinct individuals. (B) Roles and Individuals: role
are linking two individuals. In the example, John and Mary are still individuals linked
by the role knows, specifying their relationship.

N.B: DLs concepts are also sometimes called classes. Because the word class

is less ambiguous than the word concept in the context of this work, I decided

to use refer to DLs concepts as classes in the rest of the manuscript. The words

category or type will also be used to refer to classes, later in the document. The

reader can simply consider that class, category, type and concept refer to same

idea in this manuscript.

Roles

OWL2 terminology: properties
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The last building block deals with roles, namely how individuals relate one to

another. Roles are more subtle and flexible to use than the two previous entity

types. Basically they exist to capture a logical link between two individuals,

and are so called binary in this respect (see Figure 2-8-B). In the study of the

molecular black box machine, roles connect the modules and processes; they can

represent the logical connections of the machine. Examples of roles commonly

used in the biomedical domain are: regulates, part-of, involved-in, etc. Note that

roles are only linking individuals; they cannot be used to directly link classes.

2.3.3.2 Axioms

In DLs, the axioms are the reflection of our current vision of the world; they

express the mathematical truth and help both humans and machines to interpret

the meaning conveyed by the entities of the knowledge base (classes, individuals

and roles). Axioms enable deductions to be made. For instance, let’s assume

that there is an enzyme called thrombin which is somehow involved in blood

coagulation (first axiom) and that a compound named ximelagatran affects the

activity of thrombin (second axiom). From these axioms, one could conclude that

the ximelagatran might logically affect blood coagulation. The progression from

a set of axioms to a conclusion is called reasoning, and, as discussed previously,

this operation can be performed by humans or by computers with the help of a

program, called a reasoner. Different types of axioms exist, depending on what

needs to be modelled.

Assertional axioms (ABox)

The assertional axioms (or assertional box - ABox) are used to assert the truth

about individuals. Although actual individuals are rarely represented as such in

life sciences, it is still important to understand these fundamental types of axioms

before looking at more complex ones.

Concept assertion

OWL2 terminology: class assertion (or types). Concept assertion axioms link

individuals to their classes or types. For example, let’s consider a knowledge base

containing one named individual called john and one class named Human. The

axiom asserting that John is a human is written Human(john) or sometimes john
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: Human. It states that john is a member or instance of the class Human.

Role assertion

OWL2 terminology: property assertion (or facts). This axiom captures the re-

lationship between two individuals connected via a role. For example, consider

two named individuals, John and Mary, and a role, knows. Asserting the fact

that John knows Mary as shown in figure 2-8-B is written knows(john, mary) or

(john, mary) : knows in DLs. Role assertions are sometimes said to create triples

or sentences; this axiom type helps to represent logical networks or graphs.

Terminological axioms (TBox)

The terminological box contains the axioms related to classes, which are there-

fore of primary interest for the biomedical domain. TBox axioms formalise the

relationship among classes in regards to the individuals they contain.

Concept inclusion (v)

OWL2 terminology: subClassOf. Concept inclusion expresses the relationship

between two classes, one being more specific than or subsumed by the other.

Assuming that there are two classes, Human and Mammal, the concept inclusion

axiom Human v Mammal entails that all instances of Human are also instances

of Mammal, or in other words all humans are mammals. Note that even if the

assertion was based on a mental reasoning about individuals, in practice we do

not see any individual names, only classes. The axiom can be visualised in Figure

2-9, alongside concept assertions.

Concept equivalence (≡)

OWL2 terminology: equivalentTo. It is sometimes interesting to define a set of

individuals as equal to another set of individuals. This construct is mostly used

to create new classes from existing ones or to query a knowledge base. This

axiom can state for example that the class Human is equivalent to another class

or combination of classes, as will be seen later in the chapter.

Relational axioms (RBox)

The meaning of a role can be further specified in regards to the other roles of the

knowledge base, in a similar way as is achieved with terminological axioms.
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Subclass Human

John

Mary

Individual

Class Mammal

Snowy 
the dog

Human ⊑ Mammal
Human(John)
Human(Mary)
Mammal(Snowy the dog)

Subclass ⊑ Class
SubClass(Individual)

Figure 2.9: Examples of description logics axioms, in blue with their graphical rep-
resentation (concept assertions and inclusion axioms). Axioms specify the semantics
linking the basic entities (individuals, classes and roles). From a series of axioms or
knowledge base, it is possible to deduce information. The question “What are the mam-
mals present in the knowledge base?” would return as a result Snowy, but also John
and Mary, even if they are not directly declared as such, from the semantics encoded
in the axioms.

Role inclusion (v)

OWL2 terminology: subPropertyOf. A role inclusion axiom defines the connec-

tion between two roles. Assuming that R1 and R2 are both roles in a knowledge

base, and that the following role inclusion axiom holds: R1 v R2, it means that

all the time a pair of individuals is linked by the role R1, this pair is also linked

by R2. The role inclusion axiom is analogous to the concept inclusion axiom for

roles. A biological example concerns regulation: the role positively-regulates is

subsumed by the role regulates : positively-regulates v regulates.

2.3.3.3 Constructors

It is possible to specify the semantics of the core entities using axioms. The ex-

pressivity seen so far is however fairly limited. Fortunately the DLs constructors

provide new means of expression as illustrated in the coming sections. Construc-

tors allow for the composition of complex types from simpler ones analogously

to how symbols of cuneiform scripts appeared to be used in some situations (see

figure 2-10-A). Just as with axioms and entities, there are different types of con-
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structors.

ParentMan

Head

Food

Eat

(A)

Father ≡ Man ⊓ Parent

(B)

Figure 2.10: Description logics constructors. (A) Constructors help to compose with
classes. The logic behind constructors is analogous to some of the semantic found in
cuneiform scripts (3000 BC) (personal interpretation). (B) Concept intersection: the
individuals member in the same time of the concept Man and Parent are asserted to
be of type Father on the axiom presented.

Intersection (u)

OWL2 terminology: intersection (and, that)

The intersection constructor corresponds to the basic Boolean and operator

used to describe overlapping sets. The figure 2-10-B depicts the meaning of the

construct. An intersection can be used to formulate new expressions, which are

used to create more complicated axioms. The class Father can for example be

expressed as being equivalent (equivalent concept axiom) to the intersection of

the class Man and Parent. Both conditions have to be true in order to satisfy

this expression. From this axiom, assuming one knows that an individual is both

a parent and a man at the same time, one could deduce that this individual is

also a father. Note that because of the equivalence axiom, the class Father is

also inferred as being a subclass of Man and Parent ; indeed if an individual is a

father, it is therefore a man and a parent too from the definition.

Existential Restriction (∃)
OWL2 terminology: existential restriction (some)
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Existential restrictions encode a semantic subtle to grasp at first encounter

(personal teaching experience). Yet they are particularly suited for the biomedical

domain, as a means to link classes via roles, something not doable with the

constructs introduced previously. An existential restriction captures the fact

that all individuals of a type X are necessarily linked by a property to some of

the individuals of a type Y. For example, the expression ∃ part-of.Cell refers to

the sets of individuals that are necessarily part of a cell (see Figure 2-11-A). The

presence of one of these individuals implies that here exists an instance of cell

inside which they are located, no matter what. This expression can be combined

with a concept inclusion axiom; for example, the class Nucleus can be expressed as

follows: Nucleus v ∃ part-of.Cell. The axiom entails that a nucleus is something

that is always part of a cell. But only being part of a cell (∃ part-of.Cell) does

not necessarily qualify something to be a nucleus. Moreover, the axiom does not

entail that all the cells have a nucleus. The example is represented and labelled

in figure 2-11. Existential restrictions are very useful to represent biomedical

knowledge; they allow one to link classes with roles, without explicitly referring

to specific named individuals. Their entitlements are not too strong and often

adequate for the biological world.
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Cell∃part-of.Cell

(A)

part-of

part-of

part-of

Cell∃part-of.Cell

(B)

part-of

part-of

part-of

Nucleus

Figure 2.11: Description logics constructors: existential restriction (A) Example of
existential restriction expression with the implication. Note that all individuals of ∃
part-of.Cell are linked to a cell individual via a part-of role. Yet some cell instances
exist without being linked (in blue - for instance red blood cell). (B) Definition of
the class Nucleus from the existential restriction construct: Nucleus v ∃ part-of.Cell,
meaning that all instances of nucleus are necessarily linked to an instance of cell. There
exist some instances of ∃ part-of.Cell not being nucleus instance (orange). This type of
construct is commonly encountered in biology (e.g. Ashburner et al. (2000)).

Role composition (◦)
OWL2 terminology: chained properties (o)

The last constructor presented is the role composition. This construct enables

chaining two roles together in order to create a new one. The typical scenario for

this constructor is the uncle role, defined as a role inclusion axiom: brother-of ◦
parent-of v uncle-of. It is interpreted as if an individual X is the brother of a

person with a child, then X is the uncle of the child (see Figure 2-12-A). Closer

to biology, an example of role composition is the expression regulates ◦ part-of,

which can be used to create the inclusion axiom: regulates ◦ part-of v regulates.
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This means that when the role regulates is followed by the role part-of, it could be

simplified into a single regulates role. There is a special type of complex property

inclusion called transitivity. It means that the role is chained with itself. For

example: part-of ◦ part-of v part-of. The axiom is understood as if X is part of

Y and Y part of Z then X is part of Z (see Figure 2-12-B).

(A)

brother-of parent-of

uncle-ofJohn Paul

Ian

brother-of ◦ parent-of ⊑ uncle-of

mitochondrion cytoplasm cell
part-of part-of

part-of

(B)

part-of ◦ part-of ⊑ part-of

Figure 2.12: Description logics constructors: role composition. (A) Example of com-
posed property, the uncle relationship. When two instances are linked using a brother-of
property, then followed by a parent-of property, then a reasoner can create a property
between the first and the last individual, as shown on figure between John and Paul.
(B) Informal illustration of a transitive property using the GO specification (GO, 2014).
When two terms are connected by a part-of relation and directly followed by another
part-of property, then a part-of relation can be added between the first and last term.
For instance here one can deduce that mitochondrion is part of cell, from the asserted
facts. Note that this representation is not formal; OWL representation of OBO ontolo-
gies will be addressed later in this chapter.

2.3.4 Reasoning services

Combining basic entities, constructors and axioms gives a knowledge base or

formal representation of a domain of interest whose content can be handled by a
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reasoner. Considering the equation x+ 2 = 6 as an analogy, axioms and entities

helped to mathematically formulate the meaning of the symbols =, + and 21;

now a reasoner can automatically solve the equation and find the value of x. In

the biomedical case, the problem faced is different; the main task of the reasoner

will be to classify the knowledge base and to answer queries about the functioning

of the molecular machine.

As briefly mentioned earlier, reasoners perform two types of operations: sub-

sumption and consistency checking of the knowledge base. I will not discuss

consistency checking, as it is only meaningful if a certain type of axiom is present

(disjunction axiom and datatypes - not presented in this document, yet part of

the EL++ profile). The subsumption service is also called classification. In this

context, it means assigning the right class to the correct place based on the mean-

ing of the axioms. Classified classes form a taxonomy ; for example the section

2.3.3.3 explains how the class Father can be asserted as equal to the intersec-

tion of the classes Parent and Man. From this axiom, the reasoner can deduce

that Father is subsumed by Man (all fathers are man), therefore Father can be

classified as subclass of Man and represented as such in a taxonomy (see Figure

2-13).

(A)

⊤

Parent

Father

Man

⊤

Parent

Man
Father

Father

(C)

Reasoning

Father ⊑ Man ⊓ Parent

(B)

Figure 2.13: Description logics subsumption service example. (A) Taxonomy of
classes not classified. (B) From the axiom present in the knowledge base Father v
Man u Parent (blue), the reasoning can deduce the taxonomy presented in (C). The
class Parent and Man subsumes Father, which appears deeper in the hierarchy, evi-
dence of a more expressive meaning. The symbol > represents the top class (Thing in
OWL) and is always present above every other class of the knowledge base.
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The subsumption service is also responsible for answering the queries formu-

lated over the knowledge base. A query is a standard class expression. The list

of classes subsumed by the expression is the answer. DL queries are best orally

formulated in the form of “What are the things that...”. For example, “What are

the things that are part of the cell?”, expressed ∃ part-of.Cell in DLs. From the

example of section 2.3.3.3, the reasoner would deduce nucleus (see Figure 2-11).

The complexity of reasoning services depends on the types of axioms present in

the knowledge base. The ones I have discussed here are part of the EL++ profile,

guaranteeing a tractable reasoning capable of handling large biomedical data

input. Many more axiom types exists, featured by other DL families (Krötzsch,

2012). Deductions over the knowledge base are performed by the reasoner, and

can be simplified as a classification where the taxonomy of classes is generated.

2.3.5 The Web Ontology Language 2 (OWL2)

DLs are a theoretical mathematical framework. It is possible to manually exploit

the meaning of axioms in order to perform reasoning services, but the goal is

to eventually use a computer to perform this task, for time and data size con-

cerns. In this regard, DLs are specified for computer implementation by the Web

Ontology Language (OWL2) (W3C, 2014c). OWL2 was primarily designed to

help data interoperability over the World Wide Web and is tightly linked to the

semantic web. Yet as OWL2 derives directly from DLs, it is possible to use the

language to deal with DL-related problems, such as the study of the molecular

black box machine. OWL2 terminology is slightly different from that of DLs,

and the language provides some extra functionalities relevant to software imple-

mentation: concepts are called classes, and rather than having a human readable

name such as Father, entities are identified with a Uniform Resource Identifier

(URI), for example http://www.example.org/Father. This feature guarantees

the provenance of the information, as domain names are unique in the World

Wide Web (Berners-Lee et al., 2001). I will not discuss in details here the seman-

tic web principles and design; the reader can simply consider that OWL2 enables

the implementation of DLs in a computing setting.

One of the distinctive features of OWL2 is the open world assumption. This

statement implies that nothing can be deduced from missing information. As

an example: if the fact that drug A perturbs protein B is present and someone
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asks “Does drug A perturbs protein C?”, the answer would be unknown. On

the contrary, in a closed world setting such as relational databases the answer

would be “drug A does not perturb protein C”. The open world assumption

fits the requirement of biomedical knowledge well; it is fair to assume that our

knowledge of the living world will never be complete, therefore deductions can

only be made over explicit evidence.

2.4 Implementation with life-science information

In summary, the theory presented previously states that DLs are a suitable the-

oretical framework for the descriptive study of biological organisms. The reader

now might be wondering how an actual knowledge base is built using DLs. First

of all, multiple implementations of the descriptive framework to study the black

box machine can exist. The implementation of the theory varies depending on

the questions asked and granularity required. Chapter 3 will present an example

of implementation, made with a particular set of axioms, addressing the mode of

action and drug repositioning. Other possible implementations could use other

DLs features to characterise the black box machine to study other biomedical

topics. However, in any case and in order to be successfully implemented in prac-

tice, this descriptive approach needs to extend the current solutions used to store

biomedical data as much as possible. Reusing the information already available

is beneficial as it decreases the amount of work to be done and allows for a non-

disruptive transition from existing and adopted technologies. I will discuss here

how the theory, namely the descriptive approach based on DLs, relates to cur-

rent biomedical databases and ontologies - traditional keepers of the knowledge.

Brain, a programmatic library dedicated to the OWL2 EL profile, will finally be

introduced to show how scalable real-life applications can be built using DLs.

2.4.1 Integration with biomedical ontologies

2.4.1.1 Open Biomedical Ontologies (OBO)

In the early 2000s, with the advent of high-throughput DNA sequencing tech-

nologies, it became necessary to annotate genomes in a consistent fashion. The

idea was to transfer the findings made in the sequences of one species to another
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organism. The Gene Ontology (GO) was first developed to address this prob-

lem (Ashburner et al., 2000) as a controlled vocabulary, representing molecular

functions, biological processes and cellular locations. Following the successful

adoption of the resource by the community, the Open Biomedical Ontologies

(OBO) consortium was created, with the aim of creating a suite of orthogonal

interoperable reference ontologies in the biomedical domain (OBO, 2014). OBO

ontologies, usually contain synonyms of the described concepts as well as logical

links between terms. It is encouraged to re-use the terms present in existing

OBO ontologies, in order to create a net of biological concepts, sometimes called

an integration layer. The OBO file format is traditionally used to serialise such

ontologies (see Figure 2.14). This format provides a straightforward graph rep-

resentation, similar to semantic nets, ancestors of DLs.

(A)

[Term]
id: GO:0005634
name: nucleus
namespace: cellular_component
def: "A membrane-bounded organelle of 
eukaryotic cells in which chromosomes 
are housed and replicated. In most cells, 
the nucleus contains all of the cell's 
chromosomes except the organellar
chromosomes, and is the site of RNA 
synthesis and processing. In some 
species, or in specialized cell types, RNA 
metabolism or DNA replication may be 
absent."
is_a: GO:0043231 ! intracellular 
membrane-bounded organelle

(B)

Figure 2.14: Open Biomedical Ontologies format and representation. (A) The hier-
archy above the term nucleus is presented. Black arrows entail an is a relation, blue
ones a part-of relation. OBO ontologies are represented as directed acyclic graph. (B)
Entry for the term nucleus, illustrating the format used to serialise OBO ontologies.
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The simplicity of the OBO format certainly helped the adoption of the stan-

dard by the community, yet it presents a limited expressivity with loose semantics,

in particular from a computational perspective. Following the recent rise of se-

mantic web technologies, the OBO community is currently considering a shift

from the original OBO format into OWL2. Automated conversion from one rep-

resentation to another has been described in the literature (Tirmizi et al., 2011)

(Hoehndorf et al., 2010). The main advantages in favour of adopting OWL2 are

the possibility to reuse the numerous tools that have been developed as well as

taking advantage of an extended expressivity to describe complex concepts.

The descriptive methodology presented in this chapter relates to the work

done by the OBO community. First of all, as OBO semantics can be represented

in OWL2, it is possible to directly reuse any OBO ontology to study the biologi-

cal machine. Abstract concepts such as cellular functions or anatomical parts are

extensively characterised inside some of the OBO ontologies and are therefore

available to describe the parts of the cellular machinery. The main difference

between OBO ontologies and descriptive knowledge bases comes from the lack of

commitment towards interoperability and universality by the latter. Indeed, the

reader will notice that I did not employ the word ontology to characterise the

entity behind the study of the molecular machine. I purposefully avoided the use

of the term in order to make clear that absolutely anything can be represented

with DLs, as long as it serves somehow the study of a biomedical problem; the

term knowledge base was used rather than ontology for this very reason. The

main motivation behind the descriptive framework is to use computers and au-

tomated reasoning in an efficient, realistic and scalable fashion in order to derive

biologically relevant information. Ontological commitment, in particular to top

level concepts, entails the addition of complex axioms, which are hard to com-

pute and most of the time outside of the OWL2 EL profile, such as universal

quantifications for example (Krötzsch, 2012). As a result, it becomes practically

and theoretically impossible to use any reasoning engine over such an input size,

defeating the purpose of representing information using an expressive language

as OWL in the first place.
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2.4.1.2 Approximations and assumptions

The biomedical ontology community is very eclectic, with representatives from

various disciplines such as mathematics, computer science, philosophy and bi-

ology. Despite enriching the dialogue and improving the overall quality of the

work resulting from this complex social network of people, it can also sometimes

lead to animated arguments, pitting the vision of one branch of the community

against another (personal experiences). Ironically, the ontology community can-

not even agree on the meaning of the word ontology (Schulz and Jansen, 2013).

In order to still make interesting usage of the powerful framework of DLs, I came

to consider a set of rules of thumb, identified throughout my work, which will be

briefly summarised in this section.

OWL and DLs can only define things arbitrarily. Just as in statistics, which

are very popular in biology, the tests and data representation considered always

depend on the type of questions to be answered, balanced with their computa-

tional complexity. It has been extensively argued that DLs are only relevant for

a subset of biomedical knowledge, in particular to handle statements that are

so called universally true (Schulz and Jansen, 2013), meaning true all the time,

no matter what. Approximations are strongly discouraged in this mindset. I

personally came to disagree with this argument; heuristics and approximations

are present everywhere in biology. For example, the typical biological axiom con-

sidered as universal truth is the subclass relationship between species (Schulz

and Jansen, 2013) (Krötzsch, 2012).The class Human is a subclass of Mammal,

meaning that every single human individual is also a mammal. A similar pattern

can be applied across all other species. Any biologist will certainly agree that

the boundary between two species is often fuzzy, as the main criteria used to

distinguish them is based on the way organisms reproduce (Hanage, 2013). For

some cases, such as mammals, it works rather intuitively well, but the approach

is limited for some other species such as bacteria for instance (Hanage, 2013).

This ambiguity is well known as the species problem and illustrates why it is im-

possible to simply clear cut two groups of living individuals in an ontological way

while capturing evolution and biological meaningfulness. Another axiom widely

considered as universal is the disjunction between the Male and Female classes,

meaning that an individual cannot be a member of these two classes at the same

time (W3C, 2014a). Such a statement, in addition to being socially offensive, also
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overlooks the complexity of the development of the hormonal system. Numerous

existing individuals express sexual hormones in a deregulated fashion (1/1000

births) (Dreger, 1998), leading to conditions such as hermaphroditism or gonadal

dysgenesis. Their sexual anatomy therefore spans in between the typically ex-

pected sexual traits. Such cases are particularly relevant to medicine, yet a naive

ontological separation between sexes would classify these instances as inconsistent

and not handle them properly.

As shown, modelling complex systems such as biological organisms almost

necessarily requires some approximations. Universality rarely holds in nature;

I therefore argue that it is acceptable to represent biological approximations in

order to tackle relevant problems of interest. The main motivation behind this

deductive framework is the attractive possibility to use it in combination with

a computer; this characteristic makes DLs unique and the focus should be put

there. Biomedical axioms will most likely always be approximations, because

of the underlying physical complexity of biological systems. By using the less

restrictive term knowledge base rather than ontology I also wanted to make this

distinction: biomedically relevant formal deductions can be made using DLs, and

biological approximations can be represented. The rules of thumb to guide the

representation I have adopted are the following:

• Defining a series of competency questions. Such questions are the tests

a reasoner should be able to deduce from a formal knowledge base. All

the modelling resolves later to answer correctly these questions of interest.

Approximations can be made, as long the assumptions are understood and

interpreted correctly.

• Staying in the EL++ (or OWL2 EL) profile, incline to scalability (Hoehndorf

et al., 2011a). Nowadays, the input sizes of interesting biomedical problems

are too large for more expressive families such as OWL2 Full or OWL2

DL. Examples from the past show how a too expressive modelling fails to

scale and give the promised answers in terms of reasoning (Vempati et al.,

2012) (Golbreich et al., 2006) (Mungall et al., 2010) (Mungall et al., 2011)

(Villanueva-Rosales and Dumontier, 2008).

• Trying to compromise between the constructs available inside EL++ and

biomedical approximations, in order to answer the competency questions.
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• Not aiming for universality. It is of good practice to reuse and scale over the

work done by other people, in the quest of interoperability (reusing terms,

identifiers, patterns, etc.). However, the race for universality is much more

challenging, as discussed before. I always advise designing knowledge bases

to first answer the competency questions, and secondly, depending on time

and energy, to maximise interoperability and aim for universality.

• It is to be assumed that deductions made over a biomedical knowledge base

still require human interpretation. OWL and DLs are sometimes marketed

(including by myself) as “knowledge discovery” tools; in practice the true

discovery of new knowledge is made by a biomedical researcher, guided by

the content of the knowledge base. A representative illustration of this ar-

gument is a figure featured on the original article introducing the GO (Ash-

burner et al., 2000), where the authors erroneously draw is a arrows linking

terms in the opposite direction. Despite being semantically erroneous, the

logic can be easily interpreted by any biologists, hence the success of the

resource.

• Finally, I quote Hendler (Hendler, 2014): a little semantics goes a long

way. This sentence is the motto of the semantic web movement and is

widely accepted in the biomedical community too. By focusing on a few

axioms, in particular on relational ones, a great and concise expressivity

can be reached, as it will be shown with the definition of the mode of action

presented in the coming chapter.

