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Abstract—Selective harmonic elimination - pulse width mo-
dulation (SHE-PWM) can be utilized to improve the efficiency
of multilevel voltage source converters due to its ability to
provide low switching frequency and tight control of low-
order harmonics. In addition, SHE-PWM with half-wave (HW)
symmetry provides a higher number of solutions than quarter-
wave (QW) symmetry and therefore, the waveform design can be
improved. This work proposes a universal formulation, which can
be utilized with HW symmetry, that provides a unique system of
equations valid for any possible multilevel waveform. Thereby,
without using predefined waveforms, this formulation provides
the ability to search simultaneously both the firing angles and the
switching patterns, simplifying significantly the search process
and providing a high number of solutions. With the aim of
selecting the optimum sets of firing angles, the solutions provided
by HW and QW symmetries are compared, based on several
metrics of harmonic performance, for particular test cases.
Experimental results also validate the universal formulation with
HW symmetry.

Index Terms—Selective harmonic elimination (SHE), multilevel
voltage source converter (MVSC), quarter-wave (QW) symmetry,
half-wave (HW) symmetry, universal formulation.

I. INTRODUCTION

Medium voltage (MV) converters have acquired high rele-
vance for high power industrial and traction applications [2],
[3], as well as renewable energy sources [4]. In particular, the
number of installations of multilevel voltage source converters
(MVSCs) in MV applications have increased considerably
during last years [5]. MVSCs provide several advantages
with respect to 2-level converters such as lower effective
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switching frequency, higher efficiency, lower dV/dt, smaller
and simpler harmonic filters, lower common-mode voltage and
lower insulation requirements [5].

Selective harmonic elimination - pulse width modulation
(SHE-PWM) is a low switching frequency modulation tech-
nique which provides simultaneously tight control of low-
order harmonics and low switching losses [6]. In this sense,
the employment of this modulation in MVSCs when the
number of levels is not high, as those used in medium voltage
applications, is interesting [2], [7].

Most of the publications in the technical literature which
solve the SHE-PWM problem employ predefined switching
patterns to search the firing angles [6], [8]–[20]. However, in
the case of multilevel converters where the number of possible
waveforms is high, a particular predefined waveform could not
be useful to find a solution for a particular modulation index,
ma, value. If there is no solution, a new predefined waveform
should be utilized. In addition, different switching patterns are
required to find a solution throughout the ma range.

This issue has been addressed by [21], [22] utilizing a
universal formulation which is valid for any possible waveform
with QW symmetry. In this way, without using predefined
waveforms, the search algorithm provides simultaneously the
switching patterns and the associated firing angles, simpli-
fying significantly the search process. In addition, due to
the utilization of optimization algorithms, this technique is
able to calculate a high number of firing angles. On the
other hand, a unified formulation with QW symmetry has
also been presented by [23]. This unified formulation, where
predefined waveforms are not required, is applied along with
the theory of Groebner bases to obtain the solutions. However,
due to the high computational load of Groebner bases theory,
the maximum number of firing angles which can be solved
utilizing standard personal workstations is 9 [24].

Most of technical publications dealing with SHE-PWM
for MVSCs focus on the QW symmetry. However, the HW
symmetry provides a higher number of solutions than QW and
different phase values for every harmonic [25]. Therefore, the
design of the SHE-PWM waveform can be further optimized
with HW symmetry [9], [26]. This work provides a universal
formulation which can be applied with HW symmetry. The
system of equations provided by this formulation has been
solved utilizing genetic algorithms (GAs) due to their proven
effectiveness [7], [8], [15], [22], [25], [27]–[37]. The main
contributions of the paper are:
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Fig. 1. Phase-neutral voltage, va0. Switching scheme of SHE-PWM with
HW symmetry.

• A new universal formulation of the SHE-PWM problem
with HW symmetry is presented. Unlike conventional
formulations, it has the ability to find solutions without
using predefined voltage waveforms. Consequently, only
one set of equations is used to solve the SHE-PWM
problem and therefore, the search algorithm is able to
provide simultaneously the switching patterns and the
associated firing angles. In this way, the searching process
is significantly simplified.

• Different solutions, utilizing the existing universal formu-
lation with QW symmetry [22] and the proposed universal
formulation with HW symmetry, are obtained throughout
the ma range. Among all the solutions obtained, the
optimum solutions are selected with regard to several
metrics. A study has been realized which provides deep
insights into the different solutions and drives several
conclusions.

The rest of this paper is organized as follows. Section
II describes the commonly used formulation to implement
SHE-PWM with HW symmetry, while Section III describes
the novel universal formulation proposed in this paper. A
comparison between the proposed and traditional formulations
is presented in Section IV. Section V provides a deep analysis
of the solutions obtained, throughout the ma range, for test
cases with HW and QW solutions, based on particular metrics.
The experimental results are described in Section VI. Finally,
Section VII concludes the paper.

