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Abstract 

Keyword search, a well known mechanism for retrieving relevant information from a set 

of documents, has recently been studied for extracting information from structured data 

(e.g., relational databases and XML documents). It offers an alternative way to query 

languages (e.g., SQL) to explore databases, which is effective for lay users who may not 

be familiar with the database schema or the query language. This dissertation addresses 

some issues in keyword search in structured data. Namely, novel solutions to existing 

problems in keyword search in graphs or relational databases are proposed. In addition, 

a problem related to graph keyword search, team formation in social networks, is studied. 

The dissertation consists of four parts. 

The first part addresses keyword search over a graph which finds a substructure of 

the graph containing all or some of the query keywords. Current methods for keyword 

search over graphs may produce answers in which some content nodes (i.e., nodes that 

contain input keywords) are not very close to each other. In addition, current methods 

explore both content and non-content nodes while searching for the result and are thus 
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both time and memory consuming for large graphs. To address the above problems, we 

propose algorithms for finding r-cliques in graphs. An r-clique is a group of content 

nodes that cover all the input keywords and the distance between each pair of nodes is 

less than or equal to r. Two approximation algorithms that produce r-cliques with a 

bounded approximation ratio in polynomial delay are proposed. 

In the second part, the problem of duplication-free and minimal keyword search in 

graphs is studied. Current methods for keyword search in graphs may produce duplicate 

answers that contain the same set of content nodes. In addition, an answer found by 

these methods may not be minimal in the sense that some of the nodes in the answer may 

contain query keywords that are all covered by other nodes in the answer. Removing 

these nodes does not change the coverage of the answer but can make the answer more 

compact. We define the problem of finding duplication-free and minimal answers, and 

propose algorithms for finding such answers efficiently. 

Meaningful keyword search in relational databases is the subject of the third part of 

this dissertation. Keyword search over relational databases returns a join tree spanning 

tuples containing the query keywords. As many answers of varying quality can be found, 

and the user is often only interested in seeing the·top-k answers, how to gauge the rele­

vance of answers to rank them is of paramount importance. This becomes more pertinent 

for databases with large and complex schemas. We focus on the relevance of join trees 

as the fundamental means to rank the answers. We devise means to measure relevance 



of relations and foreign keys in the schema over the information content of the database. 

The problem of keyword search over graph data is similar to the problem of team 

formation in social networks. In this setting, keywords represent skills and the nodes in a 

graph represent the experts that possess skills. Given an expert network, in which a node 

represents an expert that has a cost for using the expert service and an edge represents 

the communication cost between the two corresponding experts, we tackle the problem 

of finding a team of experts that covers a set of required skills and also minimizes the 

communication cost as well as the personnel cost of the team. We propose two types 

of approximation algorithms to solve this bi-criteria problem in the fourth part of this 

dissertation. 
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1 Introduction 

1.1 Motivation 

Exploring and querying structured data (e.g., relational databases and XML documents) 

using enterprise systems (e.g., DBMSs) needs knowledge ofa query language (e.g., SQL) 

and the structure of the data (e.g., schema). This is sufficient for users who are famil­

iar with both of the query language and the structure of the data. However, a lay user 

(i.e., anyone without the knowledge of the query language or the schema) may get lost. 

Keyword search - a well known method for extracting relevant knowledge from a set of 

documents in information retrieval - offers an alternative for lay users to explore struc­

tured data. Keyword search on structured data is different from finding relevant docu­

ments that contain query keywords. The former focuses on finding the interconnected 

structures, while the latter focuses on the content of the documents. 

Structured data are usually modeled as graphs. For example, considering IDREF/ID 

as links, XML documents can be modeled as graphs. Relational databases can also be 

modeled using graphs, in which tuples are nodes of the graph and foreign key relation-
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ships are edges that connect two nodes (tuples) to each other [24, 51]. Users need a 

simple system that receives some keywords as input and returns a set of interconnected 

nodes/tupels that together cover all or part of the input keywords. 

There are two approaches to keyword search over relational databases. 

1. The entire database is· materialized as a graph in which tuples are nodes of the 

graph and foreign key relationships are edges that connect two nodes (tuples) to 

each other. Then, the search is performed directly on the graph. In this case, proper 

indexing techniques are required to improve the efficiency. 

2. The search engine uses the RDBMS to perform the search through executing a 

series of SQL statements. In this case, the search engine is benefitted by using 

query optimization techniques built in the RDBMS. 

The former approach is called schema-free since it does not use the database schema 

for finding the answers, while the latter approach is called schema-based since it uses 

the RDBMS to issue SQL queries based on the database schema. In this dissertation, we 

propose solutions to existing problems in both approaches. 

The problem of keyword search over graph data is similar to the problem of team 

formation in social networks. The social network is modeled as a graph whose nodes 

represent experts, each with one or more skills, and whose edge between two nodes is 

weighted by the communication cost between the two corresponding experts. In this set­

ting, keywords are required skills and the nodes are the experts that possess skills. In 
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addition, each expert may specify his/her consulting rate. Given a project whose com­

pletion requires a set of skills, we tackle the problem of finding from a social network 

a team of individuals that not only cover all the required skills but can also communi­

cate and collaborate effectively. In addition, the personnel cost of the project should be 

minimized as well. In this dissertation, we propose a suite of algorithms for solving this 

bi-criteria problem. 

1.2 Contributions 

In this thesis, we propose new solutions to keyword search over structured data and team 

formation in social networks. Several topics in database, data mining and theoretical 

computer science have been investigated. The contributions of this dissertation are sum­

marized as follows: 

• Finding Compact Answers: Keyword search over a graph finds a substructure 

of the graph containing all or some of the input keywords. Current methods for 

keyword search on graphs may produce answers in which some content nodes (i.e., 

nodes that contain input keywords) are not very close to each other. To address the 

above problem, we propose the problem of finding r-cliques in graphs. An r-clique 

is a group of content nodes that cover all the input keywords and the distance 

between each two nodes is less than or equal to r. An exact branch and bound 

algorithm that produces all r-cliques is proposed. Two approximation algorithms 
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that produce r-cliques with a provable performance bound in polynomial delay are 

proposed. Extensive experiments show that the proposed algorithms produce more 

compact answers comparing to previous methods. In addition, the running time of 

the algorithms is also faster than other methods in this area. 

• Finding Duplication Free and Minimal Answers: Current graph keyword search 

methods may produce duplicate or very similar answers that contain the same set 

of content nodes. In addition, some of the nodes in an answer may contain query 

keywords that are all covered by other nodes in the answer. Removing these nodes 

does not change the coverage of the answer but can make the answer more com­

pact. Such minimal answers are desirable in some applications. We define the 

problem of finding duplication-free and minimal answers, and propose a series of 

algorithms for finding such answers efficiently. Extensive performance studies us­

ing two large real data sets confirm the efficiency and effectiveness of the proposed 

methods. 

• Finding Meaningful Answers: Keyword search over relational databases returns 

a join tree spanning tuples containing the query keywords. As many answers of 

varying quality can be found, and the user is often only interested in seeing the top­

k answers, how to gauge the relevance of answers to rank them is of paramount 

importance. This becomes more pertinent for databases with large and complex 

schemas. We focus on the relevance of join trees as the fundamental means to rank 
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them. We devise means to measure relevance of relations and foreign keys in the 

schema over the information content of the database. We further show that finding 

minimal trees does not necessarily lead to more meaningful answers. It might seem 

to be in contrast to our previous contribution about finding minimal answers over 

graph data. However, minimal answers in the context of graph keyword search 

is desirable in some applications but not in relational databases. We discuss this 

issue in detail in Chapter 4. We test performance of our measures against existing 

techniques to demonstrate a marked improvement, and perform a user study to 

establish naturalness of the ranking. 

• Finding Affordable and Collaborative Teams of Experts: As mentioned before, 

the problem of keyword search over graph data is similar to the problem of team 

formation in social networks. However, team formation often requires optimiz­

ing more than one objective. We tackle the problem of finding a team of experts 

that covers a set of required skills and also minimizes the communication cost as 

well as the personnel cost of the team. Since two costs need to be minimized, 

this is a bi-criteria optimization problem. We propose two types of approximation 

algorithms to solve the problem. The first type receives a budget on one objec­

tive and minimizes the other objective under the budget. In the second approach., 

an approximation algorithm is proposed to find a set of Pareto-optimal teams, in 

which each team is not dominated by other feasible teams in terms of the personnel 
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and communication costs. Extensive experiments on real datasets demonstrate the 

effectiveness and scalability of the proposed algorithms. 

1.3 Organization of the Dissertation 

This dissertation is organized as follows. 

Related work is presented in Chapter 2 in which existing work in keyword search in 

graphs, keyword search in relational database and team fonnation in social ne~orks is 

reviewed. 

In Chapter 3, the formal definition of an r-clique as an answer to the keyword search 

over graph data is presented. The motivations and benefits of finding r-cliques are thor­

oughly discussed. An exact algorithm is proposed that finds all r-cliques in the input 

graph. An approximation algorithm that produces r-cliques with 2-approximation in 

polynomial time is proposed. We further decrease the run time of the approximation 

algorithm with the cost of increasing the approximation ratio. Extensive performance 

studies using three large real data sets confirm the efficiency and accuracy of finding 

r-cliques in graphs. 

In Chapter 4, the problem of finding duplication free and minimal answers is studied. 

We motivate the problem using examples and propose a series of algorithms for finding 

duplication free and minimal answers efficiently. For finding duplication free answers, 

a general framework for generating top-k duplication-free answers by wisely dividing 
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the search space is introduced. For finding minimal answers, two general frameworks 

for confining or dividing the search space to ensure minimality and no duplication in the 

top-k answers are proposed. One of the algorithms is faster (completely polynomial) but 

may miss some answers, while the other one is complete (i.e., it allows all the possible 

answers to be considered), but is a fixed-parameter tractable (FPT) algorithm. Extensive 

performance studies using two large real data sets confirm the efficiency and effective­

ness of the proposed methods. 

In Chapter 5, we propose to improve relevance scoring of answers for keyword 

search over relational databases using the schema-based approach. The proposed rank­

ing method is specifically more useful for larger and more complex database schema. 

We propose a series of measures and algorithms to compute the relevance scores and we 

use different approaches to capture the intended semantics of queries based on the im­

portance of the connections involved in the answers. Extensive experiments and a user 

study on a large and complex schema show that the proposed methods are able to capture 

well the intended semantics behind queries. 

In Chapter 6, we study the problem of finding an affordable and collaborative team 

from an expert network that minimizes two objectives: the communication cost among 

team members and the personnel cost of the team. Two functions are used to measure the 

communication cost of a team and another function is proposed to evaluate the personnel 

cost of the team. A suite of algorithms classified into two approaches are proposed to 
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solve this bicriteria problem. In the first approach, a budget is given on one objective and 

the purpose is to minimize the other objective under the budget. The budget could be 

either on the communication cost or the personnel cost. This type of algorithm is called 

an (a, /3) approximation algorithm. In the second approach, a set of approximate Pareto­

optimal solutions are generated in which there exists no other team that dominates the 

solution in both of the costs. All of the proposed algorithms have provable approximation 

bounds. We evaluate the proposed algorithms on two real datasets and show that our 

proposed algorithms are effective and efficient. 

In Chapter 7, we review the contributions of the dissertation and summarize the di­

rections for future work. 
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2 Related Work 

Related work is presented in this chapter. We review recent work in keyword search in 

graphs, keyword search in relational database and team formation in social networks. 

We further investigate the relation between two associated problems: keyword search in 

graphs and team formation in social networks. 

2.1 Keyword Search in Graphs 

Current approaches to keyword search over graph data can be categorized based on the 

type of answers they produce into tree-based methods and graph-based methods 1• Tree­

based methods can be further divided into: Steiner trees and distinct root trees. 

2.1.1 Steiner Tree Methods 

Steiner tree based methods produce a subtree of input graph G whose leaves are content 

nodes that together cover all the input keywords. A Steiner tree is evaluated based on the 

1 A complete survey on keyword search in databases and graphs can be found in (70]. 
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total weight of the edges in the tree. Trees with smaller weights are considered as better 

answers. Finding a tree with the smallest weight is the well known Steiner tree problem, 

which is NP-complete [70]. 

In [8], a backward search algorithm for producing Steiner trees from a directed/undire­

cted graph is presented. For each content node, the algorithm concurrently runs the Di­

jkstra's single source shortest path algorithm as an iterator, using the content node as 

the source node. All these iterators traverse the input graph in the reverse direction of 

edges. When an iterator for a content node meets a node in the graph, it finds a path from 

that node to the content node. Assume that the backward search algorithm finds a com­

mon node that has a path to a set of content nodes that cover all of the query keywords. 

Then, the common node and this set of content nodes plus the nodes on the shortest path 

between the common node and each node in the set of content nodes fonn a tree with 

the common node being the root. A dynamic programming approach for finding Steiner 

trees in graphs are presented in [16]. Although the dynamic programming approach has 

exponential run time complexity in terms of the number of input keywords, it is feasible 

for input queries with small number of keywords. 

2.1.2 Distinct Root Trees 

Due to the NP-completeness of the Steiner tree problem, algorithms for producing trees 

with distinct roots were introduced in recent years. For each node in the graph, such 
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algorithms generate a tree rooted at this node, which covers all the input keywords. Thus, 

the generated trees have distinct roots. Distinct root trees are evaluated based on the sum 

of the shortest distance from the root to each content node. The number of distinct roots 

is n, where n is the number of nodes in graph. Thus, such algorithms generate at most n 

answers. This is much smaller than the number of possible trees which is 0(2m) where 

m is the number of edges of the graph. It should be noted that the number of edges of 

the graph could be as large as O(n2
). Thus, distinct root tree algorithms are much faster 

than Steiner tree based algorithms. However, distinct root tree methods may miss some 

answers when top-k or all answers need to be produced because only one tree rooted at 

a node is considered in the algorithms. If another tree rooted at the same node also has a 

better weight than the trees rooted at other nodes, this tree is not considered. 

Similar to the backward search algorithm, a bidirectional search algorithm for finding 

trees with distinct roots is proposed in [32]. Bidirectional search improves the backward 

search algorithm by searching the potential roots in a forward manner. BLINKS im­

proves the bidirectional search algorithm by using an efficient indexing structure [24]. 

The naive index computes and stores all the distances from the nodes to the keywords 

and vice versa. Since this naive index might be very large, BLINKS creates a bi-level 

index by first partitioning the input graph and then building intra and inter block indexes. 

In addition, the authors use two node.:.based partitioning methods, i.e., BFS-Based Par­

titioning and METIS-Based Partitioning [ 42]. To find distinct root trees in graphs that 
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cannot fit into main memory, the work in [ 14] creates a smaller super node graph on top 

of the main graph which can reside in main memory. 

2.1.3 Graph Based Methods 

There are two methods that find subgraphs rather than trees for keyword search over 

graphs [ 51, 60]. The first method finds r-radius Steiner graphs that contain all of the input 

keywords [51]. Since the algorithm for finding r-radius graphs index them regardless of 

the input keywords, if some of the highly ranked r-radius Steiner graphs are included in 

other larger graphs, this approach may miss them. In addition, it may produce duplicate 

and redundant results [60]. The second method finds multi-centered subgraphs, called 

communities [60]. In each community, there are some center nodes. There exists at least 

one path between each center node and each content node such that the distance between 

them is less than Rmax· Parameter Rmax is used to control the size of the community. 

