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Theory, Figures of Merit, and Design Recipe of
the Plasmonic Structure Composed of a Nano-Slit
Aperture Surrounded by Surface Corrugations
Guangyuan Li, Member, IEEE, Member, OSA, Feng Xiao, Member, IEEE, Member, OSA, Kun Li,

Kamal Alameh, Member, IEEE, Member, OSA, and Anshi Xu, Senior Member, IEEE, OSA

Abstract—We theoretically investigate a widely-used plasmonic
structure composed of a nano-slit aperture surrounded by surface
corrugations. A systematical semi-analytical theory in form of two
nested coupled-modemodels is developed to provide intuitive phys-
ical pictures. Based on the theory, figures of merit (FoMs) of the
structures designed for normal and for oblique incidence/beaming
are defined for the first time to incorporate the interlinks among
key structural parameters, making global optimization simple and
efficient. Both the theory and the FoMs are quantitatively vali-
dated with exhaustive calculations and shown to be highly accurate
on performance prediction and structural optimization. With the
theory and the FoMs, an efficient, effective and standard recipe
is introduced for optimal structure design. We believe this work
will help to understand the mechanisms of and to facilitate the de-
sign of such a structure in various configurations used in various
applications.

Index Terms—Aperture antennas, coupledmode analysis, design
methodology, modeling, nanoscale devices, optical surface waves,
performance evaluation, plasmons.

I. INTRODUCTION

P LASMONICS, as a new field of science and technology
that exploits the unique optical properties of metallic

nanostructures to manipulate light at nanometre length scales,
has aroused increasing interest in fundamental science and
device applications during the last decade [1]. One of its most
successful applications is the extreme light concentration with
various plasmonic antennas. Among these, a plasmonic struc-
ture composed of a subwavelength aperture flanked by surface
corrugations, which is referred to as three-dimensional bull’s
eye structure or two-dimensional slit-gratings structure [2],
[3] as shown in Fig. 1, has received great attentions because
the optical transmittance through it can be largely tailored
with respect to that of an isolated aperture [4]. With such a
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Fig. 1. Schematics of a plasmonic structure composed of a subwavelength
aperture flanked by surface corrugations. (a) Three-dimensional bull’s eye struc-
ture. (b) Two-dimensional slit-grating structure.

structure, we witnessed many promising applications including
plasmon-enhanced photodetectors [5]–[8], sensitive darkfield
detection and imaging with bright background suppression (re-
ferred to as SWEDA microscopy) [9], [10], plasmonic photon
sorters for spectral and polarimetric imaging [11], a plasmonic
visible nanosource that could be applied in nanolithography or
optical data storage [12], optical beaming [13]–[19], and laser
beam collimation [20], [21].
To achieve high performance for specific applications with

such a structure, great efforts, both theoretical and experi-
mental, have been put on the physical mechanisms and the
parameter optimization [2], [4], [15]–[17], [20]–[33]. In most
of the previous works, the influence analysis of parameters on
the performance was performed by varying only one or two
parameters in sequence while keeping the others fixed [2], [4],
[16], [17], [22], [23], [26]–[29]. Currently there is no general-
ized model to understand and design the structures for various
applications such as optical concentration, optical beaming and
collimation, with normal or oblique incidence/beaming. The
design recipe varies according to different applications and dif-
ferent structures, making the device design very complex and
empirical. For example, it has been suggested that the optimal
groove width should be around half the period [2], [27], [29],
and the optimal slit-groove distance should be just over half
the surface plasmon polariton (SPP) wavelength [28] or be
approximate to with being an integer [4]. However,
empirical recipes are not always applicable. A vivid example
is that the optimized aperture-groove distance, which may
lead to enhanced or suppressed transmission, has been under
debate [28], [31] until recently. Moreover, it is accepted that the
effects of many geometrical features are interlinked [28]–[30].
These properties greatly increase the complexity of structure
design and aroused a global optimization by varying all the
important structural parameters [30], which is very time-con-
suming and of excessive computational cost. To circumvent
these problems, recently some authors developed semi-analyt-
ical models on optical transmission through the slit-gratings