II. CURRENT FORMULATION TO SOLVE SHE-PWM WITH
HALF-WAVE (HW) SYMMETRY: PREDEFINED SWITCHING

PATTERNS

The scheme of a SHE-PWM waveform with HW symmetry
is depicted at Fig. 1, whose Fourier series expansion is given
by (1), where an and bn are the Fourier series coefficients and
ω is the fundamental frequency [6], [9], [26]. This waveform,
in case of three phase systems, may contain odd non-triplen
harmonics besides the fundamental one.

va0 =

∞∑
n=1

ancos(nωt) +

∞∑
n=1

bnsin(nωt), (1)

With the aim of solving the SHE-PWM problem, the firing
angles located in the first half fundamental cycle must be
calculated to control the lower-order harmonics. SHE-PWM
with HW symmetry requires twice as many different firing
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Fig. 2. Process to solve the SHE-PWM problem for a particular ma with
the traditional formulation.

angles than SHE-PWM with QW symmetry [6] because unlike
QW symmetry, both an and bn must be controlled. Therefore,
2l angles must be calculated to eliminate l harmonics. In
this way, the number of controlled harmonics are equal for
both symmetries, although HW symmetry could provide non-
eliminated harmonics with different phase values, obtaining a
wider variety of solutions.

The equations of an and bn are given by (2) and (3) [26],
respectively, according to the rising and falling edges depicted
at Fig. 1, where L is the number of levels, VL is the step
voltage, θk are the firing angles and pk is given by (4).
Therefore, there is a different equation system, with distinct
pk values, for every switching pattern.

an = −2VL
nπ

2l∑
k=1

pksin(nθk), (2)

bn =
2VL
nπ

2l∑
k=1

pkcos(nθk), (3)

pk =

{
1 ∀ rising edge,

−1 ∀ falling edge,

}
, (4)

0 ≤ θ1 < θ2 < ... < θ2l ≤ π, (5)

With the aim of solving (2) and (3), previously published
methods (for instance [6], [9], [26]) predefine the switching
pattern defining the sign of every step, pk, and the order of the
firing angles, as it is given by (5), before starting the search
of the firing angles throughout the ma range (see Fig. 2). This
fact hinders the searching task significantly in case of MVSCs
because the number of possible predefined switching patterns
is very high and increases as the number of levels increases.
Many of these patterns do not provide any useful solution for a
particular ma value. In this way, several techniques have been
used to estimate which possible waveform could be useful to
solve the SHE-PWM problem for that ma. In particular, the
waveform provided by multicarrier PWM or by the method of
equal area with superposition of center of gravity [26], [38]
could be used. However, the search of solutions depends on
the effectiveness of these estimation methods. As it is shown in
Fig. 2, if the predefined waveform does not provide a solution,
a new waveform must be utilized. Therefore, avoiding the
requirement of predefining the waveform is desirable.



III. PROPOSED UNIVERSAL FORMULATION FOR
SHE-PWM WITH HALF-WAVE SYMMETRY

The proposed universal formulation provides a unique sys-
tem of equations which is valid for every possible waveform.
In this way, it is possible to search simultaneously the firing
angles and the switching patterns which solve the SHE-PWM
problem, without utilizing predefined waveforms, simplifying
significantly the searching task. As stated before, this feature is
important in MVSCs where there are many different possible
waveforms and many of them could not be valid to find a
solution for a particular ma. The proposed system of equations
can be solved with different existing search methods, such as
optimization algorithms (offline technique) [6] or generalized
hopfield neural networks (online technique) [39]. GAs have
been selected to solve the proposed system of equations (the
search algorithm is described in detail in [22]) due to their
ability to find a high number of firing angles. In addition, the
firing angles calculated offline, which are stored in look-up
tables, could be utilized along with techniques such as model
predictive control (MPC), in such a way that the transient
behaviour of converters can be improved [3].

A. System of Equations

The proposed universal formulation modifies the equations
of an and bn given by (2) and (3), respectively. The new
equations are given by (6), (7) and (8). As it can be noticed:
• Equations (6) and (7) do not depend on the switching pat-

tern (variables pk are not utilized). There are no positive
signs in (6) nor negative signs in (7), which represent
the negative steps. In order to provide waveforms with
positive and negative steps, the concept of virtual firing
angles, θk,v , is introduced. These virtual firing angles are
searched in the range [0, 2π] unlike conventional firing
angles which are searched in [0, π] [26]. In this way,
the virtual angles will provide simultaneously information
about the switching pattern and the real firing angles (see
Section III-B).