The authors of [60] propose an algorithm that produces all communities in an arbitrary 

order and another algorithm that produces ranked communities in polynomial delay. The 

rank of a community is based on the minimum value among the total edge weights from 

one of the centers to all of the content nodes. Finding communities as the answer for 

keyword search over graph data has three problems. While some of the content nodes 

may be close to each other, the others may not. In addition, for finding each community, 

the algorithm considers all of the nodes within Rmax distance from every content node 
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as a candidate for a center node. This leads to poor run-:-time perfonnance. Finally, 

while including center and intermediate nodes in the answers can reveal the relationships 

between the content nodes, these center and intermediate nodes may be irrelevant to the 

query, which makes some answers hard to interpret. Our proposed model improves the 

community method by (1) finding r-cliques in which all the content nodes are close to 

each other, (2) improving the run-time by exploring only the content nodes during search, 

and (3) reducing the irrelevant nodes by producing a Steiner tree (instead of a graph) to 

reveal the relationship between the content nodes in an r-clique. 

2.1.4 Other Related Topics 

Finding r-cliques is closely related to Multiple Choice Cover problem, which is intro­

duced in [ 4] and is also used for finding a team of experts in social networks in [3, 15, 48]. 

The same approach is also used in [ 46]. These approaches find a single best answer that 

has the smallest diameter. In comparison, we find all or top-k r-cliques with polyno­

mial delay. Our problem is apparently more challenging. In addition, we use the sum 

of the weights between each pair of nodes as the ranking function, which we think is 

more suitable for keyword search. Previous works use other ranking functions such as 

the diameter of the graph to evaluate the answers. 

Keyword search in graphs is related to the graph pattern matching problem. The con­

cept of bounded graph simulation for finding maximum matches in graphs was recently 
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introduced in [18]. The authors proposed algorithms for finding the maximum match in a 

graph based on the new definition of matches. The r-clique defined in this chapter can be 

considered as an input pattern in [ 18]. Also, the output of our algorithm is different from 

the one in [18]. Their algorithm finds one maximum match in a graph which contains 

all the nodes in the graph that match with a node in the query. Our top-k r-clique algo­

rithm finds matches that cover all the input keywords but minimize the sum of distances 

between each two nodes. 

Recently, the BROAD system is proposed to find diversified answers for keyword 

search on graphs [72]. The system is built on top of a keyword search engine and parti­

tions the answer trees produced by the engine into dissimilar clusters. The dissimilarity 

between answers is measured based on the structural and semantic information of the 

given trees. The structural dissimilarity is measured based on the sub-tree kernel intro­

duced in [65]. The semantic information is added to the kernel by merging the textual 

content of the nodes using the well known TF-IDF weighting scheme. A hierarchical 

browsing method is further proposed to help users navigate and browse the results. Our 

effort of finding duplication-free answers can be considered as a special case of finding 

diversified answers, where each answer must have a different set of content nodes. Our 

method has cheaper computational cost due to its problem simplicity. We find such "di­

versified" answers during the search process, while BROAD does it as a post-processing 

process. BROAD can be applied to the results of our method to further diversify the 
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answers using the BROAD's dissimilarity measures. 

2.1.5 Keyword Search vs. Team Formation 

The problem of keyword search over graph data is similar to the problem of team forma­

tion in social networks. The social network is modeled as a graph whose nodes represent 

experts, each with one or more skills, and whose edge between two nodes is weighted 

by the communication cost between the two corresponding experts. In this setting, key­

words are required skills and the nodes are the experts that possess skills. Given a project 

whose completion requires a set of skills (i.e., keywords), we tackle the problem of find­

ing from a social network a team of individuals (i.e., answer or sub-graph) that not only 

cover all the required skills but can also communicate and collaborate effectively. There­

fore, minimizing the communication cost among the experts in a team is equivalent to 

finding an answer to graph keyword search problem in which the weight of the answer 

(i.e., sub-graph) is minimized. In [34], we studied the single objective team formation 

problem that minimizes the communication cost among the experts. However, each ex­

pert may specify his/her consulting rate. Bi-objective team formation problem studies 

the possibility of minimizing the personnel cost of the project as well as the communica­

tion cost. Since two objectives are minimized, this problem is more challenging than the 

single objective graph keyword search problem. 
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2.2 Keyword Search in Relational Databases 

Existing approaches to keyword search over relational databases fall into two classes. 

The first class of approaches convert the database into a graph, on which the search is 

then performed [8, 35, 60]. In this case, the foreign key connections correspond to the 

edges of the graph. One of the challenges of this approach is fitting the graph into the 

main memory [35]. Although some indexing techniques are proposed in the literature 

[14], converting a relational database with millions of records into a graph is memory 

consuming. In addition, how to find meaningful sub-graphs as query answers is still an 

open direction for future research [35]. A thorough overview of existing works on graph 

keyword search was presented previously in this section. 

The second class of approaches considers the relational schema as a graph. However, 

the search is directly performed on relational databases through generating and executing 

SQL queries on the RDBMS [1, 27, 28, 53]. Therefore, it heavily relies on the database 

schema and query processing techniques in RDBMS. The methods for ranking the query 

answers are divided into two categories. In the first category, the final answers are simply 

ranked based on the number of joins [1, 27]. This follows from the intuition that the 

smaller the number of joins, the easier to interpret the results. The second category ranks 

the final answers based on the IR score of the tuples that contain the input keywords 

[28, 53]. In this chapter, we propose a series of methods for ranking the final answers 
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first based on the importance of the nodes/edges of their associated join trees, and then 

based on an IR score as a secondary ranking measure. We believe this approach leads to 

find more meaningful and suitable results for the users. 

Below, we discuss three recent works in the area of finding meaningful answers for 

keyword search over relational database, pointing out their differences from our work. 

Authors of [7] propose a framework for keyword search in relational databases. For 

building the index, traditional keyword search methods require access to the actual data 

stored in the RDBMS. In contrast, the method proposed in [7] uses intensional knowl­

edge. Therefore, it can be used in applications in which building and maintaining spe­

cialized indexes is not feasible. Such systems only allow access to the data through 

predefined queries, wrappers or web forms. For interpreting the role of each keyword 

in the query, the authors extend the Hungarian algorithm [11] for finding the tuples that 

are most likely related to the meaning of the keyword. Our work could be considered as 

the next step of this work in which we rank the set of interconnected tuple sets for given 

pairs of keyword-entity. 

The SODA (Search Over DAta Warehouse) system is presented in [9]. The purpose 

is to enable end users to explore large data warehouses with complex schemas by ap­

plying the keyword search approach. SODA is built based on the idea of applying a 

graph pattern matching algorithm to generate SQL queries based on the given keywords. 

The focus of the system is to disambiguate the meaning of words using the joins and 
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inheritance relationships among the matching tables. Our system is different from [9] 

in that we do not use metadata or other extra information. Our ranking model uses the 

schema and its instance to find the most meaningful relationships between the roles of 

query keywords. In addition, our focus is to rank the join trees rather than the roles of 

the keywords. 

CI-RANK is introduced in [71] as a new approach for keyword search in databases. 

The authors considers the importance of individual nodes in an answer as well as the 

cohesiveness of the structure of the answer. Random Walk with Message Passing is 

used to built CI-RANK which captures the relationships between nodes in the answer. 

A branch and bound algorithm is designed for generating top-k answers. However, the 

results are only evaluated on DBLP and IMDb datasets which has a simple and non­

complex schema. 

2.3 Team Formation in Social Networks 

Discovering a team of experts in a social network is introduced in [48], in which two 

communication cost functions are proposed. Authors of [50] generalize this problem by 

associating each required skill with a specific number of experts, but no approximation 

ratio is provided for the algorithms. The authors of [34] propose the sum of distances 

communication function and a 2-approximation algorithm for minimizing the sum of 

distances. They also introduce the problem of finding a team of experts with a leader. 
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The authors of [20] propose another communication cost function based on the density 

of the induced subgraph on selected nodes. They also reported improvements over [ 48]. 

Authors of [2] minimize the maximum load of the experts in the presence of several 

tasks. They do not consider finding teams with low communication cost. Recently, the 

problem of online team formation is studied in [3], which creates teams of experts with 

minimized work load and communication cost. Balancing the work load while minimiz­

ing the communication cost is also studied in [15]. The personnel cost of the experts is 

not considered in [3, 15]. In [39], the authors propose to find a team of experts while 

minimizing both communication and personnel cost. They merged the two objective 

functions into one function using an input threshold from the user. In this work, we solve 

the problem using two fundamentally different approaches, finding the solutions within 

the given budget and finding the Pareto front. 

Bicriteria team formation is considered in [12, 66]. One objective is the communi­

cation/collaboration cost and the other is the level of skills of the experts. They do not 

consider the personnel cost of the team. More importantly, these methods convert the 

bi-criteria functions into a single one by using a weighted sum of two objective func­

tions. As a result, the methods require the specification of a weight that measures the 

importance of each objective. If the weight value is not chosen properly, the result may 

not be reliable. In addition, they generate only one (approximate) solution using a sim­

ulated annealing or genetic algorithm and no approximation bound is given. They do 
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not consider Pareto solutions. Finding Pareto solutions in other or general domains has 

been studied. Most of the proposed solutions are based on evolutionary (such as genetic) 

algorithms [25]. No performance bound can be found for such algorithms. 

The problem of team formation has also been studied in the operation research com­

munity. Branch and bound, simulated annealing and genetic algorithms are used for 

solving the problem [19]. The main difference between our work and the works in op­

eration research is that they do not consider the network connecting the experts. Expert 

search from disparate contents (e.g. web pages) is a related line of research in infor­

mation retrieval [23]. The purpose is to find the experts and rank them based on their 

expertise level. In this work, the set of experts and their expertise are given and our 

purpose is to form a team from this set. 

The authors of [21 ], consider the effect of different graph structures among the mem­

bers on the performance of the team. However, they performed their studies in an exper­

imental setting and they do not study the problem from a computational point of view. 

Dynamics of group formation and its effect on the formation of groups in the network 

is studied in [5]. A game-theoretic approach to this problem is presented in [29]. Al­

though these studies are not directly related to our setting, they might be considered as a 

complementary work for our problem. 

Another line of research in the database community related to finding Pareto sets is 

the skyline computation [10, 57]. A skyline of a set of objects (i.e. records) contains 
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all the records that are not dominated by any other record, which is the same as a Pareto 

set. However, in skyline computation, the set of records from which a skyline is found 

is given in the database. Assuming n is the number of records, a naive algorithm is able 

to compute the skyline in 0 ( n log n) [ 1 O]. The main purpose of the skyline algorithms 

is to reduce this complexity. In contrast, the possible teams in our work is not given 

and our algorithms have to walk through a search space to find the (approximate) best or 

Pareto-optimal teams. The number of possible teams is exponential with respect to the 

number of required skills. Thus, it is not feasible to produce all of the teams and then 

find the Pareto set from it (i.e. run a skyline algorithm on all of the teams). 
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3 Keyword Search in Graphs: Finding r-cliques 

Keyword search from a graph finds a substructure of the graph containing all or some 

of the input keywords. Most of the previous methods in this area find connected min­

imal trees that cover all the query keywords. Recently, it has been shown that finding 

subgraphs rather than trees can be more useful and informative for the users. However, 

the current tree or graph based methods may produce answers in which some content 

nodes (i.e., nodes that contain input keywords) are not very close to each other. In addi­

tion, when searching for answers, these methods may explore the whole graph rather than 

only the content nodes. This may lead to poor performance in execution time. To address 

the above problems, we propose to find r-cliques in graphs. An r-clique is a group of 

content nodes that cover all the input keywords and the distance between each two nodes 

is less than or equal to r. An exact algorithm is proposed that finds all r-cliques in the 

input graph. An approximation algorithm that produces r-cliques with 2-approximation 

in polynomial delay is proposed. We further decrease the run time of the approximation 

algorithm with the cost of increasing the approximation ratio. Extensive performance 
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studies using three large real data sets confirm the efficiency and accuracy of finding 

r-cliques in graphs. 

3.1 IntroduCtion 

Keyword search is a well known mechanism for extracting relevant information from a 

set of documents and web pages. It has been studied for extracting information from 

structured data in recent years. Structured data such as XML documents and relational 

databases are usually modeled as graphs. In such models, keyword search plays an im­

portant role in finding useful information for users. Users are usually not familiar with 

the structure of data. In addition, they do not have sufficient knowledge about query lan­

guages such as SQL. Therefore, they need a simple system that receives some keywords 

as input and returns a set of nodes that together cover all or part of the inpu~ keywords. 

A node that contains one or more keywords is called a content node. 

Most of the works in keyword search over graphs find minimal connected trees that 

contain all or part of the input keywords [59, 70]. A tree that covers all the input key­

words with the minimum sum of edge weights is called Steiner tree. Recently, methods 

that produce graphs are proposed, which provide more informative answers. However, 

these tree or graph based methods have the following problems. First, while some of 

the content nodes in the resulting trees or graphs are close to each other, there might 

be content nodes in the answer that are far away from each other. It means that weak 
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relationships among content nodes might exist in the trees or graphs. We argue that, as­

suming all the keywords are equally important, results that contain strong relationships 

(i.e., short distances) between each pair of content nodes should be preferable over the 

ones containing weak relationships. Second, current graph or tree based methods ex­

plore both content and non-content nodes in the graph while searching for the result. 

Since there may be thousands or even millions of nodes in an input graph, these methods 

have high time and memory complexity. 

In this chapter, we propose to find r-cliques as a new approach to the keyword search 

problem. An r-clique is a set of content nodes that cover all the input keywords. In 

addition, the shortest distance between each pair of nodes is no larger than r. The benefits 

of finding r-cliques are as follows. First, in an r-clique all pairs of the content nodes are 

close to each other (i.e, within r distance). Second, there is no need to explore all the 

nodes in the input graph when finding r-cliques if a proper index is built. This reduces 

the search space by orders of magnitude. To illustrate the differences between r-clique 

and other approaches (e.g., Steiner tree [8, 24] and community [60]), an example is given 

below. 

Suppose the nodes in an input graph are web pages of researchers and their organiza­

tions. Two nodes are connected by an edge if there is a link from one page to the other. 

Assume the weight on each edge is 1. Let's assume that the user would like to find a 

collection of pages that contain James, John and Jack. G~ven such input keywords, our 
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Figure 3 .1: A sample graph. The shortest distance between a pair of nodes is shown on 

their edge. 
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Figure 3.2: Two different answers (a) and (c) and their Steiner trees (b) and (d) over the 

sample graph 
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method will reduce the size of the input graph by keeping only the nodes that contain at 

least one of the input keywords. Assume that there are only 6 nodes containing the above 

keywords and the reduced graph is shown in Figure 3 .1, in which the shortest distance 

between each pair of nodes is shown in the edge that connects the two nodes. Assuming 

r = 10, edges with distance larger than 10 are ignored. Our method will produce ranked 

r-cliques, two of which are shown in Figure 3.2 (a) and (c). In Figure 3.2 (a) each node 

contains one input keyword, all the pages are from the same university, and each pair of 

the pages are related to each other via 3 other pages (which are not shown). A Steiner 

tree that covers these nodes is presented in Figure 3.2 (b). The r-clique in Figure 3.2 

( c) also contains three pages, two of which from the same university but the other one 

is from a different organization. A Steiner tree covering these three nodes is shown in 

Figure 3.2 (d). Our method will rank the answer in (a) ahead of the one in (c) because 

the sum of the distances between each pair of nodes in (a) is 12, while the one in (c) is 

14. On the other hand, a method that produces Steiner trees would rank the result in (d) 

ahead of the one in (b) because the total distance on the tree paths in ( d) is 7, while the 

one in (b) is 8. Since the web pages in (a) and (b) are from the same organization and all 

close to each other, the ranking produced by our method is reasonably better. 