0733-8724/$31.00 © 2012 IEEE
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structures under normal [32] or oblique [33] incidence. In these
models, closed-form expressions incorporating the dominant
structural influences have been provided, and the horizontal
Fabry-Perot (F-P) resonance effect due to the reflection of
gratings has been unveiled for symmetrical structure under
normal incidence. As a result, we largely resolved the debate
on the optimal slit-groove distance, and also suggested a better
choice of the groove duty cycle than the choice made in [28]
for a special case. However, there are still many problems left
to solve. Questions aroused such as why the duty cycle we
picked is better than the one for the maximum SPP excitation
efficiency, how to facilitate the usage of the models with tens
of coefficients or parameters, and are there any figures of merit
(FoMs) or standard design recipes to design various structures
for various applications.
To answer these questions, we further developed theoretical

models on the SPP reflectance [34] and excitation coefficients
by periodic surface corrugations under normal incidence [35].
These coefficients were calculated by simulations with corru-
gations being treated as ‘black boxes’ and first optimized for
maximum SPP excitation efficiency in our previous models on
the slit-gratings structure [32], [33]. As the SPP reflectance and
excitation coefficients of corrugations are also accurately and
efficiently predicted by quantitative models starting with those
of a single one, it is possible to develop a systematical theory
incorporating all these models elegantly, and to provide an effi-
cient and standard recipe that could be followed by experimen-
talists without efforts.
In this paper, we present a systematical semi-analytical

theory on the slit-gratings structure designed for any inci-
dence/beaming angle, propose FoMs for such a structure for the
first time to the best of our knowledge, and introduce a standard
and simple recipe to design such a structure based on the theory
and the FoMs. The slit-grooves structure is analyzed as the
example, and ‘pure’ SPP coupled-mode models are set up for
the performance prediction and the structure optimization with
high accuracy at visible or near infrared regimes [35]. Both the
theory and the FoMs will be quantitatively validated with ex-
haustive examples by comparing with simulation results using
the fully vectorial aperiodic Fourier modal method (a-FMM)
[36] and finite element method (FEM) [37]. With the FoMs,
the above-mentioned problem on better choice of groove duty
cycle will be solved elegantly. We will also show that it is easy
to obtain better performance following the proposed recipe
than a widely-adopted conventional recipe, where corrugations
were first optimized for maximum SPP excitation efficiency.
The remainder of the paper is organized as follows. We set up
the systematical theory in forms of two nested semi-analytical
models in Section II, deduce FoMs in Section III, and then
validate them in Section IV. In Section V, the recipe will
then be introduced and exemplified. Finally, some concluding
remarks are summarized in Section VI.

II. A SYSTEMATICAL THEORY

In this section, we set up a systematical semi-analytical
theory for the slit-grooves structure designed for any inci-
dence/beaming angle , where the surrounding grooves are

Fig. 2. Schematics of the global model on the slit-gratings structure. (a)Optical
transmission under illumination by a TM-polarized (magnetic vector along y
axis) plane wave of incidence angle . (b) Shows one of its reciprocal problem,
i.e., optical beaming of angle under an SPP incidence (it should be under
normal light incidence from the bottom in reality, but both cases lead to similar
results). In the model, the gratings on both sides are treated as “black boxes”
that excite and reflect SPPs. The groove widths, periods, and the slit-groove dis-
tances on the left and right sides are and , respectively.
Grooves are assumed to be of the same depth to facilitate the manufacturing.
The electromagnetic quantities are all defined in the
text. Note that only are of the same value in (a) and (b) according to the
Lorentz reciprocity theorem. (c)–(h) Involved main elementary scattering pro-
cesses. They are all associated with the scattering of an electromagnetic field
by a slit (c), (f)–(h) or a grating (d), (e) under illumination of plane wave (c),
(d), an SPP mode (e), (f), or the slit fundamental mode (g), (h). The vertical
blue-dashed line in (e) indicates the zero phase of the radiated plane wave in
axis when calculating and .