• In addition, there is not constraint in the order of firing
angles, unlike it is done in previous works [6], [9], [26].

an = −2VL
nπ

2l∑
k=1

sin(nθk,v), (6)

bn =
2VL
nπ

2l∑
k=1

cos(nθk,v), (7)

0 ≤ θk,v ≤ 2π, (8)

As a result, a unique system of equations, which is valid
for any possible waveform, is provided to solve the SHE-
PWM problem with HW symmetry. The proposed system of
equations is given by (9) and (10) for an and bn coefficients,
respectively, where 2l is the number of firing angles that will
be calculated in the first HW, θk,v is the identifier of every
virtual firing angle, n is the identifier of every harmonic and
L is the number of levels. The triplen harmonics are not
regarded because a three-phase MVSC is considered. A1 and

B1 values must comply with (11) and (12), where φ1 is the
phase of the fundamental harmonic and ma is the modulation
index. Finally, εan and εbn represent the errors provided by the
search algorithm for the an and bn coefficients, respectively.
The search algorithm will try to minimize these errors.

2
π(L−1) (− sin(θ1,v)− sin(θ2,v)− ...

...− sin(θ2l,v))−A1 = εa1,
2

5π(L−1) (− sin(5θ1,v)− sin(5θ2,v)− ...
...− sin(5θ2l,v)) = εa5,

...
2

nπ(L−1) (− sin(nθ1,v)− sin(nθ2,v)− ...
...− sin(nθ2l,v)) = εan,

(9)

2
π(L−1) (cos(θ1,v) + cos(θ2,v) + ...

...+ cos(θ2l,v))−B1 = εb1,
2

5π(L−1) (cos(5θ1,v) + cos(5θ2,v) + ...

...+ cos(5θ2l,v)) = εb5,

...
2

nπ(L−1) (cos(nθ1,v) + cos(nθ2,v) + ...

...+ cos(nθ2l,v)) = εbn,

(10)

√
A2

1 +B2
1 =

ma

2
, 0 < ma <

4

π
, (11)

φ1 = arctg

(
B1

A1

)
, (12)

B. Translation from Virtual into Real Firing Angles: Resulting
Waveform

Once the solution (the set of virtual firing angles which are
searched in [0,2π]) has been obtained, the virtual firing angles
must be translated into real firing angles, θk, and the resulting
waveform must be provided. The proposed translation is the
following one (see Fig. 3):
• Virtual firing angles θk,v located in [0,π] represent posi-

tive steps in the first HW and their actual value is given
by (13).

θk = θk,v, (13)

• Virtual firing angles θk,v located in [π, 2π] represent
negative steps in the first HW and their actual value is
given by (14). This fact is justified by (15) and (16).

θk = θk,v − π, (14)
cos(nθk,v) = cos(n(θk + π)) = cos(nθk)cos(nπ) =

= −cos(nθk) ∀n odd,
(15)

sin(nθk,v) = sin(n(θk + π)) = sin(nθk)cos(nπ) =

= −sin(nθk) ∀n odd,
(16)
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Therefore, predefined waveforms are not required to obtain
the solutions, as it is shown in the flow diagram of Fig. 4.
Comparing with previous methods [6], [9], [26], the search of
firing angles is significantly simplified and a high number of
different waveforms with HW symmetry can be found.

C. Objective Function

To solve the set of equations given by (9)-(12), the search
algorithm described in [22], which is based on genetic algo-
rithms, is used. It makes use of an objective function which
needs to be minimized to find an adequate set of firing angles.
The objective function, F , utilized in this work is given by
(17), where εan and εbn, given by (9) and (10), are the errors
provided by the algorithm for the an and bn coefficients,
respectively, being n the identifier of every harmonic. On the
other hand, fvalid is a function which checks the validity of the
obtained waveform, considering the number of levels of the
converter and the initial level, Linitial and final level, Lfinal,
of the half wave. Due to the HW symmetry, these levels must
be equal but with opposite signs, as it is shown at Fig. 5 and
they will be input parameters for the genetic algorithm.

F = ε2a1 + ε2b1 + ε2a5 + ε2b5 + ...+ ε2an + ε2bn+

+fvalid(θ1,v, θ2,v, ..., θ2l,v),
(17)

The procedure to calculate fvalid consists of the following
steps:
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• Calculation of θ1, θ2, ..., θ2l, from θ1,v, θ2,v, ..., θ2l,v , and
the sign of their corresponding steps, as it is detailed in
Section III-B.

• Calculation of the order, from lower to higher value, of
θ1, θ2, ..., θ2l.

• Once the order of θ1, θ2, ..., θ2l has been calculated, the
level, Li, of the waveform after every consecutive, j,
firing angle is given by (18a) and (18b), as it is shown
at Fig. 5-(a).