2.4.2 Integration with databases

As of 2014, a large amount of biomedical information is stored inside relational

databases (Brooksbank et al., 2014). Some of this content is publicly available

over the Internet, distributed by large organisations such as the European Bioin-

formatics Institute (EBI) or the National Center for Biotechnology Information

(NCBI). Each database usually focuses on one theme in particular: for instance,

ChEMBL (Gaulton et al., 2012) provides millions of records about small molecules

and their bioactivity against protein targets. These protein targets are themselves

referenced inside Uniprot (UniProt-Consortium et al., 2013), a resource indexing

the known information related to gene products. Records described in one place
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are moreover hyper-linked or crossed-referenced to records present in another

resource, with the help of identifiers.

Biomedical databases can be seen as catalogues indexing the parts of the

molecular machinery, yet not providing any logical information on how these en-

tities connect. Interestingly, DLs provide the means to capture this logical layer,

thanks to the expressive power of roles (object properties in OWL2). DLs can per-

fectly integrate with the information currently provided by biological databases,

in order to enhance the semantics of the data. Consider the following scenario as

an example: it is known from experimental evidence that a protein X is involved

in blood coagulation, and a researcher would like to record this biological piece

of knowledge. As of 2013, this statement is partially captured using the infor-

mation of three repositories: Uniprot, the GO and the GO Annotations (GOA).

The database Uniprot provides the identifier for the protein X, the GO gives an

identifier for the term blood coagulation, and finally inside GOA one would find

an association (pairing) between protein X and blood coagulation. From the DLs

perspective, the same statement can be formally captured by an axiom: protein

X subClassOf involved-in some Blood Coagulation. Here the logic-less annotation

or association between the protein and the biological process has been formalised

into something more meaningful and expressive. The role involved in can indeed

be combined with other roles in order to reflect the logic behind the biological

system. This example shows how DLs can reuse the information already present

and leverage the connectivity between classes (Jupp et al., 2012). I will present

in the next chapter how these relations can be combined and structured to define

the concept of mode of action and automatically classify drugs.

Converting the information from a relational database into OWL implies a

change in the representation. Traditionally, database entries are considered as

instance records, belonging to a table or schema. This fact implies that a record,

such as protein X as available in Uniprot would correspond to an instance or

individual in DLs (section 2.3.3.1). However, in practice, billions of copies of

this canonical protein X exist. Therefore when biological entities or concepts are

modelled in OWL, instances often become classes. This representation is closer to

the reality and should simplify the modelling and connection with other concepts,

like molecular functions. However, it is perfectly acceptable to represent proteins

as instances too in my opinion, depending on the type of question being asked

over the knowledge base. For instance, proteins could be individuals within a

87



protein or domain family, as indexed by InterPro, database dealing with protein

domains (Zdobnov and Apweiler, 2001).

2.4.3 Brain library - implementing programmatic solu-

tions

Successfully implementing a knowledge base requires a compromise between scal-

ability and expressivity. I argued in favour of the EL++ profile (equivalent to

OWL2 EL), providing an adequate expressivity for biomedical sciences and en-

abling tractable reasoning. The discussion so far was mostly focused on the

theoretical aspect, yet in order to be used in a programmatic way, a library

or programmatic framework is needed. At the time of writing, two main free

and open-source solutions exists to work with the OWL2 EL profile: Protege

(Knublauch et al., 2005) and the the OWL-API (Horridge and Bechhofer, 2011).

Protege is a popular graphical user interface, useful to develop toy examples and

define the core axioms of a knowledge base. However, it is not very suitable for

large knowledge bases, where potentially thousands of classes need to be han-

dled. A programmatic alternative is a Java-based library called OWL-API. The

framework implements the standard specification for OWL2 in deep granularity,

yet it becomes quickly cumbersome to work with it in order to perform analyses

and run biomedical queries. For these reasons, I developed Brain (Croset et al.,

2013b), a Java library bridging the gap between these two solutions. This work is

freely available online (https://github.com/loopasam/Brain) and open source.

The library features a simplified interaction with DLs and OWL2 axioms using

the Manchester syntax (Horridge et al., 2006). Figure 2-15 shows an example of

a program written with the library.

Brain uses the ELK reasoner (Kazakov et al., 2013) to perform reasoning ser-

vices over the knowledge base. ELK is dedicated to the EL profile, fast (Gonçalves

et al., 2013) and can perform reasoning tasks in parallel; these characteristics

make it an ideal candidate to handle biomedical knowledge. The Brain library

mostly focuses on querying the underlying knowledge base; in this regards, OWL

queries can be formulated as string expressions, which will then get automatically

converted into Java objects and processed by the reasoner. Web applications can

be safely built over the framework, as special care was put on thread manage-

ment and coordination. Brain provides as well a series of convenience methods,
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//Creation of the Brain object instance
Brain brain = new Brain();

//Add an OWL class to the knowledge base:
brain.addClass(“Nucleus”);
brain.addClass(“Cell”);

//Add an OWL object property:
brain.addObjectProperty(“part-of”);

//Declare the axiom:
brain.subClassOf(“Nucleus”, “part-of some Cell”);

//Integrate the content of an external knowledge base:
brain.learn(“http://example.org/bar.owl”);

//Query the knowledge base:
List<String> subclasses =

brain.getSubClasses(“part-of some Cell”, false);

//Free the resources used by the reasoner:
brain.sleep();

//Save the knowledge base:
brain.save(“/path/to/ontology.owl”);

Figure 2.15: Example of Java program written using the Brain library. Each com-
mand is preceded by a comment explaining the functionality.

useful to address biomedical questions; indeed, biological inference often derives

from similarity metrics, such as sequence comparison (Stevens et al., 2007); the

taxonomic structure of a knowledge base can also be used to derive a closeness

index, so called semantic similarity, reflecting how close two entities are in the

classification. The convenience methods provided by Brain calculate the Jaccard

index over the set of superclasses. An illustration of the methodology is depicted

in Figure 2-16. This type of analysis is out of the scope of DLs, yet particularly

important for generating and exploring drug repurposing hypotheses, and will

be further discussed in the coming chapters. The library offers the possibility

to export graphs of the knowledge base, as exemplified by Figure 2-17. This

functionality comes in handy to build web applications and to present content
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to users. Finally the reader might be interested by Tawny OWL (Lord, 2013), a

similar application released approximately at the same time as Brain and with

similar goals, but written in Clojure.

A B C A B C

Jaccard index = J(A, B) =
|𝐴∩𝐵|

|𝐴∪𝐵|

(B) J(A, B) = 2/6 ≈ 0.33 J(A, C) = 1/7 ≈ 0.14 (C)

(A)

Figure 2.16: Jaccard coefficient implementation in the Brain library alongside exam-
ples. (A) Definition of the coefficient: The similarity between two entities is defined as
the ratio of the categories in common divided by the total number of categories. (B)
and (C) Examples of computation of the index over two pairs (letters and in orange).
The taxonomy is in black, super-classes shown with the blue or green area. The index
is higher between the pairs A and B (0.33) than between the pair A and C (0.14),
representing the fact that A and B are closer in the taxonomy and have a more similar
meaning. The coefficient will be used greatly later to compare the function of drugs.

2.5 Summary

Living organisms are complex, yet understanding their internal machinery is re-

quired in order to develop new therapies and find treatments for diseases. Despite

being eventually only made of chemical interactions, biological systems can be
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Figure 2.17: Example of graph generated from the Brain library (content not perti-
nent): from an input concept, it is possible to export the whole ascendant taxonomy
as scalable vector graphics (SVG), particularly useful to display information on web
browsers.

best analysed at a higher abstraction level. I presented how the study of life and

resulting knowledge can be formalised using DLs. The main advantage of this

framework is the possibility of defining abstract concepts (e.g, processes or phe-

notypes) as well as real entities (e.g, proteins or metabolites) in order to query or

derive information using a computer. The logical links between modules of the

cellular machinery can be modelled, and, computing their entailments resolves

to a classification problem. DLs are less precise than molecular modelling, yet it

is possible to derive formal solutions while considering the cellular system as a

whole.

This approach integrates nicely the current information, available in resources

such as databases and ontologies, in order to derive practical implementations.

The analogy cell-machine will serve as the theoretical basis to formally define the
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concept of mode of action and address drug repurposing questions, as I will show

in the next chapter and as summarised in Figure 2-18. Scalability was a core

concern, in order to implement robust application. In this regard, I discussed

the EL++ profile, designed and inspired by the axiom types found in biomedi-

cal ontologies like SNOMED and guaranteeing the implementation of pragmatic

solutions.

Organism 
specification

Molecular 
black box Description logics (DLs)

Web Ontology Language (OWL)
Functional 

Therapeutic Chemical 
Classification System 

(FTC)

(A) Theory (Specification)

(B) Implementation

Figure 2.18: Summary of the molecular black box theory. (A) To address drug
discovery, organisms can be compared to black box machines. Description logics are a
useful framework to unveil the specification of the black box machine. (B) The theory
can be implemented (dashed arrow) for computers using the Web Ontology Language
(OWL). Chapter 3 will present an example of implementation of the theory with the
Functional Therapeutic Chemical Classification System (FTC), dedicated to handle the
concept of mode of action and suited to repurpose drugs.
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CHAPTER 3

The Functional Therapeutic

Chemical Classification System

(Implementation)

Key points

• New mode and mechanism of action (MoA) concepts can be formally created

using description logics (DLs) and following the principles introduced in

Chapter 2.

• 20,000 new MoA concepts are created and present in a novel resource called

the Functional Therapeutic Chemical Classification System (FTC). The

resource has a taxonomic structure and describes the biological roles of

drugs (e.g. anti-blood coagulation agent).

• Over a thousand of approved drugs are classified inside the FTC categories

by integrating the content of DrugBank, UniProt and Gene Ontology An-

notations (GOA) and with the help of an OWL reasoner. The classification

process is fast and complete, as the axioms present in the FTC follow the

EL++ profile.

• The biomedical information present in the FTC is evaluated against the con-

tent of the Anatomical Therapeutic Chemical Classification System (ATC),

manually curated resource describing the indication, function and thera-

peutic areas of approved drugs. Briefly, the drugs classified in the FTC
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are covering 89% of the content of the ATC (recall). Given a therapeutic

category, the FTC contains more drugs than the ATC, reflecting the drug’s

polypharmacology (precision of 50%).

• The content of the FTC will be used to derive systematic drug repositioning

hypotheses as presented in Chapter 4.

Author’s comment

The content and structure of this chapter were directly extracted from the

published article (Croset et al., 2013c) describing the FTC and some of the anal-

yses performed over it. I have edited the text in order to provide more details

when needed and relevant, and to hopefully keep the coherence with the rest of

the document. The argumentation has a classical structure: The methodology

behind the creation of the resource is first presented, followed by an evaluation

section. The results obtained are finally contrasted and discussed.

3.1 Introduction

Chapter 1 introduced my thesis, namely formally representing drug’s mechanisms

and modes of action in order to discover new indications. In Chapter 2 was pre-

sented a theoretical perspective on description logics (DLs) and their relation to

the study of life. This chapter implements the theory and describes the generation

and evaluation of MoA categories.

As stated in Chapter 1, drug repurposing is the use of known active compounds

for new therapeutic indications (Sanseau and Koehler, 2011). When administered

in a living organism, a compound can indeed play various roles and affect differ-

ent biological processes; accurately identifying these different functions helps to

predict the potential side-effects a drug can have and can also lead to interesting

repositioning opportunities (Medina-Franco et al., 2013). For instance, sildenafil

was initially developed to relieve angina pectoris symptoms and has been repur-

posed towards erectile dysfunction during the clinical trials when a new function

of the target enzyme was discovered (see Chapter 1 section 1.2.1).

Approved compounds are attractive because they have been extensively stud-

ied and have by definition already successfully passed clinical trials, where most
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drugs fail because of safety or efficacy issues. There is an increasing number of ap-

proaches to predict repurposing opportunities using computational methods (see

Chapter 1). Most methods operate on the profiles of physicochemical descriptors

derived from molecular structures (Haupt and Schroeder, 2011). Other methods

characterise the drugs on more abstract levels, such as the gene expression signa-

ture (Iorio et al., 2010) or via the reported side-effects (Campillos et al., 2008).

These approaches have in common to look for similarities within existing drugs

and forward similar compounds as repositioning hypotheses.

A feature of particular interest to describe drugs is the MoA. According to

Wikipedia, the MoA describes a functional or anatomical change, at the cellular

level, resulting from the exposure of a living organism to a substance. For instance

terms such as transcriptional regulation agent or anticoagulant define MoAs and

characterise the roles of a certain type of drug. The MoA abstracts over the

relations between molecular functions, protein targets and drug activities; it is

the central concept linking a chemical structure to a set of biological activities

(see Chapter 1). Intuitively, the indication of a drug logically depends on its MoA

(see Figure 3.1).

Despite its widespread use in drug discovery, the MoA has not been used yet as

a descriptor for repositioning analyses. One reason for this might be the challenge

of formally defining the concept. Indeed, MoAs are terms or categories, it is not

possible to represent them straightforwardly with values and numbers like one

can do for a 3D molecular structure or for a gene expression profile. Nonetheless,

the meaning of a concept can be formalised with controlled vocabularies and

ontologies (Gruber et al., 2009); such frameworks help to formalise the semantics

of symbols and strings of characters with explicit axioms (see Chapter 2).

In an ontology or knowledge base, concepts (interchangeable with category,

term and class in this document) are organised and linked following the logical

type of relation they have among them. In the Gene Ontology (GO) for ex-

ample, biological processes and molecular functions terms are manually curated

and their meaning specified by the relation types linking two GO terms. MoA

definitions are present in other classifications such as the Medical Subject Head-

ings (Nelson et al., 2004) or the Chemical Entities of Biological Interest (Hastings

et al., 2013). The Anatomical Therapeutic Chemical Classification System (ATC)

(World-Health-Organization et al., 2006) also describes to some extent the action

of drugs at the anatomical level. All these resources are valuable for the com-
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Drug A Disease X

Drug B Disease Y

Deep vein thrombosis

Hay feverCetirizine

Mode of Action 1

Mode of Action 2

Anticoagulant

Antihistaminic

Ximelagatran

(A)

(B)

Figure 3.1: Conceptual relationship between a drug, its mode of action (MoA) and
disease indication. Because a drug exhibits a certain MoA it is therefore indicated
for a diseases, as showed by examples (A) and (B). If a new MoA was discovered for a
drug (e.g. ximelagatran with antihistaminic MoA), the compound could be re-indicated
accordingly (in this case for hay fever illustrated by the dashed arrows). In order for
such a deduction to be made, MoA categories first have to be represented, and secondly
drugs have to be assigned to these categories.

munity as a source of carefully manually curated information. Moreover, the

categories described in these classification systems are sometimes used to anno-

tate drugs: for instance the compound sildenafil has been manually annotated as

vasodilator agent (CHEBI:35620 or MeSH:D27.505.954.411.918).

The classifications mentioned previously are not specially designed for drug

repositioning; they purposefully report only the well-known and major MoAs of

chemical compounds. The pharmacological spectrum of each drug is not neces-

sarily well covered, yet it would be the best way to predict new indications. In

my context, an ideal knowledge base would feature the known MoAs of a drug

as well as some predicted ones to be tested in experiments. The MoA categories

should derive and scale over primary molecular evidence exposed in biomedical

databases, in an automated way as motivated in Chapter 2.

To address the lack of systematic MoA annotations, I have implemented the

Functional Therapeutic Chemical Classification System (FTC), presented here in
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this chapter. The FTC is automatically built by leveraging the content of various

biomedical databases using DLs and automated reasoning. Over 20,000 new MoA

categories are defined in the resource and further populated with approved drugs

using the Web Ontology Language (OWL) in combination with a reasoner. The

population step takes in account the type of pharmacological action, the molecular

targets of the drugs and their involvement into multiple biological processes.

Drugs can exhibit several MoAs, and the same MoA can be reached through

different mechanisms. Most of the drugs are present in multiple FTC categories,

reflecting the various roles a compound can play inside a biological system which

can serve as starting point for drug repositioning. The resource was evaluated

against the ATC, traditional classification scheme introduced before. I present as

well some preliminary analyses over the data, by looking at the relation between

the MoA and the indication of a compound using semantic similarity. Finer

analyses and repositioning use-cases such as Alzheimer’s disease and hypertension

will be investigated in Chapter 4.

3.2 Method and definitions

This section describes the building mechanism behind the FTC. The full list

of axioms composing the knowledge base are listed at the end of this section

(section 3.2.9). The FTC is one possible implementation of the theory described

in Chapter 2, dedicated to handle MoAs.

Summarised, the creation of the FTC follows these steps: first, a list of cate-

gories describing the mode and mechanism of action of drugs is defined. Then in

a second step the newly created categories are automatically populated with ap-

proved compounds. Finally, the FTC is evaluated and repositioning hypotheses

can be generated (presented in Chapter 4).

3.2.1 Source code

The code behind the creation of the resource is entirely open and available at

https://github.com/loopasam/ftc. The web application built on the top of

the FTC can be found at https://www.ebi.ac.uk/chembl/ftc and the docu-

mentation can be accessed at https://github.com/loopasam/ftc/wiki. The

reader should be familiar with DLs and the Web Ontology Language (OWL) to
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fully understand the construction of the knowledge base. An introduction to

DLs from the perspective of the biomedical scientist is available on the wiki at

https://github.com/loopasam/ftc/wiki/Description-Logics and in Chap-

ter 2 section 2.3. The FTC implementation relies mostly on Brain (Croset et al.,

2013b) and the web application builds on the top of the Play! framework. Classi-

fication tasks use the ELK reasoner (Kazakov et al., 2013). The computer hosting

the web application has 8 GB of memory with 4 processors, this architecture al-

lows fast parallel reasoning, thanks to ELK’s design. More functionalities will be

added to the web application following user requirements (lean implementation).

3.2.2 Categories creation

The mode of action categories present in the FTC are defined based on the terms

coming from the Gene Ontology (GO). Both the molecular function and biological

process branches are used for this purpose, yet handled slightly differently as

described below.

3.2.2.1 Mode of Action categories

Each one of the biological process categories featured in the GO are looked-up one

by one. All the time a process category is linked to another process category (X )

via a positive or negative regulation link, two FTC classes are created: Anti-X

agent and Pro-X agent. For instance the GO term positive regulation of blood co-

agulation is linked to the term blood coagulation via a positively regulates relation,

therefore two FTC categories Anti-blood coagulation agent and Pro-blood coagu-

lation agent are created. The identifiers of the new FTC classes are also derived

from the GO term used to create the class pattern. The GO numeric identifier

is re-used and the letter A or P is appended before to emphasize the anti or pro

pattern. From the example presented previously, the FTC class Anti-blood coagu-

lation has FTC A0007596 as identifier, because the GO term blood coagulation is

referenced as GO:0007596. Following the same logic, FTC P0007596 is the iden-

tifier of the class Pro-blood coagulation agent. The design choice for identifiers

and labels allows the FTC to fully rely on the high quality work provided by the

GO curation team and scale over it.
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3.2.2.2 Mechanism of Action categories

The mechanism of actions related to molecular functions are created in the fol-

lowing manner: all the time a molecular function (Y ) is encountered then two

FTC categories are created, as for the processes: Anti-Y agent and Pro-Y agent.

The identifiers are assigned the same way as described before. For instance, out

of the GO term androgen receptor activity (GO:0004882) two FTC classes are de-

rived: Pro-androgen receptor activity agent (FTC P0004882) and Anti-androgen

receptor activity agent (FTC A0004882).

3.2.3 Equivalent definitions

FTC classes are generated as presented in the previous section. Up to this point,

these categories are only tokens with a human readable label as well as an iden-

tifier. The next step is going to assign equivalent definitions to each FTC class.

An OWL reasoner can understand such definitions and will automatically classify

the knowledge base accordingly, following standard DLs reasoning services (see

Chapter 2 section 2.3.4). Drugs will then be assigned to FTC categories and the

taxonomic structure arises after this reasoning step. Equivalent definitions are

written as OWL class expressions using the entities of the knowledge base (sum-

marised at https://github.com/loopasam/ftc/wiki/Knowledge-Base and in

section 3.2.9). There are two types of equivalences: the first one captures pertur-

bation of regulatory biological processes (so called regulatory patterns) and the

second one handles the perturbed functions (functional patterns).

3.2.3.1 Regulatory pattern

Some of the FTC categories are created from the biological processes present in

the GO (cf section 3.2.2); these categories have two arbitrary equivalent defini-

tions, representing the two possible ways a compound might impact the biologi-

cal process. Anti-biological process agent FTC categories contain the drugs that

negatively perturb a target involved in the positive regulation of the biological

process. The anti categories also feature the compounds that positively perturb

a negative regulator of the same process. The pro categories are equivalent to

the opposite pattern. Figure 3.2 and 3.3 illustrates the equivalent definitions for

the FTC classes Anti-blood coagulation agent and Anti-blood coagulation agent.
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Anti-blood coagulation agent = 

Drug and negatively-perturbs some (
Protein and involved-in some (
Biological-Process and positively-regulates some blood-coagulation

)
)

Drug and positively-perturbs some (
Protein and involved-in some (

Biological-Process and negatively-regulates some blood-coagulation
)

)

Figure 3.2: Regulatory pattern. Equivalent definitions for the concept Anti-blood
coagulation agent. The concept is asserted as equivalent to either of the boxed expres-
sions. A reasoner can understand such definition and classify drugs accordingly.

Pro-blood coagulation agent = 

Drug and positively-perturbs some (
Protein and involved-in some (
Biological-Process and positively-regulates some blood-coagulation

)
)

Drug and negatively-perturbs some (
Protein and involved-in some (

Biological-Process and negatively-regulates some blood-coagulation
)

)

Figure 3.3: Example of regulatory pattern. Equivalent definitions for the concept Pro-
blood coagulation agent. The concept is asserted as equivalent to either of the boxed
expressions. A reasoner can understand such definition and classify drugs accordingly.
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Figures 3.4 and 3.5 present the biological motivation behind the regulatory

patterns: it should be easier to adjust the dosage for the compounds classified as

such.

positive regulation 
of biological 

process

regulation of biological 
process

negative regulation 
of biological 

process

biological process

is ais a

regulates 
some negatively 

regulates 
some

positively 
regulates 

some

Figure 3.4: Biological processes of therapeutic interest are perturbed via regulators
of the given process; this strategy allows to modulate and tune the effect, rather than
blocking it totally. A regulatory process can be seen as a valve controlling the amplitude
or frequency of another process, as defined in the GO. This characteristic is of interest
for drug discovery, it means that the strength of the pharmacological effect is more
likely adaptable with the dosage and drug’s concentration.
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positive regulation 
of blood 

coagulation

regulation of blood 
coagulation

negative regulation 
of blood 

coagulation

blood coagulation

is ais a

regulates 
some negatively 

regulates 
some

positively 
regulates 

some

Figure 3.5: Example of regulation of the blood coagulation process, as defined in the
Gene Ontology. Perturbing the coagulation via a regulator allows to more finely control
the therapeutic outcome. See Figure 3.4 for theoretical illustration.

3.2.3.2 Functional pattern

The FTC categories generated from the GO molecular functions (cf section 3.2.2)

are also equivalent to a logical definition. Anti FTC categories dealing with

molecular activities are asserted as equals to the drugs that negatively perturb

the function. Pro categories are equivalent to the drugs that positively per-

turb the function of interest. A summary of the functional pattern definitions

is available on the online wiki at https://github.com/loopasam/ftc/wiki/

Mode-of-Action and on Figure 3.6.
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Anti-molecular function agent = 

Drug and negatively-perturbs some (
Protein and has-function some (
molecular-function
)

)

Pro-molecular function agent = 

Drug and positively-perturbs some (
Protein and has-function some (
molecular-function
)

)

Figure 3.6: Example of functional patterns; equivalent definitions for the concepts pro
and anti-molecular function agent. These concepts is asserted as equivalent to either
of the boxed expressions. A reasoner can understand such definition and classify drugs
accordingly.

3.2.4 Data integration

At this stage, the knowledge base contains the created FTC classes associated

with their logical definitions, as well as the GO and the core FTC entities. The

knowledge base is then further populated with some information coming from

various public databases. Only manually curated information extracted from

peer-reviewed literature with experimental evidence is considered.