assumed to be asymmetrical without loss of generality. Al-
though the model on optical transmission of TM-polarized
plane wave and the one on its reverse process, i.e., optical
beaming as illustrated in Figs. 2(a) and (b), respectively, lead
to similar results according to the Lorentz reciprocity theorem,
here we address the former instead of the latter to make use
of our previous works. The theory is expressed in form of two
nested models: a global model that treats the grooves on both
sides as ‘black boxes’, and embodies all the key parameters with
emphasis on the slit parameters and the slit-groove distances
since they may lead to enhanced or suppressed transmission
[23], [28], [32], [33]; and a nested model on the SPP excitation
and reflectance coefficients of the ‘black boxes’.

A. The Global Model on the Whole Structure

The global ‘pure’ SPP coupled-mode model on optical trans-
mission is shown by Fig. 2(a), where and
are complex amplitudes of magnetic field of the left- and
right-going SPP modes at the air-metal interface, respectively,
is that of the left-going SPP mode at the metal-substrate in-

terface, and and are those of the slit fundamental modes
propagating downward and upward, respectively. To obtain a
closed-form expression for the transmission efficiency, which
is defined as the total power transmitted into the far field nor-
malized to the power incident on the slit aperture, we treat
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the gratings on both sides as ‘black boxes’ and start with
the knowledge of the elementary-event scattering coefficients
shown in Fig. 2(c)–(h): and are the excitation coef-
ficients of the left- and right-going SPP modes by the slit,
respectively; and are those by a groove array; and
are the respective excitation coefficients of the slit funda-

mental mode under plane wave illumination from the air and
the substrate, and vice versa according to the reciprocity the-
orem; is the SPP reflectance coefficient of a groove array;
and are the SPP reflectance and transmittance coeffi-

cients of the slit; (or ) is the scattering coefficient from
the SPP mode at the air-metal (or metal-substrate) interface to
the slit fundamental mode and vice versa; and and are
the reflectance coefficients of the slit fundamental mode at the
top and the bottom openings, respectively. The coupled-mode
equations lead to

(1)

where and with
being the complex effective

refractive index of the SPP mode at the flat air-metal interface,
and with being the complex effective
refractive index of the slit fundamental mode as the slit is very
small and of single-mode. and

are phase shifts introduced by the incident
plane wave. This is because the zero phase of the incidence is
assumed to be at the top opening’s center of the slit ;
whereas it is at the top opening’s centers of the grooves nearest
to the slit for the calculation of and

. Note that the propagation losses of the SPP
mode and of the slit fundamental mode have been embodies via
complex and , respectively.
For a practical plasmonic structure with optimized grooves,
can be omitted as and . By

neglecting some trivial terms related to multiple cross conver-
sions between and , we obtain a closed-form
expression from (1):

(2)

where with and
. Equation (2) can be further reduced by making some

empirical approximations: and are small as and
are usually optimized or quasi-optimized; and

for so small that the slit supports only the funda-
mental mode. As a result, terms incorporating and

are negligible, and .
Equation (2) is then further reduced into

(3)
Specially, for the symmetrical structure designed for normal

incidence,
, and . Equation (2) is then reduced into

(4)

The optical transmission efficiency is then expressed as

(5)

and is expressed as

(6)

Obviously, , thus when the slit
width and material (and then and ) are usually given first
according to the specific application requirement. As a result,
we use or to assess the performance.

B. The Nested Model on the Gratings

Now let us consider the ‘black boxes’ that excite and reflect
SPPs. In previous works [16], [17], [27], [28], the gratings were
usually first optimized by simulation scan for optimal and

. However, for a large groove number , the optimization
suffers from a high computational cost. What is worse, one has
to repeat the optimization if should be increased for better
performance. To circumvent these problems, here we develop
an efficient theoretical model for and for
any and .
We take and of grooves on the left side as an ex-

ample, where the zero phase of the incident plane wave is at the
top opening’s center of the rightmost groove, as shown in Fig. 3.