Li = Linitial +

i∑
j=1

pj , 1 ≤ i ≤ 2l, (18a)

pj =

{
1 ∀ rising edge,

−1 ∀ falling edge,

}
(18b)

• Finally, fvalid is given by (19) and (20), where UL and
LL are the maximum and minimum achievable levels of
the voltage waveform and Linitial is the initial level of
the waveform. If any level of the voltage waveform, Li,
is higher than UL or lower than LL or the final level,
Lfinal, of the waveform after half a period is different to
the opposite of the initial level, the solution provided by



the genetic algorithm is not valid. Consequently, fvalid
returns a high value, H , that makes the objective func-
tion, F , take a high value (higher than the convergence
threshold value) and the genetic algorithm reject the
solution. Otherwise, if the solution is valid, fvalid would
return 0. Valid HW symmetry waveforms are those which
provide voltage levels that fall between the maximum and
minimum allowed levels, besides Lfinal = −Linitial (see
Fig. 5). In this way, F would only provide the errors in the
amplitude of every an and bn coefficients and therefore,
the optimization algorithm will be able to optimize that
error and to find a solution.

fvalid =

H, if
{
∃Li>UL or ∃Li<LL or

Lfinal 6=−Linitial

}
, 1 ≤ i ≤ 2l

0, if
{
Li≤UL & Li≥LL &
Lfinal=−Linitial

}
, 1 ≤ i ≤ 2l

 ,

(19)
H > Convergence Threshold V alue, (20)

In this way, utilizing the proposed objective function, the
algorithm will always provide valid solutions.

D. Symmetric Solutions

It is worth noting that for every HW solution, when the
fundamental phase φ1 = π/2, there is another symmetric
solution with identical harmonic content, whose angle values
for positive and negative steps, θk,ps−sym and θk,ns−sym, are
given by (21) and (22), respectively, where θk,ps and θk,ns
are the positive and negative firing angles in the original HW
solution and 2l is the total number of firing angles in the first
half wave [25].

An example of these waveforms is depicted at Fig. 6, where
different solutions for ma = 0.3 and Linitial = 0, Linitial =
1 and Linitial = −1 are shown. Figs. 6-(a) and 6-(b) show
symmetric solutions when Linitial = 0, whose firing angles
are related by (21) and (22). Both waveforms have identical
harmonic content but belong to different continuous sets of
firing angles because of the different waveforms. In this way,
for every obtained solution, two different sets of firing angles
can be provided.

In a similar way, Figs. 6-(c) and 6-(d) show symmetric
solutions when Linitial = 1 and Linitial = −1. Consequently,
due to this symmetry only positive values of Linitial can be
considered to find the sets of firing angles, thus simplifying
the searching process.

θk,ps−sym = π − θ(2l+1)−k,ns, (21)
θk,ns−sym = π − θ(2l+1)−k,ps, (22)

IV. COMPARISON OF PROPOSED AND CURRENT
FORMULATIONS

With the aim of comparing the search processes when the
traditional and universal formulations are applied, an empirical
example of both processes is included. In addition, another
example is presented to describe deeply the operation of the
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proposed universal formulation. In both examples, solutions
for a converter with 9 levels, ma = 0.5 and 12 firing
angles in the first HW, are searched. Therefore, the harmonics
eliminated are 5th, 7th, 11th, 13th and 17th. Finally, the
advantages of the proposed universal formulation with respect
to the traditional formulation are highlighted.

A. Examples of Application of Proposed and Traditional For-
mulations

Fig. 7 shows the application of traditional and proposed
formulations to solve the SHE-PWM problem with HW sym-
metry for the converter commented previously. In both cases,
the same solution has been found. Thereby, the differences be-
tween the search processes when the traditional and proposed
formulations are applied can be noticed. In the traditional
process, the waveform has been predefined beforehand to start
the search of firing angles. Otherwise, in the proposed search
process, it is not required to consider the waveform because
it is given as part of the solution due to the employment of
virtual firing angles.

In addition, Fig. 8 presents an empirical example where the
proposed unique system of equations is utilized. As it can be
noticed, with only one system of equations, utilizing virtual
firing angles (which are searched in [0,2π]), it is possible to
find solutions with different waveforms. In this way, as it has
been commented previously, the search method that utilizes the
proposed formulation will provide not only the firing angles
but also the waveforms.

B. Main Advantages of the Proposed Universal Formulation

The method proposed in this paper to implement the SHE-
PWM waveform with HW symmetry presents the following
main features:
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• The utilized system of equations is unique and valid for
all possible waveforms, unlike previous works [6], [9],
[26], [40]. This feature is provided by (13), (14), (15),
(16) and the no constraint in the order of firing angles.