3.2.4.1 Drugbank

The DrugBank database is a unique bioinformatics and cheminformatics resource

that combines detailed drug data with comprehensive drug target information

(Knox et al., 2011). The approved drugs (small molecules and biotherapeutics)

acting on proteins are extracted from the database and imported in the FTC

knowledge base. In order to be selected, a compound must firstly be approved

and secondly have a pharmacological action on at least one human protein target

present in Uniprot (UniProt-Consortium et al., 2013). The protein targets all
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have at least one manually asserted GO annotation (Dimmer et al., 2012) for a

biological process or a molecular function. DrugBank links compounds to tar-

gets via actions. The DrugBank actions are somehow structured and consistent:

concepts such as inhibitor or agonist are reused throughout the database for ex-

ample, yet they are not strictly formalised as a controlled vocabulary. These

actions are manually standardised to the core properties of the FTC according to

their biochemical meaning: for instance the action antagonist is mapped to the

FTC negatively-perturbs property. The full list of mappings is available on Table

3.1.
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DrugBank pharmacological action mapped FTC property

agonist ’positively-perturbs’

potentiator ’positively-perturbs’

inducer ’positively-perturbs’

partial agonist ’positively-perturbs’

activator ’positively-perturbs’

ligand ’positively-perturbs’

stimulator ’positively-perturbs’

unknown ’perturbs’

cofactor ’perturbs’

other/unknown ’perturbs’

binder ’perturbs’

other ’perturbs’

allosteric modulator ’perturbs’

multitarget ’perturbs’

modulator ’perturbs’

partial antagonist ’perturbs’

Binder ’perturbs’

reducer ’negatively-perturbs’

inhibitor ’negatively-perturbs’

antagonist ’negatively-perturbs’

negative modulator ’negatively-perturbs’

cross-linking/alkylation ’negatively-perturbs’

intercalation ’negatively-perturbs’

adduct ’negatively-perturbs’

chelator ’negatively-perturbs’

antibody ’negatively-perturbs’

incorporation into and destabilization ’negatively-perturbs’

cleavage ’negatively-perturbs’

inverse agonist ’negatively-perturbs’

suppressor ’negatively-perturbs’

inhibitory allosteric modulator ’negatively-perturbs’

inhibitor, competitive ’negatively-perturbs’

Table 3.1: Mapping of DrugBank vocabulary to the FTC object properties.
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Compounds coming from DrugBank are represented as OWL classes and as-

serted as subclasses of the class DrugBank compound (FTC C2). Protein targets

are described as OWL classes too and subclasses of the core class Protein. Each

DrugBank compound is then connected to its target via the following axiom pat-

tern: [drug] subClassOf perturbs some [protein]. E.g. Ximelagatran subClassOf

negatively-perturbs some Prothrombin.

3.2.4.2 Gene Ontology Annotations (GOA)

The GO annotation program aims to provide high-quality GO annotations to

proteins in UniProt (Dimmer et al., 2012). In the context of the FTC, such

annotations are used to create axioms linking protein targets to molecular func-

tions and biological processes. Each protein annotated with a function creates

an axiom such as [protein] subClassOf has-function some [molecular function].

Each protein annotated to a biological process creates an axiom such as [protein]

subClassOf involved-in some [biological process]. E.g. Prothrombin subClassOf

involved-in some positive regulation of blood coagulation. Each protein can be in-

volved in multiple processes and capable of performing multiple functions; some

of the polypharmacology is captured at this level.

3.2.5 Knowledge base classification

The knowledge base is fully built at this step and contains core classes, MoA cate-

gories alongside the actions of approved DrugBank compounds on protein targets

in Uniprot. The proteins are linked to their molecular functions and involvement

in biological processes via the GO annotations. The logical specifications of the

FTC are there to glue the different data together and to explicitly express the

logical links between resources. The FTC knowledge base follows an OWL2 EL

profile (implementation of EL++) (Motik et al., 2009), which enable the use of

fast and parallelised reasoners such as ELK. During the classification process,

the reasoner checks whether the MoA equivalent definitions are satisfied or not

and assigns drugs inside the corresponding FTC categories. The tree structure

of FTC appears also at this step from the logical definitions.
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3.2.6 Evaluation methodology

As the classification of therapeutic agents is done in an automated way, it is

important to evaluate the results generated against a known resource which will be

considered as gold standard. The assessment of the FTC is done against another

similar classification, the Anatomical Therapeutic Chemical Classification System

(ATC) (World-Health-Organization et al., 2006). The ATC has been developed

to serve as a tool for drug utilisation research in order to improve quality of drug

use (World-Health-Organization et al., 2006). In this resource, the information

is manually curated, and drugs are assigned to categories based on their legally

approved indications. Figure 3.7 provides a summary of the classification as well

as a reference explaining the different levels and their meaning.

Anatomy

Therapeutic 
indication

Cardiovascular system

Diuretics

Pharmacology High-ceiling diuretics

Chemical Sulfonamides

Drug Furosemide

Level 1

Level 2

Level 3

Level 4

Level 5

Figure 3.7: The structure of the Anatomical Therapeutic Chemical Classification
System (ATC). The classification is composed of 5 levels. The first one describes the
main anatomical group, the second one reflects the indication or therapeutic area of
the drug. Level 3 handles the pharmacological action, level 4 describes the chemical
structure, and finally level 5 contains drug’s names. Examples are provided on the
right column (italics) for the drug furosemide.

The goal of the ATC differs from the one of the FTC, yet the two resources

are sharing some very similar concepts, which can be used for the evaluation.

Categories of both classifications contain approved drugs with a DrugBank iden-
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tifier, meaning that some of the drugs indexed in the FTC are also present in the

ATC. From that, it is possible to define some evaluation points, which will help

to assess the automated classification process.

3.2.6.1 Evaluation Points

An evaluation point is defined as an equivalence between a class from the FTC

with one or more classes from the ATC. The idea is to look at the set of drugs

contained in both side of the equivalence and estimate the overlap, as illustrated

in the Figure 3.8.

FTC_A0008900
'Anti-hydrogen:potassium-

exchanging ATPase 
activity agent'

A02BC
Proton pump inhibitor

DB00193
Tramadol

DB00213
Pantoprazole

DB00213
Pantoprazole

DB00338
Omeprazole

FTC ATC

True 
positive

False 
negative

False 
positive

Manual 
assertion

Figure 3.8: Example of evaluation point. An manual assertion is made between an
ATC category (blue) and a FTC class (orange) when the two concepts are semanti-
cally equivalent. Then drugs belonging to each of these classes are compared, and the
evaluation can be performed.

Evaluation points are defined by hand and not themselves evaluated. The full

list of evaluation points as well as a summary of the results are available online

at https://www.ebi.ac.uk/chembl/ftc/evaluation/. Each evaluation point

has a series of true/false positive and false negative drugs associated with it.
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3.2.6.2 True Positives

Drugs that are present in both the FTC and the equivalent ATC class(es) are

called true positives. These compounds reflect that the automated classification

was capable of retrieving correctly the information present in the gold standard

(ATC).

3.2.6.3 False Negatives

These drugs are present in the ATC class(es) but not in the corresponding FTC

class. The automated classification failed to retrieve these compounds. The

smaller the number of false negatives is, the better the FTC is at recalling drugs.

A small number of false negatives means that if a drug is present in the ATC

(gold standard), then it is likely that the drug will also be correctly categorised

in the FTC.

3.2.6.4 False Positives

The false positives are the drugs present in the FTC category of the evaluation

point but not in the corresponding ATC classes. A high number of false positives

means that the FTC is “over-assigning” compounds to classes. The false positives

relates to the accuracy of the classification. In the context of this work, some

false positives could also be considered as drug repositioning opportunities.

3.2.6.5 Precision

Precision is the probability that a randomly selected drug from the ATC has been

assigned to the correct corresponding class in the FTC. The value is standardised

as a percentage and corresponds to the formula: TruePositive/(TruePositive+

FalsePositive).

3.2.6.6 Recall

Recall is the probability that a randomly selected drug from the FTC to be present

in the correct corresponding ATC class. The value is standardised as a percentage

and corresponds to the formula: TruePositive/(TruePositive+FalseNegative).
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3.2.7 Semantic similarity

The semantic similarity measure performed over the FTC is a derivative of the

Jaccard index (Jaccard, 1912) (Rogers and Tanimoto, 1960) (see Chapter 2, sec-

tion 2.4.3). It is probably best understood as an example: if two classes A and B

are considered, the semantic similarity between these classes corresponds to the

number of OWL superclasses (direct and indirect, obtained with a reasoner) that

are shared by A and B (intersection) divided by the number of superclasses of

A or B (union). The index ranges from 0 (totally different) to 1 (identical). A

similar approach was successfully implemented by Hoehndorf et al. (2011b), for

similarity computations over phenotypic traits.

3.2.8 Mode of action similarity against indication

A statistical analysis was performed over the data presented on section 3.5.2.

When two compounds are randomly taken, they have on average a higher mode

of action similarity when they are assigned to the same ATC category (one ATC

level, see Table 3.4 for values). In order to estimate whether this observation was

due to chance only, I formulated the following null hypothesis (H0): for a pair of

drugs X and Y, it does not matter to which ATC category they belong to, their

similarity is always average. The alternative hypothesis (H1) was: for a pair of

drugs X and Y, it matters in which ATC category they belong to, their similarity

is significantly different than average. The distribution of similarity values for

the group H (hormonal system) is given as an example of Figure 3.9. The data

does not follow a normal distribution, therefore I decided to apply a permutation

test in order to estimate the significance values.

A permutation test was then performed for each ATC category. For example,

I started with the ATC category A (first row on Figure 3.13), looked at the

similarity values when pairs of compounds both belong to the category A (top

right corner square) and compared it to the similarity values when the pair of

compounds belong to different categories (A and B, A and C and so forth). For

each comparison I obtained two distributions of values (see example Figure 3.9).

On average the similarity values are always higher when the two compounds

belong to the same category (A/A versus A/B for instance). A permutation

test (n = 1,000,000) was performed in order to see whether this observation was
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Figure 3.9: Distribution of similarity values for the ATC group H (kernel density).
The blue line corresponds to similarity calculated between pairs of drugs assigned to
different therapeutic groups. The red line represents the distribution of the values
when only pairs of drug present in the same group (i.e. H) are considered. Vertical
line are the average values for both distributions. When pairs of drugs are in the same
therapeutic group (red line), the average similarity value is higher than when drugs are
in different groups (blue line). See Table 3.4 for details about the values for all ATC
groups.

due to chance only. I was able to reject the null hypothesis for a significance

level of 0.00071 all the time. The significance threshold takes in account multiple

hypotheses testing. In this regard, I applied Bonferroni correction: as 14 tests

are performed and given an original significance threshold arbitrary set to 0.01,

the corrected p-value is of 0.01/14, or 0.00071.

3.2.9 Knowledge base specification

This section presents the scaffold of the knowledge base underlying the FTC. The

logic structuring the FTC comes essentially from a set of core OWL properties

(rich RBox). Some of these properties originate from the GO. When necessary

some new ones have also been introduced. In order to understand how these

properties interact, first will be presented the fundamental classes present at the
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top of the FTC classification, followed by the presentation of the object properties.

3.2.9.1 Core FTC classes

molecular function

• Identifier: http://purl.obolibrary.org/obo/GO_0003674

• Label: ’molecular function’

• Definition: As defined by the Gene Ontology: Elemental activities, such

as catalysis or binding, describing the actions of a gene product at the

molecular level. A given gene product may exhibit one or more molecular

functions.

biological process

• Identifier: http://purl.obolibrary.org/obo/GO_0008150

• Label: ’biological process’

• Definition: As defined by the Gene Ontology: Any process specifically per-

tinent to the functioning of integrated living units: cells, tissues, organs,

and organisms. A process is a collection of molecular events with a defined

beginning and end.

Protein

• Identifier: http://purl.uniprot.org/core/Protein

• Label: ’protein’

• Definition: As defined by Uniprot: Description of a protein.

• Comment: Gene products present inside the FTC are all human proteins.

Uniprot URIs are used.
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Drug

• Identifier: http://schema.org/Drug

• Label: ’drug’

• Definition: As defined by schema.org: A chemical or biologic substance,

used as a medical therapy, that has a physiological effect on an organism.

• Comment: In the context of the FTC, DrugBank chemicals are considered

for their role as therapeutic agent rather than for their chemical structure.

therapeutic agent

• Identifier: https://www.ebi.ac.uk/chembl/ftc/FTC_C1

• Label: ’therapeutic agent’

• Definition: Role of a drug capable of producing a therapeutic effect.

DrugBank compound

• Identifier: https://www.ebi.ac.uk/chembl/ftc/FTC_C2

• Label: ’DrugBank compound’

• Definition: Drug coming from DrugBank.

3.2.9.2 Core FTC properties

part-of

• Identifier: http://purl.obolibrary.org/obo/BFO_0000050

• Characteristic: Transitive

• Label: ’part-of’

• Definition: As defined and used in the Gene Ontology. More information at

http://www.geneontology.org/GO.ontology.relations.shtml#partof
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has-part

• Identifier: http://purl.obolibrary.org/obo/BFO_0000051

• Characteristic: Transitive

• Label: ’has-part’

• Definition: As defined and used in the Gene Ontology. More information at

http://www.geneontology.org/GO.ontology-ext.relations.shtml#haspart

regulates

• Identifier: http://purl.obolibrary.org/obo/RO_0002211

• Chained property: ’regulates’ o ’part-of’ → ’regulates’

• Label: ’regulates’

• Definition: As defined and used in the Gene Ontology. More informa-

tion at http://www.geneontology.org/GO.ontology.relations.shtml#

regulates

negatively-regulates

• Identifier: http://purl.obolibrary.org/obo/RO_0002212

• subPropertyOf: ’regulates’

• Label: ’negatively-regulates’

• Definition: As defined and used in the Gene Ontology. More informa-

tion at http://www.geneontology.org/GO.ontology.relations.shtml#

regulates

positively-regulates

• Identifier: http://purl.obolibrary.org/obo/RO_0002213

• subPropertyOf: ’regulates’

• Label: ’positively-regulates’
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• Definition: As defined and used in the Gene Ontology. More informa-

tion at http://www.geneontology.org/GO.ontology.relations.shtml#

regulates

involved-in

• Identifier: https://www.ebi.ac.uk/chembl/ftc/FTC_R1

• Label: ’involved-in’

• Domain: ’protein’

• Range: ’biological process’

• Definition: Entails the participation of a protein in a biological process

has-function

• Identifier: https://www.ebi.ac.uk/chembl/ftc/FTC_R2

• Label: ’has-function’

• Domain: ’protein’

• Range: ’molecular function’

• Definition: Describes the molecular function born by a protein

perturbs

• Identifier: https://www.ebi.ac.uk/chembl/ftc/FTC_R3

• Label: ’perturbs’

• Domain: ’drug’

• Range: ’protein’

• Definition: Specific biochemical interaction through which a drug substance

will affect the activity of a protein. The property refers to the specific

molecular targets to which the drug binds, such as an enzyme or receptor.
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negatively-perturbs

• Identifier: https://www.ebi.ac.uk/chembl/ftc/FTC_R4

• Label: ’negatively-perturbs’

• subPropertyOf: ’perturbs’

• Definition: Specific biochemical interaction through which a drug substance

will decrease the activity of a protein. The property refers to the specific

molecular targets to which the drug binds, such as an enzyme or receptor.

postively-perturbs

• Identifier: https://www.ebi.ac.uk/chembl/ftc/FTC_R5

• Label: ’postively-perturbs’

• subPropertyOf: ’perturbs’

• Definition: Specific biochemical interaction through which a drug substance

will increase the activity of a protein. The property refers to the specific

molecular targets to which the drug binds, such as an enzyme or receptor.

3.3 The classification

The knowledge base behind the FTC is built by integrating information coming

from various sources. The GO terms serve as template to create the FTC cate-

gories describing the MoAs; DrugBank provides the known links between drugs

and their protein targets and Uniprot maps targets to their respective GO anno-

tations. Drugs are further assigned into MoA categories according to the OWL

constructs and axioms defined in the FTC. A reasoner, a program capable of un-

derstanding such axioms, performed this task (see the method section 3.2). The

process to build the FTC is summarised in Figure 3.10 alongside an example.
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FTC_A0007596
Anti-blood 
coagulation 

agent

Drug Protein

GO_0030194
positive 

regulation of 
blood coagulation

(A) New category

=

(B) Equivalent definition

negatively
-perturbs

involved-
in

DB04898
Ximelagatran

P00734
Thrombin

GO_0030194
positive regulation 

of blood 
coagulation

negatively
-perturbs

involved-
in

(C) Incorporation of databases

DrugBank Uniprot
GO Annotations

is ais a(D) Reasoner

Figure 3.10: The diagram gives an overview of the integrated resources and building
process. (A) The name of FTC categories representing MoAs are directly derived
from the GO terms representing the molecular functions and biological processes. (B)
Each of the new FTC class has a logical equivalent definition assigned to it (axiom),
representing the necessary and sufficient conditions for a drug to be classified in the
corresponding MoA class. (C) The content of various databases is incorporated and
linked using the FTC specific logical properties. (D) Finally a reasoner classifies the
knowledge base and assigns drugs to MoA classes based on whether or not a definition
can be satisfied. For example, the drug ximelagatran will be assigned as member
of the category Anti-blood coagulation agent because of the logical links ximelagatran
negatively-perturbs prothrombin and prothrombin involved-in positive regulation of blood
coagulation. The taxonomic structure of the FTC appears also in the reasoning step,
from the entailment of the equivalent definitions.

The core step is the generation of axiomatic representations of MoAs by de-

composing GO types into positive and negative regulations of biomolecular func-

tions and processes. The help of reasoning techniques we can further derive and

assign MoA across the knowledge base to given drugs. It requires a few seconds

(four processing cores, 8 GB RAM) to classify the knowledge base (ELK rea-

soner). Other OWL reasoners (e.g, Hermit, Pellet, etc.) were disqualified mainly

due to long processing time (data not shown - see Gonçalves et al. (2013) for time

values).

The FTC forms a taxonomic structure as illustrated on Figure 3.11, which
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arises when the reasoner classifies the knowledge base. In general, categories

may have multiple parents and multiple children (see https://www.ebi.ac.uk/

chembl/ftc for interactive use).

Figure 3.11: Parent categories to the FTC class Pro-fibrinolysis agent
(FTC P0042730). The classification is a direct acyclic graph where categories are de-
scribing increasingly specific concepts. Arrows entail subclass relationships between
the terms (is a relation).

In total there are 1,280 FDA-approved DrugBank compounds (chemical and

biotherapeutics) associated with 1,264 human protein targets, where each drug is

acting on at least one human protein target. The FTC introduces 23,353 new cat-

egories describing the mode and mechanism of action of therapeutic compounds.

4,289 of these categories belong to the biological processes in GO and 19,064 to

the molecular functions. A summary of the metrics behind the latest build is

available online at https://www.ebi.ac.uk/chembl/ftc/evaluation/. Out of

all FTC categories, 1,432 categories (>6%) directly contain at least one approved

drug. This number increases up to 2,532 (>11%) when direct and indirect drugs
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are considered. FTC categories not containing drugs (e.g, FTC A0001771 - Anti-

immunological synapse formation agent) represent MoAs for which no approved

compounds has qualified yet or that have not been identified as such in the FTC.

3.4 Evaluation

The content of the FTC has been evaluated against the drug categorisation of

the ATC, which has been produced by manual curation and serves as a gold

standard. A priori, both resources serve different purposes and as a consequence,

the evaluation has to take this into consideration (cf section 3.6.2). The full

methodology behind the evaluation is described in section 3.2.6 of the method-

ology. Briefly, for 68 categories from the FTC one can manually identify a set of

semantically equivalent categories in the ATC. I call these equivalent categories

the evaluation points. All drugs from each evaluation point were then assessed

to determine the quality of the FTC against the gold standard, i.e. the ATC.

For example, the FTC category Anti-hydrogen:potassium-exchanging ATPase ac-

tivity agent (FTC A0008900) has been manually asserted as equivalent to the

ATC category Proton pump inhibitors (A02BC). A summary of this evaluation

point is furthermore available online at https://www.ebi.ac.uk/chembl/ftc/

evaluation/FTC_A0008900.

For 1,280 DrugBank compounds in the FTC, 1,134 are also present in the

ATC, therefore only those were considered. The evaluation points cover a total

of 471 DrugBank compounds or around 41% of common drugs to both classifica-

tions. Out of these, 275 compounds are true positives, i.e. they match both, the

FTC and ATC categories for a given evaluation point. The proton pump inhibitor

evaluation point is such a case where all the drugs (omeprazole, esomeprazole,

pantoprazole, lansoprazole, rabeprazole) are present both in the FTC category

and in the corresponding ATC category. The total number of compounds from

an ATC category but where it was not possible to identify a corresponding FTC

category is 33 (false negatives). The false negatives are listed and classified by

error types on Tables 3.2 and 3.3. The majority of misclassification cases are miss-

ing DrugBank annotations (24/33), i.e. missing target annotation for a drug, in

particular secondary targets, relevant for polypharmacology. Sometimes curation

errors are responsible for the false negative, with one error in the ATC and 4
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within DrugBank (curation team contacted for corrections). Finally, sometimes

the mapping between ATC categories to a FTC one can be ambiguous and not

exact, leading to a false classification (5 cases). The error analysis illustrate some

of the limitation of the FTC: if an annotation is missing or erroneous in the

primary resource, it cascades and impact the automated reasoning step. Fortu-

nately, all these errors have understood reasons, emphasising the validity of the

methodology used to build the resource.

Drug ATC categories Equivalent FTC category Type of error
Calcitriol
(DB00136)

Vitamin D and analogues
(A11CC)

Pro-calcitriol receptor activity
agent (FTC P0008434)

Erroneous ATC classification

Budesonide
(DB01222)

Glucocorticoids and analogues Pro-glucocorticoid receptor ac-
tivity agent (FTC P0004883)

Erroneous DrugBank annota-
tion

Thiethyl-
perazine
(DB00372)

Antihistaminics Anti-histamine receptor activ-
ity agent (FTC A0004969)

Missing DrugBank annotation

Dehydro-
epiandrosterone
(DB01708)

Androgen receptor agonists
(A14AA or G03B)

Pro-androgen receptor activity
agent (FTC P0004882)

Missing DrugBank annotation

Procaine
(DB00721)

Antiarrhythmics (C01BA or
C01BB or C01BC)

Anti-voltage-gated sodium
channel activity involved in
regulation of cardiac muscle
cell action potential agent
(FTC A0086006)

Ambiguous manual mapping

Nialamide
(DB04820)

Monoamine oxidase inhibitors Anti-primary amine ox-
idase activity agent
(FTC A0008131)

Missing DrugBank annotation

Pindolol
(DB00960)

Beta blocking agents (C07 or
S01ED)

Anti-beta2-adrenergic re-
ceptor activity agent
(FTC A0004941)

Erroneous DrugBank annota-
tion

Bopindolol
(DB08807)

” ” Erroneous DrugBank annota-
tion

Practolol
(DB01297)

” ” Ambiguous manual mapping

Atenolol
(DB00335)

” ” Ambiguous manual mapping

Acebutolol
(DB01193)

” ” Erroneous DrugBank annota-
tion

Esmolol
(DB00187)

” ” Missing DrugBank annotation

Bromocriptine
(DB01200)

” ” Missing DrugBank annotation

Bromocriptine
(DB01200)

Prolactine inhibitors (G02CB) Anti-prolactin receptor activ-
ity agent (FTC A0004925)

Missing DrugBank annotation

Lisuride
(DB00589)

” ” Missing DrugBank annotation

Cabergoline
(DB00248)

” ” Missing DrugBank annotation

Buserelin
(DB06719)

Gonadotropin-releasing hor-
mones (H01CA or L02AE)

Pro-gonadotropin-releasing
hormone receptor activity
agent (FTC P0004968)

Missing DrugBank annotation

Teriparatide
(DB06285)

Parathyroid hormones and
analogues (H05AA)

Pro-parathyroid hormone
receptor activity agent
(FTC P0004991)

Missing DrugBank annotation

Table 3.2: Isolation of false negative pairs resulting from the evaluation, alongside an
interpretation. Errors are mostly due to missing DrugBank annotations.
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Morphine
(DB00295)

Dopamine receptor agonists Pro-dopamine neurotransmit-
ter receptor activity agent
(FTC P0004952)

Missing DrugBank annotation
or indirect action

Morphine
(DB00295)

” ” Missing DrugBank annotation
or indirect action

Isoproterenol
(DB01064)

” ” Missing DrugBank annotation
or indirect action

Norepinephrine
(DB00368)

” ” Missing DrugBank annotation
or indirect action

Epinephrine
(DB00668)

” ” Missing DrugBank annotation
or indirect action

Phenylephrine
(DB00388)

” ” Missing DrugBank annotation
or indirect action

Midodrine
(DB00211)

” ” Missing DrugBank annotation
or indirect action

Mephentermine
(DB01365)

” ” Missing DrugBank annotation
or indirect action

Methoxamine
(DB00723)

” ” Missing DrugBank annotation
or indirect action

Metaraminol
(DB00610)

” ” Missing DrugBank annotation
or indirect action

Dobutamine
(DB00841)

” ” Missing DrugBank annotation
or indirect action

Arbutamine
(DB01102)

” ” Missing DrugBank annotation
or indirect action

Ephedrine
(DB01364)

” ” Missing DrugBank annotation
or indirect action

Ibudilast
(DB05266)

Leukotriene receptor antago-
nists (R03DC)

Anti-leukotriene receptor ac-
tivity agent (FTC A0004974)

Missing DrugBank annotation

Ephedrine
(DB01364)

Selective beta-2-
adrenoreceptor agonists
(R03AC)

Pro-norepinephrine binding
agent (FTC P0051380)

Ambiguous manual mapping

Ephedrine
(DB01364)

” ” Ambiguous manual mapping

Table 3.3: (continued) Isolation of false negative pairs resulting from the evaluation,
alongside an interpretation. Errors are mostly due to missing DrugBank annotations.
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Finally, 280 compounds are present in a FTC class but not in any corre-

sponding ATC category (false positives). Overall a recall of 89% is derived; this

percentage indicates that the automatic build of the FTC covers a good portion

of the content already present in the ATC. The precision of 50% shows that the

FTC contains for a given MoA many more drugs than the equivalent ATC cat-

egories. This result was expected and comes the original idea behind the FTC:

representing in a systematic fashion the implicit and explicit MoAs of drugs, in

particular the ones not already indexed by current classification scheme.

