12 research outputs found

    Optimal HSE-PWM based on genetic algorithm for seven levels diode clamped multilevel inverter

    Get PDF
    In this paper, the control of seven level diode clamped inverter with selective harmonic elimination (SHE) pulse width modulation (PWM) technique based on genetic algorithm (GA) has been developed. In standard SHE-PWM, the seven level inverters allow the elimination of only two low order harmonics. To improve the total harmonic distortion (THD), and without any modification to the inverter structure, five low order harmonics can be eliminated by suitably adding holes in the stairecase voltage leg. Furtheremore, a hole distribution in agreement with the sin function shape is proposed. For this, a real-coded genetic algorithm is applied under the standard constraints with a proposed cost function minimization that allow a better near sin function reshape of the output voltage leg. This GA computation allow to determine the switching angles for a seven-level diode clamped inverter to produce the required fundamental voltage and to eliminate undesirable harmonics. This developed procedure can eliminate a desired number of low harmonics and is only restricted by the maximal switching frequency of the power switches. The results of the suggested method are compared to the conventional SHE-PWM involved with a seven level staircase wave. They reveal that the developed method is a very effective one for optimal harmonic elimination technique

    A new selective harmonic elimination pulse-width and amplitude modulation (SHE-PWAM) for drive applications

    Full text link

    Dragonfly algorithm-based optimization for selective harmonics elimination in cascaded H-bridge multilevel inverters with statistical comparison

    Get PDF
    Harmonics worsen the quality of electrical signals, hence, there is a need to eliminate them. The test objects under discussion are single-phase versions of cascaded H-bridge (CHB) multilevel inverters (MLIs) whose switching angles are optimized to eliminate specific harmonics. The Dragonfly Algorithm (DA) is used to eradicate low-order harmonics, and its statistical performance is compared to that of many other optimization techniques, including Particle Swarm Optimization (PSO), Accelerated Particle Swarm Optimization (APSO), Differential Evolution (DE), and Grey Wolf Optimization (GWO). Various scenarios of the algorithms’ search agent population for inverters with seven, nine, and eleven levels of output voltages are comprehensively addressed in this research. No algorithm shows total dominance in every scenario. The DA is least impacted by the change in dimensions of the narrated problem

    Estrategia de Control para Inversor Multinivel con Capacitores Flotantes

    Get PDF
    La mayoría de los inversores multinivel (MLI´s) trabajan por separado el controlador para la regulación de tensión y el modulador por la facilidad que pueden resultar los esquemas de control para su implementación. Por tal motivo en este documento se presenta una nueva técnica de control para la regulación de tensión de salida para esta familia de inversores multinivel, la cual fue implementada mediante una máquina de estados. El control propuesto fue implementado en el inversor multinivel con capacitores flotantes (FCMLI). La principal ventaja que ofrece el control propuesto es que se modela al inversor multinivel como un conjunto de estados con sus respectivas condiciones con la finalidad de generar una máquina de estados, por lo que su implementación resulta fácil de comprender y desarrollar. Por último se presentan las pruebas realizadas al inversor multinivel en las que se resalta la baja distorsión armónica obtenida en la tensión de salida, la respuesta que tiene el control para ajustarse eficazmente ante alteraciones de amplitud-frecuencia en la señal de referencia y además brinda buena regulación de tensión al momento de realizar un cambio de carga

    The Essential Role and the Continuous Evolution of Modulation Techniques for Voltage-Source Inverters in the Past, Present, and Future Power Electronics

    Get PDF
    The cost reduction of power-electronic devices, the increase in their reliability, efficiency, and power capability, and lower development times, together with more demanding application requirements, has driven the development of several new inverter topologies recently introduced in the industry, particularly medium-voltage converters. New more complex inverter topologies and new application fields come along with additional control challenges, such as voltage imbalances, power-quality issues, higher efficiency needs, and fault-tolerant operation, which necessarily requires the parallel development of modulation schemes. Therefore, recently, there have been significant advances in the field of modulation of dc/ac converters, which conceptually has been dominated during the last several decades almost exclusively by classic pulse-width modulation (PWM) methods. This paper aims to concentrate and discuss the latest developments on this exciting technology, to provide insight on where the state-of-the-art stands today, and analyze the trends and challenges driving its future