The closest work in the literature to our work is [60]. The authors proposed to find 

communities as the results of keyword search over graphs. In each community, there are 

some center nodes which are close to the content nodes. The answers are ranked based 
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on the sum of the distances of content nodes to the centers. In the above example, node 

James is considered as the center node in both answers (a) and (c) because it has the 

least sum of the distances to other content nodes. The community method will rank the 

answer in ( c) ahead of the one in (a) because the sum of the distances from the center 

node to the content nodes in (c) is 7, while the one in (a) is 8. However, (a) is better than 

(c) because the three nodes in (a) are from the same university. 

The contributions of this chapter are summarized as follows: 

1. We propose a new model for keyword search in graphs that produces r-cliques in 

which all pairs of content nodes are reasonably close to each other. 

2. We prove that finding the r-clique with the minimum weight is an NP-complete 

problem by a reduction from 3-SAT. 

3. An exact algorithm based on branch and bound is proposed for finding all r­

cliques. 

4. We propose an approximation algorithm that produces r-cliques with an approxi­

mation ratio of 2. The algorithm can produce all or top-k r-cliques in polynomial 

delay in ascending order of their weights. 

5. To further speed up the approximation algorithm, another approximation algorithm 

for producing r-cliques in polynomial delay is proposed. The algorithm is l times 

faster and has the approximation ratio of l - 1, where l is the number of input 

keywords. 
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6. To reveal the relationship between the nodes in a generated r-clique, we propose 

to find a Steiner tree in the graph to connect the nodes in the r-clique after the r­

clique is generated. Using a tree instead of a graph reduces the chance of including 

irrelevant nodes in the final answer. 

7. Extensive experimental results on three real datasets along with a user study show 

the effectiveness of the proposed algorithms in terms of run time, compactness and 

prec1s1on. 

The chapter is organized as follows. In Section 3 .2, a fm~mal problem statement is 

given. In Section 3.3, an algorithm based on branch and bound for finding all r-cliques 

is introduced. The procedure of finding top-k answers in polynomial delay is presented 

in Section 3 .4. An algorithm that produces r-cliques with a 2 approximation ratio is 

presented in Section 3.5. The run time of this algorithm is improved in Section 3.6 with 

the cost of increasing the approximation ratio. A method for presenting an r-clique is 

given in Section 3.7. Graph-indexing method is discussed in Section 3.8. Experimental 

results are given in Section 3.9. Section 3.10 concludes this chapter. 

3.2 Problem Statement 

Given a data graph and a query consisting of a set of keywords, the problem of key­

word search in a graph is to find a set of connected subgraphs that contain all or part 

of the keywords. It is preferred that the answers are presented according to a ranking 
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mechanism. The data graph can be directed or undirected. The edges or nodes may have 

weights on them. In this work, the same as [51], we only consider undirected graphs with 

weighted edges. Undirected graphs can be used to model different types of unstructured, 

semi-structured and structured data, such as web pages, XML documents and relational 

datasets. It should be noted that our approach is easily adaptable to work with directed 

graphs2 . 

Given a data graph G and a query consisting of a set of l('2. 2) keywords (Q -

{ k1 , k2 , ... , kt}), the problem tackled in this chapter is to find a set of r-cliques, prefer-

ably ranked in ascending order of their weights. An r-clique and its weight are defined 

below. 

Definition 1 (r-clique) Given a graph G and a set Q of input keywords, an r-clique of G 

with respect to Q is a set of content nodes in G that together cover all the input keywords 

in Q and in which the shortest distance between each pair of the content nodes is no 

larger than r. The shortest disiance between two nodes is the sum of the weights of the 

edges in G on the shortest path between the two nodes. 

Definition 2 (Weight of r-clique) Suppose that the nodes of an r-clique of a graph G 

are denoted as { v1 , v2 , ... , Vt}· The weight of the r-clique is defined as 

2For directed graphs, the shortest distance between two nodes in an r-clique should be no larger than r 
in both directions. 
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l l 

weight = L L dist( vi, Vj) 

i=l j=i+l 

where dist( vi, vi) is the shortest distance between vi and Vj in G, i.e., the weight on the 

edge between the two nodes in the r-clique. 

r-cliques with smaller weights are considered to be better in this chapter. Thus, the 

core of our problem can be stated below in Problem 1 ~ 

Problem 1 Given a distance threshold r, a graph G and a set of input keywords, find an 

r-clique in G whose weight is minimum. 

Theorem 1 Problem 1 is NP-complete. 

Proof 

We prove the theorem by a reduction from 3-satis:fiability (3-SAT). We prove that the 

decision version of the problem presented below is NP-complete. Thus, as a direct result, 

Problem 1 is NP-complete too. D 

Problem 2 Given a distance threshold r, a graph G and a set of input keywords Q = 

{ k1, ... , kz}, determine whether there exists an r-clique with weight w,for some constant 

w. The weight of the r-clique is defined in Definition 2. 

Theorem 2 Problem 2, a decision version of Problem 1, is NP-complete. 
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Proof 

The problem is obviously in NP. We prove the theorem by a reduction from 3-satisfiability 

(3-SAT)3. First, consider a set of m clauses Dp = Xp V Yp V zp (p = 1, ... , m) and 

{ Xp, yP, zp} C { ui, u1, ... , Un, Un}. We set the distance between each variable and its 

negation (i.e., ui and ui) to 2 x w. The distance between other variables is set to (ntm). 

The distance of each variable to itself is set to zero. We define an instance of the above 

problem as follows. First, r is set to 2 x w. For each pair of variables ui and ui, two 

nodes are created. Thus, we have 2 x n nodes. For each pair of variables ui and ui, 

we create one keyword ki ( i = 1, ... , n). Thus, ui and ui have keyword ki and the 

only holders of ki are ui and ui. In addition, for every clause Dp, we create one keyword 

kn+p (p = 1, ... , m) such that the holders of keyword kn+p consists of the triplet of nodes 

associated with those of Xp, Yp and zp. Therefore, the number of required keywords is 

n+m. 

A feasible solution to the above problem with the weight at most w is any set of nodes 

such that from each pair of nodes corresponding to ui and ui, exactly one is selected and 

from each triplet of nodes corresponding to Xp, Yp and zp, one is selected. Thus, if there 

exists a subset of the weight at most w, then there exists a satisfying assignment for 

D 1 /\ D2 /\ • • • /\ Dm. On the other hand, a satisfying assignment apparently determines 

a feasible set of nodes with the weight at most w. Therefore, the proof is complete. D 

3It should be noted that the same approach is used in [ 4] for proving the NP-completeness of multiple 
choice cover problem. 

31 



Given a graph G and a set of l input keywords (k1 , k2 , ... , kz), the maximum number 

of possibler-cliques is O(JCmaxll) where JCmaxl is the maximum size of Ci (1 :S i :S l) 

and Ci is the set of nodes in G containing keyword ki. Thus, finding all the r-cliques 

from G is not feasible when l is large. In this work, we focus on finding top-k r-cliques 

ranked according to their weights. Since finding the best r-clique from a graph is an 

NP-complete problem, we hereby propose algorithms for finding approximate best so­

lutions. However, in the next section, we propose an exact algorithm based on branch 

and bound for producing all r-cliques for evaluating the proposed approximation algo­

rithms. In Section 3 .4, we describe our algorithm for finding top-k answers which works 

by dividing the search space into subspaces. Then, in Sections 3.5 and 3.6, we propose 

two approximation algorithms for finding an approximate best answer from a search 

(sub )space. 

3.3 Branch and Bound Algorithm 

We present a branch and bound algorithm for finding all r-cliques in a graph. The al­

gorithm is based on systematic enumeration of candidate solutions and at the same time 

using the distance constraint r to avoid generating subsets of fruitless candidates. Note 

that this method does not rank the r-cliques by their weights. The ranking, if needed, can 

be done as a post-processing process. This method has exponential run time in the worst 

case. After ranking the answers, it produces exact and optimal solutions. Please note 
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that it is used just as a baseline to compare with the polynomial delay approximation 

algorithm proposed in the next sections. 

The pseudo-code of the algorithm is presented in Algorithm 1. In the first step, the 

set of nodes that contain each keyword is extracted. This can be easily done using a 

pre-built inverted index that stores a mapping from a word in the dataset to the list of 

nodes containing the word. The set of nodes containing keyword ki is, stored in set Ci. 

C/ specifies the jth element of set Ci. The candidate partial r-cliques are stored in a 

list called r List. The basic idea of the algorithm is as follows. First, the content nodes 

containing the first keyword are added to r List. Then, for the second keyword, we 

compute the shortest distance between each node in C2 and each node in r List. If the 

distance :s; r, a new candidate that combines the corresponding nodes in C2 and r List is 

added to a new candidate list called newRList. After all pairs of nodes in C2 and r List 

have been checked, the content of r List is replaced by the content of newRList. The 

process continues in the same way to consider all of the remaining keywords. The final 

content of r List is the set of all r-cliques. 

To speed up this process, an index (described later in this chapter) is pre-built to store 

the shortest distance between each pair of nodes. Thus, the shortest path computation is 

at the unit cost. Assume that the maximum size of Ci (1 :s; i :s; l where l is the number 

of keywords) is ICmaxl· The complexity of the algorithm is O(l2 ICmaxll+1 ). 
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Algorithm 1 Branch and Bound Algorithm 

Input: the input graph G; the query {k1, k2 , ... , kz} and r 

Output: the set of all r-cliques 

1: for i f- 1 to l do 

2: Ci f- the set of nodes in G containing ki 

3: r List f- empty 

4: for i f- 1 to size(C1) do 

5: r List.add( CD 

6: for i f- 2 to l do 

7: new RList f- empty 

8: for j f- 1 to size( Ci) do 

9: fork f- 1 to size(r List) do 

10: if \i node E r Listk dist(node,Cf) :::; r (where r Listk is the kth element of 

r List) then 

11: newCandidate f- r Listk.add(C/) 

12: newRList.add(newCandidate) 

13: r List f- newRList 

14: return r List 
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3.4 Top-k Polynomial Delay Algorithm 

An efficient search engine should satisfy three properties [22]. First, it should be able 

to generate all answers without missing them. Second, the answers should be presented 

in an order with better answers ranked higher. Third, the search engine should produce 

the answers efficiently. A standard measure of efficiency is whether the search engine 

can produce answers with polynomial delay. In other words, the efficiency of a search 

engine is calculated based on the delay between producing two consecutive answers. If 

this delay is polynomial based on the input data, the algorithm is called a polynomial 

delay algorithm [22]. 

Our algorithm for producing a ranked list of search results is an adaption of Lawler's 

procedure [ 49] for computing the top-k answers to discrete optimization problems. In 

Lawler's procedure, the search space is first divided into disjoined sub-spaces; then the 

best answer in each subspace is found and used to produce the current global best answer. 

The sub-space that produces the best global answer is further divided into sub-subspaces 

and the best answer among its sub-subspaces is used to compete with the best answers 

in other sub-spaces in the previous level to find the next best global answer. Two main 

issues in this procedure are how to divide a space into subspaces and how to find the best 

answer within a (sub)space. 

We first informally describe our idea of dividing the search space in our problem into 
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Table 3 .1: An Example of dividing the search space 

Subspace Representative set 

SBo {v1} x {v2} x {v3} x {v4} 

SB1 [C1 - { v1}] x C2 x C3 x C4 

SB2 {vi} x [C2-{v2}] x C3 x C4 

SB3 {vi} x { v2} x [C3 - { v3}] x C4 

SB4 {vi} x {v2} x {v3} x [C4 - {v4}] 

subspaces using an example4
. Suppose that the input query consists of four keywords, 

i.e., { k1 , k2 , k3 , k4 }. Let Ci be the set of nodes in graph G that contains input keyword 

ki. Thus, the search space that contains the best answer can be represented as C1 x C2 x 

C3 x C4. From this space, we use the FindBestAnswer procedure (to be described in 

the next section) to find the best (approximate) answer in polynomial time. Assume that 

·the best answer is (v1, v2, v3, v4 ), where vi is a node in graph G containing keyword ki. 

Based on this best answer, the search space is divided into 5 subspaces SB0 , SBi, SB2, 

S B 3 and S B4 as shown in Table 3 .1, where S B0 contains only the best answer. The 

union of the subspaces cover the whole search space. 

After finding the best answer and dividing the search space into subspaces, the best 

answer in each subspace except subset S B0 is found using the FindB est Answer proce-

40ur approach to dividing a search space is similar to the idea used in [60]. 
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dure. These best answers are inserted into a priority queue, where the answers are ranked 

in ascending order of their weights. Obviously, the second best answer is the one at the 

top of the priority queue. Suppose that this answer is taken from S B2 . After returning 

the second best answer, S B2 is divided into 5 subspaces in the way similar to the one 

shown in Table 3 .1. In each subspace (except the first one), the best answer is found and 

is inserted to the right place of the priority queue according to its weight. After the best 

answer for each subspace is inserted, the top answer in the queue is returned and removed 

from the queue, its corresponding space is divided into subspaces and the best answer (if 

any) in each new subspace is added to the priority queue. This procedure continues until 

the priority queue becomes empty. 

The pseudo-code of our algorithm for finding top-k answers is presented in Algorithm 

2 (i.e. GenerateTopkAnswers). The structure of the algorithm is similar to other poly­

nomial delay algorithms [22, 60]. It is modified to perform in the setting of producing 

ranked r-cliques from a graph. The algorithm takes graph G, query { k1, k2 , ... , kz}, the 

distance threshold r and k as input. It searches for answers and outputs top-k of them in 

ascending order according to their weights. In lines 1 and 2, the algorithm computes sets 

Ci, the set of the nodes containing keyword ki. This can be easily done using a pre-built 

inverted index. Then, the collection of sets Ci is called C in line 3. It should be noted that 

C is the whole search space that contains keyword nodes and the first best answer should 

be found in this space. In line 5, procedure FindBestAnswer (to be discussed later) is 
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Algorithm 2 GenerateTopkAnswers Algorithm 

Input: the input graph G; the query { k1 , k2 , ... , kz}; rand k 

Output: the set of top-k ordered r-cliques printed with polynomial delay 

1: for i +-- 1 to l do 

2: Ci +-- the set of nodes in G containing ki 

4: Queue+-- 0 

5: A+-- FindBestAnswer(C, G, l, r) 

6: if Ai- 0 then 

7: insert (A, C) into Queue 

8: while Queue i- 0 do 

9: (A, S) +-- top element of Queue 

10: output(A) 

11: k+-k-1 

12: if k = 0 then 

13: return 

14: (SB1, SB2 , ..• , SBz) +-- ProduceSubSpaces(A, S) 

15: for i +-- 1 to l do 

16: Ai+-- FindBestAnswer(SBi, G, l, r) 

17: if Ai i- 0 then 

18: Queue.insert( (Ai, SBi)) 

38 



called to find the best answer in space C in polynomial time. If the best answer exits (i.e., 

A is not empty), A, together with its related space C, is inserted into Queue in line 7. The 

Queue is maintained in the way that its elements are ordered in ascending order of their 

weights. The while loop starting at line 8 is executed until the Queue becomes empty or 

k answers have been outputted. In line 9, the top of the Queue is removed. The top of the 

Queue contains the best answer in the Queue and the space that this answer is produced 

from. We assign this space to S and the best answer to A. The answer in A is outputted in 

line 10. Then if the number of answers has not reached k, procedure ProduceSubSpaces 

is called to produce l new subspaces of S based on the current answer A. These subspaces 

are shown by SBi. In lines 15-18, these new subspaces are explored. For each subspace, 

the best answer is found and inserted into the Queue with its related subspace. 5 Clearly, 

if procedures FindBestAnswer and ProduceSubSpaces terminate in polynomial time, 

then algorithm GenerateTopkAnswer s produces answers with polynomial delay. 

