23,593 research outputs found

    Magnetic measurement with coils and wires

    Full text link
    Accelerator magnets steer particle beams according to the field integrated along the trajectory over the magnet length. Purpose-wound coils measure these relevant parameters with high precision and complement efficiently point-like measurements performed with Hall plates or NMR probes. The rotating coil method gives a complete two-dimensional description of the magnetic field in a series of normal and skew multipoles. The more recent single stretched wire is a reference instrument to measure field integrals and to find the magnetic axis.Comment: 29 pages, 26 figures, presented at the CERN Accelerator School CAS 2009: Specialised Course on Magnets, Bruges, 16-25 June 2009. For higher-resolution figures see http://cdsweb.cern.ch/record/134099

    Forcing Mutual Coherence in Diode Laser Stacks

    Get PDF
    This paper will discuss both theoretical and experimental attempts to improve the spatial beam quality of diode laser stacks using an external optical system. An overview and derivation of the mathematics of both the optical system and diode lasers will be discussed. The experimental setup will be presented, as well as the fundamental theoretical and experimental results that suggest the external optical system used for this thesis fails to improve the beam quality of a diode laser stack

    Advances in Calibration and Imaging Techniques in Radio Interferometry

    Full text link
    This paper summarizes some of the major calibration and image reconstruction techniques used in radio interferometry and describes them in a common mathematical framework. The use of this framework has a number of benefits, ranging from clarification of the fundamentals, use of standard numerical optimization techniques, and generalization or specialization to new algorithms

    CABE : a cloud-based acoustic beamforming emulator for FPGA-based sound source localization

    Get PDF
    Microphone arrays are gaining in popularity thanks to the availability of low-cost microphones. Applications including sonar, binaural hearing aid devices, acoustic indoor localization techniques and speech recognition are proposed by several research groups and companies. In most of the available implementations, the microphones utilized are assumed to offer an ideal response in a given frequency domain. Several toolboxes and software can be used to obtain a theoretical response of a microphone array with a given beamforming algorithm. However, a tool facilitating the design of a microphone array taking into account the non-ideal characteristics could not be found. Moreover, generating packages facilitating the implementation on Field Programmable Gate Arrays has, to our knowledge, not been carried out yet. Visualizing the responses in 2D and 3D also poses an engineering challenge. To alleviate these shortcomings, a scalable Cloud-based Acoustic Beamforming Emulator (CABE) is proposed. The non-ideal characteristics of microphones are considered during the computations and results are validated with acoustic data captured from microphones. It is also possible to generate hardware description language packages containing delay tables facilitating the implementation of Delay-and-Sum beamformers in embedded hardware. Truncation error analysis can also be carried out for fixed-point signal processing. The effects of disabling a given group of microphones within the microphone array can also be calculated. Results and packages can be visualized with a dedicated client application. Users can create and configure several parameters of an emulation, including sound source placement, the shape of the microphone array and the required signal processing flow. Depending on the user configuration, 2D and 3D graphs showing the beamforming results, waterfall diagrams and performance metrics can be generated by the client application. The emulations are also validated with captured data from existing microphone arrays.</jats:p

    Computer vision

    Get PDF
    The field of computer vision is surveyed and assessed, key research issues are identified, and possibilities for a future vision system are discussed. The problems of descriptions of two and three dimensional worlds are discussed. The representation of such features as texture, edges, curves, and corners are detailed. Recognition methods are described in which cross correlation coefficients are maximized or numerical values for a set of features are measured. Object tracking is discussed in terms of the robust matching algorithms that must be devised. Stereo vision, camera control and calibration, and the hardware and systems architecture are discussed

    Overview of multi-input frequency domain modal testing methods with an emphasis on sine testing

    Get PDF
    An overview of the current state of the art multiple-input, multiple-output modal testing technology is discussed. A very brief review of the current time domain methods is given. A detailed review of frequency and spatial domain methods is presented with an emphasis on sine testing

    Space Time MUSIC: Consistent Signal Subspace Estimation for Wide-band Sensor Arrays