    Hybrid Output Voltage Modulation (PWM-FSHE) for a Modular Battery System Based on a Cascaded H-Bridge Inverter for Electric Vehicles Reducing Drivetrain Losses and Current Ripple

    Get PDF
    This paper shows a preliminary study about the output voltage modulation of a modular battery system based on a seven-level cascaded H-bridge inverter used for vehicle propulsion. Two generally known modulation techniques, pulse width modulation (PWM) and fundamental selective harmonic elimination (FSHE), are extensively compared for such an innovative modular battery system inverter considering EVs\u27 broad torque-speed range. The inverter and the battery losses, as well as the inverter-induced current THD, are modeled and quantified using simulations. At low speeds, if the modulation index M is below 0.3, FSHE induces a high current THD (>>5%) and, thus, cannot be used. At medium speeds, FSHE reduces the drivetrain losses (including the battery losses), while operating at higher speeds, it even reduces the current THD. Thus, an individual boundary between multilevel PWM and FSHE can be determined using weightings for efficiency and current quality. Based on this, a simple hybrid modulation technique is suggested for modular battery system inverters, improving the simulated drive cycle efficiency by a maximum of 0.29% to 0.42% for a modeled small passenger vehicle. Furthermore, FSHE\u27s high speed dominance is demonstrated using a simple experimental setup with an inductive load

    A Universal Formulation for Multilevel Selective Harmonic Elimination - PWM with Half-Wave Symmetry

    Get PDF
    Selective harmonic elimination - pulse width modulation (SHE-PWM) can be utilized to improve the efficiency of multilevel voltage source converters due to its ability to provide low switching frequency and tight control of low-order harmonics. In addition, SHE-PWM with half-wave (HW) symmetry provides a higher number of solutions than quarter-wave (QW) symmetry and therefore, the waveform design can be improved. This work proposes a universal formulation, which can be utilized with HW symmetry, that provides a unique system of equations valid for any possible multilevel waveform. Thereby, without using predefined waveforms, this formulation provides the ability to search simultaneously both the firing angles and the switching patterns, simplifying significantly the search process and providing a high number of solutions. With the aim of selecting the optimum sets of firing angles, the solutions provided by HW and QW symmetries are compared, based on several metrics of harmonic performance, for particular test cases. Experimental results also validate the universal formulation with HW symmetry.Eusko Jaurlaritza; Secretaria de Estado de Investigacion Desarrollo e Innovacio