3.5 Exploration

The FTC was designed to assist drug repositioning analyses by explicitly rep-

resenting the polypharmacology of approved drugs. In this section I exemplify

how the resource can be used to perform different types of analysis, whose will

be extended in Chapter 4.

3.5.1 Polypharmacology spectrum

The more information on a drug’s molecular targets and their physiological roles,

the more opportunities exist to re-orient a drug into doing something new. The

therapeutic agents described in the FTC can have several MoAs, i.e. may be

acting on different biomolecular functions or processes, which demonstrates the

intrinsic polypharmacology of the approved compounds. Figure 3.12 illustrates

the polypharmacology spectrum by showing the distribution of number of MoAs

per compound.
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Figure 3.12: Distribution of the direct (blue) and indirect (red) number of MoAs
per drug. Means are indicated with a solid line. On average each compound has 13.5
MoAs when only direct classes are considered. The number rises to 61.2 when indirect
MoAs are included. Indirect MoAs are the ancestor classes in the taxonomy as shown
in Figure 3.11. The distribution range is wider when indirect MoAs are considered
(range=299; min=7; max=306) versus direct MoAs only (range=79; min=3; max=82).
These results emphasises the fact that some drugs are well characterised in databases
and could be used for a variety of specific biological tasks. Finally some compounds
have been assigned to a small number of FTC categories; in such cases little is known
or reported about their pharmacology and repurposing opportunities might be limited.

When only direct categories are considered, compounds belong on average

to 13.5 MoA categories. This number increases to 61.2 when parent categories

are taken into consideration (super classes). Not all the MoAs are relevant to a

disease, some FTC categories are particularly abstract (e.g, Anti-biological process

agent) yet they represent discrete categories to which the drug belongs with an

explicit and clear meaning. These discrete MoAs are a good starting point to

understand what a compound can do when administered in a human system.

123



Compound’s polypharmacology is well represented in the FTC, as shown by the

numerous MoAs each approved drug can exhibit.

I decided to further look at a well-known repositioning example, in order

to see whether the FTC was suitable to identify the new uses of an old drug.

I picked thalidomide for this exercise (https://www.ebi.ac.uk/chembl/ftc/

agent/DB01041). The molecule was first indicated to treat morning sickness in

pregnant women, but has been quickly abandoned after its developmental toxic-

ity has been discovered in newborns (see section 1.2.2). The accepted molecular

mechanism behind the side-effect is an impairment of the angiogenic process

responsible for the development of members, affecting in particular the limbs

(Therapontos et al., 2009). I found that thalidomide was accurately classified

as Anti-cell migration involved in sprouting angiogenesis agent in the FTC, cap-

turing the known toxicity of the drug. Furthermore, thalidomide is currently

investigated for a multitude of new usages, in particular for anti-cancer and im-

munomodulatory activities among others (Teo et al. (2005) and section 1.2.2).

These new indications are well represented in the FTC too, for example by the

categories Anti-vascular endothelial growth factor production agent or Anti-cell

division agent for antineoplastic activities, or by the classes Anti-cytokine secre-

tion agent and Anti-I-kappaB kinase/NF-kappaB cascade agent for its effect on

the immune system. These observations demonstrate that the FTC can success-

fully capture the molecular reasons behind the repositioning of an old compound,

relying on automated reasoning over integrated electronic evidence. Moreover the

classification can also provide valuable insight regarding potential toxicity too.

3.5.2 Drugs with similar functions have similar indica-

tions

The list of MoAs attributed to a drug can be exploited as a descriptor for the

therapeutic agent: the tree structure of the FTC can be used to derive some

similarity metrics over the MoAs. The underlying heuristic is to assume that

the closer two entities are in the taxonomy, the more similar they are. I used

a straightforward approach derived from the Jaccard index (see section 3.2.7) in

order to compare approved drugs based on the similarity of their MoAs. For in-

stance, the similarity between two compounds present in the same FTC category

is 1 (maximum). The similarity between an anti-blood coagulant and pro-blood
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coagulant is 0.29, reflecting the fact that such compounds are dissimilar with re-

gards to the outcome of their biological effect. As the MoA is intuitively expected

to be the central concept leading to the indication of the drug, I expected that on

average, drugs with similar MoAs would be indicated towards similar therapeutic

areas. The heat map presented in Figure 3.13 shows a pairwise comparison of all

the drugs of the FTC based on their relative MoA similarity.

ATC 
categories

Figure 3.13: Pairwise comparison of MoAs similarities. Therapeutic indications are
represented by ATC categories which are the colours on the side. For instance, the
compound reteplase (DB00015) has the ATC code B01AD07, which appears as B (dark
orange) on the plot. Only the first ATC level is considered. The similarity descriptor
ranges from 0 (not similar - white) to 1 (identical - black). Some compounds belong
to multiple ATC categories (Multiple) and some others do not have an ATC code
(NoCategory). The average similarity of drugs present in the same therapeutic category
is significantly higher on average when separately compared to all other indications.

The compounds are further grouped by therapeutic indications as defined by

the ATC. The heat map reveals some square patches around the central diagonal;

the overall similarity appears higher when compounds from the same ATC group
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are considered. A significance analysis (see method, section 3.2.8) revealed that

the average MoA similarity of compounds belonging to the same ATC category

is significantly higher than when compounds belonging to different categories are

compared. These results are summarised in Table 3.4, where average similarity

values are listed, together with the p-values for the permutation tests. An example

of distribution for one category is presented in section 3.2.8. As many hypotheses

are tested, namely one test for each of the 14 ATC therapeutic groups, I applied

Bonferroni correction for multiple hypotheses testing (see section 3.2.8). The de-

sired significance threshold moved from 0.01 to 0.00071 in order to reject the null

hypothesis. In this setting, all the permutation tests (1,000,000 permutations)

gave p-values below the significance threshold, confirming that when a pairs of

drugs belonging to the same therapeutic category have on average significantly

higher functional similarities.

ATC cate-
gory

Average similarity
when in the same
group

Average similarity
when in different
groups

Difference p-value

A 0.151 0.135 0.016 <1e-6
B 0.165 0.122 0.044 <1e-6
C 0.155 0.134 0.021 <1e-6
D 0.193 0.137 0.056 <1e-6
G 0.201 0.136 0.065 <1e-6
H 0.252 0.137 0.115 <1e-6
J 0.270 0.124 0.146 <1e-6
L 0.162 0.130 0.033 <1e-6
M 0.261 0.132 0.128 <1e-6
N 0.171 0.130 0.041 <1e-6
P 0.193 0.139 0.054 <1e-6
R 0.236 0.146 0.090 <1e-6
S 0.155 0.140 0.015 <1e-6
V 0.151 0.134 0.017 2.6e-5

Table 3.4: Average similarity and significance values for the tests. The significance
threshold is of 7.1e-4 after applying Bonferroni correction for multiple hypotheses test-
ing (n = 14 for an original p <0.01).

This result supports the idea that drugs with similar MoAs have similar in-

dications. Note that the mean of the similarity values was considered for the

statistical analysis; some outliers are also present in the map, which can be inter-

preted as repositioning hypotheses. These outliers have indeed similar MoAs, yet

they belong to totally different therapeutic areas and are used for different pur-

poses according to the ATC. Such cases will be further analysed and discussed in
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Chapter 4. Hypotheses have to be manually examined and interpreted, as ATC

categories are only covering some of the legal usage of the drugs. I expect to find

off-label indications in the predictions for instance, as well as some false positives.

Figure 3.14 presents similar association behaviour when two levels of the ATC

are considered (no statistical significance performed). In this case the higher

intensity squares are smaller, reflecting the finer resolution of the therapeutic

areas (2 ATC levels).

ATC 
categories

Figure 3.14: Pairwise comparison of MoAs similarities. Therapeutic indications are
represented by ATC categories which are the colours on the side. Two ATC level
are considered on this graph, as opposite to Figure 3.13, where only one level was
considered. This increased resolution allows to identify more granular square patterns
along the diagonal, where drugs from the same groups appear to have higher intensity
values (no analyses performed).

Figure 3.15 re-uses the same data as Figure 3.13 (one ATC level) but with

a clustering function apply to it (hierarchical clustering - Manhattan distance)

in order to reveal functional clusters of drugs (no analyses performed on this
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processing). Of note, the taxonomic tree generated on the top of the data reflects

the structure of the FTC.

ATC 
categories

Figure 3.15: Pairwise comparison of MoAs similarities. Therapeutic indications are
represented by ATC categories which are the colours on the side. One ATC level is
considered on this graph, just as in Figure 3.13. The similarity values are further
clustered hierarchical clustering based on the Manhattan distance. This processing of
the data enables to see functional clusters of drugs, namely groups of drugs with a
similar pharmacology (no analyses presented in this document).

Finally, Figure 3.16 shows the distribution when compounds are sorted based

on their identifiers; no patterns are identifiable in this case. Figure 3.16 acts as a

visual control, reflecting the result obtained from the similarity analysis.

128



ATC 
categories

Figure 3.16: Control pairwise comparison of MoAs similarities. Therapeutic indica-
tions are represented by ATC categories which are the colours on the side. One ATC
level is considered on this graph, just as Figure 3.13. Drugs are randomly sorted (yet
symmetrically). No visual pattern is observable in this case, as opposed to what is seen
on Figures 3.13, 3.14 and 3.15.

Taken together, these results emphasise that the MoAs as defined in the FTC

are indeed on average associated with the therapeutic indication of a drug. This

result supports the validity of the resource and its potential to computationally

address indication discovery. Further analyses are presented in Chapter 4, also

integrating the concept of chemical structure.

3.6 Discussion

The FTC is a novel classification for approved drugs, which can be used as a

starting point to generate drug repurposing hypotheses. This classification lever-

ages the information present in various databases and ontologies, similarly to
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the Open PHACTS initiative (Williams et al., 2012) and to the work done by

Hoehndorf et al. (2012) and Jupp et al. (2012). The FTC mostly differentiates

itself from these projects by providing a whole set of new categories on the top

of the integrated information, dedicated to tackle a very specific problem: drug

repositioning. Moreover, the semantic model behind the integration is richer than

any of the previous approaches: FTC properties are expressive, thanks to the use

extensive of transitive or chained property axioms (see section 3.2.9).

3.6.1 Biological assumptions

An asset of the FTC is its ability to handle efficiently categorical data: classes

and relationships are accurately defined, in order to classify compounds based on

the semantics of their relations. The properties linking drugs to their respective

protein targets (positive and negative perturbations) are however simplistic. At

the time being, no consideration is given regarding the binding strength between

the drug and the proteins, yet it is a key factor to derive potent and specific activ-

ities in the human body. This is also the case for other types of numerical data,

such as the dosage; the FTC can predict a role for a drug, yet it cannot provide

any information about the concentration or the administration route necessary

to obtain the potential effects. The current relations between targets and their

involvement in biological processes are also not a fully accurate representation

of the biological phenomenon. In a cell, specific domains of the protein could

mediate different functions. Only one of such activity types can sometimes be

inhibited by a drug (Kruger et al., 2012), yet I am assuming in the FTC that

as long as a drug affects a protein, it can therefore alter all its known functions.

These limitations come from the semantics behind the axioms structuring the

classification, themselves based on the information available from the databases.

Despite entailing not entirely accurately the biochemical reality, the axioms

help to generate a larger number of hypotheses, the primary goal of the FTC

and in-line with the theory presented on Chapter 2. The dosage issue is partially

addressed by the regulator pattern (see section 3.2.2): it should be easier to

experimentally adjust the concentration of the compounds classified as pro or

anti biological process agents in order to modulate a physiological effect.

The predictions generated by the FTC depend on the resolution of the cu-

rated information released by the original data providers. Erroneous or missing
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information will lead to misclassification by the reasoner. Some expected out-

comes are also missing from the predictions; sildenafil for instance was expected

to be classified as pro-penile erection agent (FTC A0043084), yet the lack of ap-

propriate GO annotation prevents it. After discussion with the GOA curation

team, a manual annotation can only be asserted based on published experimental

results. No document was found to support the involvement of the cGMP-specific

3’,5’-cyclic phosphodiesterase (sildenafil’s main target) in the negative regulation

of penile erection (GO:0060407), therefore no annotation can be made. Further

work could be done in this direction, by trying to automatically infer more anno-

tations or by using the electronically generated ones, in order to generate broader

yet potentially less plausible repositioning hypotheses.

3.6.2 Interpreting the evaluation

Out of the evaluation, the high recall value (89%) supports the idea behind the

automated build of the FTC: the data from different repositories funded and cu-

rated in parallel, can be integrated to automatically create a new resource. This

new classification (FTC) contains most of the known information present in an

external gold standard (ATC) and relies on DLs to leverage the native informa-

tion. In the context of this work I compared the content of the FTC against

the ATC, knowing that these two taxonomies have diverging goals. During the

evaluation, equivalences have been manually asserted between classes, which are

assumed to have fairly similar meaning and containing similar sets of compounds.

These manual assertions are however a weakness, as they are themselves not eval-

uated (free parameter). The presence or absence of a link was determined only by

one curator and any mistake can influence consequently the recall and precision

values. The precision of 50% tells that the FTC tends to over-assigns compounds

to MoA categories. The low precision value is acceptable in this case, as one of

the underlying motivation of the FTC is to broadly represent polypharmacology,

specially the one not present in gold standards such as the ATC, referencing only

regulated usage. In this regard, the evaluation should be considered more as a

safety control rather than a formal assessment of a predictive method.

The false positives derived from the evaluation can also be considered as drug

repurposing hypotheses: these drugs can indeed be interpreted as suitable for the

ATC category, yet not indexed as such. However, these predictions should be in-
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terpreted with caution, as it is currently impossible to distinguish a false positive

from a reprofiling opportunity. These considerations do not interfere with the ex-

ploration based on semantic similarities. Finally, note that the ATC/FTC equiva-

lences are open and editable online (https://github.com/loopasam/ftc/blob/

master/data/drugbank-relations-mappings.txt), any modification will be

automatically incorporated in the next release of the resource. It is also pos-

sible to evaluate the FTC against a different taxonomy, like the Medical Subject

Headings for example, which can be subject to future work.

3.6.3 FTC identifiers

The identifiers used to name FTC categories are formed by appending the letter

A or P to the beginning of a the numerical GO code describing the original con-

cept (see section 3.2.2 for details). The main motivation behind this choice was

the possibility to re-use the work done by the GO team to insure stable identifiers

and scale over it. This choice is however not an optimal solution, for the following

reasons: first the letters A and P introduce some semantics in the identifiers, it

is indeed possible to infer the meaning of a FTC class based on the numerical

identifier, which could lead to inconsistencies and corrupt analysis. Users could

be tricked regarding the meaning of a class, by disregarding its formal definition

for instance. Secondly, some GO classes and identifiers will get deprecated over

time. As the FTC is re-built periodically, it is unclear at the moment how back-

ward compatibility will be maintained and how deprecated entry will be handled.

Future work will try to address these issues, by implementing a separate iden-

tifier schema, using a solution such as identifiers.org (Juty et al., 2012) for

instance.

3.7 Summary

The representation of the MoA as motivated in Chapter 1 was presented in this

chapter. The axioms behind the resource and the deductions reached by the

reasoner follow the theory introduced in Chapter 2. Despite the large size of the

knowledge base, the classification process is fast and scalable, thanks to the EL++

profile. I will further present an analysis of the relationship between the MoA,

the indication of a drug and its molecular structure in the coming chapter. Drug
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repositioning use-cases, not presented in the section, will also be discussed.

To conclude, the FTC is public resource, which can assist drug repositioning

initiatives or enhance computational studies that evaluate drugs according to their

mode of action. The resource attributes biomolecular functions and processes to

drugs, the same way as GO types have been assigned to gene products; its role is

analogous to the one of a toolbox, classifying items based on their use (see Figure

3.17).

Figure 3.17: Pharmacological toolbox analogy. The FTC describes categories inside
which drugs can be classified; the classification helps to select the right tool for the
right task, similarly to a toolbox.

The construction of FTC relies on an axiomatic representation as the core

means to attribute and derive the MoA for approved drugs. I showed the validity

of the approach by comparing the content of the FTC to a well established clinical

gold standard, the ATC. In Chapter 4, I analyse the FTC’s content to illustrate

how repositioning hypotheses can be generated for hypertension treatment and

Alzheimer’s disease, using two different methodologies.
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CHAPTER 4

Systematic drug repositioning

analysis

Key points

• The Functional Therapeutic Chemical Classification System (FTC) pro-

vides a descriptor for the function of drugs, which can be used to analyse

the systematic relationship between function, structure and indication for

approved drugs.

• Overall, approved drugs have dissimilar structures and dissimilar functions.

When the therapeutic area is considered, the more specific the drug’s indica-

tion is, the more similar the structure and function are. These observations

are in line with the similar property principle and can be used to isolate

drug repositioning hypotheses from the dataset considered.

• A drug repositioning hypothesis is a pair of drugs indicated for different

therapeutic areas (two ATC levels) but with a high functional similarity

value. This method of extraction is called similarity-based. I extracted 797

of such pairs and made them openly available through a web application.

• The set of repositioning hypotheses can be used to study the relationship

between therapeutic areas: some repositioning hypotheses are more frequent

between particular therapeutic groups and overlap with known off-label

uses.
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• From the full set of hypotheses, two use-cases are investigated in detail:

hypertension and Alzheimer’s disease. The drug similarity-based reposi-

tioning hypotheses are compared against the toolbox approach, where FTC

categories are directly used as a starting point to forward repurposing op-

portunities.

• Cardiovascular hypertension hypotheses relate mostly to similar pharma-

cological actions but in different anatomical areas. Alzheimer’s disease hy-

potheses involve biological processes related to the Tau protein and beta-

amyloids; the majority of hypotheses find supporting evidence in the biomed-

ical literature.

• This analysis concludes the thesis. Chapter 5 sets the work done in the

context of the overall drug discovery process and discusses future work and

open questions.

Author’s comment

This chapter is a narrative analysis of the content of the FTC. Results and

discussion are mixed together as I believe it makes the text more understandable

and clarifies the reasoning behind the work. A methods section is provided at

the end, describing the details of the analyses performed.

4.1 Introduction

I decided to look at drug repositioning from the perspective of the mode and

mechanism of action (Chapter 1). The implementation of a solution required

first some theoretical basis to be set, namely the black box model of the cell,

specified using description logics (Chapter 2). The FTC then implemented the

theory, as presented in the previous chapter (Chapter 3), and was evaluated

against existing solutions to assess the relevance of the approach. This coming

chapter will present the biological analysis performed over the content of FTC,

in order to more directly address drug repositioning concerns.

As the FTC characterises the concept of function in a systematic fashion, the

obvious questions to ask are: how does it relates to the chemical structure? Do
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similar compounds have similar functions? What about the indication? Is there

any relation between function, structure and therapeutic usage?

In this regard, the analysis below first identifies the repositioning hypothe-

ses present in the FTC and discusses the relevance of function in the process.

Secondly, the extracted hypotheses are examined in depth and interpreted from

a biological viewpoint. Because the FTC provides systemic insight on the drug

repositioning topic, it is therefore possible to explore the broad relationship be-

tween therapeutic areas as well as the connection between drug repositioning

and off-label uses. Finally, a couple of detailed use-cases are discussed: cardio-

vascular hypertension and Alzheimer’s disease. These pathologies will serve to

demonstrate how two different methodologies can be applied over the FTC to

extract hypotheses: the similarity-based and the toolbox approaches.

This chapter is more focused on the biology and its interpretation. The con-

tent of FTC is dissected using semantic similarity and mode of action (MoA)

cherry-picking. The conclusions drawn in this chapter will introduce future work

to be done, as well as new leads to be explored.

4.2 Structure, function and indication of drugs

The most commonly accepted rule in drug discovery is probably the similar prop-

erty principle: similar structures have similar biological activities - or functions

(Martin et al., 2002) (Kubinyi, 1998) (Johnson and Maggiora, 1990). Despite

being true in some cases, there are plenty of examples in contradiction with this

rule. As the FTC provides a unique characterisation of the function of chemical

compounds, I decided to analyse the structure/function relationship for approved

drugs, with a systematic stance. Before being able to do so, it is however nec-

essary to choose adequate descriptors; the function will be represented by the

FTC, but the structural descriptor still remains to be selected. This preliminary

characterisation will allow me to then compare each drug’s chemical structure

against function in a systematic fashion and derive repositioning hypotheses.

4.2.1 Structural descriptor selection

The structure of two chemical compounds can be compared in a variety of ways,

depending on the application (Johnson and Maggiora, 1990). In my case, the
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main motivation was to find a representative descriptor with a good dynamic

range for the dataset considered - a thousand approved drugs. Moreover, the

structural descriptor must be relatively easy to handle, fast to compute and with

an explicit meaning, solely depending on the molecule and not on external factors.

In order to match these requirements, I decided to focus only on two-dimensional

chemical structures, as numerous methods exist to compute them and because

they are arguably more accurate for predicting target affinity than three-dimensional

descriptors (Nettles et al., 2006), and therefore more suited to study bioactivity.

The interpretation of the results is also easier and directly related to the chemical

groups present in the structure (Todeschini and Consonni, 2009).

Two-dimensional structures can be represented by fingerprinting methods (see

section 4.5.1). Numerous implementations exist, varying in the chemical patterns

encoded. I chose to try four of them over my dataset: hybridization, extended,

MACCS and PubChem fingerprints (see section 4.5.1). These methods were

selected because they are readily available in the Chemistry Development Kit

(Steinbeck et al., 2003) and relatively different one from another, therefore pro-

viding independent yet comparable results. Figure 4.1 illustrates this: the plot

shows the density distribution of similarity values between pairs of drugs for the

various fingerprinting methods considered (see section 4.5.2 and 4.5.3).
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Figure 4.1: Kernel density distribution for various chemical fingerprinting (FP) meth-
ods. All the methods have been applied as implemented in the CDK (cf section 4.5.3).
Each approved drug was compared against all other approved drugs (pairwise compar-
ison), in order to determine which methodology provides the most suitable distribution
to study the dataset.