    Full text link
    Wide-band Direction of Arrival (DOA) estimation with sensor arrays is an essential task in sonar, radar, acoustics, biomedical and multimedia applications. Many state of the art wide-band DOA estimators coherently process frequency binned array outputs by approximate Maximum Likelihood, Weighted Subspace Fitting or focusing techniques. This paper shows that bin signals obtained by filter-bank approaches do not obey the finite rank narrow-band array model, because spectral leakage and the change of the array response with frequency within the bin create \emph{ghost sources} dependent on the particular realization of the source process. Therefore, existing DOA estimators based on binning cannot claim consistency even with the perfect knowledge of the array response. In this work, a more realistic array model with a finite length of the sensor impulse responses is assumed, which still has finite rank under a space-time formulation. It is shown that signal subspaces at arbitrary frequencies can be consistently recovered under mild conditions by applying MUSIC-type (ST-MUSIC) estimators to the dominant eigenvectors of the wide-band space-time sensor cross-correlation matrix. A novel Maximum Likelihood based ST-MUSIC subspace estimate is developed in order to recover consistency. The number of sources active at each frequency are estimated by Information Theoretic Criteria. The sample ST-MUSIC subspaces can be fed to any subspace fitting DOA estimator at single or multiple frequencies. Simulations confirm that the new technique clearly outperforms binning approaches at sufficiently high signal to noise ratio, when model mismatches exceed the noise floor.Comment: 15 pages, 10 figures. Accepted in a revised form by the IEEE Trans. on Signal Processing on 12 February 1918. @IEEE201

    Tissue-conducted spatial sound fields

    Get PDF
    We describe experiments using multiple cranial transducers to achieve auditory spatial perceptual impressions via bone (BC) and tissue conduction (TC), bypassing the peripheral hearing apparatus. This could be useful in cases of peripheral hearing damage or where ear-occlusion is undesirable. Previous work (e.g. Stanley and Walker 2006, MacDonald and Letowski 2006)1,2 indicated robust lateralization is feasible via tissue conduction. We have utilized discrete signals, stereo and first order ambisonics to investigate control of externalization, range, direction in azimuth and elevation, movement and spaciousness. Early results indicate robust and coherent effects. Current technological implementations are presented and potential development paths discussed

    HOMOGENEOUS AND HETEROGENEOUS SENSORS FOR COMBUSTION SYSTEMS

    Get PDF
    Due to increasingly stringent emission regulations, it is important to develop clean combustors. Combustion behavior is very complex in almost all practical power plant systems. Measurement of temperature, pressure, local flow, and chemical composition inside the flame provides critical information to develop cleaner combustors. This would result in significant improvement in energy efficiency and reduce the environmental impact. A high density sensor network system would assist in understanding the various ongoing processes occurring within the combustors. This dissertation is focused on how much additional information can be gathered from multiple sensors. Four different time delay estimation methods (using cross correlation, phase transform, generalized cross correlation with maximum-likelihood estimation, and average square difference function) were examined using two sensors. Phase transform offered better results to calculate the time delay between a given pair of microphones. This has the potential to determine local noise generation sources from within flows and flames with the additional information on local noise generation source. As a step towards the development of a sensor network, different sensors were examined. A micro-thermocouple, microphone and microphone probes were utilized to enhance understanding of the flame with detailed information on the various ongoing processes in a premixed swirl flame. High frequency temperature and pressure measurements were used to identify the thermal and acoustic characteristics of the flame and combustor. The local distributions of fluctuating pressure and temperature were measured in different regions, in and around the flame. Pressure fluctuation showed significant variation in different directions for the combustive case relative to non-combustive flow. Also a comparison of the pressure and temperature fluctuations revealed that maximum temperature fluctuations occur mostly near to the visible flame boundary while maximum pressure fluctuation occur further away from the flame. Acoustic data from the premixed swirl combustor showed variation in fuel to air ratio changes the spatial distribution of noise as measured by different sensors placed around the combustor. A comparison of different sensors showed that a single sensor does not capture all the information with changes in fuel to air ratio
    • …
    corecore