264 research outputs found

    A Generalized Approach to Optimization of Relational Data Warehouses Using Hybrid Greedy and Genetic Algorithms

    Get PDF
    As far as we know, in the open scientific literature, there is no generalized framework for the optimization of relational data warehouses which includes view and index selection and vertical view fragmentation. In this paper we are offering such a framework. We propose a formalized multidimensional model, based on relational schemas, which provides complete vertical view fragmentation and presents an approach of the transformation of a fragmented snowflake schema to a defragmented star schema through the process of denormalization. We define the generalized system of relational data warehouses optimization by including vertical fragmentation of the implementation schema (F), indexes (I) and view selection (S) for materialization. We consider Genetic Algorithm as an optimization method and introduce the technique of "recessive bits" for handling the infeasible solutions that are obtained by a Genetic Algorithm. We also present two novel hybrid algorithms, i.e. they are combination of Greedy and Genetic Algorithms. Finally, we present our experimental results and show improvements of the performance and benefits of the generalized approach (SFI) and show that our novel algorithms significantly improve the efficiency of the optimization process for different input parameters

    Query-Time Data Integration

    Get PDF
    Today, data is collected in ever increasing scale and variety, opening up enormous potential for new insights and data-centric products. However, in many cases the volume and heterogeneity of new data sources precludes up-front integration using traditional ETL processes and data warehouses. In some cases, it is even unclear if and in what context the collected data will be utilized. Therefore, there is a need for agile methods that defer the effort of integration until the usage context is established. This thesis introduces Query-Time Data Integration as an alternative concept to traditional up-front integration. It aims at enabling users to issue ad-hoc queries on their own data as if all potential other data sources were already integrated, without declaring specific sources and mappings to use. Automated data search and integration methods are then coupled directly with query processing on the available data. The ambiguity and uncertainty introduced through fully automated retrieval and mapping methods is compensated by answering those queries with ranked lists of alternative results. Each result is then based on different data sources or query interpretations, allowing users to pick the result most suitable to their information need. To this end, this thesis makes three main contributions. Firstly, we introduce a novel method for Top-k Entity Augmentation, which is able to construct a top-k list of consistent integration results from a large corpus of heterogeneous data sources. It improves on the state-of-the-art by producing a set of individually consistent, but mutually diverse, set of alternative solutions, while minimizing the number of data sources used. Secondly, based on this novel augmentation method, we introduce the DrillBeyond system, which is able to process Open World SQL queries, i.e., queries referencing arbitrary attributes not defined in the queried database. The original database is then augmented at query time with Web data sources providing those attributes. Its hybrid augmentation/relational query processing enables the use of ad-hoc data search and integration in data analysis queries, and improves both performance and quality when compared to using separate systems for the two tasks. Finally, we studied the management of large-scale dataset corpora such as data lakes or Open Data platforms, which are used as data sources for our augmentation methods. We introduce Publish-time Data Integration as a new technique for data curation systems managing such corpora, which aims at improving the individual reusability of datasets without requiring up-front global integration. This is achieved by automatically generating metadata and format recommendations, allowing publishers to enhance their datasets with minimal effort. Collectively, these three contributions are the foundation of a Query-time Data Integration architecture, that enables ad-hoc data search and integration queries over large heterogeneous dataset collections

    A Study of Traveling Salesman Problem Using Fuzzy Self Organizing Map

    Get PDF

    Automatic physical database design : recommending materialized views

    Get PDF
    This work discusses physical database design while focusing on the problem of selecting materialized views for improving the performance of a database system. We first address the satisfiability and implication problems for mixed arithmetic constraints. The results are used to support the construction of a search space for view selection problems. We proposed an approach for constructing a search space based on identifying maximum commonalities among queries and on rewriting queries using views. These commonalities are used to define candidate views for materialization from which an optimal or near-optimal set can be chosen as a solution to the view selection problem. Using a search space constructed this way, we address a specific instance of the view selection problem that aims at minimizing the view maintenance cost of multiple materialized views using multi-query optimization techniques. Further, we study this same problem in the context of a commercial database management system in the presence of memory and time restrictions. We also suggest a heuristic approach for maintaining the views while guaranteeing that the restrictions are satisfied. Finally, we consider a dynamic version of the view selection problem where the workload is a sequence of query and update statements. In this case, the views can be created (materialized) and dropped during the execution of the workload. We have implemented our approaches to the dynamic view selection problem and performed extensive experimental testing. Our experiments show that our approaches perform in most cases better than previous ones in terms of effectiveness and efficiency