and are calculated similarly but with a different zero
phase position, as mentioned previously. The model may be ex-
pressed in two equivalent forms: the linear-equations form and
the recursive form. The equivalence of the two forms has been
verified for in [34], thus it will not be discussed here due to
space limitations. The model in a linear-equations form for
and is shown in Fig. 3(a) and expressed as

(7)

where and with
being the groove period, with .

and are the right-going (‘ ’) and left-going (‘ ’)
SPP excitation coefficients, the SPP reflectance and transmit-
tance coefficients of a single groove, respectively, as shown in
Figs. 3(c) and (d). To calculate the SPP excitation coefficients,

, one sets ; whereas to calculate
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Fig. 3. (a) Schematics of the linear-equations form and (b) the recursive form of the coupled-mode model for the SPP excitation and reflectance coefficients by
periodic grooves on the left side of the central slit. are complex amplitudes of SPP modes at the air-metal interface. (c) and (d)
show the SPP excitation coefficients , reflectance coefficient and transmittance coefficient by a single groove, respectively. The vertical blue-dashed
lines in (a) and (b) indicate the incidence zero phase at the top opening’s center of the rightmost groove.

the SPP reflectance coefficient, , one sets
.

The model may also be expressed in a recursive form (see
Append. A for details), as shown in Fig. 3(b)

(8a)

(8b)

(8c)

(8d)

After the recursion, one obtains and .
Specially, for normal incidence, , and

(9)

For fully periodic grooves or large enough , one
has and

. From (8), we obtain the generalized grating equation
and Bragg equation expressed as

(10a)

(10b)

where ‘ ’ and ‘ ’ correspond to the excitations of the left-
and right-going SPP modes, respectively. Compared with the
conventional grating equation and Bragg equation, the ‘gen-
eralized’ ones with an additional term are versatile
for a general grating composed of periodic defects, where the
defect may be of various geometries and refractive index pro-
files, as their influences have been embodied via . This
additional term is quite important for dielectric [14], [16] or
metal-dielectric composite [17] surface gratings since

may be relatively large in these cases. However, for grooves
usually used because of manufacturing convenience,
is negligible. In other words, it is suitable to use the conven-
tional grating equation and Bragg equation for periodic grooves
for the sake of simplicity. In this paper, we restrict ourselves to
periodic grooves.
By combining (3) for oblique incidence/beaming or (4) for

normal incidence/beaming with (8), two theoretical models are
nested elegantly, resulting in a systematical semi-analytical
theory on the whole structure. Note that one may expect a
whole set of linear equations based on the elementary-event
scattering coefficients of a slit and a single groove, i.e.,

and in (2) are replaced by linear equations similar
to (7). In this case, however, the linear equations are so complex
that it is difficult to obtain a closed-form expression for
(and ) and to provide intuitive physical pictures. This is
the reason why we express the systematical theory in form of
two nested models.

III. FIGURES OF MERIT

The systematical theory incorporates the dominant structural
parameters. Based on the model, in this section we propose
FoMs that lead to global optimization and a standard recipe,
which will be introduced in the next section.
Comparing (3) and (4), we notice they share the same denom-

inator, i.e., . Neglecting the propagation loss of the
slit fundamental mode,
with equality holds when

(11)

where ‘Re’ and ‘arg’ mean the real part and the argument of a
complex number, respectively, and is an integer. Equation
(11) attributes to the vertical F-P resonance effect in the cavity
formed by the slit’s top and bottom openings. As this is well
known and widely used to determine the optimized slit parame-
ters [38], [39], wewill spare space for groove parameters and the
slit-groove distances. With (11), given the slit width and ma-
terial , one obtains the optimal thickness of the metal film
simply by calculating , and , which are determined
by and .
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Let us focus on the numerators of in (3) and (4). For normal
incidence/beaming

(12a)

(12b)

(12c)

(12d)

where . The approximation
in (12b) is performed by neglecting the propagation loss of SPP
mode. Equality in (12c) holds if and only if the SPP propagation
loss is neglected and there is horizontal F-P resonance effect
due to the SPP modes’ multiple reflections by the surrounding
gratings