Different methods have different curves: MACCS and PubChem fingerprint-

ing functions have wider distributions, as shown by the value of the interquartile

range, higher than with the other methods (Table 4.1). The distribution of struc-

tural similarity values is an important criterion for this analysis, as it reflects the

spread of the data. In my case, the wider, the more dynamic and therefore the

better.
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PubChem Hybrid. MACCS Ext. Mean corr. Qu.1 Mean Qu.3 Range

PubChem X 0.65 0.61 0.73 0.66 0.24 0.36 0.47 0.24

Hybrid. 0.65 X 0.66 0.84 0.72 0.13 0.19 0.24 0.11

MACCS 0.61 0.66 X 0.65 0.64 0.24 0.33 0.41 0.17

Ext. 0.73 0.84 0.65 X 0.74 0.11 0.16 0.2 0.09

Table 4.1: Pearson’s Correlation values between various fingerprinting methodolo-
gies. “Mean corr.” stands for the mean value of the correlation coefficients. “Ext.”
stand for Extended fingerprinter, “Hybrid.” for Hybridization. “Range” describes the
interquartile range (Qu.3 - Qu.1), based on the similarity values.

Nonetheless, the agreement between the various fingerprinting methodologies

also has to be considered: the goal is to find an average structural descriptor,

somehow representative and not too polarised, in order to derive systematic con-

clusions later on. The agreement between methodologies was defined by the Pear-

son correlation coefficient (see section 4.5.3) and is presented on Table 4.1. Briefly,

this coefficient ranges between -1 to 1 and reflects how correlated two series of

points are, 1 being a total positive correlation and -1 a total negative correla-

tion. As each method is compared against all other fingerprinting methodologies,

I considered the average of Pearson’s coefficients as a representative metric; the

higher the value, the more a method agrees with the others (“Mean corr.” on

Table 4.1). From this heuristic, table 4.1 shows that the extended fingerprinting

method is the most in line with the others (mean = 0.74), MACCS being the one

agreeing the least (mean = 0.64). Nonetheless, all methods have pretty similar

average values (see Table 4.1), meaning that all techniques reach overall the same

level of agreement. Note that the extended and hybridisation fingerprints have

the highest agreement value between them (0.84), reflecting the closeness in the

implementation (personal discussion with CDK developers).

Based on these results, I decided to use the PubChem fingerprint to represent

the chemical structure of drugs. The method distributes best the dataset anal-

ysed and agrees well with the other fingerprinting methodologies tested, features

required for the subsequent drug repositioning analysis.

4.2.2 Dissimilar structures have dissimilar functions

The functional descriptor derives from the structure of the FTC and the semantic

similarity. Given a pair of drugs, the closer they are present in the taxonomic tree,
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the more similar they are inferred to be (cf section 2.4.3). From this selection of

the functional and structural descriptors, it is possible to study the relationship

between drugs.

The similar property principle states that similar structures have similar bi-

ological activities. The rule was derived from QSAR analyses, where the goal is

to try to fit a chemical structure inside a cavity, for instance the active site of an

enzyme (Todeschini and Consonni, 2009). In such a case, the rule is intuitively

acceptable, yet numerous exceptions are known. The functional descriptor intro-

duced can abstract away from this physical viewpoint and appreciate the similar-

ity relationship in a systematic fashion. In this regard, Figure 4.2 illustrates the

distribution of similarity values for all pairs of drugs. Note that the indication is

not taken into consideration at this stage.
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Figure 4.2: Functional against structural similarity values for approved drugs. Each
drug is compared against all other drugs (pairwise comparison) using both the struc-
tural and functional descriptors and corresponding to one dot or data point on the
graph. Two different arbitrary thresholds are applied, represented by the blue and
orange lines on the graph. The blue line separates the fairly similar values (>0.6) from
the rest, and the orange ones split up the highly similar (>0.85) from the rest of the
dataset. The graph is divided and labelled into 4 sections, identified by letters on the
figure. The numbers of data points present in each one of these areas are listed on the
table below the plot. The kernel density distribution are plotted on the side of the axis
(qualitative) in order to appreciate the distribution of the data.

The scatter plot is further divided into areas, broadly separating groups of

drugs based on their relative similarity. I chose to consider two different thresh-

olds, in order to separate the similar compounds from the dissimilar ones, repre-
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sented by the blue and orange lines in Figure 4.2. The first threshold (blue) is set

at an arbitrary similarity value of 0.6. This number appears able to separate the

relatively similar from dissimilar compounds, and is derived from observations

made in Figure 4-9. It also corresponds to the plateau values for both the struc-

tural and functional descriptors (Table 4.1 and Table 4.3). The second threshold

(orange line) was set at the arbitrary value of 0.85; it separates strongly similar

compounds from the rest. This value is generally accepted as a cut-off (Wikipedia

(2014a) and personal discussions). The two thresholds reveal the same trend of

data distribution (tables in Figure 4.2) in their different areas.

From the distribution of values on the graph, it is clear that the large majority

of molecules have dissimilar structures and dissimilar functions. This corresponds

to area C on the Figure 4.2, containing either 93% or up to 99% of the data points,

depending on the threshold considered. This result can be explained as follows:

approved drugs cover a wide range of different bioactivities (dissimilar functions),

affecting numerous distinct processes involved in diseases. Their pharmacology

is mediated via an interaction with different protein targets, therefore different

chemical structures are needed. Moreover, for patent concerns, dissimilar struc-

tures are usually sought in order to maximise intellectual protection (Barratt and

Frail, 2012). This explanation is consistent with the low number of drugs with

similar functions and similar structures (area B on the graph), pairs in agreement

with the similar property principle.

Interestingly, a number of drugs are not in line with the similarity rule, rep-

resented by the data points in areas A and D. Such pairs have either similar

functions with low structural resemblance (area A) or high structural similarities

with little shared bioactivity (area D). This observation shows the challenge in

drug discovery to relate function and structure: similar MoAs can be obtained

with different structures (area A), and just because two structures are similar

does not imply that they will trigger the same biological effect (area D).

Two conclusions can be derived from this plot. First, the graph reveals that

most drugs have dissimilar structures and dissimilar functions, which I interpret

as complementary and in line with the similar property principle. The relation

between these pairs of compounds is not informative for drug repositioning and

they can later be filtered out. Secondly, the plot enables the identification of

exceptions to the similarity rule (areas A and D). These pairs of drugs are of

particular interest, as they represent an unexpected pharmacology, not in line
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with the rule and therefore more difficult to identify. Such pairs are present in

limited quantities, yet they intriguingly more numerous than the pairs respecting

the principle and will be investigated in more detail.

Finally, on the Figure 4.2, it is possible to notice some artefactual horizontal

straight lines, where the functional similarity is identical for a certain number of

pairs (obvious one around functional similarity of 0.67 on Figure 4.2). Table 4.2

presents an illustration of the reason why such lines appear: when multiple drugs

have the same set of FTC annotations, they end up having the same functional

similarity values. For instance on Table 4.2, the drugs guanfacine, lofexidine and

dexmedetomidine all have the very same annotations. The drugs brimonidine,

tizanidine and clonidine are also sharing the exact same set of FTC categories,

therefore during the pairwise comparisons, the pairs will have the same functional

similarity values. Note that the structural similarity still varies. In the example

presented, the functional similarity values are relatively high (0.951219), reflecting

the very tight similarity of actions between these compounds, acting on identical

or very similar targets.

Structural

similarity

Functional

similarity

Drugs 1 (perturb Alpha-

2A adrenergic receptor)

Drugs 2 (perturb Alpha-

2A, 2B and 2C adrenergic

receptor)

0.331551 0.951219 Guanfacine (DB01018) Brimonidine (DB00484)

0.349515 0.951219 Lofexidine (DB04948) Brimonidine (DB00484)

0.42515 0.951219 Guanfacine (DB01018) Tizanidine (DB00697)

0.427807 0.951219 Lofexidine (DB04948) Tizanidine (DB00697)

0.5125 0.951219 Dexmedetomidine

(DB00633)

Clonidine (DB00575)

0.525974 0.951219 Lofexidine (DB04948) Clonidine (DB00575)

0.556818 0.951219 Dexmedetomidine

(DB00633)

Tizanidine (DB00697)

0.610169 0.951219 Dexmedetomidine

(DB00633)

Brimonidine (DB00484)

Table 4.2: Extraction of data points of a horizontal lines present on Figure 4.2. The
list of drugs 1 are all affecting the same molecular targets, and so are the drugs 2. As
a result the functional similarity values are identical and constitute the lines observed.
Note that structural similarity values ranges, reflecting the different chemical structure
among these compounds.

So far structure has only been compared to function; yet in order to be more

meaningful, the indication of the drugs also has to be considered in the analysis.
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Intuitively, compounds present in the same therapeutic group should share higher

similarity values, reflecting that they target related proteins and have more similar

functions (section 3.5.2).

4.2.3 The more specific an indication is, the more similar

the function and structure are

The ultimate value of a chemical compound arises from its therapeutic usage.

In this regard, the legal indication of a drug is the gold-standard of information.

This section further analyses the functional and structural descriptors introduced

before and compares them against the legal indication and usage, as represented

in the Anatomical Therapeutic Chemical Classification System (ATC). The goal

of this comparison is to see whether the descriptors can further provide any

meaningful information regarding the indication of a drug, which could be used

to retrieve repositioning hypotheses.

According to the similar property principle, drugs present in the same ther-

apeutic group should have on average relatively closer structures and functions.

In order to validate this assumption, I considered the five hierarchical levels of

the ATC as a representation of the specificity of the indication, with the first or

top level of the ATC representing generic and broadly defined indications and

the fourth level or bottom level characterising very precisely the indication of a

compound (see Figure 4.3).
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Cardiovascular 
system (C)

Diuretics 
(C03)

Cardiac 
therapy (C01)

High-ceiling 
diuretics 
(C03C)

Low-ceiling 
diuretics 
(C03A)

Anti-
arrhythmics

(C01B)

Cardiac 
stimulants 
(C01C)

Drug A Drug B Drug C

level 1

level 3

level 2

sp
ecificity

level 1
Same category
Drug A, Drug B
Drug A, Drug C
Drug B, Drug C

level 2
Same category
Drug A, Drug B

Different category
Drug A, Drug C
Drug B, Drug C

level 3
Different category
Drug A, Drug B
Drug A, Drug C
Drug B, Drug C

Figure 4.3: Specificity of the indication of a drug as represented in the ATC. The ATC
captures drug’s indication and is organised over 5 levels (only 4 shown here for clarity),
1 being the highest and most generic level. When descending the tree, the specificity of
the indication or action increases. Pairs of drugs can be flagged as belonging to either
the same or different ATC category, depending on the level considered (resolution).
Three examples are given on the figure in this regards, for the drugs A, B and C. For
instance, when only the level 1 is considered, all pairs of drugs are present in the same
category (Cardiovascular system). When the level 2 is considered, the pair of drugs A
and B still belong to the same category (Diuretics), but these two drugs are not sharing
the indication of drug C, Cardiac therapy. At a resolution of the level 3, each drug has
a separate indication/action.

It is possible to use this definition of the specificity of an indication to fil-

ter pairs of drugs and look at the overall evolution of structural and functional

similarities. Such an analysis is shown in Figure 4-4, where only pairs of drugs

sharing a common indication are shown. When the specificity of the indication

increases, represented by the increasing number of the ATC level considered, the

average functional and structural similarity increases too.
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Structural similarity

Figure 4.4: Distribution of the functional and structural similarity values for pairs
of drugs present in the same ATC categories (same indication). The different panels
reflect the increasing specificity of the indication of the drugs. X axes is the structural
similarity and Y axes is the functional similarity (calculated as with previous graphs).
(A) 1 ATC level resolution. (B) 2 ATC level resolution. (C) 3 ATC level resolution.
(D) 4 ATC level resolution. Conceptual explanation of resolution and levels is available
on Figure 4.3. When the specificity of the indication increases (resolution increasing),
the average functional and structural similarity values increases too (black lines).

On the contrary, when only pairs of drugs indicated for increasingly different

indications are compared, the average similarity stays the same, as shown on

Figure 4.5 and summarised Table 4.3.

Figures 4-6 and 4-7 respectively show the kernel densities of the structural

and functional similarities values for the pairs of drugs sharing an indication

at a given ATC level. Note that the two descriptors have different behaviours.

The structural similarity appears centred in the middle of the graph, and slowly

evolves towards higher similarity values with indication specificity. A jump is

observed from level 3 to 4 (brown curve on Figure 4.6), and is manifested by a
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Figure 4.5: Distribution of the functional and structural similarity values for pairs of
drugs present in different ATC categories (different indication). The different panels
reflect the increasing specificity of the indication of the drugs. X axes is the structural
similarity and Y axes is the functional similarity (calculated as with previous graphs).
(A) 1 ATC level resolution. (B) 2 ATC level resolution. (C) 3 ATC level resolution.
(D) 4 ATC level resolution. Conceptual explanation of resolution and levels is available
on Figure 4-3. When the specificity of the indication increases (resolution increasing),
the average functional and structural similarity values stays identical (black lines).

larger increase in the average value. This observation is explained by the very

definition of the indication coming from the ATC: level 4 handles the categorisa-

tion of drugs based on their chemical structures (cf section 3.2.6), therefore it is

more likely for a pair of molecules present in the same fourth level ATC category

to have very similar structures.
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Specificity of indication (ATC level): 1 2 3 4

Same indication Average structure similarity 0.39 0.43 0.49 0.62

Average function similarity 0.17 0.27 0.39 0.52

Different indication Average structure similarity 0.36 0.36 0.36 0.36

Average function similarity 0.13 0.13 0.13 0.13

Table 4.3: Evolution of the specificity of indication with the ATC levels. Increas-
ingly similar indications have increasingly similar functional and structural values. The
functional and structural similarity values are not evolving when increasingly different
indications are considered.

D
en

si
ty

Structural similarity (PubChem fingerprint)

Level 1
Level 2
Level 3
Level 4

Figure 4.6: Kernel density distribution of the structural similarity values for drugs
sharing an indication. All ATC categories have been considered. Each curve represent
an ATC resolution level, as indicated on the legend. Conceptual explanation of resolu-
tion levels is available on Figure 4.3. Solid vertical lines are the corresponding means.
This graph shows that with an increasingly specific indication (increasing resolution)
the average structural similarity values increase too.

The functional similarities steadily increase on average (see Table 4.3). With

this descriptor, the relative changes in similarities between different ATC levels

are more located on the extremes, as shown in figure 4.7: when the specificity
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of the indication increases, the number of low similarity values decreases, giving

relatively more weight to the high ones.

D
en

si
ty

Functional similarity (semantic similarity over FTC)

Level 1
Level 2
Level 3
Level 4

Figure 4.7: Kernel density distribution of the functional similarity values for drugs
sharing an indication. All ATC categories have been considered. Each curve represent
an ATC resolution level, as indicated on the legend. Conceptual explanation of resolu-
tion levels is available on Figure 4.3. Solid vertical lines are the corresponding means.
This graph shows that with an increasingly specific indication (increasing resolution)
the average functional similarity values increase too. See Table 4.3 for values.

Taken together, these results confirm the similarity principle at a systematic

scale: on average, drugs with closely related indications are structurally and

functionally similar, as captured by the descriptors used. As an example, the plot

showed in Figure 4.4 panel D displays the highest average similarity, when the

indication is the most specific (highest ATC level). This average similarity value

was used to set the threshold level at 0.6 in Figure 4.2; it separates functionally

similar compounds from the rest.

Still on the panel 4.4-D, it is possible to observe the limit of the structural

similarity to predict pharmacologically related molecules. The pairs of this area

have indeed closely related indications and high functional similarity as expected,

150



yet a very low structural resemblance. The Figure 4.8 shows a representative pair

in details: isothipendyl (DB08802) and bromodiphenhydramine (DB01237) are

both anti-histamine compounds and share a high functional similarity (0.93), yet

they have different chemical scaffold, resulting in a very low structural similarity

(0.30). The biological relatedness of such molecules would be missed by consid-

ering their molecular features alone, yet the FTC enables it.

(B) Isothipendyl(A) Bromodiphenhydramine

- Anti-histamine receptor activity agent
- Anti-inositol trisphosphate biosynthetic 
process agent

- Anti-histamine receptor activity agent
- Anti-inositol trisphosphate biosynthetic 
process agent

Figure 4.8: Example of pair of drugs with low structural and high functional similarity
values, classified in the same ATC category and used for the same clinical indication
(Antihistamines). (A) Chemical structure and list of FTC categories inside which
the isothipendyl was classified. (B) Molecular structure and list of FTC categories
inside which the bromodiphenhydramine molecule was classified. These two drugs
share all FTC categories (functional similarity = 0.93), yet their molecular structures
are dissimilar (structural similarity = 0.30).

Interestingly, still on the Figure 4.4-D, some of the pairs still have low simi-

larity values (structural and functional lower than 0.3); these points are outliers

to the similar property principle and reflect the limits of the descriptors. I per-

formed an error analysis in order to identify the reasons behind the non-respect

of the rule by these drugs. The pair of drugs dipyridamole and epoprostenol is a

good illustration of the most common cases of misclassification. These two drugs

have a relative functional similarity of 0.10 and a structural similarity of 0.14, de-

spite being both categorised as Platelet aggregation inhibitors in the ATC (code:

B01AC). Although resulting in the same biological outcome and clinical usage,
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these two drugs are mainly targeting different proteins, a phosphodiesterase in the

case of dipyridamole and the P2Y purinoceptor 12 in the case of epoprostenol.

In order to interact with these receptors, two different chemical structures are

needed and it is therefore expected that the two molecules would have different

structures (see Figure 4.9). However, the MoAs from the FTC are not shared ei-

ther, which comes from missing annotations on the protein targets or because the

molecular root of the effect is unknown. It is therefore also not possible to relate

these two drugs based on their functions, because of lack of recorded knowledge.

(B) Epoprostenol(A) Dipyridamole

- Anti-adenosine deaminase activity 
agent
- Anti-3,5-cyclic-AMP 
phosphodiesterase activity agent
- Anti-cGMP-stimulated cyclic-
nucleotide phosphodiesterase activity 
agent
- Anti-protein binding agent
- Anti-zinc ion binding agent
- Anti-cAMP binding agent
- Anti-cGMP binding agent
- Pro-adenosine receptor signaling 
pathway agent

- Anti-nitric oxide biosynthetic process agent
- Anti-inflammatory response agent
- Anti-platelet-derived growth factor receptor 
signaling pathway agent
- Anti-smooth muscle cell proliferation agent
- Pro-angiogenesis agent
- Pro-guanyl-nucleotide exchange factor 
activity agent
- Pro-protein binding agent
- Pro-cAMP biosynthetic process agent
- Pro-prostaglandin-I synthase activity agent
- Pro-cAMP-mediated signaling agent
- Pro-heme binding agent
- Pro-peroxisome proliferator activated 
receptor signaling pathway agent
- Pro-execution phase of apoptosis agent

Figure 4.9: Example of pair of drugs with low structural and functional similarity
values, yet classified in the same ATC category and used for the same clinical indication
(platelet aggregation inhibitors). (A) Chemical structure and list of FTC categories
inside which the dipyridamole was classified. (B) Molecular structure and list of FTC
categories inside which the epoprostenol molecule was classified. These two drugs do
not share any of the FTC categories listed (functional similarity = 0.10) and their
molecular structures are dissimilar (structural similarity = 0.14).

The figures presented in this section show an observation of primary impor-
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tance for drug repositioning: the computational descriptors used are able to serve

as a proxy for the expected behaviour of the concepts of function and structure

in regards to the real clinical indication of a drug. The more similar a pair of

drugs are based on either their functional or structural features, the more likely

these drugs are clinically indicated for the same sets of diseases.

Note that the data analysis shown in the two previous sections only identi-

fied average patterns; particular data points were not taken into considerations.

Some exceptions or outliers exists, which will be considered as starting points to

formulate drug repositioning hypotheses.

4.2.4 Isolation of drug repositioning hypotheses

As motivated before (section 3.2.6), the ATC can be considered as a gold stan-

dard resource for representing the therapeutic area of a drug. The second level

of this classification system in particular represents the clinical indication of a

compound well (World-Health-Organization et al., 2006); it is not too specific to

capture the MoA and exact pharmacology, yet still biologically meaningful and

not too abstract. Example of second level ATC categories are: Anabolic agents

for systemic use (A14) and Anti-haemorrhagics (B02). I and others (Campillos

et al. (2008), Napolitano et al. (2013)) have considered that drugs categorised un-

der different second-level ATC codes can be considered as indicated for different

diseases.

Drugs used in the treatment of different conditions are expected to have dis-

similar functions, as in principle such agents affect separate biological processes,

themselves related to distinct diseases. The graph in Figure 4.10-A recounts

this statement: as expected most of the pairs have low structural and functional

similarity values.

However, some data points on this plot have relatively high functional simi-

larity values (similarity superior to 0.6, identified by the blue line). These pairs

of drugs are unexpected; such compounds appear to be strongly related on the

functional level, yet in practice they are clinically used for radically different

indications. Such data points have been interpreted as repositioning hypotheses.

In this regard, the values shown above the blue line (0.6) in Figure 4.10-

A have been first isolated (see Figure 4.10-B). Some drugs with little knowledge

have been discarded (low number of annotations - see section 4.5.6); the remaining
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Figure 4.10: Isolation of drug repositioning hypotheses. (A) All the pairs of drugs
classified in different ATC categories (level 2 resolution) are plotted (identical plot as
Figure 4-5 panel B). The blue line is the threshold above which pairs are functionally
similar but are indicated for different usage according to the ATC. (B) Zoom on the
data set above the blue line. (C) Pairs of drugs with little recorded knowledge are
discarded from the analysis (see material and method). This set of data represents the
repositioning hypotheses and are featured in the web application.

set is displayed in panel (C). The pairs of molecules in the area Figure 4.10-C,

defined as drug repositioning hypotheses, were isolated from the rest of the data

points and further displayed through a web application (https://www.ebi.ac.

uk/chembl/research/ftc-hypotheses/) in order to facilitate their exploration

and validation.

A total of 797 pairs of points or repositioning hypotheses were considered. The

hypotheses are grouped by therapeutic areas in the web application. For example,

the ATC category J01 - Antibacterials for systemic use contains 72 associations or

potential drugs that are not indexed as antibacterial and yet could be used as such,

based on their known role in the human body (https://www.ebi.ac.uk/chembl/

research/ftc-hypotheses/code/J01). The web application further provides
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an aggregation of the ATC categories related to the one currently investigated.

For instance the hypotheses related to the category Antibacterials for systemic

use are from drugs present in the ATC group L01 - Antineoplastic agents (54

hypotheses), S02 (otologicals, 16 hypotheses), V03 (All other therapeutic products,

9 associations), D06 (Antibiotics and chemotherapeutics for dermatological use, 9

hypotheses) and S03 (Ophthalmological and otological preparations, 8 hypotheses).

Very often, the same drug is involved in multiple hypotheses. For instance,

the antibiotic pefloxacin is functionally similar to 9 other drugs; this results in a

network of interconnected drugs related to one therapeutic category. From the

web application, it is possible to export the file containing hypotheses to further

analyse the graph in Cytoscape (Shannon et al., 2003), a program commonly used

to visualise networks and systems. These graphs will be extensively discussed in

the rest of this chapter.

From the relationship between the structure, function and indication of ap-

proved drugs, it is possible to isolate outliers not following the predicted be-

haviour. Such data points extracted from the analysis have been defined as drug

repositioning opportunities and are available via a web interface. Next sections

will focus on particular therapeutic groups and use-cases, in order to identify the

relevance and the limits of the approach.

4.3 Open drug repositioning hypotheses

The ATC provides data regarding the anatomical group inside which a drug has

been assigned (first level) as well as its main therapeutic area (level 2). I consid-

ered this information as a gold standard defining the indication of a drug. As a

reflection of polypharmacology, some of the drugs are already present in multiple

ATC categories, or have multiple indications. For instance, acetylsalicylic acid is

classified as a stomatological preparation (A01), an antithrombotic agent (B01)

and an analgesic (N02), according to the various roles it can play in the human

body. The hypotheses generated render a similar result: drugs are predicted to

be active in other ATC categories on top of the ones they have already been

manually assigned to.