    Keyword search in graphs, relational databases and social networks

    Get PDF
    Keyword search, a well known mechanism for retrieving relevant information from a set of documents, has recently been studied for extracting information from structured data (e.g., relational databases and XML documents). It offers an alternative way to query languages (e.g., SQL) to explore databases, which is effective for lay users who may not be familiar with the database schema or the query language. This dissertation addresses some issues in keyword search in structured data. Namely, novel solutions to existing problems in keyword search in graphs or relational databases are proposed. In addition, a problem related to graph keyword search, team formation in social networks, is studied. The dissertation consists of four parts. The first part addresses keyword search over a graph which finds a substructure of the graph containing all or some of the query keywords. Current methods for keyword search over graphs may produce answers in which some content nodes (i.e., nodes that contain input keywords) are not very close to each other. In addition, current methods explore both content and non-content nodes while searching for the result and are thus both time and memory consuming for large graphs. To address the above problems, we propose algorithms for finding r-cliques in graphs. An r-clique is a group of content nodes that cover all the input keywords and the distance between each pair of nodes is less than or equal to r. Two approximation algorithms that produce r-cliques with a bounded approximation ratio in polynomial delay are proposed. In the second part, the problem of duplication-free and minimal keyword search in graphs is studied. Current methods for keyword search in graphs may produce duplicate answers that contain the same set of content nodes. In addition, an answer found by these methods may not be minimal in the sense that some of the nodes in the answer may contain query keywords that are all covered by other nodes in the answer. Removing these nodes does not change the coverage of the answer but can make the answer more compact. We define the problem of finding duplication-free and minimal answers, and propose algorithms for finding such answers efficiently. Meaningful keyword search in relational databases is the subject of the third part of this dissertation. Keyword search over relational databases returns a join tree spanning tuples containing the query keywords. As many answers of varying quality can be found, and the user is often only interested in seeing the·top-k answers, how to gauge the relevance of answers to rank them is of paramount importance. This becomes more pertinent for databases with large and complex schemas. We focus on the relevance of join trees as the fundamental means to rank the answers. We devise means to measure relevance of relations and foreign keys in the schema over the information content of the database. The problem of keyword search over graph data is similar to the problem of team formation in social networks. In this setting, keywords represent skills and the nodes in a graph represent the experts that possess skills. Given an expert network, in which a node represents an expert that has a cost for using the expert service and an edge represents the communication cost between the two corresponding experts, we tackle the problem of finding a team of experts that covers a set of required skills and also minimizes the communication cost as well as the personnel cost of the team. We propose two types of approximation algorithms to solve this bi-criteria problem in the fourth part of this dissertation

    Best matching processes in distributed systems

    Get PDF
    The growing complexity and dynamic behavior of modern manufacturing and service industries along with competitive and globalized markets have gradually transformed traditional centralized systems into distributed networks of e- (electronic) Systems. Emerging examples include e-Factories, virtual enterprises, smart farms, automated warehouses, and intelligent transportation systems. These (and similar) distributed systems, regardless of context and application, have a property in common: They all involve certain types of interactions (collaborative, competitive, or both) among their distributed individuals—from clusters of passive sensors and machines to complex networks of computers, intelligent robots, humans, and enterprises. Having this common property, such systems may encounter common challenges in terms of suboptimal interactions and thus poor performance, caused by potential mismatch between individuals. For example, mismatched subassembly parts, vehicles—routes, suppliers—retailers, employees—departments, and products—automated guided vehicles—storage locations may lead to low-quality products, congested roads, unstable supply networks, conflicts, and low service level, respectively. This research refers to this problem as best matching, and investigates it as a major design principle of CCT, the Collaborative Control Theory. The original contribution of this research is to elaborate on the fundamentals of best matching in distributed and collaborative systems, by providing general frameworks for (1) Systematic analysis, inclusive taxonomy, analogical and structural comparison between different matching processes; (2) Specification and formulation of problems, and development of algorithms and protocols for best matching; (3) Validation of the models, algorithms, and protocols through extensive numerical experiments and case studies. The first goal is addressed by investigating matching problems in distributed production, manufacturing, supply, and service systems based on a recently developed reference model, the PRISM Taxonomy of Best Matching. Following the second goal, the identified problems are then formulated as mixed-integer programs. Due to the computational complexity of matching problems, various optimization algorithms are developed for solving different problem instances, including modified genetic algorithms, tabu search, and neighbourhood search heuristics. The dynamic and collaborative/competitive behaviors of matching processes in distributed settings are also formulated and examined through various collaboration, best matching, and task administration protocols. In line with the third goal, four case studies are conducted on various manufacturing, supply, and service systems to highlight the impact of best matching on their operational performance, including service level, utilization, stability, and cost-effectiveness, and validate the computational merits of the developed solution methodologies