(13)

Equality in (12d) holds when the slit fundamental modes excited
by the incident light and by the groove-generated SPPs interfere
constructively

(14)

Because the interference effect dominates when is
comparable to or smaller than , it prevails in most of pre-
vious works [24]–[28] and only a few works addressed the hor-
izontal F-P resonance effect [4], [32]. As a result, it was natural
to consider only the interference effect and determine the op-
timal aperture-groove distance according to (14). However, as
increases, becomes several times of , and the

contribution of the horizontal F-P resonance effect becomes pre-
ponderant. Bear these in mind, we make sure that (13) for the
horizontal F-P resonance is always satisfied, and define a FoM
from (12) by substituting (13) into . The FoM is defined as

(15)

where . We emphasize
that (15) embodies the interlinks among the slit parameters (via

and ), the groove parameters (via and ), and
the slit-groove distance (determined by (13) according to the
basic assumption). As a result, it is convenient to achieve global
optimization via with only a few parameters.
For oblique incidence/beaming, the numerator in (3)

(16a)

(16b)

This evokes multiple interference among the slit modes excited
by the incidence, by groove-generated SPPs and by their first-

order reflection by grooves on the other side. Because
and are relatively small since and are usually
optimized or quasi-optimized, the interference between the slit
modes excited by the incidence and by groove-generated SPPs
dominates. As a result, we make sure the constructive interfer-
ence satisfies, i.e.,

, where equality holds when

(17a)

(17b)

As increases, becomes larger than ,
and the contribution of the first-order reflection of SPPs by
grooves on the other side increases and should not be omitted.
From equality in (16b), which is achievable when parameters
are properly designed, we define a FoM for the structure
designed for oblique incidence/beaming as

(18)

It is clear that two gratings on both sides are interlinked, re-
sulting in a complex optimization. Taking into account the fact
that and are comparable, we redefine the FoM as

(19a)

(19b)

In such a way, there are two independent FoMs for gratings on
each side, and , greatly facilitating the optimiza-
tion procedure. After the gratings are optimized, the optimal or
quasi-optimal slit-groove distances and are then deter-
mined by (17).

IV. COMPUTATIONAL VALIDATIONS

In this section, we shortly validate the nested theoretical
models (referred to as ‘model A B’ for clarity) with

and of the groove array calculated by the nested
model (referred to as ‘model B’), by comparing with the sole
global model using and calculated by simula-
tions (referred to as ‘model A’), as done in our previous works
[32], [33], and the fully vectorial a-FMM and FEM computa-
tions. The effectiveness of FoMs with and (or
and for ) calculated by ‘model B’ or by simulations

are also validated with exhaustive calculations. In the models,
is calculated analytically [40],

and are all calculated using the completeness
theorem of the normal mode set and the mode orthogonality,
as done in [35], [41]. To calculate and of the
groove array and of the slit-grooves structure, we refer to an
efficient method that allows us to calculate the SPP excitation
coefficients for all incidence angles with a single computation,
as has been developed in [42]. This method combines the
a-FMM approach with the Lorentz reciprocity theorem. Instead
of considering a SPP mode to be excited under illumination of
the plane wave (Figs. 2(a) and (d)), we consider the excitation
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Fig. 4. Model predictions (the blue thick-solid and thin-dashed lines are for
‘model A’ and ‘model A B’, respectively) and the a-FMM computational data
using the reciprocal method (blue circles) on compared with calcu-
lated by FEM (red dots). The vertical black solid and dashed lines indicate

m and m, which are determined with (13) using
calculated by simulation and by ‘model B’, respectively. The calculations

are performed with nm, nm,
[28].

of an out-going plane wave by the same structures with the SPP
mode incidence (Figs. 2(b) and (e)).
Throughout the paper, we assume that the incident/beaming

plane wave is normalized such that its power flow over the slit
aperture is unitary, and the SPP mode is normalized such that
it power flow along the direction is also unitary. The analysis
will be performed with gold at nm (

[43]), and
nm and nm according to (11).