The aim of this section is to characterise and interpret the hypotheses; indeed,

before moving forward to perform laboratory experiments, it is necessary to have
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a clearer idea of the molecular reasons behind the predictions.

First I will present an overview of the hypotheses and illustrate how drug

repositioning relates to the non-regulated uses of drugs. This topic is known as off-

label uses (Wikipedia, 2014c) and concerns around 20% of the drug’s prescriptions

(Stafford, 2008). An off-label use is the indication of a drug for a non-regulated

usage, either in terms of therapeutic group, dosage or patient group. This practice

is legal in most countries, yet as it is non-regulated there is little information about

it.

Secondly, I will investigate drug repositioning hypotheses for cardiovascular

hypertension and Alzheimer’s disease. These use-cases are also an opportunity

to compare the hypotheses generated using functional similarity (section 4.2.4)

against the toolbox approach, which considers drugs classified inside FTC cate-

gories directly as relevant for a biological process.

4.3.1 Relationship between therapeutic areas

In the context of this work, a repositioning hypothesis is defined as a pair of

drugs that are functionally similar yet currently indicated for different clinical

purposes. In practice, this relationship can serve to relate therapeutic groups:

some hypotheses are present more often than others between two given groups,

providing insights as to how close these clinical areas are. In this respect, Figure

4-10 shows the association between therapeutic areas, with a resolution of two

ATC levels.
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Figure 4.11: Raw associations between therapeutic areas. All the repositioning hy-
potheses between two a therapeutic groups are merged to define the strength of asso-
ciation amongst these groups. The boldness of the line is directly proportional to the
strength of association. For instance, there exists more repositioning hypotheses be-
tween the groups M01 and S01 (very bold line) than between the groups C10 and A07
(thinner line). Categories are sorted on alphabetical order and the colour is assigned
based on the first letter of the group (therapeutic area). All the group S is pink for
instance (S01, S02 and S03).

It is rather challenging to derive any meaningful conclusion from the graph,

yet the hairball reveals an interesting features of the dataset: a high inter-group

connectivity, which appears stronger in some cases and weaker in others. For in-

stance, D categories (dermatologicals) are less well connected than N series (ner-

vous system), simply from visual observation. In order to simplify the problem

faced and extract the essence of the dataset, I further decided to group categories

considering solely their first ATC level and filtering out weak associations (cf

methods section 4.5.7). The result is shown in Figure 4.12.
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Figure 4.12: Filtered and abstracted associations between therapeutic areas. The
network is built from the data point shown on Figure 4-10. ATC categories have been
grouped based on their first level: for instance all the hypotheses for the groups S01,
S02 and S03 have been merged as S (or sensory organ in this figure). Moreover, only the
links involving a minimum of 25 hypotheses (arbitrary) have been kept in order to filter
out the weak associations. The network shows the areas subject to drug repositioning
or for which there exists a “promiscuous” pharmacology, which can be captured by the
degree of a node (number of connections with other nodes).

The resulting graph abstracts away details and shows clearer high level asso-

ciations between groups. The most connected node is the nervous system (degree

of 6). The high connectivity around this therapeutic area could be interpreted

as the presence of numerous repositioning hypotheses; however, it is much more

likely to be due to off-label usages. Neurology is a domain particularly famous

for this (Cras et al., 2007). For instance, it is genuinely difficult to define and

quantify concepts such as pain (Bonica et al., 1979) or any mental illness, there-

fore clinicians do not always use the officially indicated drug, depending on their

diagnostic, personal experience and history of the patients (personal discussion

with clinical pharmacologists).

Other therapeutic areas such as the ones related to sensory organs, dermatol-

ogy and the musculoskeletal system are also well connected (degree of 4 and 5).

The presence of the musculoskeletal category can be explained by the promiscu-
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ity of anti-inflammatory agents; usually such drugs are also active on the nervous

system, explaining the strong relation between these two groups. This high level

overview can be refined with the help of Figure 4.13.

Figure 4.13: Filtered associations between therapeutic areas. The network is built
from the data point shown on Figure 4.11. Weak associations (less than 15 hypotheses)
have been filtered out. The graph shows the high level association between therapeutic
areas, for a two ATC level resolution. See text for interpretation of the edges.

These graphs focus on the ATC level 2 indications, as in Figure 4.11, but with

weaker associations filtered out (section 4.5.7). This more granular view of the

data confirms the fussiness around neurological compounds; 6 out of 26 categories

are from this therapeutic area and are well connected to the other nodes. Some

associations are of special interest, as summarised in Table 4.4 .

Analgesics (relief from pain) are strongly associated with cough and cold

preparations. This pair is not so surprising; anti-flu medicines often mediate

their effect as palliative pain killers, as confirmed in the ATC description of the

category (ATC, 2014b). The strong connection between anti-inflammatory drugs
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Therapeutic groups association Interpretation
Cough and cold Analgesics Analgesics are used in cough prepara-

tions (ATC, 2014b)
Anti-inflammatory Antimycobacterials No naive interpretation
Analgesics Ophtalmological Related MoA, regulation of blood pressure
Ophtalmological Nasal preparation
Antihypertensive Ophtalmological
Beta blocking agent Ophtalmological
Antibacterial Antineoplastic Ortholog targets, replication of DNA
Antihistamines Psycholeptics Drowsiness, specially with first and

second generation (Gengo and Gabos,
1987)

Gastrointestinal disorder Psycholeptics Currently used as treatment, prepa-
rations contain psycholeptics (ATC,
2014a)

Analgesics Anti-inflammatory Side-effect, shared bioactivity (Hun-
skaar and Hole, 1987)

Table 4.4: High level association between therapeutic groups and shared pharmacol-
ogy. See Figure 4.11 for source network.

and analgesics observed in the Figure 4-10 is confirmed; compounds from either of

these classes are known to have overlapping pharmacology (Hunskaar and Hole,

1987). This relationship is further supported by the extra links to topical products

for joint and muscular pain, showing the ambiguity of biological action and the

relatedness of these indications.

Another neurological category, psycholeptics (calming effect), is related to

antihistamines and drugs for gastrointestinal diseases. The former association

explains the drowsiness side-effect provoked by first and second antihistaminic

agents. For gastrointestinal disorders, the link is explainable by the fact that

psycholeptics are often administered as a palliative solution for such dysfunctions

(ATC, 2014a). An edge also connects stomatological preparations to analgesics,

supporting this observation.

The strong relation between anti-neoplastic agents and anti-bacterials can

be explained by the orthology between the proteins targeted by these drugs,

namely the DNA replication machinery. The replication apparatus of bacteria

and humans are still fairly similar (Hurle et al., 2013), therefore a drug inhibiting

one can also inhibit the other.

Ophthalmologicals are connected to cardiovascular drugs (beta blocking and

antihypertensives agents) as well as to nasal preparations. This hub originates

because of the shared fundamental MoA between all these categories: regulation

of blood pressure and flow, in different systems. The functional similarity between

these categories is high, as the pharmacological effect is mediated via the same
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biological process, yet the administration and delivery of the drug in the body

leads to the specificity of the indication. This relationship will be analysed in

more details in coming sections.

Finally, some of the edges are difficult to interpret without looking at the un-

derlying pairs of drugs. For instance, the association between anti-inflammatory

and anti-mycobacterial agents is unusual and requires deeper investigation to be

interpreted (not discussed in this document).

This overview of the relationship between therapeutic groups reveals some ex-

pected associations, confirming the validity of the approach. Some known cases

are represented in the graphs shown and are documented in the scientific lit-

erature. Polypharmacology between groups appears non-homogeneous, as some

therapeutic areas are closer than others in terms of functional similarity and

strength of association. The list of drug repositioning hypotheses contains some

off-label pairs, which are drugs known and already used for an alternative indi-

cation yet not formally approved for it.

From this generic presentation of the dataset and in order to better charac-

terise the repositioning hypotheses, I decided to focus in more detail on agents ac-

tive for treatment or prevention of cardiovascular hypertension. Finally I demon-

strate how the categories of the FTC can be used as a starting point to address

Alzheimer’s disease (toolbox approach).

4.3.2 Drug repositioning for hypertension and the cardio-

vascular system

The beginning of this chapter (section 4.2.3) compared pairs of drugs considering

the relative similarity of their functions and structures. The closeness between

two roles was defined as the semantic similarity over the content of the FTC; such

a metric helped to identify related compounds, forward repositioning hypotheses

and look at the relationships between therapeutic groups. This approach, referred

to as similarity-based, is useful when a known therapeutic category already exists

in the gold standard (ATC) which can be used as a starting point for further

investigations.

Complemenlarly, the FTC can also be directly used as a toolbox, in order to

find drugs to fix or repair a molecular machinery; some FTC categories contain

active molecules in theory capable of producing the described pharmacological
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effect. Therefore, knowing the desired MoA can help to identify what molecule to

use for a particular condition. This methodology is named the toolbox approach.

The difference between the two approaches are illustrated and summarised in

Figure 4.14.

(A) “Agent against hypertension”

(C) Toolbox approach(B) Similarity-based approach

Anatomical Therapeutic Chemical 
Classification System (ATC) – Gold 

standard

Functional Therapeutic Chemical 
Classification System (FTC)

C02 – Anti-hypertensive agent C02 – Anti-
vasoconstriction agent

Look for drugs similar to the 
one in this category

Look for drugs classified in 
this category

Figure 4.14: Comparison of the similarity-based against toolbox approach for drug
repositioning hypotheses investigation. (A) The concept formulated in natural language
as in the head of a researcher or mentioned in a text is formalised and mapped to a
term from a classification, either the ATC or the FTC in this case. (B) Similarity-
based approach: the drugs functionally similar (semantic similarity over the FTC) to
the ones listed in the ATC category are the drug repositioning hypotheses (displayed
in the web application). (C) Toolbox approach: the drugs classified under the selected
FTC category are capable of producing the MoA of interest. These compounds have
been automatically assigned to the categories during the reasoning step (see Chapter 3
section 3.2.5). Note that often the ATC and FTC category have equivalent meanings,
as emphasized by the bold black arrow between the categories.

This section demonstrates how the FTC and the previously generated drug

repositioning hypotheses can be used in practice, using hypertension as an exam-

ple.

High blood pressure, or hypertension, is a medical condition leading to an

increased risk of strokes, heart attacks and cardiovascular diseases (Law et al.,

2003). In Europe alone, this condition is considered epidemic; hypertension af-

fects between 30 to 45% of the whole population (Swedberg et al., 2005), making

it one of the leading causes of death. From a mechanistic perspective, hyper-

tension can be straightforwardly regulated by lowering the blood pressure in the
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affected patient; this biological outcome can however be achieved in a variety of

ways. For instance, the physical contraction of cardiac cells can be directly inhib-

ited by blocking a receptor, the signalling pathway triggering the vasoconstriction

can be perturbed, or the density of the blood itself can be reduced in order to

make it more fluid (Swedberg et al., 2005). All these different mechanisms are of

interest because they produce the same therapeutic outcome, with yet different

safety profiles or patient groups.

The FTC contains and defines such mechanisms, therefore the resource can

assist in choosing the right drug to elicit the desired action (toolbox approach).

The commonly considered mechanisms and MoAs for hypertension treatment are

presented below, alongside their corresponding categories in the FTC and ATC,

when existing. Moreover the repositioning hypotheses generated earlier in this

chapter using the similarity-based approach will be discussed when relevant.

The hypertension use-case exemplifies a detailed mechanistic analysis that can

be performed over the FTC dataset, from the functional representation to drug

repositioning hypotheses.

4.3.2.1 Antihypertensives

A feature of the FTC is its ability to abstract away from specific chemical in-

teractions in order to solely focus on high level biological processes. In this

respect, at least two FTC categories - or MoAs - are of interest to address hy-

pertension: Pro-vasodilation agent (https://www.ebi.ac.uk/chembl/ftc/FTC_

P0042311) and Anti-vasoconstriction agent (https://www.ebi.ac.uk/chembl/

ftc/FTC_A0042310). The former type contains only one drug, whereas the lat-

ter features 49 compounds. All of these drugs are deemed to be active for the

condition studied and some of them are already indicated as such (e.g, prazosin),

whereas others are currently used for different purposes, such as clozapine, an

antipsychotic agent. The FTC categories can be used to identify new compounds

capable of producing the biological effect following this toolbox approach; no pre-

vious knowledge is necessary, except about the name of the mechanism studied

in order to find active drugs (see Figure 4.15).

The semantically equivalent ATC category is Antihypertensives (C02) and

contains single molecules and drug combinations. The drug repositioning hy-

potheses for this ATC class are listed and interpreted in Table 4.5 (https:
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vasoconstrictionvasodilatation

(B) (A) (C)

Figure 4.15: Schematic representation of the dilatation/constriction process of blood
vessels. (A) Cross section of blood vessel in normal state. (B) Vasodilatation process,
the size of the blood vessel increases, reducing the overall blood pressure (less tension).
(C) Vasoconstriction process, the diameter of the blood vessel diminishes, increasing
the overall blood pressure. Preventing or treating hypertension can be achieved by
either promoting the state (B) (Pro-vasodilatation agents) or by preventing state (C)
(Anti-vasoconstriction agents).

//www.ebi.ac.uk/chembl/research/ftc-hypotheses/code/C02).

The presence of neurological drugs is explainable by their adrenergic side ac-

tivity; such molecules bind receptors that are similar to the ones involved in blood

pressure regulation, yet are located in different parts of the body and produce a

different therapeutic effect. A similar pattern is observed with ophthalmological

agents, administered for glaucoma, a disease closely related to eye hypertension

(Quigley, 1996). In this case too, vasodilators are prescribed, but the delivery

and formulation of the molecule confers the specificity of the effect. This evidence

supports the validity of the hypotheses; administering the drugs in the cardio-

vascular system rather than in the eye would probably reduce the overall blood

pressure.

A series of arguably good hypotheses are related to compounds used against

nasal congestion. Their reported pharmacological effect, vasoconstriction of the

nose’s arteries (Bende et al., 1996), is the opposite of the one wanted. How-

ever, the biological activity of such compounds is strongly related to that of

epinephrine, which is particularly sensitive to concentration (Evans et al., 2001).

Depending on the dosage and the body part concerned, the epinephrine molecule

can produce radically different outcomes, from vasoconstriction to vasodilata-

tion. On this basis, the repositioning hypotheses related to nasal preparations

seem more plausible; still, the delivery methods would need to be adequately

optimised.

The information in the FTC helps to group drugs by MoAs as expected,
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Identifier ref-
erence drug

ATC code
reference
drug

Identifier hy-
pothesis

ATC code hypothe-
sis

Hypothesis interpretation

DB00457 (Pra-
zosin)

C02 (Antihy-
pertensives)

DB01162 (tera-
zosin)

G04 (Urologicals) Valid hypotheses, the drug is
used as such already

DB00590 (dox-
azosin)

” ” ” ”

Centrally
active hypoten-
sive agents
(group A)

” DB00668
(Epinephrine)

A01 (Stomatological
preparations) B02
(Antihemorrhagics)
C01 (Cardiac therapy)
R01 (Nasal prepa-
rations) R03 (Drugs
for obstructive air-
way diseases) S01
(Ophthalmologic)

Drug involved in numerous
process, effect varies with
quantities, to verify pro-drugs
and how it influences

” ” DB00368
(Nore-
pinephrine)

C01 (Cardiac therapy) Related therapeutic group,
central hormone

” ” DB00697
(tizanidine)

M03 (Muscle relax-
ants)

Management of spasticity,
same receptors but differ-
ent locations, inhibition of
motoreurons

” ” DB00320
(Dihydroergo-
tamine)

N02 (Analgesics) Migraine therapy, vasocon-
strictor

” ” DB00413
(Pramipexole)

N04 (Anti-parkinson
drugs)

For Parkinson’s disease and
restless syndrome. Used off-
label for cluster headache. Ef-
fect on vaconstriction?

” ” DB00633
(Dexmedeto-
midine)

N05 (Psycholeptics) Because of its pain killing ac-
tion, it also decreases the blood
pressure and heart rate, differ-
ent location of receptor triggers
different effect

” ” DB01577
(Metham-
phetamine)

N06 (Psychoanalep-
tics)

Plausible, illegal molecule

” ” DB04948
(Lofexidine)

N07 (Other nervous
system drugs)

Adrenergic agonist, reported
as short-acting antihyperten-
sive, but mostly used to re-
lieve opiate dependency, usage
already reported

” ” DB00935
(Oxymetazo-
line)

R01 (Nasal prepara-
tions) S01 (Opthalmo-
logicals)

Vasoconstrictor to relieve nasal
congestion. Also used for ocu-
lar inflammation.

” ” DB06711
(Naphazoline)

” ”

” ” DB06694 (Xy-
lometazoline)

” Nasal vasoconstrictor decon-
gestant

” ” DB00397
(Phenyl-
propanolamine)

R01 (Nasal prepara-
tions)

Produces vasoconstriction

” ” DB00964 (Apr-
aclonidine)

S01 (Opthalmologi-
cals)

Used in glaucoma therapy,
anti-hypertensive drug in the
eye system

” ” DB00484 (Bri-
monidine)

” ”

” ” DB00449 (Dip-
ivefrin)

” ”

Table 4.5: Drug repositioning hypotheses related to hypertension (ATC code C02).
The symbol ” refers to the value of the previous cell.
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without consideration for the anatomical part acted upon. In order to be repur-

posed, the delivery mechanisms of the drugs need to be adapted to transport the

molecule to the right place in the body. The FTC provides abstract level MoAs,

such as the ones presented in this section. It is also possible to use the resource

to investigate more detailed mechanisms, as discussed in the coming parts.

Group A

Figure 4.16: Drug repositioning hypotheses related to the ATC category C02 - Anti-
hypertensives. The width of grey edges is proportional to the functional similarity
values between drugs. Legend for colours and drug name are available online and in
Table 4.5.

4.3.2.2 Calcium channel blockers

One discovered way to reduce blood pressure is by blocking the entry of ions (cal-

cium mostly but also potassium and chloride) into cardiac muscle cells (Swedberg

et al., 2005). Deprived from the ions, the cardiac rhythm decreases and the ar-

teries dilate, leading to a drop in blood tension (Figure 4.17).
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Ca2+

Calcium channel

cytosol

Calcium channel 
blocker

Lipid cell 
membrane

outer

Figure 4.17: Schematic illustration of the mechanism of action of calcium channel
blockers. The calcium ion is necessary for the contraction of the heart muscle; its
releases from internal cellular store or entry inside the cell triggers the contraction. By
blocking the channel, the calcium does not circulate any more and the cardiac rhythm
decreases, therefore reducing the blood pressure and improving a hypertension.

One FTC mechanism is directly related to this action: Anti-high voltage-gated

calcium channel activity agent (FTC A0008331 - 13 drugs). As expected, most

of the drugs present in this category are indicated as antihypertensive agents (12

out of 13). The direct superclass of this category is the more generic concept

Anti-voltage-gated calcium channel activity agent (FTC A0005245 - 36 drugs).

Interestingly, inside this broader class, a quarter of the drugs (8/36) are anticon-

vulsants (anti-epilepsy) and further classified as Anti-low voltage-gated calcium

channel activity agent (FTC A0008332). This observation reflects the thera-

peutic closeness between this series of compounds; the two channel types (low

and high voltage) can produce radically different physiological outcome from

similar structures. The drug flunarizine is a good illustration of this overlap-

ping pharmacology, as it can indeed be indicated as vasodilator or anticonvul-

sant (https://www.ebi.ac.uk/chembl/ftc/agent/DB04841), because it inter-

acts non-specifically with either of these channels and can trigger the two response

types (Van Nueten et al., 1978).
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The corresponding ATC category is C08, the Calcium channel blockers. Some

repositioning hypotheses have been extracted for this category and are displayed

in Table 4.6.

Identifier ref-
erence drug

ATC code
reference
drug

Identifier
hypothesis
drug

ATC code hypothe-
sis drug

Hypothesis interpretation

DB00393 (Ni-
modipine)

C08 (Calcium
channel block-
ers)

DB00379
(Mexiletine)

C01 (Cardiac therapy) Similar therapeutic categories
(potential effect)

DB00661 (Ver-
apamil)

” DB00308 (Ibu-
tilide)

C01 (Cardiac therapy) Similar therapeutic categories
(potential effect)

DB01115
(Nifedipine)

” DB01429
(Aprindine)

C01 (Cardiac therapy) Similar therapeutic categories
(potential effect)

” ” DB00527
(Dibucaine)

S01 (Ophthalmologi-
cals) D04 (Antiprurit-
ics) C05 (Vasoprotec-
tives) S02 (Otologicals)
N01 (Anesthetics)

Same MoA, different anatomi-
cal location

Table 4.6: Drug repositioning hypotheses related calcium channel blockers (ATC code
C08). The symbol ” refers to the value of the previous cell.

Mexiletine, ibutilide and aprindine are all used in generic cardiac therapy and

arrhythmia; it is therefore not so surprising to find these drugs as hypothesised

calcium channel blockers. More interestingly, dibucaine is present in the list.

This drug is traditionally used as an anaesthetic and inhibitor of the sodium

pump. Because of these closely related mechanisms of action, the compound is

also sometimes used as a vasoprotective, to prevent haemorrhoids for instance.

This alternative pharmacology provides evidence about the potential role of this

drug for hypertension, which can be further investigated.
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Figure 4.18: Drug repositioning hypotheses related to the ATC category C08 - Cal-
cium channel blockers. The width of grey edges is proportional to the functional similar-
ity values between drugs. The black lines represent the structural similarities. Legend
for colours and drug name are available online and on the Table 4.6.

4.3.2.3 Adrenergic receptor antagonists

Lowering blood pressure can also be achieved by preventing the signal transmis-

sion mediated by adrenergic receptors, although such agents are principally used

to regulate cardiac dysrhythmia. There are different subtypes of adrenergic recep-

tor antagonists, listed as subclasses of the FTC category Anti-adrenergic receptor

activity agent (FTC A0004935). The FTC provides a granular representation of

this system, first by making the distinction between alpha and beta receptors,

and additionally by differentiating the subtype numbers (alpha1 and 2, beta1, 2

and 3).

The corresponding ATC class for this MoA is C07 or Beta blocking agents and

does not offer such a detailed view on the pharmacological action. Repurposing

hypotheses are shown in Table 4.7 and Figure 4.19.

Some of the listed compounds have an already-reported antihypertensive ef-

fect, such as amiodarone, dobutamine and arbutamine, and are more generally

used in cardiac therapies. Some other molecules are bronchodilators (group B on

Table 4.7); they act on the adrenergic receptors expressed in a different location,

yet depending on their delivery mechanism they could be potentially active as
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Identifier ref-
erence drug

ATC code
reference
drug

Identifier
hypothesis
drug

ATC code hypothe-
sis drug

Hypothesis interpretation

Beta1 adrener-
gic antagonists
(group A)

C07 (Beta
blocking agent)

DB01210 (Lev-
obunolol)

S01 (Ophthalmologi-
cals)

Same MoA, different anatomi-
cal location

” ” DB01214
(Metipranolol)

” ”

DB00489 (So-
talol)

” DB01118
(Amiodarone)

C01 (Cardiac therapy) Similar therapeutic categories
(known effect)

Beta1 adrener-
gic antagonists
(group C)

” Bronchodilators
(group B)

R03 (Drugs for ob-
structive airway dis-
eases)

Same MoA, different anatomi-
cal location

” ” DB00841
(Dobutamine)

C01 (Cardiac therapy) Similar therapeutic categories
(known effect)

” ” DB01102
(Arbutamine)

” Similar therapeutic categories
(known effect)

” ” DB01288
(Fenoterol)

G02 (Other gynaeco-
logicals) R03 (Drugs
for obstructive airway
diseases)

Same MoA, different anatomi-
cal location

Table 4.7: Drug repositioning hypotheses related Beat-blocking agents (ATC code
C07). The symbol ” refers to the value of the previous cell.

antihypertensive agents. A couple of drugs (metipranolol and levobunolol) are

ophthalmological compounds for the treatment of glaucoma (increased pressure

in the eye). These compounds are valid hypotheses for the treatment of hyper-

tension. Here again, the common theme behind the repositioning opportunities

is the differences in anatomical locations. The same MoA elicited in a different

part of the body can totally change the effect of the drug.
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Group C

Group B

Group A

Figure 4.19: Drug repositioning hypotheses related to the ATC category C07 - Beta
blocking agents. The width of grey edges is proportional to the functional similarity
values between drugs. The black lines represent the structural similarities. Legend for
colours and drug name are available online and on the Table 4.7.