    A comparison of statistical machine learning methods in heartbeat detection and classification

    Get PDF
    In health care, patients with heart problems require quick responsiveness in a clinical setting or in the operating theatre. Towards that end, automated classification of heartbeats is vital as some heartbeat irregularities are time consuming to detect. Therefore, analysis of electro-cardiogram (ECG) signals is an active area of research. The methods proposed in the literature depend on the structure of a heartbeat cycle. In this paper, we use interval and amplitude based features together with a few samples from the ECG signal as a feature vector. We studied a variety of classification algorithms focused especially on a type of arrhythmia known as the ventricular ectopic fibrillation (VEB). We compare the performance of the classifiers against algorithms proposed in the literature and make recommendations regarding features, sampling rate, and choice of the classifier to apply in a real-time clinical setting. The extensive study is based on the MIT-BIH arrhythmia database. Our main contribution is the evaluation of existing classifiers over a range sampling rates, recommendation of a detection methodology to employ in a practical setting, and extend the notion of a mixture of experts to a larger class of algorithms

    Holistic, data-driven, service and supply chain optimisation: linked optimisation.

    Get PDF
    The intensity of competition and technological advancements in the business environment has made companies collaborate and cooperate together as a means of survival. This creates a chain of companies and business components with unified business objectives. However, managing the decision-making process (like scheduling, ordering, delivering and allocating) at the various business components and maintaining a holistic objective is a huge business challenge, as these operations are complex and dynamic. This is because the overall chain of business processes is widely distributed across all the supply chain participants; therefore, no individual collaborator has a complete overview of the processes. Increasingly, such decisions are automated and are strongly supported by optimisation algorithms - manufacturing optimisation, B2B ordering, financial trading, transportation scheduling and allocation. However, most of these algorithms do not incorporate the complexity associated with interacting decision-making systems like supply chains. It is well-known that decisions made at one point in supply chains can have significant consequences that ripple through linked production and transportation systems. Recently, global shocks to supply chains (COVID-19, climate change, blockage of the Suez Canal) have demonstrated the importance of these interdependencies, and the need to create supply chains that are more resilient and have significantly reduced impact on the environment. Such interacting decision-making systems need to be considered through an optimisation process. However, the interactions between such decision-making systems are not modelled. We therefore believe that modelling such interactions is an opportunity to provide computational extensions to current optimisation paradigms. This research study aims to develop a general framework for formulating and solving holistic, data-driven optimisation problems in service and supply chains. This research achieved this aim and contributes to scholarship by firstly considering the complexities of supply chain problems from a linked problem perspective. This leads to developing a formalism for characterising linked optimisation problems as a model for supply chains. Secondly, the research adopts a method for creating a linked optimisation problem benchmark by linking existing classical benchmark sets. This involves using a mix of classical optimisation problems, typically relating to supply chain decision problems, to describe different modes of linkages in linked optimisation problems. Thirdly, several techniques for linking supply chain fragmented data have been proposed in the literature to identify data relationships. Therefore, this thesis explores some of these techniques and combines them in specific ways to improve the data discovery process. Lastly, many state-of-the-art algorithms have been explored in the literature and these algorithms have been used to tackle problems relating to supply chain problems. This research therefore investigates the resilient state-of-the-art optimisation algorithms presented in the literature, and then designs suitable algorithmic approaches inspired by the existing algorithms and the nature of problem linkages to address different problem linkages in supply chains. Considering research findings and future perspectives, the study demonstrates the suitability of algorithms to different linked structures involving two sub-problems, which suggests further investigations on issues like the suitability of algorithms on more complex structures, benchmark methodologies, holistic goals and evaluation, processmining, game theory and dependency analysis

    Traveling Salesman Problem

    Get PDF
    This book is a collection of current research in the application of evolutionary algorithms and other optimal algorithms to solving the TSP problem. It brings together researchers with applications in Artificial Immune Systems, Genetic Algorithms, Neural Networks and Differential Evolution Algorithm. Hybrid systems, like Fuzzy Maps, Chaotic Maps and Parallelized TSP are also presented. Most importantly, this book presents both theoretical as well as practical applications of TSP, which will be a vital tool for researchers and graduate entry students in the field of applied Mathematics, Computing Science and Engineering
    corecore