A. Normal Incidence/Beaming

For normal incidence/beaming , we first compare
calculated by ‘model A’, by ‘model A B’ and by the

a-FMM approach combined with the reciprocity theorem, and
calculated by FEM. As shown in Fig. 4, theoretical predictions
on and especially on the optimal by ‘model A’ and by
‘model A B’ agree well with a-FMM and FEM calculations,
and . Compared with Fig. 2(a) in [32], where most
parameters are the same except and thus
nm according to (11), it is clear that and as functions of
the slit-groove distance hold the same features. We emphasize
that it is better to determine the optimal using calculated
by simulations than by ‘model B’. This is because ‘model B’ as
a ‘pure’ SPP model results in deviations in amplitude as well as
in phases [35]. As a result, we hereafter determine the optimal
with (13) using calculated by a-FMM.
Fig. 5 compares the a-FMM computational data and ‘model

B’ prediction on , as well as using and cal-
culated by a-FMM and by ‘model B’, respectively. It is clear
that both and , especially the optimized groove
sizes are accurately predicted by ‘model B’. As the numerical
cost of the recursive equations is negligible compared with that
of the calculation of , the cost of the groove optimization for
optimal or of periodic grooves is greatly re-
duced into that of a single one.
Moreover, there are pronounced shifts between the optimized

groove duty cycles for and for , indicating the
influences of the horizontal F-P resonance effect. The shift is
better illustrated in Fig. 6, where Fig. 6(a) replots Fig. 3(a) in

Fig. 5. Comparisons of the a-FMM computational data (a), (c) and ‘model B’
predictions (b), (d) on (a), (b) and (c), (d) as functions of the
groove duty cycle and depth. The blue circles stand for the optimized groove
sizes: (a), (0.57, 64 nm) (b), (0.61, 70 nm) (c),
(0.63, 72 nm) (d). The calculations are performed with nm, .

Fig. 6. Comparisons of using and calculated by a-FMM
(circles) and by ‘model B’ (lines), and calculated by FEM with optimized
according to (13) (red dots), where is calculated by a-FMM.Other parameters
are the same with Fig. 4.

[32]: is optimized at (using and
calculated by a-FMM) or 0.63 (using and calculated by
‘model B’), compared with optimized at .
calculated by FEM using the optimal determined by (13),

where is calculated by a-FMM, validates the effectiveness of
. As a result, it is easy to make a better choice on the

groove duty cycle with rather than with ‘luckiness’
in [32].

B. Oblique Incidence/Beaming

The model validation on and of
the groove array is exemplified with , and
and with nm determined by the conventional
grating equation. Comparisons of the ‘model B’ predictions and
the a-FMM computational data, as illustrated in Fig. 7, reveal
that the model quantitatively captures all the salient features of

and , especially the optimized groove sizes.
We notice that there is also a pronounced shift on the opti-

mized groove duty cycle for the optimal and for the op-
timal . This shift is introduced by the first-order reflec-
tion of grooves-generated SPPs by grooves on the other side,
and is better illustrated by Fig. 8, where the optimal is
achieved when is not optimized while is relatively
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Fig. 7. Comparisons of the a-FMM computational data (a), (c) and ‘model B’
predictions (b), (d) on (a), (b) and (c), (d) as functions of the
groove duty cycle and depth. The blue circles indicate the optimized parameters:

(a), 0.42 (b), 0.39 (c), 0.43 (d), and nm for (a)–(d). The
calculations are performed with , and nm.

Fig. 8. Comparisons of using and calculated by a-FMM
(circles) and by ‘model B’ (lines), and calculated by the a-FMM approach
using the reciprocal method (red dots), where and are optimized by (17)
with and being calculated by a-FMM. The calcula-
tions are performed with nm, nm, and
other parameters same as in Fig. 7.

