9,973 research outputs found

    ELSI: A Unified Software Interface for Kohn-Sham Electronic Structure Solvers

    Full text link
    Solving the electronic structure from a generalized or standard eigenproblem is often the bottleneck in large scale calculations based on Kohn-Sham density-functional theory. This problem must be addressed by essentially all current electronic structure codes, based on similar matrix expressions, and by high-performance computation. We here present a unified software interface, ELSI, to access different strategies that address the Kohn-Sham eigenvalue problem. Currently supported algorithms include the dense generalized eigensolver library ELPA, the orbital minimization method implemented in libOMM, and the pole expansion and selected inversion (PEXSI) approach with lower computational complexity for semilocal density functionals. The ELSI interface aims to simplify the implementation and optimal use of the different strategies, by offering (a) a unified software framework designed for the electronic structure solvers in Kohn-Sham density-functional theory; (b) reasonable default parameters for a chosen solver; (c) automatic conversion between input and internal working matrix formats, and in the future (d) recommendation of the optimal solver depending on the specific problem. Comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800 basis functions) on distributed memory supercomputing architectures.Comment: 55 pages, 14 figures, 2 table

    A generalized processor mapping technique for array redistribution

    Full text link

    Adaptive computational methods for aerothermal heating analysis

    Get PDF
    The development of adaptive gridding techniques for finite-element analysis of fluid dynamics equations is described. The developmental work was done with the Euler equations with concentration on shock and inviscid flow field capturing. Ultimately this methodology is to be applied to a viscous analysis for the purpose of predicting accurate aerothermal loads on complex shapes subjected to high speed flow environments. The development of local error estimate strategies as a basis for refinement strategies is discussed, as well as the refinement strategies themselves. The application of the strategies to triangular elements and a finite-element flux-corrected-transport numerical scheme are presented. The implementation of these strategies in the GIM/PAGE code for 2-D and 3-D applications is documented and demonstrated

    Assessment of Factors Contributing to Refrigerator Cycling Losses

    Get PDF
    Thermal mass effects, refrigerant dynamics, and interchanger transients are three factors affecting the transient and cycling performance of all refrigeration and air conditioning equipment. The effects of refrigerant dynamics, including refrigerant/oil solubility, off-cycle migration, and charge redistribution, were found to be the most important. These effects are quantified for a refrigerator instrumented with immersion thermocouples, pressure transducers, and microphones. The analytical methods, however, are applicable to other types of refrigeration and air conditioning systems, including those with capillary tube/suction line heat exchangers.Air Conditioning and Refrigeration Center Project 3

    Aeronautical Engineering: A special bibliography with indexes, supplement 67, February 1976

    Get PDF
    This bibliography lists 341 reports, articles, and other documents introduced into the NASA scientific and technical information system in January 1976

    Theory, figures of merit, and design recipe of the plasmonic structure composed of a nano-slit aperture surrounded by surface corrugations

    Get PDF
    We theoretically investigate a widely-used plasmonic structure composed of a nano-slit aperture surrounded by surface corrugations. A systematical semi-analytical theory in form of two nested coupled-mode models is developed to provide intuitive physical pictures. Based on the theory, figures of merit (FoMs) of the structures designed for normal and for oblique incidence/beaming are defined for the first time to incorporate the interlinks among key structural parameters, making global optimization simple and efficient. Both the theory and the FoMs are quantitatively validated with exhaustive calculations and shown to be highly accurate on performance prediction and structural optimization. With the theory and the FoMs, an efficient, effective and standard recipe is introduced for optimal structure design. We believe this work will help to understand the mechanisms of and to facilitate the design of such a structure in various configurations used in various applications
    corecore