4.3.2.4 Alpha-2 agonists

Acting on alpha2 receptors can lower blood pressure. A stimulation of these

receptors, located in the brain, opens the peripheral arteries, which results in

better blood circulation throughout the body (Swedberg et al., 2005). The FTC
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category describing this action is Pro-alpha2-adrenergic receptor activity agent

(FTC P0004938). The 31 drugs classified as such in the FTC have a variety of

clinical applications, from sedatives and analgesics to the expected antihyperten-

sive agents (only 6). No ATC category is dedicated to this mechanism of action,

which shows the limit of the gold standard. Even if alpha2 agonists are not the

preferred and most common way to reduce hypertension (Nelson, 2010), it is still

relevant for drug repositioning purposes to have access to the list of drugs that

could act on the receptors, as shown in Table 4.8.

Action Number of drugs

Antihypertensive 6

Dopamine agonist 9

Nasal Decongestants (vaso-
constrictor)

6

Ophthalmologicals 2

Analgesics 3

Bronchodilator Agents 2

Other 3

Table 4.8: Actions and number of drugs classified as Pro-alpha2-adrenergic receptor
activity agent (FTC P0004938).

Note that the therapeutic groups to be repurposed belong to several categories

that have been previously discussed, such as ophthalmological preparations and

bronchodilators, but also to new categories such as dopaminergics, which are

notably involved in Alzheimer’s disease treatment.

4.3.2.5 Diuretics

Diuretic agents promote the production of urine and help the kidneys to eliminate

excess salt and water from the blood. This class of compounds also exhibits

vasodilating properties; the exact mechanism of the action is still unclear and not

directly related to the salt effect.

The FTC describes at least two mechanisms of action responsible for a diuretic

effect: Anti-sodium:potassium:chloride symporter activity agent (FTC A0008511

- 9 drugs) and Anti-sodium:chloride symporter activity agent (FTC A0015378

- 7 drugs). All the drugs classified within these categories are all known to

be antihypertensive or diuretic agents, without exceptions. The ATC equivalent

category is C03 (diuretics) which can serve to filter repositioning hypotheses via a
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similarity analysis. Table 4.9 and Figure 4.20 provide a summary of repositioning

opportunities related to diuretics.

Identifier ref-
erence drug

ATC code
reference
drug

Identifier
hypothesis
drug

ATC code hypothe-
sis drug

Hypothesis interpretation

DB00421
(Spironolac-
tone)

C04 (Diuretics) DB00665 (Ni-
lutamide)

L02 (Antineoplastics) Shared off-target

” ” DB00499 (Flu-
tamide)

L02 (Antineoplastics) ”

” ” DB01128 (Bi-
calutamide)

L02 (Antineoplastics) ”

” ” DB04839
(Cyproterone)

G03 (Sex hormones
and modulators of the
genital system)

”

Table 4.9: Drug repositioning hypotheses related to Diuretics (ATC code C03). The
symbol ” refers to the value of the previous cell.

Three drugs (nilutamide, flutamide and bicalutamide) are currently classi-

fied as antineoplastic agents and deemed to be also active as antihypertensive

via diuretic effect. These predictions are based on the binding of the drugs to

the androgen receptor, which has been shown to be tightly linked to the renin-

angiotensin system behind the diuretic activity (Ikeda et al., 2009) (Hoshino et al.,

2011). Moreover this receptor is an off-target of spironolactone, the known di-

uretic drug in the pairs (see Table 4.9). The last prediction is cyproterone, which

is also an androgen receptor antagonist and is currently used for the treatment

of hypersexuality and prostatic carcinoma. Its diuretic activity can be explained

in the same manner as the other predictions.
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Figure 4.20: Drug repositioning hypotheses related to the ATC category C03 - Di-
uretics. The width of grey edges is proportional to the functional similarity values
between drugs. The black lines represent the structural similarities. Legend for colours
and drug name are available online and on the Table 4.9.

4.3.2.6 Renin-angiotensin system

The control of salt and water levels in the blood is accomplished by a pathway

known as the renin-angiotensin system (see Figure 4.21).
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Angiotensinogen Angiotensin I

Angiotensin II

Angiotensin II 
receptor

Arteriolar 
vasoconstriction

Increased blood 
pressure

Aldosterone 
secretion

Aldosterone 
receptor

Water and salt 
retention

(D)

Renin(A)

ACE

(B)

(C)

Inhibitory signalSignal flow Stimulatory signal

Figure 4.21: Simplified summary of the renin-angiotensin system and its implica-
tion in blood pressure regulation. Therapeutic intervention points are indicated with a
letter. (A) Renin inhibitors: preventing the synthesis of renin reduces the blood pres-
sure. (B) Angiotensin-converting enzyme (ACE) inhibitors: inhibiting the enzymatic
activity prevents the synthesis of angiotensin II and decreases the blood pressure. (C)
Angiotensin II receptor agonists: blocks the action of the angiotensin II and reduces
blood pressure. (D) Aldosterone receptor antagonists: aldosterone signalling promotes
water and salt retention and increases the blood pressure. Preventing its action help
to release hypertension.

Angiotensin-converting enzyme (ACE) inhibitors

The angiotensin-converting enzyme (ACE) is the primary target of a series of

antihypertensive agents. The enzyme converts angiotensin I into II, a molecule

with vasoconstricting properties. Inhibiting the enzymatic activity therefore pre-

vents vasoconstriction and reduces blood pressure (see Figure 4.21-B). The FTC

shows limitations in capturing this specific activity. The closest category is Anti-

peptidyl-dipeptidase activity agent (FTC A0008241 - 14 drugs), describing the

generic chemical catalysis performed by the enzyme. Despite being broadly de-

fined, the 14 drugs present in the class are all antihypertensive agents and man-

ually classified as ACE inhibitors in DrugBank. The ATC better defines the
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mechanism of action, as showed by the class C09AA (ACE inhibitors, plain).

Because of the specificity of the pharmacology, no drug repositioning hypotheses

were analysed for this mechanism of action, yet the action is captured in the FTC

and usable for further exploration.

Angiotensin II receptor antagonists

The binding of the angiotensin II molecule to receptors triggers arteriolar vaso-

constriction. As shown with ACE inhibition in the previous section, preventing

angiotensin II synthesis can promote vasodilatation. Another mechanism to lower

blood pressure consists of preventing the binding of angiotensin II to its receptor

using an antagonist or blocker (see Figure 4.21-C).

The FTC contains a category directly capturing this MoA: Anti-angiotensin

type II receptor activity agent (FTC A0004945 - 11 drugs). Here again all the

drugs are indexed as antihypertensive agents and more precisely as angiotensin

II receptor antagonists in DrugBank and in the literature. The category does

not contain any unexpected results, therefore no repositioning hypotheses can be

advanced using this FTC category alone. The ATC contains a detailed represen-

tation of the MoA of interest as well, namely the category C09C or angiotensin

II antagonists, plain.

Renin inhibitors

Renin is a protein present upstream of the vasoconstriction cascade. In order

to be physiologically active and elicit vasoconstriction, renin needs first to be

synthesised and produced. Inhibiting its production or modification to its active

form therefore prevents vasoconstriction signalling and results in decreased blood

pressure (see Figure 4.21-A).

One FTC class only provides information about renin: Anti-renin secretion

into blood stream agent (FTC A0002001). This class does not capture the exact

MoA by which vasoconstriction is prevented, and no approved drugs have been

classified inside this category. This result highlights a limit of the FTC, i.e. more

obscure and less common MoAs are not necessarily described in the resource.

On the contrary, the ATC features a class for this concept: C09XA, the renin-

inhibitors.
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Aldosterone receptor antagonists

Aldosterone is a hormone secreted by the adrenal gland, located in the cortex.

The molecule is involved in signalling which positively regulates blood pressure.

Preventing its activity decreases blood pressure; consequently aldosterone recep-

tor antagonists can improve hypertension (see Figure 4.21-D).

This MoA is less traditional than the ones introduced previously in the treat-

ment of hypertension; nonetheless there exist some approved drugs relying on

it and described in the ATC: C03DA Aldosterone antagonists (4 drugs). Un-

fortunately such a resolution is not available in the FTC. Two categories merely

describe bioprocesses in which aldosterone is involved: Anti-aldosterone metabolic

process agent (FTC A0032341) and Anti-aldosterone secretion agent (FTC A0035932),

which do not capture the exact MoA nor contain any drugs. This MoA shows

again a limitation of the FTC for less frequently used therapeutic categories, as

in the previous section.

4.3.2.7 Peripheral vasodilators

Vasodilators are most commonly prescribed for heart problems, but they are

also used to treat conditions affecting the blood vessels located in peripheral

parts of the body, such as the arms and legs. Raynaud’s disease is an example

of a condition where peripheral arteries face difficulties to maintain the blood

supply, resulting in a numb feeling in the patient when exposed to stress or cold

temperatures.

The FTC does not contain a category directly related to this type of ac-

tion. Indeed, the anatomical location of the pharmacological effect is not cov-

ered in the classification; it is therefore impossible to distinguish a peripheral

vasodilation from a generic vasodilatation event. On the contrary, the ATC con-

tains a category describing the peripheral vasodilators (C04), which can serve

to investigate drug repositioning hypotheses (https://www.ebi.ac.uk/chembl/

research/ftc-hypotheses/code/C04). The generated hypotheses are listed in

Table 4.10 and shown in Figure 4.22.

It appears that most of the repositioning hypotheses derived for this group in-

volve molecules used for neurological disorders. First, the series of psychoanalep-

tics (arousing agent) is already known to produce a range of vascular effects,

giving confidence in the validity of the predictions (Khalifa, 2003). A couple
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Identifier ref-
erence drug

ATC code
reference
drug

Identifier
hypothesis
drug

ATC code hypothe-
sis drug

Hypothesis interpretation

Drugs used
as peripheral
vasodilators,
group A

C04 (Periph-
eral vasodila-
tors)

DB06148 (Mi-
anserin)

N06 Psychoanaleptics
(Arousing effect)

Known to produce a range
of vascular effect according to
drugbank

” ” DB00656 (Tra-
zodone)

” ”

” ” DB00370 (Mir-
tazapine)

” ”

” ” DB01149 (Ne-
fazodone)

” ”

” ” DB01624 (Zu-
clopenthixol)

N05 Psycholeptics
(Calming effect)

Adrenergic blockade reported
from DrugBank, so possible ef-
fect on cardiovascular system

” ” DB01608
(Properici-
azine)

” ”

” ” DB00800
(Fenoldopam)

C01 Cardiac therapy Same group, known similar ac-
tion

Table 4.10: Drug repositioning hypotheses related to peripheral vasodilators (ATC
code C04). The symbol ” refers to the value of the previous cell.

of compounds are psycholeptics (calming agents). The mechanism of action of

these drugs relates to adrenergic blockade (Khalifa, 2003); knowing the involve-

ment of the adrenergic receptors in vasoconstriction (cf previous sections), these

two psycholeptic agents can plausibly have an effect on peripheral arteries. The

last prediction concerns fenoldopam, a drug used in cardiac therapy. The orig-

inal indication is functionally close to the new predicted one; an activity in the

peripheral blood stream is therefore likely to be observed.
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Group A

Figure 4.22: Drug repositioning hypotheses related to the ATC category C04 - Periph-
eral vasodilators. The width of grey edges is proportional to the functional similarity
values between drugs. The black lines represent the structural similarities. Legend for
colours and drug name are available online and on the Table 4.10.

The repositioning hypotheses generated for this group highlight the close re-

lation between neurologicals and vasodilators. Two of the compounds clinically

used as peripheral vasodilators (phentolamine and tolazoline) are also already

used to treat muscular and joint pains. From this observation, it appears legiti-

mate for other neurological agents to be active in cardiovascular vasodilation.

As a side note for future work, predictions involving neurological drugs are dif-

ficult to validate experimentally. The commercial distribution of such molecules

is indeed rigidly regulated in most countries, as this class of compounds can also

be consumed for illicit recreational use.

The treatment of cardiac hypertension can be addressed from various concep-
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tual angles, as presented in this section. For some cases, the FTC describes these

abstract MoAs; in such scenarios, the drugs classified in the corresponding FTC

category are candidates capable of triggering the given pharmacological effect.

This methodology is the toolbox approach, and was not directly used here to

derive drug repositioning hypotheses, yet it will be presented in a later section on

Alzheimer’s disease. On the other hand, some of the conceptually sought MoAs

are present in the categories of the gold standard ATC. In such cases reposition-

ing hypotheses can be investigated using the similarity-based approach, as shown

in this section using the hypotheses previously generated and available through

the web application (see section 4.3).

The drug repositioning hypotheses predicted for cardiovascular hypertension

are rooted in similar bioactivity but different anatomical location. For instance,

drugs currently indicated for glaucoma, pulmonary problems or against nasal

congestion were all listed in the repositioning predictions. These molecules all

potentially exhibit vasoconstrictive properties and can further be investigated for

the predicted new indication.

4.3.3 Repositioning for Alzheimer’s disease

The content of the FTC and the open repositioning hypotheses derived from it

can be applied to a wide variety of human diseases. Previous sections exemplified

an analysis on vascular hypertension and on the repurposing hypotheses derived

using similarity-based methods. In this section, I wanted to show to the reader

how the toolbox approach can also provide valuable hypotheses for a dementia

currently with no cure: Alzheimer’s disease. The technique presented here makes

use of the FTC categories as analogues to compartments of a toolbox, helping to

find drugs to address the condition, as motivated in Chapter 2.

Alzheimer’s disease is a neurodegenerative dementia with a relatively poorly

understood biology (McKhann et al., 2011). Phenotypic manifestations include

progressive appearance of plaques and tangles in the brain. On the molecular

level, several hypotheses are currently under investigation (McKhann et al., 2011).

Briefly, two macromolecules appear to be strongly involved in the disease: beta-

amyloid peptides, the main component of some of the deposits found in patients’

brains, and the Tau protein, responsible for stabilising microtubules (Scheuner

et al., 1996) (Delacourte and Defossez, 1986). Given this summary knowledge on
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the topic, the goal of the following analysis is to extract from the FTC the MoAs

directly related to these two proteins, in order to subsequently identify approved

drugs capable of perturbing the dementia.

Five FTC categories containing drugs are directly related to the biological

processes of the neurodegenerative condition: Anti-amyloid precursor protein-

biosynthetic-process agent (FTC A0042983), Anti-Tau protein kinase-activity agent

(FTC A0050321), Anti-Tau protein binding agent (FTC A0048156), Anti-beta

amyloid binding agent (FTC A0001540) and finally Pro-beta amyloid binding

agent (FTC P0001540). I considered the drugs present inside each of these classes

as potential candidates to be repurposed. Table 4.11 shows these drugs, which

have been further manually grouped based on the overall similarity of their ac-

tions (numbers in Table 4.11).

Within group A, subgroups 1, 2 and 3 are inhibitors of the cholinergic system

and some of them, such as galantamine (DB00674), have already been investi-

gated to treat Alzheimer’s disease and other related dementias. This class of agent

is in line with the cholinergic hypothesis (Babic, 1999), stating that Alzheimer’s

disease could be caused by dysfunctions in the processing of the acetylcholine.

Subgroup 4 is exclusively composed of barbiturates (central nervous system

depressants). The presence of this pharmacological class of compounds as an

Alzheimer’s disease treatment is more surprising, as very little literature reports

on it. Further investigations reveal that the neuronal acetylcholine receptor sub-

unit alpha-7, a common off-target of barbiturates, binds beta-amyloids with high

affinity (Wang et al., 2000). As beta-amyloids are themselves strongly involved

in the pathology, barbiturates could affect the state of the condition, similarly to

cholinergic inhibitors (Wang et al., 2000).

Group B contains four compounds; nicotine and varenicline have been further

grouped together because of similar pharmacology (subgroup 5). Nicotine has

been shown to improve some of the symptoms of Alzheimer’s disease (Jones et al.,

1992); it is therefore expected to find this molecule in the predictions. Varenicline

possesses a pharmacology related to that of nicotine, which would explain the

presence of the drug in this category.

The two remaining drugs of group B are pralidoxime and dipivefrin. Little

information is available regarding their potential action against the condition,

yet these compounds seem linked to the cholinergic hypothesis and could be

considered for experimental testing.
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(A) Anti-beta-
amyloid binding
agent

(B) Pro-beta-
amyloid binding
agent

(C) Anti-tau
protein binding
agent

(D) Anti-tau
protein kinase
activity agent

(E) Anti-
amyloid pre-
cursor protein
biosynthetic
process agent

Subgroup 1 Pralidoxime Vorinostat Lithium Hesperetin
Malathion Dipivefrin Ezetimibe
Echothiopathe Subgroup 5
Hexafluronium Varenicline
Subgroup 2 Nicotine
Gallamine
Triethiodide
Tubocurarine
Subgroup 3
Isoflurophate
Tacrine
Edrophonium
Galantamine
Ambenonium
Demecarium
Pyridostigmine
Rivastigmine
Donepezil
Physostigmine
Neostigmine
Subgroup 4
Amobarbital
Pentobarbital
Phenobarbital
Thiopental
Talbutal
Butabarbital
Primidone
Metharbital
Butethal
Heptabarbital
Aprobarbital
Hexobarbital
Secobarbital
Butalbital
Metharbital
Mehylphenobarbital

Table 4.11: FTC categories describing some of the modes of action that could impact
Alzheimer’s disease (letters on figure). The categories have been manually picked on
the basis that they could directly affect the dementia. Drugs classified in these FTC
categories further manually grouped based on their MoAs similarities (numbers on
Figure).
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Groups C and D contain one molecule each. These compounds have been

classified as agents perturbing some of the physiological function of the Tau pro-

tein, a key actor in Alzheimer’s disease (Grundke-Iqbal et al., 1986). Vorinostat

(group C) is currently indicated for the treatment of cutaneous manifestations

in patients with T-cell lymphoma, yet a study has shown in vivo (mouse model)

the potential of the drug and other histone deacetylase inhibitors in regards to

memory deficit (Kilgore et al., 2010). The presence of lithium (group D) was

confirmed by a recent study demonstrating a long-term protective effect for the

ion in regards to Alzheimer’s disease (Young, 2011).

The last group, group E, contains ezetimibe and hesperetin. These two com-

pounds are primarily used as cholesterol lowering agents (statins). As cholesterol

metabolism in the brain appears to be related to dementia, statins are believed

to prevent or improve the symptoms of the patients. Although early studies

(Wolozin, 2004) have failed to clearly show a beneficial effect, a recent clinical

trial of over 58,000 patients revealed the positive effect of high potency statins

to prevent dementia (ESC13, 2014). Interestingly, this prediction was featured

in the FTC before the announcement of the results of the clinical trial.

From the examples briefly presented above, reported and confirmed by the

literature, the FTC appears to be suitable to identify real repurposing hypotheses

tailored to a disease. Correctly identifying MoAs of interest helps to retrieve the

compounds which might impact the treatment of a condition.

4.3.4 Comparison of prediction approaches

In the previous sections, two approaches were discussed: toolbox and similarity-

based. The theoretical difference between the methodologies is illustrated in

Figure 4.14, yet the actual repositioning hypotheses coming from either methods

were not compared. The aim of this section is to discuss the relative advantage

of one methodology over the other and discuss the relative distribution of the

results.

The toolbox approach main strength resides in the possibility to identify

drugs with novel MoA, not necessarily used in clinics yet. For instance, the cat-

egories Anti-neuron death agent (FTC A0070997), Anti-circadian rhythm agent

(FTC A0007623) or Anti-blood vessel remodeling agent (FTC A0001974) are novel

and interesting MoAs which could be desirable for certain type of diseases. The
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toolbox approach enables the straightforward identification of such agents. On

the other hand, and because of the way the FTC is built, the presence of a sin-

gle annotation in GOA or DrugBank can change whether a drug is classified in

a particular FTC category; accordingly, the toolbox approach is therefore more

sensitive to the quality of the curated knowledge.

The similarity-based approach is of interest to find potential candidates for

a well defined therapeutic group, as described in the ATC and well-known in

clinics. The predictions generated use the set of annotations related to a drug,

rather than just a discrete category as with the toolbox approach, therefore the

prediction should be less sensitive to missing or incomplete knowledge. The

similarity values are however relatively derived by comparing a drug to another,

therefore it is impossible to find new MoA as with the toolbox approach.

Section 4.3.2.1 presented the drug repositioning hypotheses related to the

cardiac hypertension treatment, derived using the two approaches. In this case,

from the toolbox method 50 drugs were considered to be active for this MoA, using

two FTC classes (Pro-vasodilation agent and Anti-vasoconstriction agent). With

the similarity-based strategy, 16 drugs were predicted by comparing their function

to the one of the drugs classified in the ATC category C02 (Antihypertensives).

Figure 4.23 displays the list of predicted drugs and their current therapeutic

groups.
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Ziprasidone Amitriptyline Olanzapine Clozapine 
Promazine Droperidol Imipramine 

Chlorpromazine Nortriptyline Amoxapine
Trazodone Thioridazine Trimipramine

Risperidone Propiomazine Trifluoperazine
Flupenthixol Maprotiline Doxepin Nefazodone

Desipramine Escitalopram Quetiapine 
Aripiprazole Paliperidone Methotrimeprazine
Acepromazine Thioproperazine Zuclopenthixol

Iloperidone Asenapine

Dihydroergotamine
Pramipexole

Dexmedetomidine
Methamphetamine 

Lofexidine

Dapiprazole Apraclonidine Brimonidine
Dipivefrin

Oxymetazoline
Naphazoline

Xylometazoline
Phenylpropanolamine 

Epinephrine

Tizanidine

Norepinephrine

Terazosin(N)

(S)

(R)

(M)

(C)

(G)

(A) Toolbox approach (B) Similarity-based approach

Figure 4.23: Comparison of the drug repositioning hypotheses generated for the treat-
ment of anti-hypertension, using (A) the toolbox and (B) similarity-based approaches.
Letters indicate the ATC therapeutic groups inside which these drugs are currently
used. The two methodologies predicted numerous compounds from the Nervous sys-
tem (N).

From the list of 50 drugs generated with the toolbox approach, 18 were drugs

already indicated for the treatment of the hypertension. The 32 remaining drug

are all compounds indicated for the Nervous system an mostly psychoactive drugs.

Interestingly, the similarity-based approach predicted drug from this category

too, showing an agreement between the methodologies. The similarity-based

methodology predicted drugs present in ATC categories not identified by the

toolbox approach, with drugs currently indicated for the Sensory organs or the

Respiratory system. There is no overlap regarding the actual predicted drugs,

because of the variation of annotations, influencing the predictions as discussed

earlier in this section. Both methods predict drugs from similar therapeutic

groups to be active (class level), with variation regarding the actual molecule.

Taken together these result illustrate the validity of the hypotheses generated

and help to better appreciate the features of each methodology introduced.
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4.4 Summary

The FTC was developed to address drug repositioning or more generally indica-

tion discovery for active molecules. In this chapter, I illustrated the capability

of the resource to fulfil its expectations. First, I discussed the relationship be-

tween the similarity of the molecular structure, indication and MoA of approved

drugs. Within the dataset considered, the functional and structural descriptors

chosen can serve as proxies for the similar property principle: on average, drugs

prescribed for increasingly specific indications have increasingly similar molecular

structures and functions. More importantly, these descriptors can also be used

to identify outliers to the rule, in other words, drugs that are functionally similar

yet clinically used for different indications. This set of drug pairs was defined as

the drug repositioning opportunities. The list is openly available online via a web

application and serves to investigate the relationship between therapeutic areas

(cf section 4.2.4).

The hypotheses cover a wide spectrum of clinical areas, enabling systematic

analyses to be performed. However, it is clear that some biological interpretation

is still needed on the top of the predictions, in order to understand the molec-

ular reasons behind the MoAs and to move towards laboratory experiments. I

therefore decided to focus my attention on two disparate biological dysfunctions:

hypertension and Alzheimer’s dementia.