The pseudo-code of algorithm ProduceSubSpaces is presented in Algorithm 3. It 

takes as input the best answer A of the previous step and the search space S from which 

A is generated. It produces l new subspaces, (SB 1, ... , S Bt). In the procedure, S Bf 

5Note that, unlike tree-based methods, this procedure produces duplication-free answers (i.e., the set of 
content nodes in an answer is unique compared to other answers in the top-k list) if no content node con­
tains more than one input keyword in the input graph. But if a node contains more than one input keyword, 
the procedure may produce duplicate answers although the answers are unique in terms of keyword-node 
couplings. In this regard, our result is the same as the top-k result in [60], where the authors consider such 
answers duplication-free because of different keyword-node couplings in the top-k answers. In Chapter 4, 
a procedure is proposed that produces completely duplication-free set of answers with respect to the set of 
content nodes in an answer. 
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specifies the j-th element in vector SBi· It is a polynomial procedure and runs in O(l2). 

Algorithm 3 ProduceSubSpaces Procedure 
Input: the best answer of previous step, A ( v1, v2, ... vz), and search space S 

Output: l new subspaces 

1: for i +--- 1 to l do 

2: for j +--- 1 to i - 1 do 

5: for j +--- i + 1 to l do 

7: return (SB1, ... , SBz) where SBi = (SB[, ... , SBD representing space SB[ x 

· · · x SB~ '/, 

3.5 Finding Best Answer from a Search Space with 2-approximation 

Since finding the best r-clique is NP-complete, in this section we propose an approx-

imation algorithm that produces an answer whose weight is at most twice that of an 

optimal r-clique. The basic idea of the algorithm is as follows. Given a search space 

S = (S1, ... , Sz), where Si is a set of nodes containing input keyword ki, the algorithm 

uses each node in Si (for i = 1, ... , l) as the initial node and center of a candidate an-
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swer. It then adds to the answer the node in each of other Si's which is closest to the 

center. Thus, the candidate answer contains all the input keywords. The answer is eval­

uated using the sum of distances from the center to each of other nodes in the answer. 

The answer with the least sum of the center distances is outputted as an approximate best 

r-clique. 

The pseudo-code of algorithm FindBestAnswer is presented in Algorithm 4. In 

the code, variable s{ denotes the j-th node of set Si, and n( s{, k) denotes the node in 

Sk which has the shortest distance to s{, i.e., the nearest neighbor of s{, in Sk . In lines 

1-3, the nearest neighbor of a node s{ in its own set Si is set to itself. The rest of 

the code iterates on each node in Si (for i = 1, ... , l), and considers such a node as 

the center of a candidate answer. For each of such nodes, si, the algorithm finds its 

nearest neighbor in Sk where k #- i (lines 9-15). If the shortest distance between s{ 

and its nearest neighbor in S k is less than or equal to r, the neighbor is added to the 

candidate answer, and the weight of the answer is updated by adding the shortest distance 

between s{ and the neighbor. If the shortest distance is greater than r, the weight of the 

answer is set to oo, and the formulation of this candidate answer is stopped. If, for all 

Sk (k = 1, ... , land k #- i), the shortest distance betweens{ and its nearest neighbor in 

Skis no larger than r, a candidate answer is formed and the weight of the answer is the 

sum of the shortest distances between the center node s{ and its nearest neighbor in S k 

fork = 1, ... , l. Finally, the candidate answer with the least weight is outputted as the 
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Algorithm 4 FindBestAnswer Procedure 

Input: the search space 8 = (81, 8 2 , ... , 8l); the input graph G; the number of query 

keywords l and r 

Output: the best r-clique in the search space 8 

1: for i +-- 1 to l do 

2: for j +-- 1 to size(8i) do 

3: n( s{, i) +-- s{ 
4: leastW eight +-- oo 

5: topAnswer +-- 0 
6: for i +-- 1 to l do 

7: 

8: 

9: 

10: 

11: 

for j +-- 1 to size(Si) do 

weight+-- 0 

fork +-- 1 to l; k #- i do 

shortestdist = oo 

fort +-- 1 to size(Sk) do 

12: 

13: 

14: 

15: 

16: 

17: 

dist +-- shortest distance from s{ to s% 

if dist < shortestdist then 

shortestdist +-- dist 

18: 

19: 

20: 

21: 

22: 

23: 

n(s~ k) +--st 
'Ll k 

if shortestdist :S r then 

weight +-- weight+ shortestdist 

else 

weight+-- oo 

break 

if weight < leastW eight then 

leastW eight +-- weight 

topAnswer +-- (n(s{, 1), ... , n(s{, l)) 

24: return topAnswer 
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best answer (denoted as topAnswer in the pseudo-code). 

Clearly, all of the above operations can be done in polynomial time. Since a pre-built 

index (described later in this chapter) is used for finding the shortest path between a pair 

of nodes, the shortest path computation is at the unit cost. Thus, the complexity of this 

algorithm is O(l2 ISmaxl 2
), where ISmaxl is the maximum size of Si for 1 ::; i ::; l. 

It should be noted that the answer returned by this approximation algorithm may not 

be an r-clique. In the worst cast, the distance between a pair of nodes in the answer is 

2 x r, as stated in the following theorem. 

Theorem 3 The distance between each pair of nodes in the answer produced by proce­

dure FindBestAnswer is at most 2 x r. 

Proof 

In the answer produced by algorithm FindBestAnswer, there is a center node (i.e., s{ 

in Algorithm 4) that has distance less than or equal to r to each of the other nodes in the 

answer. Let's call this center node a. Assume that b and care two other nodes in the 

answer. Since shortest distances satisfy the triangle inequality, we have: 

where dbc is the shortest distance between nodes b and c and so on. Since dab ::; r and 

dac ::; r, we have: 

dbc ::; dab + dac ::; r + r ::; 2 x r 
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candidate 

Optimal Answer 
Answer produced by 

FindTopRankedAnswer 

Figure 3.3: The optimal answer and the answer which is produced by procedure 

FindB est Answer. 

D 

Although Algorithm 4 is not guaranteed to produce an r-clique, we will show in the 

experiment section that high percentages of the answers produced by Algorithm 4 are r-

cliques. For the convenience reason, below we still refer to an answer from this algorithm 

as r-clique. The following theorem shows that Algorithm 4 produces an answer whose 

weight is at most twice that of an optimal r-clique. 

To prove the theorem, we first give an example and then present a fonnal proof. 

Consider the example presented in Figure 3.3 with four input keywords. One of the 

answers is the optimal answer and the other one is the candidate answer produced by 

procedure FindBestAnswer. Without the loss of generality, we assume that the node 

for keyword k1 is the best candidate node (i.e., the best s{) selected by the procedure. 

Since the sum of the weights on edges connected to k1, i.e. d12 , d13 and d14 , in the 

selected candidate is the smallest among all the content nodes whose connected edges 
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have a weight less than or equal to r, the following expressions hold: 

kl : 012 + 013 + 014 ~ d12 + d13 + d14 

k2: 012 + 023 + 024 ~ d12 + d13 + d14 
(3.1) 

k3: 013 + 023 + 034 ~ d12 + d13 + d14 

k4: 014 + 024 + 034 ~ d12 + d13 + d14 

Summing up both sides of the above equations, we have: 

Since the distance between each pair of nodes is the shortest distance between them, 

the triangle inequality is satisfied and the following equations hold: 

(3.3) 

The weight of the selected candidate produced by procedure FindB estAnswer is 

d 12 + d 13 + d14 + d 23 + d 24 + d34 . Based on Equation 3.3, the candidate weight is at most 

3 x (d12 + d 13 + d 14). Thus, after some basic calculations and based on Equation 3.2, the 

following is valid:-

The left side of the equation is at most twice the weight of the optimal answer and 

the right side of the equation is at most the weight of the selected candidate. Thus, in 
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the worst case, the weight of the selected candidate is twice the weight of the optimal 

answer. Now we are ready to present the formal proof in detail. 

Theorem 4 Procedure FindBestAnswer produces an r-clique with 2-approximation. 

Proof 

Consider two answers, one optimal answer and the answer produced by FindBestAnswer 

(denoted here as approx answer). We denote the node in approx answer whose sum of 

shortest distances to the other nodes in approx answer is the smallest as center node. 

Note that this sum of shortest distances that the center node has in the approx answer 

is the smallest among the ones of all the other content nodes in the input graph in any 

other possible answers including the optimal answer. Without loss of generality, assume 

that the center node contains the first keyword, i.e. k1. Let's call the shortest distances 

of the center node to other nodes in the approx answer d 12 , d 13 , ... , du, where l is the 

number of input keywords. Thus, based on the FindB estAnswer procedure, 2::~=2 d1i 

has the smallest value among all other content nodes in the graph. Thus, for each node 

containing kj (1 ::; j ::; l) in the optimal answer, we have: 

01j + 02j + · · · + Oj-Ij + Ojj+I + · · · + Ojt ~ d12 + d13 + · · · +du (3.5) 

where oiJ is the shortest distance between the node containing keyword ki and the node 

containing kj in the optimal answer. Thus, 

j-1 l 

:LoiJ + :L Oji~ :Ld1i (3.6) 
i=l i=j+ 1 i=2 
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Ifwe write the above equation for all l content nodes of the optimal answer and sum 

up both sides of the inequalities, we have: 

l l l 

2 x E E Oij 2: l x E dii (3.7) 
i=l j=i+l i=2 

Since each distance relates two content nodes, each distance appears in the left side of 

the equation twice. The left side of the above equation is twice the weight of the optimal 

answer. Thus, the following is valid: 

l 

2 x (optimal weight) 2: l x E dii (3.8) 
i=2 

The weight of the approx answer is as follows: 

l l l l l 

approx weight = E E dij = E dii + E E dij (3.9) 
i=l j=i+l i=2 i=2 j=i+l 

Since the distance between each pair of nodes in the approx answer is the shortest 

distance between them, the triangle inequality is satisfied: 

(3.10) 

Thus, the following holds: 

l l l l l l 

E dii + E E dij ~ E dii + E E ( dii + dij) (3.11) 
i=2 i=2 j=i+l i=2 i=2 j=i+l 

In the right side of the above equation, each edge dli is appeared exactly l - 1 times. 

Thus, we have: 

l l l l 

Ed1i +EE (d1i +d1j) = (z-1) x Ed1i (3.12) 
i=2 i=2 j=i+l i=2 
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As a result, we have: 

l 

approx weight~ (l - 1) x L dii 

i=2 

Based on equations 3. 8 and 3 .13, we have: 

2 x (l - 1) 
approx weight~ l (optimal weight) 

(3.13) 

(3.14) 

It proves that the weight of the approx answer is at most twice the weight of the 

optimal answer. D 

3.6 Improving the Runtime Performance 

Algorithm 4 finds an approximately best r-clique in polynomial time with 2-approxim-

ation, but the run time is quadratic in both l and I Smax I, where l is the number of input 

keywords and ISmaxl is the maximum size of Si for 1 ~ i ~ l. To improve its run time 

performance, in this section we propose a variation of Algorithm 4. The new algorithm 

is called FindBestAnswer Rare and is presented in Algorithm 5. 

The main difference between this algorithm and Algorithm 4 is that instead of con-

sidering each node that contains at least one input keyword as the initial member (i.e., 

center) of a candidate answer, the new algorithm only considers the nodes which contain 

the rarest input keyword (i.e., the input keyword that is contained by the least number of 

nodes in the graph compared to other input keywords). In this way, the for-loop at line 
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Algorithm 5 FindBestAnswerRare Procedure 
Input: the search space S = (81, 82 , ... , St); the input graph G; the number of query 

keywords l and r 

Output: the best r-clique in the search space S 

I: rare~ argmin ISil, 1:::; i:::; l 

2: for j ~ 1 to size(Srare) do 

4: leastW eight ~ oo 

5: topAnswer ~ 0 

6: for j ~ 1 to size(Srare) do 

7: weight~ 0 

8: for k ~ 1 to l ; k =I- rare do 

9: shortestdist = oo 

IO: fort ~ 1 to size(Sk) do 

I I: dist ~ shortest distance from stare to st 

I2: if dist < shortestdist then 

13: shortestdist ~ dist 

I4: n(stare1 k) ~st 

I5: if shortestdist :::; r then 

I6: weight ~ weight+ shortestdist 

I 7: else 

18: weight~ oo 

I9: break 

20: if weight < leastW eight then 

2I: leastWeight ~weight 

22: topAnswer ~ (n(stare' 1), ... , n(s~are' l)) 

23: return topAnswer 
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6 in Algorithm 4 is not needed and the algorithm becomes at least l times faster. The 

pseudo-code of Algorithm 5 is similar to that of Algorithm 4 with the following differ­

ences. ( 1) In line 1, the index of the rarest input keyword is identified and it is called 

rare. (2) Nearest neighbors are only calculated for the nodes that contain the rarest 

keyword. (3) Only the nodes that contain the rarest keyword are considered as the cen­

ter of a candidate answer, and thus the outermost loop in Algorithm 4 starting at line 6 

is removed. Hence, the complexity of this algorithm is 0 ( l x I Smax I x I Smin I), where 

I Smax I and I Smin I are the maximum and minimum size of Si for 1 ~ i ~ l respectively. 

The same as FindBestAnswer, the answer returned by this approximation algo­

rithm may not be an r-clique. In the worst cast, the distance between a pair of nodes in 

the answer is 2 x r. It can be proved using the similar technique in Theorem 3. However, 

making Algorithm 4 faster comes with the cost of increasing the approximation ratio. 

In the next theorem, we formally prove that the approximation ratio is not worse than 

(l - 1). 

Theorem 5 Procedure FindBestAnswer Rare produces an r-clique with (l-1)-approxi­

mation where l is the number of input keywords. 

Proof 

Consider two answers, one optimal answer and the answer produced by procedure 

FindBestAnswer Rare (denoted here as approx answer). Below we show that the 
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weight of the approx answer is at most ( l - 1) times the weight of the optimal answer 

where l is the number of input keywords. 

Without loss of generality, assume that the first keyword (i.e. k1), is the rarest key-

word. The node in the approx answer containing k1 is called center node. Based on the 

FindBestAnswer Rare procedure, the sum of shortest distances from the center node 

to the other nodes in the approx answer is the smallest among the sums of shortest dis-

tances from all other content nodes that contain k1 in the input graph to other nodes in an 

answer. 

Let's denote the shortest distances between the center node to the other nodes in the 

approx answer as d 12 , d 13 , ... , diz. Also, we denote the shortest distances from the node 

in the optimal answer that contains k1 to other nodes in the answer as -012 , 0 13 , ... , oll. 

Thus, the following holds: 

012 + 013 + · · · + oll 2:: d12 + d13 + · · · + dll 

Obviously, 
l l l 

L L Oij 2:: L 01i = 012 + 022 + · · · + 01z 

i=l j=i+l i=2 

Therefore, we have 
l 

optimal weight 2:: L d1i 

i=2 

The weight of the approx answer is as follows: 

l l l l l 

approx weight = L L dij = L d1i + L L dij 
i=l j=i+l i=2 i=2 j=i+l 
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Since the shortest distances satisfy triangle inequality, we have: 

(3.19) 

Thus, the following is valid: 

l l l l l l 

L dii + L L dij ::; L dii + L L ( dii + dij) (3.20) 
i=2 i=2 j=i+l i=2 i=2 j=i+l 

In the right side of the above equation, each edge d1i appears exactly l - 1 times. 