• Predefined waveforms are not required to obtain the

solutions throughout the ma and φ1 ranges, unlike which
is done in previous publications [26], [40]. Therefore, this
technique is particularly interesting in case of multilevel
voltage source converters, where the number of possible
switching patterns is very high, simplifying significantly
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+cos(17ϑ4,v)+cos(17ϑ5,v)+cos(17ϑ6,v)+...
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Fig. 8. Application of the proposed universal formulation for acquisition of multiple HW symmetrical solutions.

the search process.
• Due to the ability of providing any possible waveform,

the proposed method is able to obtain a high number of
different solutions for every ma, as it is shown at Figs.
9 and 10 for ma = 0.3 and ma = 1, respectively.

• Longer continuous sets of firing angles can be obtained
due to the lack of constraints in the order of firing angles
and the no requirement of predefined waveforms. As it
is shown in Figs. 11-Set1-(1), 11-Set3-(1) and 11-Set5-
(1), there are crossings between firing angles whose step



sign is different, providing a change in the switching
pattern. However, the continuous search does not stop
at the crossing point because any possible waveform is
considered by the method.

• An objective function, which always provides valid wave-
forms with HW symmetry, has been provided. This
function can be utilized by optimization algorithms. In
addition, this function provides the possibility of search-
ing automatically the solutions with any possible initial
level, Linitial, simplifying additionally the search.

V. ACQUISITION AND ANALYSIS OF SOLUTIONS WITH
DIFFERENT SYMMETRIES

The universal formulation proposed in this work, along
with the search algorithm described in [22], are able to find
different solutions for every ma value when HW symmetry is
considered. This is possible because for every ma value, diffe-
rent random initial populations are utilized at every algorithm
execution. In addition, QW solutions can also be found if the
universal formulation proposed by [22] is utilized. Therefore,
multiple solutions with different symmetries can be found for
every ma, each one with its own characteristics, providing the
possibility of optimizing different performance factors.

A. Case Studies

With the aim of performing a comparison between HW and
QW solutions and drive several conclusions, 2 different case
studies have been considered:

• Case I-QW: MVSC with 9 levels and 6 firing angles with
QW symmetry.

• Case II-HW: MVSC with 9 levels and 12 firing angles
with HW symmetry and φ1 = π/2.

Table I shows the total number of discrete solutions obtained
for every ma value and case study. To obtain the QW solutions
for every ma, 20 executions of the search algorithm presented
in [22] have been performed. In this way, several different
solutions have been provided for every ma. If the number of
executions is increased, a higher number of different solutions
can be obtained for every ma.

In case of HW symmetry, for every ma value, the search
algorithm has been executed 20 times with every possible
initial value, Linitial. Please note that for every solution with
Linitial = −x, 0 =< x <= UL, there is a symmetric solution
with Linitial = x (see Section III-D). Therefore, all the HW
solutions are grouped by values of Linitial >= 0. On the other
hand, the utilized fundamental phase is φ1 = π/2, providing
a sine wave. In this way, only solutions with Linitial = 0,
Linitial = 1 and Linitial = −1 have been found. The solutions
which provide an error in the objective function (17) lower
than 10−6 were stored.

Table I highlights the ability of the proposed universal
formulation together with GAs to find multiple solutions. For
illustration purposes some of the solutions obtained for case
study II-HW with Linitial = 0 and Linitial = 1 for ma = 0.3
and ma = 1 are depicted in Figs. 9 and 10, respectively.
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Fig. 9. Examples of HW solutions obtained for case II-HW with ma = 0.3,
Linitial = 0 and Linitial = 1 (amplitude normalized by VL).

B. Performance Evaluation

To compare, classify and select the most suitable solution,
several metrics of harmonic performance have been utilized
[25]. In particular, this paper considers the following:

1) Total Harmonic Distortion (THD): The total harmonic
distortion (THD) evaluates the total harmonic content of the
waveform [9]. The triplen harmonics are not regarded due to
the three-phase system.

2) Harmonic Distortion Factor (HDF): This factor pro-
vides the relevance of the first two non-eliminated harmonics.
Regarding three-phase systems, the odd triplen harmonics will
not be considered [25], [32].

3) Harmonic Loss Factor (HLF): This factor helps to
estimate the losses. In particular, it is proportional to the
weighted current total harmonic distortion (WTHDi) [25].

4) Lower-Order Triplen Harmonics: Despite the fact that
triplen harmonics are eliminated in three-phase systems, these
harmonics increment the stress imposed on the insulation of
grid transformers or motors [25]. Therefore, the analysis of
triplen harmonic amplitudes should be considered. In particu-
lar, the third and ninth harmonics are regarded in this work.

