1,492 research outputs found

    Model Transformations in MT

    Get PDF
    Model transformations are recognised as a vital aspect of Model Driven Development,but current approaches cover only a small part of the possible spectrum. In this paper I present the MT model transformation which shows how a QVT-like language can be extended with novel pattern matching constructs, how tracing information can be automatically constructed and visualized, and how the transformed model is pruned of extraneous elements. As MT is implemented as a DSL within the Converge language, this paper also demonstrates how a general purpose language can be embedded in a model transformation language, and how DSL development can aid experimentation and exploration of new parts of the model transformation spectrum

    Integrating the common variability language with multilanguage annotations for web engineering

    Get PDF
    Web applications development involves managing a high diversity of files and resources like code, pages or style sheets, implemented in different languages. To deal with the automatic generation of custom-made configurations of web applications, industry usually adopts annotation-based approaches even though the majority of studies encourage the use of composition-based approaches to implement Software Product Lines. Recent work tries to combine both approaches to get the complementary benefits. However, technological companies are reticent to adopt new development paradigms such as feature-oriented programming or aspect-oriented programming. Moreover, it is extremely difficult, or even impossible, to apply these programming models to web applications, mainly because of their multilingual nature, since their development involves multiple types of source code (Java, Groovy, JavaScript), templates (HTML, Markdown, XML), style sheet files (CSS and its variants, such as SCSS), and other files (JSON, YML, shell scripts). We propose to use the Common Variability Language as a composition-based approach and integrate annotations to manage fine grained variability of a Software Product Line for web applications. In this paper, we (i) show that existing composition and annotation-based approaches, including some well-known combinations, are not appropriate to model and implement the variability of web applications; and (ii) present a combined approach that effectively integrates annotations into a composition-based approach for web applications. We implement our approach and show its applicability with an industrial real-world system.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    PROSET — A Language for Prototyping with Sets

    Get PDF
    We discuss the prototyping language PROSET(Prototyping with Sets) as a language for experimental and evolutionary prototyping, focusing its attention on algorithm design. Some of PROSET’s features include generative communication, flexible exception handling and the integration of persistence. A discussion of some issues pertaining to the compiler and the programming environment conclude the pape

    A model-based approach to language integration

    Get PDF
    The interactions of several languages within a soft- ware system pose a number of problems. There is several anecdotal and empirical evidence supporting such concerns. This paper presents a solution to achieve proper language integration in the context of language workbenches and with limited effort. A simple example is presented to show how cross- language constraints can be addressed and the quality of the support attainable, which covers error-checking and refactoring. A research agenda is then presented, to support future work in the area of language integration, taking advantage of modern language workbenches features

    Matching objects without language extension

    Get PDF
    Pattern matching is a powerful programming concept which has proven its merits in declarative programming. The absence of pattern-matching in object-oriented programming languages is felt especially when tackling source code processing problems. But existing proposals for pattern matching in such languages rely on language extension, which makes their adoption overly intrusive. We propose an approach to support pattern matching in mainstream object-oriented languages without language extension. In this approach, a pattern is a first-class entity, which can be created, be passed as argument, and receive method invocations, just like any other object. We demonstrate how our approach can be used in conjunction with existing parser generators to perform pattern matching on various kinds of abstract syntax representation. We elaborate our approach to include concrete syntax patterns, and mixing of patterns and visitors for the construction of sophisticated syntax tree traversals.Thanks to Rob van der Leek of the Software Improvement Group for valuable feedback regarding this paper and the MatchO library. The author is recipient of a research grant from the Fundacao para a Ciencia e a Tecnologia, under grant number SFRH/BPD/11609/2002

    A Model-based transformation process to validate and implement high-integrity systems