Thus, we have: 

l l l l 

Ld1i + L L (d1i + dij) = (Z -1) x Ldli 
i=2 

As a result, we have: 

i=2 j=i+l 

l 

approx weight::; (l - 1) x L dii 

i=2 

Based on equations 3.17 and 3.22, we have: 

i=2 

approx weight::; (l - 1) x (optimal weight) 

3. 7 Presenting r-cliques 

(3.21) 

(3.22) 

(3.23) 

D 

Each r-clique is a unique set of content nodes that are close to each other and cover the 

input keywords. However, sometimes it is not sufficient to only show the set of content 
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nodes discovered. It is also important to see how these nodes are connected together in 

the input graph. To show the relationship between the nodes in an r-clique, we further 

find a Steiner tree from the input graph which connects the nodes in the r-clique with 

the minimum sum of edge weights. The leaves of the tree are the content nodes of the 

r-clique, and its internal node can be a content node in the r-clique or an intennediate 

node that connects the content nodes. 

The reason for choosing a Steiner tree instead of a graph to present an r-clique is that 

it potentially minimizes the number of intermediate nodes, which decreases the chance of 

having irrelevant nodes in the answer presented to the user. In the next section, we will 

show that the community-based method [60] (which returns a graph) tends to include 

more irrelevant nodes in its answer. 

The algorithm for finding a Steiner tree given an r-clique is presented below and is 

based on the algorithm in [ 4 7]. Given a set of nodes, S, that belong to graph G, the 

Steiner tree problem is to find a tree of graph G that spans S with the minimal total 

distance on the edges of the tree. This is a well known NP-complete problem [41]. A 

heuristic algorithm was introduced in [ 4 7] to find a Steiner tree from a graph G given 

a set S of nodes in G. The algorithm in [ 4 7] first finds the shortest path in G between 

each pair of nodes in Sand builds a complete graph, G1, whose nodes are the nodes in S 

and whose edge between each two nodes is weighted by the total distance on the shortest 

path between the two nodes in G. It then finds a minimal spanning tree, T1, of Gi, and 
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constructs a subgraph G2 of G by replacing each edge of T1 by its corresponding shortest 

path in G. Finally, it finds a minimal spanning tree, T2 , of G 2 , and constructs a Steiner 

tree from T2 by deleting leaves and their associated edges from the tree so that all the 

leaves are Steiner points. 

Algorithm 6 Generating Steiner Tree Algorithm based on an algorithm introduced in 

[47] 
Input: an r-clique and graph G 

Output: the Steiner tree of G that spans the nodes in the r-clique 

1: Let G 1 be a complete graph whose nodes are the nodes in the input r-clique and 

whose edge between a pair of nodes is weighted by the shortest distance between the 

two nodes in G. 

2: Find the minimal spanning tree T1 of G 1. 

3: Create graph G2 by replacing each edge in T1 by its corresponding shortest path in 

G. The shortest path can be obtained by using the neighbor index on G described in 

the next section. 

4: Find the minimal spanning tree T2 of G2 . 

5: Create an Steiner tree from T2 by removing the leaves (and the associated edges) that 

are not in the r-clique. 

We make use of this procedure to find a Steiner tree for ~n r-clique. The pseudo-code 

of the algorithm is presented in Algorithm 6. The input to our procedure is an r-clique 
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and the graph G from which the r-clique was generated. The output of the algorithm is 

a Steiner tree of G that spans all the nodes in the r-clique. The Steiner tree produced by 

this heuristic algorithm is not necessarily minimal, but its total distance on the edges is at 

most twice that of the optimal Steiner tree [ 4 7]. The algorithm terminates in polynomial 

time [47]. 

A major difference of our method from other keyword search methods that generate 

Steiner trees is that we generate a Steiner tree based on an r-clique, which contains a 

very small subset of content nodes in the original graph G. The number of nodes in an 

r-clique is no more than the number of input keywords. Other tree-based keyword search 

methods need to explore at least all the content nodes in G or the entire graph to find a 

Steiner tree to cover the input keywords. Since our r-clique finding algorithm is also fast 

due to the fact that only the content nodes are explored during the search, the total time 

spent on finding r-cliques and then trees is much less than finding Steiner trees directly 

from G. 

3.8 Neighbor Indexing Method 

In the above algorithms, we need to compute the shortest distance between a pair of 

nodes. Calculating the shortest path on the fly is time-consuming and not necessary 

when the input graph is not frequently changed during the search process. An index 

that stores the shortest distance and path between nodes improves the performance of the 
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algorithm. A straight forward indexing method is to calculate and store the shortest path 

between each pair of nodes. However, this index needs O(n2 ) storage, where n is the 

number of nodes in graph G. This index is very large and not feasible for graphs with a 

large number of nodes. 

We use a simple and fast indexing method that pre-computes and stores the shortest 

distances for only the pairs of nodes whose shortest distance is within a certain threshold 

R. The index is called neighbor index. The value of R should be bigger than the value 

of r used in the r-clique finding algorithms. This requires the estimation of possible r 

values based on the graph structure and user preferences and may be estimated using the 

domain knowledge. At the same time, we should keep it as small as possible to keep the 

index in a feasible size. The idea of indexing the graph using a distance threshold has 

been used in [51, 60]. 

The neighbor index of a graph G with respect to the distance threshold R is structured 

as follows. For each node n, a list is created to contain the nodes that are within R 

distance from node n. This list is called the neighbor list of n. In each node m on the 

neighbor list of node n, the shortest distance between n and m is stored and also a pointer 

to the node right before m on the shortest path from n to m is stored. The pointed node 

p must be within R distance from n, is thus on n's neighbor list and contains a pointer to 

the node right before p on the shortest path between n and p. The space complexity of 

this index is O(mn), where n is the number of nodes in G and mis the average number 
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of nodes on a neighbor list. To build the index we use the Dijkstra's algorithm to compute 

the shortest path between each pair of nodes. 

When finding r-cliques, the neighbor index is used to find the shortest distance be­

tween two nodes n and m by searching the neighbor list of n for node rn. If the neighbor 

list contains node m, the stored shortest distance is returned. Otherwise, nodes n and rn 

are not within R distance from each other. The shortest path between n and rn (which 

is only used in the Steiner tree finding algorithm) can be found by following the pointer 

stored in the rn node in n's neighbor list, which points to the node right before rn on the 

shortest path. 

3.9 Experimental Evaluation 

We implement all of the algorithms proposed in this chapter. To evaluate the quality of 

the answers generated by our approximation algorithms, we use the branch and bound 

algorithm to find all of the r-cliques for an input graph. Exact answers can be obtained by 

ranking the r-cliques generated by the branch and bound algorithm. None of the other 

algorithms for keyword search in graphs produces r-cliques as their answers. Thus, 

comparing the results of our algorithms with those of other works is not a straight for­

ward task. However, we implement a graph-based method that produces communities 

as answers [60] and compared it to our r-clique methods. The reason we choose this 

community-based method is that (1) it is among the most recent work in graph keyword 
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search, (2) the definition of the community and its weight are more related to those of 

the r-clique than those in other approaches, and (3) it uses a polynomial delay algorithm, 

similar to our Algorithm 2, to produce top-k answers. To keep the comparison fair, both 

of the r-clique and community methods use the same graph indexing structures. 

All of the algorithms are implemented using Java. The experiments are conducted on 

an Intel(R) Core(TM) i7 2.86GHz PC with 4GB of RAM. In this section, the results of 

the algorithms and the factors affecting the performance of the algorithms are discussed. 

The factors include the value of r, the number of keywords (l) and the frequency of key­

words (i.e., the percentage of the nodes in the graph containing the keywords). Through­

out this section, the branch and bound algorithm is called B&B. Our top-k polynomial 

delay algorithm that uses Algorithm 4 to producer-cliques is called r-clique. Our top-k 

algorithm that uses Algorithm 5 (which produces r-cliques starting with only the nodes 

containing the rarest input keyword) is called r-clique-rare. In addition, the algorithm in 

[60] that produces top-k communities with polynomial delay is called community. 

3.9.1 Data Sets and Queries in Experiments 

We use three real data graphs in our experiments: DBLP, IMDb and Mondial. All the 

three graphs are used as an undirected and weighted graph. The original graphs do not 

have edge weights. The weights are added as follows. The weight of the edge between 

two nodes v and u is computed as (log2 (1 + vdeg) + log2 (1 + Udeg))/2, where vdeg and 

58 



1· l' 

Table 3.2: Keywords used in DBLP data set. 

Frequency Keywords 

0.0003 distance, discovery, scalable, protocols 

0.0006 graph, routing, space, scheme 

0.0009 fuzzy, optimization, development, 

support, environment, database 

0.0012 modeling, logic, dynamic, application 

0.0015 control, web, parallel, algorithms 

Table 3.3: Keywords used in IMDb data set. 

Frequency Keywords 

0.0003 game, summer, bride, dream 

0.0006 Friday, street, party, heaven 

0.0009 girl, lost, blood, star, death, all 

0.0012 city, world, blue, American 

0.0015 . king, house, night, story 
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udeg are the degrees of nodes v and u respectively. Note that the same weighting function 

was used in [16, 32, 60]. 

The DBLP graph is produced from the DBLP XML data6. The dataset contains 

information about a collection of papers and their authors. It also contains the citation 

information among papers. The papers and authors are connected together using the 

citation and authorship relations. The numbers of tuples of the 4 relations author, paper, 

authorship and citation are 613K, 929K, 2,375K, and 82K respectively. The set of input 

keywords used in our experiments and their frequencies in the input graph are presented 

in Table 3.2. The queries used in our experiments are generated from this set of keywords 

with the constraint that in each query all keywords have the same frequency (in order to 

better observe the relationship between run time and keyword frequency). Note that the 

set of input keywords and the way to generate queries are the same as the ones in [60]. 

The IMDb dataset contains the relations between movies and the users of the IMDb 

website that rate the movies 7• The number of tuples of 3 relations user, movie and rating 

are 6.04K, 3.88K and 1,000.21K, respectively. The set of input keywords and the fre-

quencies are presented in Table 3 .3. Note that the set of input keywords is the same as 

the one used in [60]. 

The Mondial dataset contains geographical data8 . It is highly cyclic and contains 

6http://dblp.uni-trier.de/xml/ 

7http://www.grouplens.org/node/73 

8http://www.dbis.informatik.uni-goettingen.de/Mondial/ 
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Figure 3.4: Run time on DBLP for algorithms that produce top-k answers with polyno-

mial delay. When not changing, the number of keywords is set to 4, r is set to 6 and 

keyword frequency is 0. 0009. 

27 relations and lOK nodes. The query keywords used for this data set are randomly 

selected, which is the same way as in [22]. Since Mondial is very cyclic and contains 

many relations [22], r is set to a high value which is twice the value of r for the DBLP 

and IMDb datasets. 

Among the three datasets, DBLP is the largest and contains more textual information. 

Thus, some of the results are only presented for the DBLP dataset. 

3.9.2 Run Time Comparison 

In this section, we compare r-clique, r-clique-rare, and community in terms of run time. 

The average time for producing one answer in finding top-50 answers is used as their run 

time. Ifthere is no answer for the query, the time of completing the program is considered 

as the run time. For the r-clique methods, the time also includes the time for generating 
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Figure 3 .5: Run time on the IMDb data set of algorithms producing top-k answers with 

polynomial delay. When not changing, the number of keywords is 4, r is 11 and keyword 

frequency is 0.0009. 

Steiner trees as final answers. The run time of the three algorithms for producing top-k 

answers on the DBLP, IMDb and Mondial datasets is shown in Figure 3.4, Figure 3.5 and 

Figure 3.6 respectively. For the DBLP and IMDb data sets, we depict the run time with 

respect to increasing values of r, the number of query keywords and keyword frequency. 

For the Mondial data set, the query keywords are completely randomly chosen from the 

whole data set regardless of their frequencies (to be the same as in [22]). Also, the same 

as in [22], for each number of query keywords ranging from 2 to 6 or each r values, four 

different random queries are evaluated and the average run time is taken. 

We can see that r-clique and r-clique-rare produce results faster than community. 

The main reason for this is that the two r-clique methods explore only the content nodes 

during their search for answers. As expected, the run time o( r-clique-rare is much 

smaller than r-clique. It is because r-clique-rare only uses the content nodes that contain 
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Figure 3.6: Run time on the Mondial data set of algorithms producing top-k answers 

with polynomial delay. When not changing, the number of keywords is 4 and r is 22. 

the input keyword with the rarest frequency as the seed for a candidate answer. By 

increasing the value of r or the frequency of keywords, the run time of all the three 

algorithms increases. This is because there are more candidates and nodes to evaluate. 

These results agree with the findings in [ 60]. By increasing the number of keywords, the 

run time (i.e., the average run time for producing one answer) of all the three algorithms 

also increases. This means that average delay increases when the number of keywords 

increases. This is because more nodes need to be evaluated in each step when there are 

more keywords in the query. It should be mentioned that this result does not agree with 

the results presented in [60] for generating top-k communities. 
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Figure 3.7: Quality of the r-clique and r-clique-rare algorithms on DBLP. The number 

of keywords is set to 4, r is 8 and the frequency of keywords is 0.0009. 

3.9.3 The Quality of the Approximation Algorithm Compared with Exact An-

swers 

In this section, the quality of the answers generated by the approximation algorithms is 

evaluated. We use the branch and bound algorithm (B &B) to produce all the r-cliques 

and compare them with the answers from the r-clique and r-clique-rare algorithms. Fig-

ure 3. 7 (a) shows the percentage of answers produced by the approximation algorithms 

which are actually r-cliques. In other words, it shows the percentage of answers of the 

approximation algorithms whose distance between each pair of content nodes are less 

than or equal to r. The results show that at least 90% of the answers of Algorithm 4 and 

at least 62% of the answers of the Algorithm 5 are r-cliques. Figure 3.7 (b) shows the av-

erage weight of the answers produced by the B&B, r-clique and r-clique-rare algorithms 

for different k values. To get the top-k results for B&B, we rank the answers from B&B 
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Figure 3.8: The average diameter of answers on DBLP. The frequency of keywords is 

0.0009 and r is 8. 

based on their weight. Figure 3.7 (b) shows that the weights of the answers produced 

by r-clique and r-clique-rare are close to those of exact answers produced by B&B. Al-

though according to Theorem 3 the weight of an answer from the r-clique method can 

be twice that of the corresponding answer from B&B, our results show that the ratio of 

the weights is at most 1.12 in practice. Similarly, the ratio of the weights of the answers 

from r-clique-rare to those from B&B is at most 1.33 in this experiment, although it can 

be 3 (i.e., l - 1) according to Theorem 5. These results suggest the high quality of the 

proposed approximation algorithms. 

3.9.4 Compactness of Answers 

In this section, we evaluate the quality of the answers produced by r-clique, r-clique-rare, 

and community, in terms of their compactness. A well known measure for estimating the 

proximity of a subgraph is the diameter of the subgraph, defined as the largest shortest 
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Figure 3.9: The average number of nodes in final answers of different algorithms on 

DBLP. The frequency of keywords is 0.0009 and r is 8. 

distance between any two nodes in the subgraph. Generally, the smaller the diameter, 

the closer the nodes are to each other. When calculating the diameter for r-clique and 

r-clique-rare, we use all the nodes in the final answer, i.e., the nodes in the Steiner tree 

presented to the user. The average diameters of the answers of different algorithms are 

shown in Figure 3.8, which shows that the nodes in an answer produced by r-clique 

and r-clique-rare are closer to each other than those from community for different k 

values and different numbers of keywords. The average number of nodes in the answers 

produced by each algorithm is shown in Figure 3.9. Since a community includes all of 

the nodes whose distance to each content node is no larger than r, the number of nodes in 

a community is higher than that in our methods that use trees to present the final answers. 

66 



100 100 
• r-clique -~ 80 80 e_, 

c 60 60 
i'l' r-clique-rare .g 40 40 r:ll ·u 20 20 ~ 

•community - 0 ~ 0 
2 4 6 8 10 2 4 6 8 10 

Query 1 k Query 2 k 

- 100 100 
~ 80 80 e_, 

I ·~ c 60 60 .g 
,rn r:ll 40 40 "Cj 

··~ 
~ 20 20 ~~ -~ [:i 0 0 

2 4 6 8 10 2 4 6 8 10 
uery 4 

Figure 3.10: Top-k precision of answers with different values of k with the first method .. 