From the state-of-the-art presented in Chapter 1, I believe that functional

genomics and gene expression experiments are the computational methods that

currently produce the most promising results for drug repositioning. I envisioned

that this success came from the capacity of these techniques to systematically

handle the concept of function. In this regard, I specified in Chapter 2 one

theoretical approach to studying and handling biomedical knowledge for drug

discovery, where organisms are compared to a black box machine to be fixed. I

suggested description logics (DLs) as a helpful mathematical framework to ad-

dress such a task, and in particular the scalable EL++ family. The theory intro-

duced in Chapter 2 found an implementation in chapter 3 with the FTC. This

classification defines the mode and mechanism of actions of a panel of approved

drugs and is evaluated against the ATC, the traditionally used standard. Finally,

an analysis was performed over the data, leading to the large-scale generation of
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drug repositioning hypotheses presented in this chapter. The work done during

my thesis covers only the very beginning of the long hurdled road towards inno-

vative medicine. Knowing that a new drug takes around 12 years and a billion

dollars in investment to reach the market (section 1.1), it would have been un-

realistic to think that such a goal would have been reached with the time and

money allocated for my work. Nonetheless it is possible and important to set the

outcomes of the work in the overall drug discovery process, and to discuss the

logical next steps which can be undertaken from the results obtained. This will

be covered in the final chapter.

4.5 Methods

4.5.1 Structural fingerprints calculation

The fingerprint of a molecule is a simplified - or hashed - representation of

its structure, namely a one-dimensional array of 0’s and 1’s (bits). The pres-

ence of a 1 in the fingerprint sequence in a particular position means that a

chemical group of interest is present in the molecule, while a 0 means that the

group is absent. Four different implementations of fingerprinting were tested.

All of them are featured in the Chemistry Development Kit (CDK). I used

the version 1.4.19, downloaded from http://sourceforge.net/projects/cdk/.

The various methods have different rationales, as documented online (http:

//cdk.github.io/cdk/1.4/docs/api/).

• Hybridization fingerprint: default fingerprinting methodology. Does not

take into account aromaticity, instead focuses on SP2 molecular hybridisa-

tion.

• Extended fingerprint: same as previous, provides support for rings features.

• MACCS fingerprint: generates 166 bit MACCS keys (Dalke-Scientific, 2014).

From a series of SMART patterns, the functions output the presence or ab-

sence of particular chemical features.

• PubChem fingerprint: generates a large fingerprint (881 bits) from a list of

curated rules available online (PubChem, 2014).
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4.5.2 Structural similarity between drugs

The relative structural similarity between a pair of drugs was calculated as the

Tanimoto similarity value (Tanimoto, 1958) of their fingerprints. Note that Tani-

moto similarity is strongly related to the Jaccard index used to calculate semantic

similarity. It is defined in section 2.4.3. The similarity value ranges between 0

(totally dissimilar) and 1 (identical) and was calculated using the CDK.

4.5.3 Agreement between fingerprinting methodologies

The respective agreement between the various fingerprinting methodologies listed

in section 4.2.1 was defined as the value of the Pearson product-moment corre-

lation coefficient. This coefficient is a measure of the linear correlation (depen-

dence) between two variables X and Y, giving a value between +1 and 1 inclusive,

where 1 is total positive correlation, 0 is no correlation, and 1 is negative correla-

tion (Häne et al., 1993). In this case, variable X is the structural similarity values

between the fingerprints generated with the same method for all drugs (e.g. all

pairwise comparisons of fingerprints generated using the MACCS method). The

variable Y has the same content, but the values are calculated using a different

method. The value of the coefficient is interpreted as: 0 means total disagreement

and 1 total agreement between the two methodologies tested.

As four different methods were tested against all the others, each one of them

has three coefficient values, representing the different agreement scores (content

of a row in Table 4.1). The average of these three values was defined as the overall

agreement of one method against other methodologies. The higher the average

coefficient, the more one method agrees with the others overall.

4.5.4 Kernel density plots

The kernel density estimates were created using the stats package in R. From the

documentation of the package (http://stat.ethz.ch/R-manual/R-patched/

library/stats/html/density.html) the density method disperses the mass of

the empirical distribution function over a regular grid of at least 512 points and

then uses the fast Fourier transform to convolve this approximation with a dis-

cretized version of the kernel and then uses linear approximation to evaluate the

density at the specified points. The resulting density of similarity can be seen as
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a value proportional to the chance of drawing from the population a number that

is lying in the close proximity of the similarity value. Gaussian smoothing kernel

was always used; other parameters were left to default.

4.5.5 Web application related to drug repositioning hy-

potheses

The source code of the web application is fully open and available at https:

//github.com/loopasam/repurposing-analyses. The application is deployed

under https://www.ebi.ac.uk/chembl/research/ftc-hypotheses. The project

was built using the Play! framework and the Brain library (Croset et al., 2013b),

mentioned before in this document. Users can browse the drug repositioning

hypotheses in the application, as illustrated in the screen shot Figure 4.24.

Figure 4.24: Screen shot of the web application to explore drug repositioning hy-
potheses. The hypotheses are accessible online at https://www.ebi.ac.uk/chembl/

research/ftc-hypotheses

The hypotheses are accessible from either the ATC code they relate to or

by the DrugBank code of the drugs involved in the prediction. The user has

the possibility to download the network of predictions as a flat file, for further

processing by a tool such as Cytoscape for instance.
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4.5.6 Filtering of drug repositioning hypotheses

The list of drug pairs associated in different ATC groups with a resolution of

two levels is the starting set used to generate the hypotheses (corresponding to

the pairs plotted on Figure 4.5 panel B). I considered the ATC level 2 as a good

characterisation of a drug’s indication. From this dataset, only the values with

a functional similarity superior to 0.6 were conserved. All the other data points

were discarded. In this filtered subset, some of the drugs have very few func-

tional annotations; in such cases it is often not clear whether the high functional

similarity is biologically meaningful or artefactual and coming from the semantic

similarity methodology. In order to filter these ambiguous cases out, I removed

all drugs present directly or indirectly in less than 13 FTC classes. The decision is

arbitrary and derived from observations and interpretations made over the data.

This heuristic aims at first removing the noise, and second discarding drugs about

which little is known from a data-centric perspective.

4.5.7 Filtering of relationships between therapeutic areas

The list of drug repositioning hypotheses was used to analyse the links between

therapeutic domains. On Figure 4.12 (abstracted - one level), the therapeutic

areas have been grouped or abstracted according to their direct ATC super classes.

For example, a hypothesis containing drugs indicated for the ATC code A01 and

M01 was simplified as a link between the category A and M. The more times a

link is present between two ATC groups (first level), the more related these two

groups are. When this strength of association was below 25, the association was

discarded. This choice is arbitrary and was made in order to remove the noise

and extract the most salient features of the dataset.

Figure 4.13 (two levels trimmed) is built from the same data as Figure 4.11,

but by removing all the links with a strength inferior to 15 associations. This

threshold is also arbitrary and was applied in order to clarify the overall connec-

tivity pattern and look at the most prominent associations.
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CHAPTER 5

Outlook and future work

The work presented in this document covered various thematics, all involved in

the process of automatically finding new indications for approved drugs. Chapter

1 reviewed the problematic, rationale and drug repositioning efforts that have

been done. Chapter 2 argued for a mathematical framework capable of cap-

turing biomedical knowledge: I presented how description logics (DLs) can be

used to achieve this task. The formalisation of the molecular machinery was

implemented in Chapter 3 via the Functional Therapeutic Chemical Classifica-

tion System (FTC). The resource is built by integrating information from various

repositories using DLs and reasoning services. As a special care was put on scal-

ability, the resource was successfully implemented in practice. Its content and

relevance were evaluated against an existing resource, the Anatomical Therapeu-

tic Chemical Classification System (ATC). Chapter 4 describes how the FTC can

be used to perform multiple tasks, such as systematically comparing approved

drugs based on their function (similarity-based approach) or identifying poten-

tial drugs from a known mode of action (MoA, via the toolbox approach). The

drug repositioning hypotheses generated cover a wide range of therapeutic ar-

eas and are open for the community to investigate via a web application. With

this last chapter, I wanted to communicate ideas and future projects that can be

performed out of the work accomplished during my thesis and presented in this

document.

Firstly, the thesis work covers only a section of the overall drug discovery

process. I will present in this chapter the next logical steps and the consider-
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ations to account for while moving towards laboratory experiments. Secondly

and not directly related to drug repositioning, I will introduce a follow-up anal-

ysis comparing the definition of function from the FTC perspective against gene

expression data. Thirdly and derived from the my personal experience and the

theoretical work executed in Chapter 2, I will argue in favour of a simplification

of biomedical knowledge representation, based on a straightforward graph struc-

ture. Finally, I will briefly describe the clinical relation between off-label use and

drug repositioning and how the identification of new indications for a drug can

be performed directly from hospital data.

5.1 Work performed in the context of the drug

discovery process

Discovering a new active molecule includes an accurate identification of the bi-

ological mechanisms behind a disease, followed by the development of chemi-

cal compounds screened in assays and further optimised for safety and efficacy.

Molecules showing some biological activity in the animal model are then finally

tested in clinical trials and approved (Fishman and Porter, 2005) (Cooper, 2002).

The approach I presented lies in the beginning of this workflow, where the biol-

ogy and chemistry are characterised, which usually takes 6 years (see Figure 5.1)

and involves numerous experiments. Assuming I worked a maximum of 3 years

on the project, I expect at least 3 more years of experimental work in order to

gather enough biological evidence and validate some predictions. The fact that

the drugs investigated are all already approved should in theory facilitate further

development. In practice, drug repositioning can face legal challenges (Chapter 1

section 1.1.2) regarding intellectual protection and safety in particular; therefore

it should be assumed that the average time line (see Figure 5.1) will be respected.

I am currently looking to set collaborations with research groups perform-

ing experiments and bioactivity assays in order to further explore the hypothe-

ses. As many therapeutic areas are covered, priority to one disease type must

be defined first. Hereof, anti-cancer agents are a good starting point. There

are 84 hypotheses concerning antineoplastic compounds (https://www.ebi.ac.

uk/chembl/research/ftc-hypotheses/code/L01), which gives a large enough

test case. Phenotypic assays for this class of molecules are well developed and
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Figure 5.1: Time line of the drug discovery process. My thesis work focused on the
Discovery/Synthesis section of the graph.

straightforward: given a line of cancer cells exposed to a chemical, they consist of

measuring the ratio of cell death compared to a control (Garnett et al., 2012). The

biological context is also better preserved than for target-based assays (Chapter

1 section 1.1.1); this format is therefore more suitable to test the hypotheses, as

they have been generated while considering their physiological activities in the

human body.

In summary, the work done compares and covers the initial exploration of

the path towards a new therapy, which continues at this stage by performing the

assays to characterise more accurately the predicted pharmacology.

5.2 Comparison against functional genomics

The FTC introduces one possible representation of the function of approved

molecules. This descriptor can be used to perform computation, as illustrated

throughout this document. The Connectivity Map (Chapter 1 section 1.3.2) de-

fines in another way the biological function of drugs, derived from gene expression

experiments. As both methodologies capture the concept of function and rely on
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similarity-based metrics, it would be interesting to compare the two: given a set

of identical drugs, how do the similarity measures behave? Are the data in line

with each other? What differences are observed? For which set of compounds?

How does the definition of function differ from a theoretical perspective (thesis)

against the one derived from experimental values (CMap)? As the FTC also

provides discrete categories for MoAs (toolbox approach), it could be interesting

to investigate what advantage it brings when compared to gene expression data.

In this regard, I have already started to gather the data used in the work done

by Iorio et al. (2010). Once available, I can start the investigation and analysis

of the definition of approved drugs functions.

5.3 Biomedical knowledge: towards a simpler

representation

From a computer science perspective, ontologies are computational artefacts used

to represent the knowledge of a domain of interest. The motivation behind the

approach is to clarify the semantics of a vocabulary, in order to validate the

consistency of a representation and derive implicit information (Chapter 2). The

axioms help a computer to unambiguously interpret some knowledge. However, in

practice, in the life science domain, human interpretation is always required. For

instance, the content of the Gene Ontology is mostly used to perform term enrich-

ment analysis (personal experience) or similarity based computations (Pesquita

et al., 2009), in order to guide the interpretation of some generated data. The

DLs based representation of the biomedical knowledge presented in Chapter 2

can be arguably seen as heavy and too complicated for the results sought. The

axioms present in the FTC are based on existential restriction patterns in order

to logically link concepts via an object property. This representation could be

simplified by considering all concepts as instances directly linked by a property

(section 2.3.3.2) and resulting in a graph. This model is close to the one pro-

posed by the Resource Description Framework (RDF), part of the semantic webs

specifications (Klyne and Carroll, 2006). The ambiguity between instances and

concepts is known as punning and is allowed by the Web Ontology Language; it is

widely used in the RDF representation of biomedical databases such as ChEMBL

or Uniprot (Jupp et al., 2014), as it allows for the straightforward representation
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of the required information.

Considering this, the future work I will do on biomedical knowledge represen-

tation will go in this direction: representing life science knowledge as a simple

graph while keeping the expressivity of roles. I expressed most of the FTC se-

mantics using roles, which are highly interoperable one with another (cf section

3.2.9.2). As far as I know, there exists no framework within the semantic web

specification stack (RDF, RDFS, OWL and related profiles) allowing the extended

use of object properties or role axioms (transitivity, chained property) in combi-

nation with a simple graph representation like the one featured by RDF. With

such a language, it would be possible to keep the advantages of scalable reason-

ing (subset of EL++) while considerably simplifying the initial representation and

discarding cumbersome axioms not so helpful for biological interpretation later

on, for instance existential restrictions.

This language will lie between network biology (Ravasz et al., 2002), semantic

nets (Schubert, 1978), Petri Nets (Murata, 1989), pathways databases (Schaefer

et al., 2009) and RDF while keeping the important reasoning services. The added

value on the top of these previous approaches will reside in the importance given

to the edges between nodes, in particular their biomedical semantics and what

can be derived and expanded from them. The black box machine analogy is

still valid for this representation, and the implementation can be done in many

other ways than the one presented with the FTC. The focus of the language

would be the deductions that can be derived from it rather than maximizing

interoperability between resources. A graph representation also allows full control

of data querying and analysis; it would also be easier to derive metrics such as

similarity values, commonly used in biology (Stevens et al., 2007). Moreover,

some robust solutions are available at the time of writing (Have and Jensen,

2013).

More work has to be done in order to fully express the idea, but it can be sum-

marised as a simple and customisable graph-based framework to locally integrate

biomedical information, with a strong focus on edges semantics interoperability

(part-of, regulates, involved-in combined with rules).
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5.4 Off-label uses and clinical drug reposition-

ing

In the context of my work, I came to discuss drug repositioning with some physi-

cians practising in a hospital (Addenbrooke’s - Cambridge UK). After the meet-

ings and analyses presented in Chapter 4 (section 4.3.1), it clearly appeared that

drug repositioning relates closely to off-label prescriptions. In practice, doctors

indicate a treatment for a different usage than what it is regulated for 20 percent

of the time. (Cras et al., 2007). Sometimes a new pharmacological effect is iden-

tified (Stephens and Brynner, 2009), and the indication line of the drug can be

expanded accordingly. This type of evidence is very valuable, as it reflects the

effect of the drug directly in human population. A meticulous recording and auto-

mated analysis can help to identify such cases rapidly. Off-label prescription data

is currently not recorded in all hospitals (personal discussion with physicians),

and a computer system handling it might be a smart way to directly capture

relevant hypotheses. It could be developed on the top of an electronic medical

records system (Cras et al., 2007) or as a stand-alone application. I am currently

investigating what would be the requirements of such a workflow, in collaboration

with physicians and biomedical researchers.

This chapter concludes the thesis work I decided to present in more details.

The reader can refer to the Appendices in order to find the full list of the peer-

reviewed articles I contributed to and published in the course of the doctorate,

as a complementary source of information (Croset et al. (2013b), Croset et al.

(2013c), Croset et al. (2010), Croset et al. (2011), Rebholz-Schuhmann et al.

(2013), Yan et al. (2012), Herrero-Zazo et al. (2013), Croset et al. (2013a), Croset

et al. (2012)).

I hope to have presented clearly and concisely the message I wanted to commu-

nicate: living organisms, just as machines, are subject to dysfunction, which can

be investigated for repair using description logics. The source of this document

is free, open and available online at https://github.com/loopasam/thesis.
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APPENDIX A

Glossary

• Black box machine: complex machine composed of a large number of

physical parts carrying a certain number of internal functions and acting

together in an organised fashion.

• Description logics: family of formal languages used to represent the

knowledge of a domain of interest.

• Disease: impairment of a normal biological condition.

• Drug: large or small molecule producing a pharmacological effect when

administered in an organism. In this document, this word is interchangeably

used with the word compound.

• Drug repositioning: identification of new therapeutic indications for

known drugs. Also referred as drug repurposing, re-profiling, therapeutic

switching and drug re-tasking.

• OWL2 EL: profile of the Web Ontology Language implementing the ax-

ioms described in the description logic EL++ family.

• Gene expression experiment: quantitative or qualitative characterisa-

tion of the number of messenger RNA molecules present in a biological

system at a given time and location. This number reflects the expression

or activity of genes of interest.

• Indication: therapeutic usage of a drug, regulated by an authority.
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• Knowledge base: set of description logics axioms, entities and expressions.

• Machine: assembly of parts functioning to meet a particular goal.

• Mechanism of action: biochemical interaction that gives rise to the phar-

macological effect of a drug.

• Mode of action: broad activity of the molecule on an organism.

• Ontology: specification of conceptualisation, formal representation of the

knowledge of a domain of interest.

• Off-label use: prescription of an approved drug for a non-regulated indi-

cation.

• Off-target: said to the secondary molecular entities affected by a drug.

Off-targets are generally not desirable as they can produce side-effects.

• Organism: assembly of molecules functioning as a stable whole.

• Phenotype: set of characteristics or traits attributed to an organism.

• Polypharmacology: potential of a drug to produce multiple pharmaco-

logical effects.

• Reasoning: classification and consistency checking of a knowledge base.

Also referred as classification.

• Semantic similarity: value reflecting the closeness between two concepts

or entities.

• Similar property principle: molecules with similar structures produce

similar pharmacological effects.
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APPENDIX B

Abbreviations

• CMap: Connectivity Map.

• DLs: Description logics.

• GO: Gene Ontology.

• GWAS: Genome wide association study.

• MoA: Mode of action.

• RDF: Resource Description Framework.

• SNP: Single nucleotide polymorphism.

• OBO: Open biological and biomedical ontologies.

• OWL: Web Ontology Language.
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APPENDIX C

Peer-reviewed publications

Chronological list of the peer-reviewed articles published in the course of the

thesis. Authors are ranked as present on the original publications. Corresponding

authors are underlined. Articles I directly published are openly accessible and

a link to the PDF version is provided for the curious reader to follow. Articles

resulting from collaborations and behind a pay-wall are identified as such.

• The CALBC RDF Triple store: retrieval over large literature con-

tent.

Samuel Croset, Christoph Grabmueller, Chen Li, Silverstras Kavialauskas

and Dietrich Rebholz-Schuhmann.

Proceedings of the Workshop on Semantic Web Applications and Tools for

Life Sciences 2010 (2010)

Document: http://ceur-ws.org/Vol-698/paper6.pdf

• Exploring the Generation and Integration of Publishable Scien-

tific Facts Using the Concept of Nano-publications.

Amanda Clare, Samuel Croset, Christoph Grabmueller, Senay Kafkas, Maria

Liakata, Anika Oellrich and Dietrich Rebholz-Schuhmann

Proceedings of the 1st Workshop on Semantic Publishing 2011 (2011)

Document: http://ceur-ws.org/Vol-721/paper-02.pdf

• OWL Representation of Drug Activities on Biological Systems.

Samuel Croset

Proceedings of the 3rd International Conference on Biomedical Ontology
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(2012)

Document: http://kr-med.org/icbofois2012/proceedings/ICBOFOIS2012ECS/

SingleFiles/02_ICBO_FOIS_2012_ECS_Croset.pdf

• Argumentation to Represent and Reason over Biological Systems.

Adam Wyner, Luke Riley, Robert Hoehndorf, Samuel Croset

Lecture Notes in Computer Science - Information Technology in Bio-and

Medical Informatics (2012)

Document (not freely accessible): http://link.springer.com/chapter/

10.1007/978-3-642-32395-9_10

• Integration of the Anatomical Therapeutic Chemical Classifica-

tion System and DrugBank using OWL and text-mining.

Samuel Croset, Robert Hoehndorf, Dietrich Rebholz-Schuhmann

Proceedings of the Ontologies In Biomedecine And Life Sciences 2012 (2012)

Document: http://www.onto-med.de/obml/ws2012/obml2012report.pdf#

page=23

• Brain: biomedical knowledge manipulation.

Samuel Croset, John P Overington, Dietrich Rebholz-Schuhmann

Bioinformatics (2013)

Document: http://bioinformatics.oxfordjournals.org/content/29/

9/1238.full.pdf

• Brain, a library for the OWL2 EL profile.

Samuel Croset, John P Overington, Dietrich Rebholz-Schuhmann

Proceedings of the 10th OWL: Experiences and Directions Workshop (2013)

Document: http://ceur-ws.org/Vol-1080/owled2013_9.pdf

• A case study: semantic integration of gene-disease associations

for type 2 diabetes mellitus from literature and biomedical data

resources.

Dietrich Rebholz-Schuhmann, Christoph Grabmller, Silvestras Kavaliauskas,

Samuel Croset, Peter Woollard, Rolf Backofen, Wendy Filsell, Dominic

Clark

Drug discovery today (2013)
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Document (not freely accessible): http://www.sciencedirect.com/science/

article/pii/S1359644613003917

• The functional therapeutic chemical classification system.

Samuel Croset, John P Overington, Dietrich Rebholz-Schuhmann

Bioinformatics (2013)

Document: http://bioinformatics.oxfordjournals.org/content/early/

2013/11/30/bioinformatics.btt628.full.pdf

• An ontology for drug-drug interactions.

Maria Herrero-Zazo, Janna Hastings, Isabel Segura-Bedmar, Samuel Croset,

Paloma Martinez, Christoph Steinbeck

Proceedings of the Workshop on Semantic Web Applications and Tools for

Life Sciences 2013 (2013)

Document: http://ceur-ws.org/Vol-1114/Session3_Herrero-Zazo.pdf
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APPENDIX D

Side projects

List of the finished side-projects directly related to the thesis topic and done

within the course of the doctorate. More detailed descriptions of the projects are

available online, at the provided URL.

• PubMed Watcher: http://pubmed-watcher.org/.

• PubMed2: http://pubmed-square.org/.

• How cool is my research?: http://howcoolismyresear.ch/.

• Redesign of the Apache Jena website: http://jena.apache.org/.

• ChEMBL Twitter Bot: https://twitter.com/ChEMBLBot.

• XMLBurger: https://github.com/loopasam/XMLBurger.
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APPENDIX E

Teaching and editorial work

Summary list of teaching experience and involvement in the scientific peer-review

process.

E.1 Teaching experience

• Network analysis: introduction to network statistical analysis given to

the new PhD candidates entering the EMBL program.

• Drug-discovery knowledge integration and analysis using OWL

and reasoners: tutorial given at the International Workshop on Semantic

Web Applications and Tools for Life Sciences 2012 (SWAT4LS 2012).

Material: https://github.com/loopasam/SWAT4LS

• Knowledge manipulation using OWL and reasoners for drug-discovery:

tutorial given at the International Conference on Biomedical Ontology 2013

(ICBO 2013).

Material: https://github.com/loopasam/owl-tutorial-icbo2013

• Supervision of Ashwini Kumar, 6 months Bachelor project in-

ternship: definition of the project, interview of candidates, mentoring and

supervision. The topic of the internship was Exploring RDF at EBI and

resulted in a web application developed by the intern: https://wwwdev.

ebi.ac.uk/chembl/research/reachunique/home.
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E.2 Editorial work

• Reviewer: Database (Oxford Journals - http://database.oxfordjournals.

org/).

• Program Committee: International Conference on Biomedical Ontology

2013.

• Program Committee: International Conference on Biomedical Ontology

2014.

• Program Committee: International Meeting On Computational Intelli-

gence Methods For Bioinformatics And Biostatistics 2014.
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