    Get PDF
    Despite numerous advances, building High-Integrity Embedded systems remains a complex task. They come with strong requirements to ensure safety, schedulability or security properties; one needs to combine multiple analysis to validate each of them. Model-Based Engineering is an accepted solution to address such complexity: analytical models are derived from an abstraction of the system to be built. Yet, ensuring that all abstractions are semantically consistent, remains an issue, e.g. when performing model checking for assessing safety, and then for schedulability using timed automata, and then when generating code. Complexity stems from the high-level view of the model compared to the low-level mechanisms used. In this paper, we present our approach based on AADL and its behavioral annex to refine iteratively an architecture description. Both application and runtime components are transformed into basic AADL constructs which have a strict counterpart in classical programming languages or patterns for verification. We detail the benefits of this process to enhance analysis and code generation. This work has been integrated to the AADL-tool support OSATE2

    Implementing autonomic administration DSLs in TUNe

    Get PDF
    Software components are recognized as the most adequate approach to support autonomic administration systems. We implemented and experimented with such a system, but observed that the interfaces of a component model are too low-level and difficult to use. Consequently, we designed higher abstraction level languages for modeling administration policies. These languages are specific to our autonomic administration domain. We metamodeled and implemented these DSLs on the Kermeta framework

    A Constrained Object Model for Configuration Based Workflow Composition

    Full text link
    Automatic or assisted workflow composition is a field of intense research for applications to the world wide web or to business process modeling. Workflow composition is traditionally addressed in various ways, generally via theorem proving techniques. Recent research observed that building a composite workflow bears strong relationships with finite model search, and that some workflow languages can be defined as constrained object metamodels . This lead to consider the viability of applying configuration techniques to this problem, which was proven feasible. Constrained based configuration expects a constrained object model as input. The purpose of this document is to formally specify the constrained object model involved in ongoing experiments and research using the Z specification language.Comment: This is an extended version of the article published at BPM'05, Third International Conference on Business Process Management, Nancy Franc

    A Pattern-based Foundation for Language-Driven Software Engineering

    Get PDF
    This work brings together two fundamental ideas for modelling, programming and analysing software systems. The first idea is of a methodological nature: engineering software by systematically creating and relating languages. The second idea is of a technical nature: using patterns as a practical foundation for computing. The goal is to show that the systematic creation and layering of languages can be reduced to the elementary operations of pattern matching and instantiation and that this pattern-based approach provides a formal and practical foundation for language-driven modelling, programming and analysis. The underpinning of the work is a novel formalism for recognising, deconstructing, creating, searching, transforming and generally manipulating data structures. The formalism is based on typed sequences, a generic structure for representing trees. It defines basic pattern expressions for matching and instantiating atomic values and variables. Horizontal, vertical, diagonal and hierarchical operators are different ways of combining patterns. Transformations combine matching and instantiating patterns and they are patterns themselves. A quasiquotation mechanism allows arbitrary levels of meta-pattern functionality and forms the basis of pattern abstraction. Path polymorphic operators are used to specify fine-grained search of structures. A range of core concepts such as layering, parsing and pattern-based computing can naturally be defined through pattern expressions. Three language-driven tools that utilise the pattern formalism showcase the applicability of the pattern-approach. Concat is a self-sustaining (meta-)programming system in which all computations are expressed by matching and instantiation. This includes parsing, executing and optimising programs. By applying its language engineering tools to its own meta-language, Concat can extend itself from within. XMF (XML Modeling Framework) is a browser-based modelling- and meta-modelling framework that provides flexible means to create and relate modelling languages and to query and validate models. The pattern functionality that makes this possible is partly exposed as a schema language and partly as a JavaScript library. CFR (Channel Filter Rule Language) implements a language-driven approach for layered analysis of communication in complex networked systems. The communication on each layer is visible in the language of an “abstract protocol” that is defined by communication patterns

    A Component-Based and Aspect-Oriented Model for Software Evolution

    Get PDF
    International audienceComponent-Based Software Development (CBSD) and Aspect-Oriented Software Development (AOSD) are solutions to support software evolution by decomposing a software system into concerns. In this article, we propose Fractal Aspect Component (FAC), a general and symmetrical model for components and aspects. FAC decomposes a software system into regular components and aspect components which embody crosscutting concerns. We reify the relationship between an aspect component and a component, called an aspect binding, as a first-class runtime entity. The evolution of the system can be expressed by adding or removing components (aspect or regular) and by setting bindings (regular or crosscutting)
    corecore