100 100 -• r-clique ~ 80 80 = -c 60 60 
r-clique-rare .s 

40 40 r:ll 

·~ 
20 ~ 20 

•community i.. 
~ 0 0 

2 4 6 8 10 2 4 6 8 10 
Query 1 k Query 2 k 
~ 100 100 
= - 80 80 c 

'''ii· .s 60 lJ;' [!!' 60 
r:ll 

j,~ 

·~ 40 I i 40 
~ 
i.. 20 I> 

·1 20 ~ I; 
0 0 

2 4 6 8 10 2 4 6 8 10 
Query 3 k k 

Figure 3.11: Top-k precision of answers with different values of k with the second 

method. 

67 



Table 3.4: Set of queries used for finding the accuracy of the results in DBLP data set. 

Query Keywords 

1 parallel, graph, optimization, algorithm 

2 dynamic, fuzzy, logic, algorithm 

3 graph, optimization, modeling, 

4 development, fuzzy, logic, control 

3.9.5 Search Accuracy from a User Study 

We further compare the r-clique, r-clique-rare, and community, algorithms in terms of 

how relevant their answers are to the query. Search results are best evaluated by mea­

suring the relevancy of the results to the query. A common metric of relevance used in 

information retrieval is top-k precision, defined as the percentage of the answers in the 

top-k answers that are relevant to. the query. To evaluate the top-k precision of the al­

gorithms, we conducted a user study. We designed 4 meaningful queries from the lists 

of keywords in Table 3 .2 for the DBLP dataset in order for human users to be able to 

evaluate the search results. The four queries are listed in Table 3.4. In the experiment, r 

is set to 8 and top-10 answers are produced for each query from each algorithm. 

We asked 8 graduate students in computer science and electrical engineering at two 

universities to judge the relevancy of the answers. The users are asked to evaluate the 
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Without Derivatives 

A Binding Number 
Computation of Graph 

Figure 3.12: Best r-clique answer to the query consisting of parallel, graph, optimization 

and algorithm. 

answers using two methods. In the first method, for each answer, the user assigns a 

score between 0 and 1 to each paper (i.e., node) in the answer where 1 means completely 

relevant and 0 means completely irrelevant to the query. Then, the average score of the 

papers in an answer is calculated as the relevancy score of the answer. This score may 

vary among the users. We use the average of the relevancy scores from the 8 users as the 

final relevancy score of the answer. The top-k precision is computed as the sum of the 

relevancy scores of the top-k answers divided by k. In the second method, users assign a 

score between 0 and 1 to the whole answer based on the relevancy and understandability 

of the answer. 

The top-2 to top-10 precisions for each query are presented in Figure 3.10 and Figure 

3.11 for the first and second methods respectively. Clearly, r-clique and r-clique-rare 

achieve better precisions than community in all the queries for all the k values. The 

reason for the community method to have a lower precision is that a community may 
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Distributed Parallel Algorithm 
For Nonlinear Optimization 

Without Derivatives 

A Binding Number 
Computation of Graph 

A New Non-interior Continuation Method 
for Second-Order Cone Programming 

Figure 3 .13: Best community answer to the query consisting of parallel, graph, op ti-

mization and algorithm. 

contain some center nodes and these centers are determined only based on their distance 

to the content nodes. If a node's distance to each of the content nodes in the answer :is 

within a threshold, it is included in the community as a center. However, such a node 

may not be relevant to the query. By looking at the individual answers, we find that the 

community method indeed returns papers that are considered irrelevant to the query by 

the users. 

3.9.6 Qualitative Evaluation 

We compare the r-clique and community algorithms via an example. The top answer 

returned by r-clique for the first query in the user study is shown in Figure 3.12. The 
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two boxes at the top are content nodes, each containing the title of a paper. The node at 

the bottom" is the mediator node generated by our Steiner tree algorithm given the two 

content nodes. It is a common author of the two papers. The "W" symbol on an edge 

indicates the "writing" relationship. Clearly, our r-clique based method is able to reveal 

a relationship between the two content nodes. Figure 3 .13 illustrates the top answer 

from the community algorithm. The top two nodes are content nodes, and the others are 

center nodes because each of them is within r distance from each of the content nodes. 

As can be seen, the community contains more nodes than the answer from the r-clique 

method. The three middle nodes are the three common authors of the two papers and the 

bottom node is another paper written by one of the authors, which is not relevant to the 

query. The advantage of this answer is that it reveals more common authors of the two 

papers (assuming this is useful for the user), but the disadvantage is that it also includes 

an irrelevant node. Having irrelevant nodes in an answer can make the answer hard to 

understand. Most of the users in our user study prefers the answer in Figure 3.12 over 

this one. 

3.10 Conclusion and Future Work 

We propose a novel and efficient method for keyword search on graph data. A prob-

lem with existing approaches is that, while some of the nodes in the answer are close to 

each other, others may be far from each other. To address this problem, we introduced 
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the concept of r-cliques as the answer for keyword search in graphs. A benefit of find­

ing r-cliques is that only content nodes need to be explored during the search process, 

which leads to significant runtime improvement. We propose a procedure that produces 

r-cliques in polynomial delay. Two approximation algorithms are proposed to find a 

single best answer in the search space. For evaluating the quality of the approximation 

algorithms, an exact algorithm for finding all r-cliques is proposed. Our experiments 

showed that the quality of the answers from the proposed approximation algorithms in 

comparison with the exact one is high in terms of the percentage of r-cliques and the 

average weight in the top ranked answers. To reveal the relationship between the nodes 

in an r-clique, we proposed to generate a Steiner tree based on the r-clique. Our experi­

mental results showed that finding r-cliques is more efficient and produces more compact 

and more relevant answers than the method for :finding communities [60]. 

As the future work, we plan to improve the approximation ratio of the proposed 

approximation algorithms or prove that the ratio is tight. Another interesting direction 

for future work is to improve the indexing method to efficiently update the index in case 

of updating the input graph. Building keyword search engines over graph data using 

MapReduce programming model could be another extension to this work. In this case, 

the search engine is able to· handle graphs with billions of nodes/edges in a distributed 

environment. 
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4 Efficient Duplication Free and Minimal Keyword 

Search in Graphs 

Keyword search over a graph searches for a subgraph that contains a set of query key­

words. A problem with most of existing keyword search methods is that they may pro­

duce duplicate answers that contain the same set of content nodes (i.e., nodes containing a 

query keyword) although these nodes may be connected differently in different answers. 

Thus, users may be presented with many similar answers with trivial differences. In ad­

dition, some of the nodes in an answer may contain query keywords that are all covered 

by other nodes in the answer. Removing these nodes does not change the coverage of 

the answer but can make the answer more compact. These answers are more desirable in 

some applications. The answers in which each content node contains at least one unique 

query keyword are called minimal answers in this chapter. We define the problem of 

finding duplication-free and minimal answers, and propose algorithms for finding such 

answers efficiently. Extensive performance studies using two large real data sets confirm 

the efficiency and effectiveness of the proposed methods. 
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4.1 Introduction 

Keyword search is a well known method for extracting relevant knowledge from a set of 

documents in information retrieval. Given a graph where nodes are associated with text, 

keyword search over the graph finds a subgraph that contains a set of query keywords. 

Due to the fact that many types of data can be represented by graphs, keyword search 

over graphs has received much attention in recent years. Most of the work in this area 

find minimal connected trees ( e.g, Steiner trees with the minimum sum of edge weights 

[8, 16, 22, 24, 32]) or subgraphs that minimize a proximity function (e.g., the sum of 

distances from the nodes in the answer to a center node [60]). However, these methods 

may generate many trees or subgraphs with the same set of content nodes (i.e., nodes 

containing at least one query keyword) even though these answers may have different 

intermediate nodes connecting the content nodes. 

The following example illustrates the duplication problem for a tree-based method. 

Suppose the nodes in an input graph are web pages. Two nodes are connected by an edge 

if there is a link from one page to the other. Consider Figure 4.1. The user is interested in 

finding pages that contain keywords k1 and k2 . Two nodes mk1 and nk1 contain keyword 

k1 and another two nodes mk2 and nk2 contain keyword k2 . The left graph in the figure 

contains 4 trees that cover mkl and mk2, where each branch from mk1 to mk2 is a tree. 

The right graph contains a single tree that covers nk1 and nk2. Assume that the weight 
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Figure 4.1: Duplication problems with tree ap.swers. 

on each edge is the same. According to the ranking function used in the tree approaches, 

the tree that contains nk1 and nk2 in the right graph is produced after the first four trees 

that cover mk1 and mk2 on the left, because it has more edges than the other four trees. 

However, all the four trees on the left have the same set of content nodes. Since the users 

usually want to see different groups of content nodes that are close to each other and 

might not be interested in browsing multiple relations to see how the nodes that contain 

input keywords are related to each other, the above search results might not be desirable9. 

Producing results with distinct sets of content nodes can prevent the search engine from 

overwhelming the user with many similar answers. 

In addition to producing redundant results, current tree and graph-based methods 

may produce non-minimal answers. In other words, a content node in an answer may 

cover input keywords which are all covered by other content nodes. However, minimal 

answers may be preferred in some situations. Suppose that a customer wants to buy 

9If a user wants to explore different relationships among the content nodes, the method in [43] can be 
used to produce a set of Steiner trees that connect a set of specified nodes together. 

75 



Android How to Program 
Smartphone Programming 

Java Fundamentals 

Visual C# How to Program 
Object Oriented Programming 

ASPNET. 

Java How to Program 
Object Oriented Programming 

Java Fundamentals 

Figure 4.2: non-minimal answer for query: Smartphone Programming, Java Fundamen-

tals, Object Oriented Programming and ASP.NET over a graph connecting books via 

authors. 

a set of items from stores and wants to find a set of stores that together have all the 

items he/she wants to buy. Assume that the information about the stores is stored in a 

graph, where a node represents a store and contains the list of items that the store sells, 

and an edge between two nodes is weighted by the distance between the two stores. 

The customer issues a query specifying the set of items he/she wants to buy. It would 

be better that the search result is a list of stores in which each store has at least one 

unique item in the query that other stores do not have because there is no need to go to 

a store that does not have a unique item in the query. Another example is to determine 

required textbooks that together cover all the topics in a course. Assume that an online 

bookstore (e.g., Amazon.com) maintains its product information in an underlying graph 
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where a node represents a book and contains the topics the book covers, and two books 

are connected by an edge if they share an author. Assume that the topics for a course 

are Smartphone Programming, Java Fundamentals, Object Oriented Programming and 

ASP.NET. A search over the graph allows us to find a set of books that not only covers all 

the topics but may also share the same author(s), which is preferred because the writing 

style of the books may be consistent. A possible answer to this query is shown in Figure 

4.2, where the three books share the same authors and together cover all the topics. But 

the topics covered by "Java How to Program" are also covered by the two other books. 

Thus, from the money-saving prospective it is not necessary to require the students to 

buy this book. In this type of applications, minimal answers are desired. 

In this chapter, we first propose a new approach to keyword search in graphs that 

produces duplication-free answers. Each answer produced by our approach has a unique 

set of content nodes. We also define minimal answers, in which each node contains at 

least one input keyword that other nodes do not. We propose two algorithms that convert 

an answer to a minimal answer. We prove that the problem of finding a minimal answer 

while minimizing the proximity function that we use is NP-complete. Thus, one of the 

algorithms we propose is a greedy algorithm that searches for a sub-optimal minimal 

answer. We prove that this greedy algorithm has a bounded approximation ratio. Finally, 

for finding top-k duplication-free and minimal answers, we propose two approaches. The 

first approach is faster but may miss some answers. The second approach takes more time 
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in theory but can produce all the answers if needed. Our extensive experiments show the 

efficiency and effectiveness of the proposed methods. 

The chapter is organized as follows. In the next section, we motivate our problem 

using a real example which shows previous methods produce duplicate and non-minimal 

answers. In Section 4.3, we give formal problem statements. In Section 4.4, a procedure 

for finding duplication free answers in polynomial delay is presented. An algorithm 

for finding the best answer in each search space is given in Section 4.5. Finding minimal 

answers is discussed in Section 4.6. Other issues including graph indexing and presenting 

the answers are discussed in Section 4.7. Experimental results are given in Section 4.8. 

Section 4.9 concludes this chapter. 

4.2 Motivation 

In this section, a real example is presented to show that previous works produce dupli­

cate and non-minimal answers. We further show that distinct root tree approach is not 

complete. 

4.2.1 Producing Duplicate and Non-Minimal Answers by Previous Works 

The following example shows the existing graph keyword search methods generate du­

plicate and non-minimal answers. Consider a small part of the DBLP dataset, which con­

tains four authors and four papers. The paper titles, author names and a weighted graph 
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that connect the authors and papers are shown in Figure 4.3. The edge weights are com­

puted in the same way as in [35, 60]. Assume that the input keywords are k1 :dynamic, 

k2fuzzy, k3:logic, k4:design and k5 :optimization. Among all the subsets of the nodes, 

only {p2 , p4 } covers all the input keywords and is also minimal. Other subsets either 

do not cover all the input keywords or are not minimal. The top-5 answers of the dy­

namic programming algorithm in [16] for finding Steiner trees are given in Table 4.1, 

which shows that all the answers contain the same set of content nodes, although they 

have different roots connecting the content nodes. The top-5 answers of the BLINKS 

algorithm [24] are shown in Table 4.2, which shows that the sets of content nodes of the 

last three answers are exactly the same. In addition, none of the five answers is mini­

mal. The top-5 answers of the community-finding method [60] are shown in Table 4.3. 

The second column of the table presents the association of each keyword with a node in 

the answer and the third column shows the set of content nodes. Some of these top-5 

answers are duplicated and some of them are not minimal. The r-clique method [35] 

uses the same method for dividing the search space into sub-spaces when finding top-k 

answers as the community-finding method. Thus, it has a similar problem regarding the 

search for duplication free and minimal answers. 
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PID Title AID .Name 

A Framework for Studying the Effects of 
Michael 

P1 Dynamic Crossover, Mutation, and Population a1 A.Lee 
Sizing in Genetic Algorithms 

P2 
Dynamic Control of Genetic Algorithms 

a2 
Hideyuki 

Using Fuzzy Logic Techniques Takagi 

Neural Networks and Genetic Algorithm Henrik 
p3 Approaches to Auto Design of Fuzzy Systems a3 Esbensen 

The Design of Hybrid Fuzzy Evolutionary Laurent 
p4 Multiobjevtive Optimization Algorithms a4 Lemaitre 

Figure 4.3: A sample graph from the DBLP dataset. 

Figure 4.4: An example for showing the incompleteness of distinct root trees approach 

(e.g. BLINKS [24]). a 1 and a2 contain keyword k1 and b1 and b2 contain keyword k2 . 

Using distinct root semantics, the answer which has a2 and b2 as the content nodes is 

never produced. 
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Table 4.1: Steiner trees generated by dynamic programming. 

No. Root Leaf Nodes (Content Nodes) 

1 p4 P2,p4 

2 P2 P2,p4 

3 ai P2,p4 

4 a3 P2,p4 

5 a4 P2,p4 

4.2~2 Incompleteness of Distinct Root Tree Approach 

To show that distinct root tree approach is not complete and might miss some com­

bination of content nodes, an example is presented in Figure 4.4. a 1 and a 2 contain 

keyword k1 and b1 and b2 contain keyword k2 . The graph has the following five nodes: 

{r, a 1 , a2 , b1 , b2}. Thus, the number of answers is at most five. Five answers with the as­

sociated root, the set of content nodes and their weights are presented in Table 4.4. The 

tree which has { a 2 , b2 } as the content nodes is not produced. The reason is that any tree 

that has { a 2 , b2 } as the content nodes has the weight of at least 4. Thus, this combination 

of content nodes is never produced using the distinct root semantics. 
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Table 4.2: Distinct root trees generated by BLINKS. 