C. Analysis of Solutions

Depending on the application, different performance criteria
can be utilized to select the optimum solution. With the aim
of reducing the converter losses, the solutions with the lowest
HLF value for every ma are selected in this paper. If several



TABLE I
NUMBER OF SOLUTIONS OBTAINED FOR EVERY CASE DEPENDING ON THE MODULATION INDEX VALUE

Case Modulation Index
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 Total

Case I-QW 2 9 8 2 3 2 1 2 4 2 1 36
Case II-HW (Initial level 0) 9 10 9 4 7 10 10 3 7 2 4 75
Case II-HW (Initial level 1) 6 14 17 12 21 16 21 12 8 10 0 137
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Fig. 10. Examples of HW solutions obtained for case II-HW with ma = 1,
Linitial = 0 and Linitial = 1 (amplitude normalized by VL).

solutions provide the same HLF, the solution with the lowest
third harmonic is selected. Table II shows the values of the
performance factors for the selected solutions in cases I-QW
and II-HW. In addition, the firing angles associated to the
selected solutions of case II-HW are included in Appendix.

Regarding the case study II-HW, the continuous sets of
firing angles, where solid and dashed lines represent positive
and negative steps, respectively in the first HW, are included
in Fig. 11. The sets have been calculated taking as initial point
for the search algorithm those solutions included in Appendix.
The performance factors associated with these firing angles
have also been depicted in Fig. 11. This figure also shows how
the THD and HLF reduce progressively, except for particular
increments, when the ma is increased. It is also shown at
Fig. 11-Set 11-(2) how the over-modulation region provides
an increment in the third harmonic.

As it can be noticed at Fig. 11, there are several gaps

in the ma range where the search algorithm has not been
able to find a proper solution which provides an error of the
objective function lower than 10−6. To fill these gaps, several
intermediate solutions, different to those shown in Appendix,
have been obtained and then utilized as starting points of the
search algorithm. Using them, new continuous sets of firing
angles, which are depicted at Fig. 12, have been acquired,
completing the solutions throughout the ma range. These sets
of firing angles which determine the phase output voltage level
are stored in look-up tables to control the multilevel converter.
Depending on the type of multilevel converter, the switching
states of its power devices are determined to obtain the desired
phase output voltage level [7], [21], [22], [41].

Based on the results shown in tables I and II together with
Figs. 11 and 12, the following conclusions can be derived:

• Unlike bipolar waveforms [25], in case of multilevel
waveforms, the first two non-eliminated harmonics do not
concentrate the majority of the harmonic energy. This fact
can be noticed due to the big difference observed between
the HDF and THD factors (see table II). Therefore,
under the same THD value, the multilevel waveforms will
provide lower HLF values than bipolar waveforms.

• Among all the solutions obtained for every ma, at every
case, the lowest value for every indicator may be provided
by different solutions. In other words, for most of the
ma values at every case, there is no a single solution
that provides the lowest value of all the defined metrics.
Therefore, it will be required to determine a selection
criteria depending on the application. As it has been
commented, with the aim of improving the efficiency of
the multilevel converter, the solutions with lowest HLF
value have been selected in this work.

• Regarding the total number of solutions obtained through-
out the ma range, under equal number of levels and
equal number of eliminated harmonics, HW solutions
require twice as many firing angles to be calculated as
QW solutions and therefore, the number of HW solutions
obtained is higher, as it is shown in Table I [25]. In
addition, the HW symmetry provides a higher number
of solutions due to its ability to provide non-eliminated
harmonics with different phase values [26]. Consequently,
since more solutions are available with HW than with QW
symmetry, HW symmetry has the potential capacity to
find voltage waveforms with improved metrics. Neverthe-
less, there are particular cases where QW provides better
solutions. In particular, the HLF (see Fig. 13) and THD
(see Fig. 14) provided by both symmetries have been
compared throughout the ma range. As it can be noticed,
depending on the ma value, the best metric is provided



TABLE II
SOLUTIONS WITH LOWEST HLF FOR EVERY CASE: PERFORMANCE FACTORS (%)

Case Perf. Factor Modulation Index
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Case I-QW

THD (%) 90.76 40.84 24.20 21.78 15.02 13.63 12.92 9.19 7.17 8.61 7.52
HDF (%) 67.11 18.94 5.60 12.52 9.80 4.48 5.99 4.04 1.74 2.54 1.66
HLF (%) 3.43 1.20 0.68 0.76 0.53 0.39 0.39 0.29 0.17 0.26 0.23

3rd Harm. (%) 44.07 42.80 24.75 54.20 16.01 16.95 41.85 12.24 14.66 3.23 8.23
9th Harm. (%) 7.80 6.08 7.61 3.53 16.92 0.81 4.75 3.48 1.76 5.17 1.58