Fig. 9. Comparisons of the a-FMM computational data (a) and theoretical
predictions by ‘model A’ (b) and ‘model A B’ (c) on as functions
of the slit-groove distances. The thick-blue circles indicate the optimized
slit-groove distances, (a), (0.79 m,
0.98 m) (b), (0.81 m, 0.98 m) (c). The thin-white circles indicate

determined by (17) with
and being calculated by a-FMM simulations ( m

if ). The calculations are performed with nm,
, and other parameters same as in Fig. 8.

large. The effectiveness of the is also well validated by
comparing with calculated by a-FMM using the optimal
slit-groove distances determined with (17), where

and are calculated by a-FMM.
Fig. 9 compares model predictions and the a-FMM computa-

tional data on . It is shown that both ‘model A’ and ‘model

A B’ capture all the salient features. More importantly, the op-
timal slit-groove distances indicated by a-FMM, by ‘model A’
and by ‘model A B’ are all very close to the ones determined
with (17) provided and are calculated by simulations.
As the numerical cost of ‘model A B’ is greatly reduced com-
pared with ‘model A’ while the prediction accuracy holds, it
is more favorable to predict performance with the systematical
theory in form of two nested models, and to obtain optimal or
quasi-optimized structural parameters with and
(11) and (17).

V. STANDARD DESIGN RECIPE

With the systematical theory and the FoMs, we now introduce
an efficient, standard and simple design recipe for preparing
a slit-grooves structure with optimal performance for optical
concentration, beaming or collimation at a given wavelength
ranging from the visible to the near infrared regime. It takes
four steps:
1) The slit width , the material filling the slit , the metal

, the substrate , the incidence/beaming angle and
the operating wavelength should be set first according to
the specific application requirements.

2) The slit depth (or the metal film thickness) is optimized
using (11) to satisfy vertical F-P resonance in the slit. This
step has been widely accepted and adopted.

3) Given the groove number , the groove widths and depth
are then optimized using for oblique incidence/
beaming or using for normal incidence/beaming,
where the groove periods are determined by the conven-
tional grating equation, and and (or
and for ) are calculated theoretically using

‘model B’.
4) For oblique incidence/beaming, the optimal and

are determined by (17), whereas for normal inci-
dence/beaming, the optimal is determined by (13),
where and , or are calculated by simulations
with the optimized groove parameters.

To illustrate the recipe, here we present an example for
by comparing with a conventional recipe adopted in [28]: step 3
is replaced by optimizing the groove width and depth for max-
imum ; in step 4, the optimal is determined by the con-
structive interference condition, i.e., (14). Table I summarizes
the optimized parameters and transmission performance for dif-
ferent . First of all, we set nm,
(air). We then obtain the optimal metal film thickness

nm according to (11), where
. To optimize the groove width

and depth using , we first calculate and of
a single groove as functions of and . The groove period is
determined by the conventional grating equation, nm.
Given the groove number and as functions
of and are obtained by ‘model B’ with high efficiency and
accuracy, followed by the optimized and . Finally, the op-
timal slit-groove distance is determined with (13) using
calculated by a-FMM. Note that
with . In other words, the optimal slit-groove
distance is determined by the horizontal F-P resonance in the
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TABLE I
PERFORMANCE OF THE PROPOSED STANDARD RECIPE, WHERE

AND ARE OBTAINED THEORETICALLY, IS CALCULATED BY
A-FMM, AND CALCULATED BY FEM. IS TAKEN FROM FIG. 3 IN [28]

Fig. 10. The optimized calculated by ‘model B’ (blue line with cir-
cles) and the optimized calculated by FEM (red dots) scale with the number
of grooves on each side (a), while the optimized groove depth obtained
following the proposed standard recipe scales with (b).