No. Root Leaf Nodes (Content Nodes) 

1 P2 P2,p3,p4 

2 p4 P1,P2,P4 

3 ai P1, P2,p3,p4 

4 p3 P1, P2,p3, P4 

5 a2 P1,P2,p3, P4 

4.3 Problem Statement 

Given a data graph whose nodes are associated with text and a query consisting of a set of 

keywords, the problem of keyword search in a graph is generally to find a subgraph that 

contains all or part of the keywords. The data graph can be directed or undirected. The 

edges and/or nodes may have weights on them. In this work, the same as [16, 35, 51] 

and Chapter 3, we consider undirected graphs with weighted edges, where two nodes 

are connected by an edge if there is a relationship between them and the edge weight 

represents the distance between the two nodes. Undirected graphs can be used to model 

different types of unstructured, semi-structured and structured data, such as web pages, 

XML documents and relational datasets. It should be noted that our approach is adaptable 
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Table 4.3: Answers from the community-finding method. 

No. Keyword-Node Association Content Nodes 

1 (k1,P1), (k2,p4), (k3,p2), (k4,p4), (k5,p4) P1,P2,p4 

2 (k1,P2), (k2,P2), (k3,p2), (k4,p4), (k5,p4) P2,P4 

3 (k1,P2), (k2,p4), (k3,p2), (k4,p4), (ks,p4) P2,P4 

4 (k1,P1), (k2,P2),(k3,p2), (k4,p4), (k5,p4) P1,P2,p4 

5 (k1,P2), (k2,P2), (k3,p2), (k4,p3), (k5,p4) P2,p3,p4 

to work with directed graphs 10
• 

Definition 3 (Answer) GivenagraphGandasetofquerykeywords(Q = {k1 , k2 , ... , kl}), 

an Answer to Q in G is a set of content nodes in G that together cover all of the input 

keywords in Q. 

An Answer has a weight which can be defined according to the application need 

based on the weights of the edges in G that connect the nodes in the Answer. The above 

definition does not require the nodes in an Answer to be connected with each other either 

directly or indirectly in G, but Answers with nodes connected to each other can be 

preferred over those with disconnected nodes by using a weight function. 

10 Algorithms 7, 9, 11 and 12 proposed in this chapter are independent of graph type. But the weight 
function and its related procedures (Algorithms 8 and 10) need to be adapted to work with directed graphs. 
For example, the weight of an answer can be defined using the weights of edges in both directions. 
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Table 4.4: Five answers of distinct root tree approach for the graph of Figure 4.4 

No. Root Node Leave Nodes (Content Nodes) Weight 

1 r {a1,b1} 2 

2 ai {a1,b1} 2 

3 bi {a1,b1} 2 

4 a2 {a2,b1} 3 

5 b2 { ai, b2} 3 

Problem 3 (Duplication free keyword search) Given a graph G, an integer k and a set 

Q of query keywords, find top-k unique Answers of Q in G whose weights are optimal. 

An Answer is unique if it appears at most once in the top-k list. The next definition 

deals with the minimality of the Answer. 

Definition 4 (minAnswer) Given a graph G and a set of query keywords (Q = {k1 , k2 , 

... , kz} ), a minAnswer of Q in G is an Answer of Q in G in which each content node 

covers at least one query keyword that other content nodes do not cover. 

In other words, each content node of a minAnswer uniquely contributes to cover at 

least one query keyword. 

Problem 4 (Duplication free and minimal keyword search) Given a graph G, an inte­

ger k and a set Q of input keywords, find top-k unique minAnswers of Q in G whose 
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weights are optimal. 

To focus on the generality of the above keyword search problems, we intentionally 

avoided defining the weight of an Answer in Definitions 3 and 4. Below we give two 

definitions of weight functions, used in [24, 35, 60] and Chapter 3, to measure the prox-

imity of the nodes in an Answer. Note that other weight functions can be used with our 

definitions. Also, most of the algorithms proposed in this chapter (i.e., Algorithms 7, 9, 

11 and 12) are independent of the weight function. Only Algorithms 8 and 10 depend on 

the weight function. 

Definition 5 (sumDistance) Suppose that the set of nodes in an Answer in graph G is 

denoted as V = { v1, v2, ... , Vz}. The sumDistance of the Answer is defined as 

l l 

sumDistance = L L dist( vi, vi) 
i=l j=i+l 

where dist( vi, Vj) is the shortest distance between vi and Vj in G, i.e., the sum of weights 

on the shortest path between vi and Vj in G (See Chapter 3 and [35)). 

Definition 6 (centerDistance) Suppose that the set of nodes in an Answer in graph G 

is denoted as V = { v1 , v2 , ... , vz}. The center Distance of the Answer is defined as 

l 

center Distance = min L dist( c, vi) 
cEG 

i=l 

where dist( c, vi) is the shortest distance between a node c in G and vi. The node in G 

that achieves the minimum distance is called the center of the Answer. 
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Table 4.5: An overview of Algorithms 8-12(NIA means not applicable). 

Alg. Dup. Free Minimal Minimize sumDistance Approx. Ratio Complete 

Alg. 8 Yes No Yes, bounded approx. 2 Yes 

Alg. 9 No with Alg. 8 Yes No NIA NIA 

Alg. 10 No with Alg. 8 Yes Yes, bounded approx. (logn)~ 
dmin 

NIA 

Alg. 11 Yes Yes NIA in general NIA No 

Alg. 12 Yes Yes NIA in general NIA Yes 

The centerDistance is used in [24, 60]. In [24 ], the center is the root of the answer 

tree. Note that the center may/may not be a node in the Answer. 

When using sumDistance or center Distance to define the weight of an Answer, 

Answers with smaller weights are considered to be better because the nodes in an An-

swer are closer to each other when its weight is smaller. 

4.3.1 An Overview of the Proposed Algorithms 

In this chapter, we propose six algorithms to solve Problems 3 and 4. Algorithm 7 is a 

general framework for generating top-k duplication-free answers by wisely dividing the 

search space. It calls Algorithm 8 (which is a 2-approximation algorithm for finding a 

single answer that minimizes sumDistance) to find top-k duplication-free answers in 

polynomial delay. Thus, Algorithms 7 and 8 together solve Problem 3. 
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Table 4.6: Run Time Complexity of Algorithms 8-12. 

Alg. Complexity Type Run Time Complexity 

Alg. 8 Polynomial O(l2 
X 1Dmaxl2

) 

Alg. 9 Polynomial O(n2
) 

Alg. 10 Polynomial O(n2 ) 

Alg. 11 Polynomial O(l2 
X 1Dmaxl2

) 

Alg. 12 FPT O((Il:=1 IKil) x l2 x IDmaxl 2
) 

Note: l is the number of query keywords, n(::; l) is the number of nodes in the input answer for 

Algorithm 10, dmax and dmin are the max and min distances between any pair of nodes in the input 

answer for Algorithm 10, s < l, .z=:=l IKil < l, Dmax «the number of nodes in graph. 

To generate minAnswers, Algorithms 9 and 10 are proposed to convert the answers 

generated by Algorithm 8 into a minAnswer. Algorithm 9 does not optimize a weight 

function, while Algorithm 10 finds a minAnswer that also minimizes the sumDistance 

function with a bounded approximation ratio. However, simply converting Algorithm 

8 's answer to a minAnswer with Algorithm 9 or 10 may lead to generation of duplicate 

answers in the top-k procedure. 

To generate top-k duplication-free minAnswers (i.e., to solve Problem 4), Algorithms 

11 and 12 are proposed to replace Algorithm 8 in Algorithm 7. Both algorithms are gen­

eral frameworks for confining or dividing the search space to ensure minimality and no 
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duplication in the top-k answers generated by Algorithm 7. They call a modified version 

of Algorithm 8 (which calls Algorithm 10) to generate a minAnswer that also minimizes 

sumDistance. The difference between Algorithms 11 and 12 is that Algorithm 11 is 

faster (completely polynomial) but may miss some answers, while Algorithm 12 is com­

plete (i.e., it allows all the possible answers to be considered), but is a fixed-parameter 

tractable (FPT) algorithm. An overview of Algorithms 8-12 is given in Table 4.5. Run 

time complexity of the algorithms are summarized in Table 4.6 

4.4 Finding Top-k Duplication Free Answers in Polynomial Delay 

As stated in Section 3.4, an efficient search engine should satisfy three properties [22]. 

First, it should be able to generate all answers without missing them. Second, the answers 

should be presented in an order with better answers ranked higher. Third, the search 

engine should produce the answers efficiently. Assume that the maximum number of 

nodes containing a query keyword in the input graph is m. Based on the definition of 

Answer, the total number of Answers might be up to ml, where l is the number of query 

keywords. Apparently, producing all of the Answers may overwhelm the user since m 

and/or l can be large. Thus, it is important to produce top-k Answers (or all the answers 

if fewer than k answers exist) in a ranked order. The efficiency of a search engine is 

commonly measured based on the delay between producing two consecutive answers. If 

this delay is polynomial based on the input data, the algorithm is called a polynomial 
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delay algorithm [22, 31]. 

The same as Section 3.4, our algorithm for producing top-k duplication-free answers 

is an adaption of Lawler's procedure [ 49] for finding top-k answers to discrete optimiza­

tion problems. However, Algorithm 2 in Section 3 .4 might produce duplicate answers. 

Lawler generalized Yen's algorithm in [69] which finds the k shortest loopless paths in 

a graph. In Lawler's procedure, the search space is divided into disjoined sub-spaces. 

The best answer in each subspace is found and used to produce the current best global 

answer. The sub-space that produces the best global answer is further divided into sub­

subspaces and the best answer among its sub-subspaces is used to compete with the best 

answers in other sub-spaces in the previous level to find the next best global answer. Two 

main issues in this procedure are how to divide a space into subspaces and how to find 

the best answer within a (sub )space. To have duplication free answers, the procedure for 

dividing the search space into sub-spaces must produce disjoint sub-spaces so that the 

same answer cannot be generated from different sub-spaces. 

Lawler's procedure has been used to generate top-k answers in graph keyword search 

in [35, 60] and Section 3.4, in which a search (sub)space is represented by C1 x C2 x · · · x 

Cz, where Ci is the set of nodes containing query keyword ki, and the space is divided by 

taking away certain node( s) from Ci to form a subspace based on the best answer in the 

space being divided. A problem with this strategy is that a node taken away from Ci may 

appear in Ci (where i =!= j) if the node contains more than one query keyword (i.e., it 
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belongs to more than one Ci for 1 ~ i ~ l), and thus the same set of content nodes may 

be generated from different subspaces if a node contains more than one query keyword, 

although different answers have different keyword-node associations. Since we aim at 

generating unique sets of content nodes, a different strategy for dividing a search space 

is needed to avoid duplicate answers. 

We first illustrate our idea of dividing the search space into disjoint subsets using an 

example. Given a set of input keywords, we first use the FindB est Answer procedure 

(to be described later) to find the best answer {a, b, c} in the input graph G, where a, 

b, and c are nodes in G. Then we divide the set of remaining answers to be found into 

three subsets: (1) the answers that contain a and b but no c, (2) the ones that contain 

a but no b, and (3) the ones that contain no a. Clearly, (1), (2) and (3) are disjoined, 

and they, together with {a, b, c}, comprise the set of all possible answers. Each subset 

has constraints, which can be represented using an inclusion set containing the nodes 

that must be included and an exclusion set containing the nodes that must be excluded 11 
• 

Table 4. 7 shows the constraints of these three subsets. 

After dividing the search space into disjoint subsets based on the global best an-

swer, the best Answer in each subspace is found using the FindBestAnswer proce-

dure. These best Answers are inserted into a priority queue, where the Answers are 

11 The idea ofusing the inclusion and exclusion sets to represent constraints is inspired by [ 45]. However, 
the constraints in [ 45] are described using edges (instead of nodes as in our approach) for finding a different 
type of answers. 
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Table 4. 7: Dividing the search space into disjoint subspaces based on the best Answer {a, b, c }. 

Subspace Inclusion set Exclusion set 

SB1 Inc1 ={a, b} Exc1 = {c} 

SB2 Inc2 ={a} Exc2 = {b} 

SB3 Inc3 = {0} Exc3 ={a} 

ranked in ascending order of their weights. Obviously, the second best Answer is the 

one at the top of the priority queue. Suppose that this Answer is taken from S B 2 and 

contains p content nodes. After returning the second best answer, S B 2 is divided into p 

subspaces in the way similar to the one shown in Table 4.7. In each subspace, the best 

Answer is found and is added to the priority queue. At this state, the priority queue has 

2 + p elements: two elements from the first step and p elements from this new step12 . 

Then, the top Answer is returned and removed from the queue, its corresponding space 

is divided into subspaces and the best Answer (if any) in each new subspace is added to 

the priority queue. This procedure continues until the priority queue becomes empty or 

top-k Answers are found. 

The pseudocode of this procedure for enumerating top-k Answers is described in 

Algorithm 7. The algorithm first computes the set C of nodes that contain at least one 

12This assumes that all of the subspaces contain at least one Answer. In some cases, the subspace does 
not have any Answer. 
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input keyword. This can be easily done using a pre-built inverted index. In line 5, 

procedure FindB estAnswer (to be described in the next section) is called to find the 

best answer from the whole search space (i.e., C). It takes input graph G, query Q, 

C, an inclusion set and an exclusion set as input, and returns the best answer in the 

search space specified by C. Since the first best answer is found in the whole search 

space, empty inclusion and exclusion sets are passed to the procedure in line 5. If the 

best answer exists (i.e., A =f NULL), A, together with the inclusion and exclusion sets. 

(the constraints for the space from which A is generated), are inserted into Queue in 

line 7. The Queue is maintained in the way that its elements are ordered in ascending 

order of their weights. The while loop starting at line 8 is executed until the Queue 

becomes empty or k answers have been outputted. In line 9, the top of the Queue is 

removed, which contains the best answer (A) in the Queue and its inclusion (Inc) and 

exclusion (Exe) sets. The answer in A is outputted. Then, if the number of answers 

has not reached k, the nodes in A are assigned to n 1 , n2 ... np where p is the number 

of nodes in A. In lines 15-21, p new inclusion and exclusion sets are produced based 

on the nodes in A and the inclusion and exclusion sets for the space A was generated 

from. The new subspaces are specified by these new constraints. For each new subspace, 

if the intersection of its inclusion and exclusion sets is empty, the best answer is found 

and it is inserted into the Queue with the constraints of its related subspace. Clearly, if 

procedure FindB estAnswer runs in polynomial time, Algorithm 7 produces answers 
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with polynomial delay. 

Since for each best answer A the union of the sub-spaces created based on A plus 

answer A itself is the same as the search space from which A is found, no answer is 

excluded from search spaces in the next iterations. Thus, Algorithm 7 produces top-k or 

all answers (if fewer thank answers exist) if FindBestAnswer finds the best answer 

in a search (sub)-space. In addition, the sub-spaces produced based on answer A are all 

disjoint and none of them contains A. Therefore, they do not lead to the same answer and 

the set of produced answers is duplication free. In addition, this duplication free search 

procedure is independent of the procedure for finding the best answer and the weight 

function used to measure the quality of an answer. 