    Grid integration of renewable power generation

    Get PDF
    This thesis considers the use of three-phase voltage and current source inverters as interfacing units for renewable power, specifically photovoltaic (PV) into the ac grid. This thesis presented two modulation strategies that offer the possibility of operating PV inverters in grid and islanding modes, with reduced switching losses. The first modulation strategy is for the voltage source inverter (VSI), and exploits 3rd harmonic injection with selective harmonic elimination (SHE) to improve performance at low and high modulation indices, where the traditional SHE implementation experiences difficulties due to pulse dropping. The simulations and experimentation presented show that the proposed SHE allows grid PV inverters to be operated with less than a 1kHz effective switching frequency per device. This is vital in power generation, especially in medium and high power applications. Pulse dropping is avoided as the proposed modified SHE spreads the switching angles over 90°, in addition increasing the modulation index. The second proposed modulation strategy, called direct regular sampled pulse width modulation (DRSPWM), is for the current source inverter (CSI). It exploits a combination of forced and natural commutation imposed by the co-existence of an insulated gate bipolar transistor in series with a diode in a three phase current source inverter, to determine device dwell times and switching sequence selection. The DRSPWM strategy reduces switching frequency per device in a CSI by suspending each phase for 60°, similar to VSI dead-band, thus low switching losses are expected. Other benefits include simple digital platform implementation and more flexible switching sequence selection and pulse placement than with space vector modulation. The validity of the DRSPWM is confirmed using simulations and experimentation. This thesis also presents a new dc current offset compensation technique used to facilitate islanding or grid operation of inverter based distributed generation, with a reduced number of interfacing transformers. The proposed technique will enable transformerless operation of all inverters within the solar farm, and uses only one power transformer at the point of common coupling. The validity of the presented modulation strategies and dc current offset compensation technique are substantiated using simulations and experimentation.This thesis considers the use of three-phase voltage and current source inverters as interfacing units for renewable power, specifically photovoltaic (PV) into the ac grid. This thesis presented two modulation strategies that offer the possibility of operating PV inverters in grid and islanding modes, with reduced switching losses. The first modulation strategy is for the voltage source inverter (VSI), and exploits 3rd harmonic injection with selective harmonic elimination (SHE) to improve performance at low and high modulation indices, where the traditional SHE implementation experiences difficulties due to pulse dropping. The simulations and experimentation presented show that the proposed SHE allows grid PV inverters to be operated with less than a 1kHz effective switching frequency per device. This is vital in power generation, especially in medium and high power applications. Pulse dropping is avoided as the proposed modified SHE spreads the switching angles over 90°, in addition increasing the modulation index. The second proposed modulation strategy, called direct regular sampled pulse width modulation (DRSPWM), is for the current source inverter (CSI). It exploits a combination of forced and natural commutation imposed by the co-existence of an insulated gate bipolar transistor in series with a diode in a three phase current source inverter, to determine device dwell times and switching sequence selection. The DRSPWM strategy reduces switching frequency per device in a CSI by suspending each phase for 60°, similar to VSI dead-band, thus low switching losses are expected. Other benefits include simple digital platform implementation and more flexible switching sequence selection and pulse placement than with space vector modulation. The validity of the DRSPWM is confirmed using simulations and experimentation. This thesis also presents a new dc current offset compensation technique used to facilitate islanding or grid operation of inverter based distributed generation, with a reduced number of interfacing transformers. The proposed technique will enable transformerless operation of all inverters within the solar farm, and uses only one power transformer at the point of common coupling. The validity of the presented modulation strategies and dc current offset compensation technique are substantiated using simulations and experimentation

    Enhanced decoupling current scheme with selective harmonic elimination pulse width modulation for cascaded multilevel inverter based static synchronous compensator

    Get PDF
    This dissertation is dedicated to a comprehensive study and performance analysis of the transformer-less Multilevel Cascaded H-bridge Inverter (MCHI) based STATic synchronous COMpensator (STATCOM). Among the shunt-connected Flexible AC Transmission System (FACTS) controllers, STATCOM has shown extensive feasibility and effectiveness in solving a wide range of power quality problems. By referring to the literature reviews, MCHI with separated DC capacitors is certainly the most versatile power inverter topology for STATCOM applications. However, due to the ill-defined transfer functions, complex control schemes and formulations were emerged to achieve a low-switching frequency high-bandwidth power control. As a result, adequate controller parameters were generally obtained by using trial and error method, which were practically ineffective and time-consuming. In this dissertation, the STATCOM is controlled to provide reactive power (VAR) compensation at the Point of Common Coupling (PCC) under different loading conditions. The goal of this work is to enhance the performance of the STATCOM with the associated proposed control scheme in achieving high dynamic response, improving transient performance, and producing high-quality output voltage waveform. To evaluate the superiority of the proposed control scheme, intensive simulation studies and numerous experiments are conducted accordingly, where a very good match between the simulation results and the experimental results is achieved in all cases and documented in this dissertation
    corecore