cavity formed by surrounding grooves, and it seems as if there
is no slit at all.
It is clear that the standard recipe is very effective, leading to

better performance than the reference conventional recipe. Note
that the optimized groove duty cycle is about 0.63 instead of 0.5
as suggested in [4]. By plotting some parameters in Fig. 10, we
notice the optimized and scale with , while
the optimized groove depth scales with (consistent with
[28]). As a result, may also used to evaluate the per-
formances of different groove numbers.
The proposed recipe is very efficient and flexible. One only

needs to scan and of a single groove instead of
and of periodic grooves as functions of

and . With the information of and as func-
tions of and and for various groove
numbers or periods are obtained with negligible computational
cost using ‘model B’. In other words, the computational cost
of simulation scan is greatly reduced. This cost reduction is es-
pecially remarkable when one needs to increase to improve
the performance, or when metallic, dielectric or metal-dielec-
tric surface gratings are used, in that case the grating periods
should also be scanned around the value determined by the con-
ventional grating equation.
We emphasize that the proposed recipe provides clear phys-

ical picture and has great generality. It is capable to treat various
structure configurations with surface gratings made of various
shapes of grooves or dielectric ridges, with normal or oblique
incidence/beaming. Furthermore, it provides a routine design
procedure without relying on empirical experiences, making it a
normalized recipe and easy to follow.We suggest it as a standard
recipe for the design and optimization of the subwavelength
aperture surrounded by surface corrugations.

VI. CONCLUDING REMARKS

Although we focused on 2D slit-grooves structure, the sys-
tematical coupled-mode theory, the FoMs, and the standard
recipe are also applicable to 3D bull’s-eye structure by making
some modifications. This is because there is no transmission
mode in the subwavelength hole aperture. In this case, the
EM field inside the hole should be expanded with a set of
waveguide modes, and the related coefficients such as

and should be replaced by a set of
corresponding coefficients accordingly [4], [44]. As the optimal
aperture-groove distance under normal incidence is determined
by the grooves’ reflectance coefficient as if there is no slit or
hole, it holds for 2D slit-grooves, 3D hole-grooves, and 3D
bull’s eye patterns, as noted in [19], [24], [25], [28].
Moreover, we should emphasize that the generalized grating

equation and Bragg equation are also applicable for normal
waveguide modes (simply by replacing with ). A typ-
ical application is in the free-space excitation or the reflection
[45] of a dielectric waveguide mode by high-index-contrast
gratings, the additional term should not be omitted.
In conclusion, we have developed a systematical theory in

form of two nested ‘pure’ SPP coupled-mode models for the
widely-used plasmonic structure composed of a subwavelength
aperture surroundedby surface corrugations.Basedon the theory
incorporating interlinks among key parameters with clear phys-
ical pictures, FoMs of the structures designed for normal and for
oblique incidence/beaming have been proposed for thefirst time,
making global optimization simple and efficient. Exhaustive
calculations have shown that the theory and the FoMs are highly
accurate on performance prediction and structural optimization.
A standard recipemaking full use of the theory and the FoMs has
been introduced to facilitate the structure design and optimiza-
tion with great flexibility and computational cost reduction.

APPENDIX A
SPP SCATTERING COEFFICIENTS IN RECURSIVE FORM

The model on SPP scattering coefficients and ex-
pressed in a recursive form is illustrated by Fig. 3(b). The cou-
pled-mode equations lead to

(20)

To calculate the SPP excitation coefficients,
, one sets ; whereas to calculate the SPP re-

flectance and transmittance coefficients,
and , one sets . Note that when
calculating and , the zero phases of the incident
plane wave are all set to be at the center of the rightmost
groove’s top opening.
Then the SPP excitation, reflectance and transmittance coef-

ficients are expressed recursively as

(21a)
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(21b)

(21c)

(21d)

Specially, for normal incidence,
for , (21a) and (21b) are then reduced into

(22)

which agrees with our previous results [35].
For fully periodic grooves or is large enough,

one has and
. Equations (21a) and (21c) are then reduced

into

(23a)

(23b)

respectively. From (23a), it is easy to obtain the condition for
the constructive interference of left-going SPP modes excited
by the groove array:

(24)

Similarly, the condition for the constructive interference of
right-going SPP modes are also obtained. We refer to these
conditions as the generalized grating equation:

(25)

where ‘ ’ and ‘ ’ correspond to the excitations of the left- and
right-going SPP modes, respectively.
From (23b), the generalized Bragg equation

(26)

has been introduced and validated in [34].
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