Case II-HW

THD (%) 94.27 40.84 24.69 21.08 15.64 11.02 10.42 9.66 7.47 8.15 7.40
HDF (%) 38.24 13.35 7.46 9.53 8.98 3.64 3.86 3.10 1.33 3.64 3.66
HLF (%) 3.38 1.22 0.72 0.69 0.50 0.29 0.29 0.29 0.17 0.24 0.24

3rd Harm. (%) 255.00 186.12 37.46 62.83 51.90 54.02 18.54 17.68 11.82 18.09 9.52
9th Harm. (%) 44.97 17.17 36.77 23.60 18.69 12.83 12.26 8.24 10.86 6.89 2.59
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Fig. 11. Continuous sets of solutions for case II-HW.
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Fig. 12. Continuous sets of intermediate solutions for case II-HW.

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7

QW

HW

HLF Comparison

H
LF

 (
%

)

Modulation index

Fig. 13. Harmonic loss factor (HLF) provided by QW and HW solutions
(cases I-QW and II-HW).

by different symmetries. Consequently, both symmetries
should be considered to find the most suitable solution.

• Figs. 15 and 16 show the modulation index range pro-
vided by every set of firing angles obtained for cases I-
QW and II-HW. As it is shown, the QW symmetry does
not provide solutions for 1.04 < ma < 1.09. Otherwise,
HW symmetry solves the problem for those ma values.
On the other hand, Figs. 15 and 16 also shows the selected
set of firing angles throughout the modulation index range
for QW and HW symmetries, respectively. In case of
overlap of several sets of firing angles, the set which
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Fig. 14. Total harmonic distortion (THD) provided by QW and HW solutions
(cases I-QW and II-HW).

provides the lowest HLF is selected.

All in all, it can be concluded that the increase in the
number of obtained solutions, for a particular ma, provides
more options to optimize the performance factors. In this
sense, the proposed universal formulation in this paper, which
is able to find multiple HW solutions, increases the probability
of improving the waveform design. In addition, this probability
can also be increased obtaining both QW and HW solutions,
instead of utilizing only one symmetry, because the number
of different solutions provided for every ma is higher.
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VI. EXPERIMENTAL RESULTS

The solutions provided by the proposed universal formula-
tion with HW symmetry have been validated by experimental
results obtained from a dSpace 1104. The laboratory set-
up is depicted at Fig. 17. Regarding the case II-HW, SHE-
PWM waveforms with HW symmetry and 9 levels have
been obtained with 12 firing angles in the first HW. The
experimental results have been provided using the sets of firing

angles depicted at Fig. 11. Particular samples of these sets are
included in Appendix A.

The utilized sets of firing angles have been stored in look-up
tables and the waveforms have been generated with the digital
to analog converters (DACs), representing the gate signals of a
MVSC. In this way, two different phase-neutral voltages, Van
and Vbn, have been generated, utilizing two different DACs,
with the aim of obtaining both the phase-neutral voltage and
the line-line voltage. Along with the experimental results, the
simulation waveforms and their corresponding spectrums have
also been obtained, providing the possibility of comparing both
simulation and experimental results.

In particular, Figs. 18-(a) and 18-(c) show the simulation
results of va0 and its corresponding spectrum when ma = 1.
As it can be noticed, the non desired harmonics are eliminated
and the first non-triplen harmonic is located in 950Hz. On
the other hand, Figs. 18-(b) and 18-(d) show the equivalent
experimental results of va0 and its corresponding spectrum.
The harmonics are also correctly eliminated. In addition,
the simulation results of line-line voltage, vab are shown
in Figs. 18-(e) and 18-(g), providing the waveform and its
corresponding spectrum, respectively. The spectrum shows
how the first non-eliminated harmonic is located in 950Hz
with all low order harmonics, including triplen, eliminated.
Finally, Figs. 18-(f) and 18-(h) show the experimental results
of Vab and its spectrum. As it can be seen, the harmonics
are correctly eliminated up to the 19th, which is the first non
eliminated low order harmonic.

Except for small differences, an accurate correlation be-
tween simulation and experimental results can be observed,
thus validating the proposed algorithm and the analysis carried
out in the paper. The small differences between the simulation
and experimental results are due to three reasons. First, the
dSpace 1104 has computational limitations which provide
an execution step of 70µs. Second, the digital to analogue
converter (DAC) introduces a quantization error. Finally, the
oscilloscope measurements contain noise. However, these facts
have a minor impact on the results.

VII. CONCLUSION

The proposed HW SHE-PWM universal formulation pro-
vides the ability to calculate simultaneously the switching
patterns and the associated firing angles throughout the ma

range, without using predefined waveforms. In particular,
a unique equation system which is valid for any possible
waveform has been defined. On the other hand, an objective
function, which can be utilized by optimization algorithms, has
been designed to disregard automatically invalid solutions.

Furthermore, regarding the existing universal formulation
with QW symmetry and the proposed universal formulation
with HW symmetry, a process to acquire the solutions and to
optimize the SHE-PWM waveform, with regard to different
performance factors, has been proposed. Examples of HW
and QW solutions for a converter with 9 levels have been
obtained throughout the ma range. As a result, the optimum
solution, which provides the lowest HLF for every ma, has
been provided by the HW or QW symmetry, depending on
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the ma value. Therefore, instead of using only one symmetry,
obtaining the solutions with both symmetries is recommended
to optimize the design of the SHE-PWM waveform. All in all,
the proposed universal formulation simplifies significantly the
search process with respect to previous formulations with HW
symmetry, assisting the application of SHE-PWM in multilevel
converters.

APPENDIX
EXAMPLE OF SOLUTIONS PROVIDED THROUGHOUT THE

MODULATION INDEX RANGE

Table III includes the firing angles, its corresponding setp
sign and the initial level of the waveform for the solutions
selected in case II-HW.



TABLE III
FIRING ANGLES AND SIGN OF EVERY STEP OF HW SOLUTIONS SELECTED FOR CASE II-HW (12 FIRING ANGLES AND 9 LEVELS)

ma θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 θ11 θ12 Initial Level
0.1 ⇓0.8344 ⇓1.1385 ⇑1.2775 ⇓1.3805 ⇑1.4666 ⇓1.5949 ⇑1.6924 ⇑1.9768 ⇑2.2906 ⇓2.3490 ⇓2.8732 ⇓3.1327 1
0.2 ⇑0.0000 ⇓0.2708 ⇑0.7089 ⇓0.7749 ⇑0.9048 ⇑1.1119 ⇑1.3185 ⇑1.5470 ⇓1.5937 ⇓2.0298 ⇓2.2363 ⇓2.4315 1
0.3 ⇑0.1899 ⇓0.2730 ⇑0.3639 ⇓0.5164 ⇑0.8951 ⇑1.0622 ⇓1.0815 ⇑1.6061 ⇓1.9467 ⇓2.6022 ⇓2.8087 ⇑2.9206 0
0.4 ⇑0.4292 ⇓0.7985 ⇓1.1163 ⇑1.1892 ⇓1.5428 ⇑1.6777 ⇑1.9318 ⇓2.4123 ⇑2.4973 ⇓2.7729 ⇓2.9278 ⇓3.1196 1
0.5 ⇑0.0764 ⇓0.2453 ⇓1.0919 ⇑1.2241 ⇑1.3905 ⇑1.7790 ⇓1.8650 ⇑2.0199 ⇓2.3430 ⇓2.4707 ⇓2.7649 ⇓3.0553 1
0.6 ⇑0.1518 ⇓0.5467 ⇑1.1435 ⇓1.1699 ⇑1.4868 ⇑1.6529 ⇑1.9859 ⇓2.0132 ⇓2.4993 ⇓2.6390 ⇓2.7392 ⇓2.9877 1
0.7 ⇑0.2104 ⇑0.8370 ⇑1.0678 ⇓1.2719 ⇑1.3475 ⇑1.6559 ⇓1.7459 ⇑1.7950 ⇓1.8439 ⇓2.0736 ⇓2.5139 ⇓2.7222 0
0.8 ⇑0.3465 ⇓0.3706 ⇑0.4518 ⇑1.2131 ⇑1.8161 ⇓1.8970 ⇑2.0131 ⇓2.1393 ⇓2.3576 ⇓2.7014 ⇓2.8963 ⇓3.0821 1
0.9 ⇑0.1069 ⇑0.2860 ⇑0.9422 ⇑1.1075 ⇓1.1460 ⇑1.5662 ⇓1.6237 ⇑1.6744 ⇓2.0257 ⇓2.5318 ⇓2.7044 ⇓2.8551 0

1 ⇑0.3277 ⇑0.6712 ⇓0.8045 ⇑0.8651 ⇑1.2393 ⇓1.3920 ⇑1.4551 ⇓2.2369 ⇓2.5170 ⇓2.7472 ⇓2.9560 ⇓3.1408 1
1.1 ⇑0.0985 ⇑0.2854 ⇑0.4993 ⇑0.8185 ⇓1.9978 ⇑2.1092 ⇓2.2548 ⇑2.3514 ⇓2.3891 ⇓2.6362 ⇓2.8615 ⇓3.1130 0
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