4.5 Finding the Best Answer in Each Search Space 

Algorithm 7 calls the FindBestAnswer procedure to find the best answer in a 

search space specified by a set of content nodes and the constraints (i.e., the inclusion 

and exclusion sets). The best answer must contain the nodes in the inclusion set, ex-

elude the nodes in the exclusion set and also have an optimal weight. Depending on 

the weight function used, FindBestAnswer can be designed differently. Below, we 

present an algorithm that produces an answer satisfying the constraints and minimizing 

the sumDistance function. We present a modification of this algorithm which mini-

mizes the center Distance later in this section. 
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Algorithm 7 Generate Duplication Free Top-k Answers 
Input: the input graph G; the query Q = { ki, k2 , ... , kz}; k 

Output: the set of top-k ordered Answers printed with polynomial delay 

1: C +-- an empty set for storing content nodes 

2: for i +-- 1 to l do 

3: add the nodes in G containing ki to C 

4: Queue +-- an empty priority queue 

5: A+-- FindBestAnswer(G, Q, C, 0, 0) 

6: if A # NULL then 

7: insert (A, 0, 0) into Queue 

8: while Queue # 0 do 

9: (A, Inc, Exe) +-- top element of Queue 

10: print(A) 

11: k f- k - 1 

12: if k = 0 then 

13: return 

14: { n 1 , n 2 , ... , np} +--content nodes of A 

15: for i +-- 1 top do 

16: Inci +--Inc U { ni, ... , np-d 

17: Exci +--Exe U {np-i+i} 

18: if I nci n Exci = 0 then 

19: Ai+-- FindBestAnswer(G, Q, C, Inci, Exci) 

20: if Ai # NULL then 

21: insert (Ai, I nci, Exci) into the right place of Queue according to Ai 's 

weight 
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Algorithm 8 FindBestAnswer minimizing the sumDistance function 
Input: the input graph G; the query Q; the set of content nodes C; the set of inclusion 

nodes Inc; the set of exclusion nodes Exe 

Output: the best (approximate) Answer satisfying both Inc and Exe constraints 

1: C ov f-- set of keywords covered by Inc 

2: { ki' k2' ... ' kt} f-- { Q - c ov} 
3: for i f-- 1 tot do 

4: Di f-- nodes of C having keyword ki and t/:. Exe 

5: D f-- LJ~=1 Di 
6: Ff-- Inc U D 

7: if F = 0 then 

8: return NULL 

9: leastW eight f-- oo 

10: bestAnswer f-- NULL 

11: for each node fi in F do 

12: weight f-- 0 

13: answer f-- 0 
14: for each node nj in Inc do 

15: weight f-- weight+ d(fi, nj) 

16: answer = answer U { nj} 
17: for j f-- 1 tot do 

18: dist f-- oo 

19: nearest f-- NULL 

20: for each node dk in Dj do 

21: if d(fi, dk) < dist then 

22: dist = d(fi, dk) 

23: nearest = dk 

24: if nearest t/:. answer then 

25: weight f-- weight + dist 

26: answer = answer U {nearest} 

27: if weight < leastW eight then 

28: leastW eight f-- weight 

29: bestAnswer f-- answer 

30: return bestAnswer 
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4.5.1 Minimizing the sumDistance function 

In Section 3 .2 we proved that minimizing sumDistance is an NP-complete problem, 

with respect to the number of query keywords, and proposed an approximation algorithm 

that finds an answer with an approximation ratio of 2. The search space in that algorithm 

is a Cartesian product C1 x C2 x · · · x Cz, where Ci is a subset of nodes containing 

keyword ki and excluding certain nodes. However, a node excluded from Ci may appear 

in Ci if the node contains both ki and ki. Since our answers must completely exclude the 

nodes specified by the exclusion set, we modify the algorithm in Section 3.5 to consider 

the constraints specified by the inclusion and exclusion sets. 

The pseudo-code of the modified algorithm, FindBestAnswer, is presented in Al­

gorithm 8. It takes an input graph G, a query Q, a set of content nodes C, and the 

inclusion and exclusion sets (Inc and Exe) as input and produces the best (approximate) 

Answer as output in polynomial time. The algorithm approximates the sumDistance 

of an answer using the sum of distances from each node in the answer to a center node 

within the answer. In the pseudo-code, set F is the search space, which consists of all 

the nodes in the inclusion set and the set of content no~es containing the query keywords 

not covered by the inclusion set and not belonging to the exclusion set. In the code, Di 

is the set of nodes that contain keyword ki (which is not covered by the inclusion set) but 

do not belong to the exclusion set. For each node Ji in F, an answer is formed by using 
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fi as the center and including all the nodes in the inclusion set and adding the node in 

each Di that is closest to k The final answer is the one with the least sum of distances 

between each node in the answer and its center. In the code, d( x, y) is the shortest dis­

tance between nodes x and y, which can be efficiently obtained by consulting a pre-built 

index which is described in Section 3.8)13 . 

Clearly, the answer produced by this algorithm satisfies the inclusion and exclusion 

constraints. Since all the nodes in F have been considered as a center candidate, it can 

be proved that the sumDistance of the produced answer is no more than 2 x(~-l) x the 

sumDistance of an optimal answer, where l is the number of query keywords. Thus, the 

produced answer has a weight that is at most twice that of an optimal answer. The proof is 

similar to the one in Section 3.5 and we omit it here. The complexity of this algorithm is 

O(IFI x l x IDmaxl) where IFI is the size of the set F, l is the number of query keywords 

and IDmaxl is the maximum size of Di for 1 ~ i ~ t. Since IFI ~ (l x IDmaxl) + !Incl 

and !Incl ~ l - 1, IFI = O(l x IDmaxl). Thus, the complexity of Algorithm 8 is 

O(l2 
X 1Dmaxl 2

). 

4.5.2 Minimizing the center Distance function 

Authors of [24, 60] proposed algorithms to minimize the center Distance function. 

Here, we briefly describe how to modify Algorithm 8 to work with the center Distance 

13Using a pre-built index to obtain the shortest distance between nodes has also been used in [35, 51, 60]. 
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function. In line 11 of Algorithm 8, all of the content nodes of the uncovered keywords 

and the inclusion set are checked for finding the best approximate Answer that mini­

mizes sumDistance. However, for minimizing center Distance, each node in the input 

graph G should be considered as a center of a possible answer. Therefore, instead of 

browsing only the nodes in set F in line 11, the loop iterates through all of the nodes in 

graph G and checks each of them for finding the best center and its associated answer. 

Thus, the time complexity of the algorithm becomes O(N x l x IDmaxl), where N is 

the number of nodes in graph G. Since N > F, the revised Algorithm 8 for minimizing 

center Distance is slower than Algorithm 8 for minimizing sumDistance. Note that 

the same as [24, 60], the modified Algorithm 8 for minimizing center Distance returns 

the exact answer in polynomial time. 

4.6 Finding Minimal Answers 

Some of the Answers returned by Algorithm 8 and existing algorithms may not be a 

minAnswer. That is, the input keywords in some nodes of an Answer may all be 

covered by other nodes in the answer. If these nodes are removed from the answer, 

the remaining set of nodes still covers all the input keywords. Below we first present 

two algorithms for converting an Answer to a minAnswer. However, the converted 

minAnswer may violate the inclusion constraint for finding duplication-free answers. 

We then propose two approaches to solve the problem. 
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4.6.1 Generating Minimal Answers 

Algorithm 9 ConvertToMinAnswerGeneral - General Procedure 
Input: the set of content nodes as Answer; the query Q 

Output: a minAnswer 

1: for each node ni in Answer do 

2: K= 0 

3: for j f- 1 to i - 1 do 

4: K =KU keywords(nj) 

5: for j f- i + 1 to size(Answer) do 

6: K =KU keywords(nj) 

7: if keywords( ni) ~ K then 

8: remove ni from Answer 

9: return Answer 

The problem of finding a minimal answer from an Answer can be solved in polyno-

mial time as shown in Algorithm 9. The algorithm checks each node in the Answer to see 

if the input keywords the node contains are all covered by other nodes. If yes, it removes 

the node. The complexity of this algorithm is 0( n2
) where n is the number of nodes in 

the input Answer. 

Lemma 1 Algorithm 9 produces a minAnswer in which each node contains at least one 
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unique input keyword. In addition, all the input keywords are covered in the minAnswer. 

Proof 

Let ni be a node in the answer produced by the algorithm. Assume that when the al­

gorithm checks whether ni should be removed, T was the intermediate answer at that 

time. Since ni was not removed, keywords( ni)~ keywords(T - { ni} ), where key­

words( ni) is the set of input keywords ni contains and keywords(T - { ni}) is the set 

of input keywords contained in T - { ni}· Since the output minAnswer is a subset 

of T, minAnswer - { ni} must be a subset of T - { ni}· Thus, keywords(ni)~ key­

words(minAnswer - { ni} ), which means that ni contains at least one unique keyword 

that the rest of nodes in minAnswer does not contain. Also, since the algorithm only 

removes a node when its input keywords are completely covered by the rest of nodes 

in T, the set of input keywords covered by T does not change after a node is removed 

from T. Thus, the final minAnswer covers the same set of input keywords as the input 

Answer. 0 

An Answer may contain multiple minAnswer s. The answer returned by Algorithm 

9 may not be optimal with respect to a weight function such as sumDistance. Below we 

first prove that the problem of finding a minAnswer with the minimum sumDistance 

and center Distance is an NP-complete problem, and then present a greedy algorithm to 

solve the problem. 

Theorem 6 The problem of producing a minAnswer from an Answer while minimizing 
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sumDistance is NP-complete. 

Proof 

We prove the theorem by a reduction from the set cover problem. Given a set of m 

elements (universe) and n sets whose union is the universe, the set cover problem is 

to identify the smallest number of sets whose union still contains all elements in the 

universe. Consider the set of input keywords in our problem as a universe. The nodes 

in an Answer can be considered as the sets of keywords whose union is the universe 

because they cover all the input keywords. Assume that the shortest distance between 

each pair of nodes in an Answer is the same. Then finding a minAnswer from the 

Answer is equivalent to finding the minimal number of nodes that cover all the input 

keywords (i.e., the universe). This is because a minAnswer with a smaller number of 

nodes has a smaller sumDistance when the shortest distance between each pair of nodes 

is the same. Since the set cover problem is NP-complete [64], finding a minAnswer 

while minimizing sumDistance is NP-complete. 0 

Theorem 7 The problem of producing a minAnswer from an Answer while minimizing 

center Distance is NP-complete. 

Proof 

We prove the theorem by a reduction from the set cover problem. Given a set of m 

elements (universe) and n sets whose union is the universe, the set cover problem is 
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to identify the smallest number of sets whose union still contains all elements in the 

universe. Consider the set of input keywords in our problem as a universe. The nodes 

in an Answer can be considered as the sets of keywords whose union is the universe 

because they cover all the input keywords. Assume that the shortest distance between 

each node in the Answer and the center is the same. Then finding a minAnswer from 

the Answer is equivalent to finding the minimal number of nodes that cover all the input 

keywords (i.e., the universe). This is because a minAnswer· with a smaller number of 

nodes has a smaller center Distance when the shortest distance between each node and 

the center is the same. Since the set cover problem is NP-complete [64], the problem of 

finding a minAnswer while minimizing center Distance is NP-complete. 0 

Since the problem is NP-complete, we design a greedy algorithm to find a minAnswer 

that may be sub-optimal in minimizing sumDistance. The algorithm is presented in Al­

gorithm 10. It first uses a greedy set-covering procedure (Lines 1-6) to reduce the number 

of nodes in Answer while still covering all the input keywords. The procedure chooses 

nodes to form an answer A as follows: at each stage, choose the node that contains the 

largest number of uncovered keywords. However, A may not be a minAnswer because 

the above procedure is a greedy procedure for minimizing the number of nodes. Thus, 

we further sort the nodes in A based on their sum of distances to other nodes in descend­

ing order, and then call ConvertToMinAnswerGeneral (i.e., Algorithm 9) to convert 

A into a minAnswer. 
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The complexity of the algorithm is 0( n 2), where n is the number of nodes in the 

input Answer. Also, since the set-covering procedure (Lines 1-6) chooses nodes from 

Answer until all the input keywords are covered and Lemma 1 states that the minAnswer 

produced by ConvertTol\1inAnswerGeneral covers all the keywords, the minAnswer 

produced by this algorithm covers all the input keywords. 

Algorithm 10 ConvertToMinAnswer - Greedy Procedure for Minimizing sumDistance 
Input: the set of content nodes as Answer; the query Q 

Output: a minAnswer with (sub )optimal sumDistance 

1: A+- 0 

2: while Q i= 0 do 

3: select a node n E Answer that maximizes lkeywords(n) n QI 

4: Answer +- Answer - { n} 

5: Q +- Q - keywords( n) 

6: A+- AU {n} 

7: for each node ni in A do 

8: calculate ni 's sum of distances to all the other nodes in A 

9: sort nodes in A based on their sum of distances to other nodes in descending order 

and put them in a list T. 

10: minAnswer = ConvertToMinAnswerGeneral(T, Q) 

11: return minAnswer 

Theorem 8 Algorithm 10 generates a minAnswer that minimizes sumDistance with 
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the approximation ratio of (log n) ~:;: where n is the number of nodes in the input 

Answer and dmax and dmin are the maximum and minimum distances between any pair 

of nodes in Answer. 

Proof 

Assume that the number of nodes of an optimal minAnswer that minimizes sumDistance 

is optn and the number of nodes of the minAnswer produced by Algorithm 10 is 

approxn. Also assume that the number of nodes of an optimal answer that minimizes 

the number of nodes (which is the objective of the set cover problem) is optscn and 

the number of nodes of the approximate answer produced by lines 1-6 (i.e., the greedy 

set cover procedure) is approxscn· It has been proved that the number of nodes of the 

answer obtained by the greedy set cover algorithm is at most log n times that of the 

optimal answer [ 64 ], where n is the number of nodes in the input Answer. That is, 

approx sen :::; log n x optscn· Since the later steps of Algorithm 10 may further re­

duce the number of nodes from the answer generated by the greedy set-cover proce­

dure, approxn :::; approxscn· Also, it is obvious that optscn :::; optn. Thus, we have 

approxn :::; log n x optn· For a query with l keywords, the sumDistances of the optimal 

and the approximation answers satisfy the following inequalities: 1) sumDistanceopt ~ 

[ (;) - l + opnn] x dmin and 2) sumDistanceapprox ::=; [ {;) - l + approxn] x dmax where 

dmax and dmin are the maximum and minimum distances between any pair of nodes in 
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the Answer, respectively. Since approxn ::; log n x optn, we have: 

sumDistanceapprox [ (;) - l + (log n X optn)] X dmax 
~~~~~~~-< ~~~~~~~~~~~~-

sumDistanceopt [ (;) - l + opnn] x dmin 

Therefore, the following can be easily derived: 

sumDistanceapprox ( ) dmax 
::; logn -d .. 

sumDistanceopt mm 

0 

It should be noted that Algorithm 10 is guaranteed to generate a minAnswer. The 

approximation is in terms of minimizing the weight of minAnswers. 

Since the weight of a minAnswer may be smaller than that of the Answer the 

minAnswer is generated from, Algorithm 10 should be called after line 26 of Algorithm 

8 using answer~ ConvertToMinAnswer (answer, Q). After that, the weight of the 

answer should be updated as well. Thus, in Algorithm 8 the generated minAnswer of 

each candidate is used to compete with the minAnswer s of other candidates so that the 

minAnswer with the smallest weight among the candidates can be returned by Algo-

rithm 8. 

Since the number of nodes in Answer is at most the number of input keywords, 

the time complexity of Algorithm 8 becomes O(IFI x (IDmaxl x l + l2
)), where l is 

the number of input keywords, I Dmax I is the maximum size of Di (the set of the nodes 

containing keyword ki) and IFI is the size of set F. As we discussed in previous section, 
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IFI = O(l x IDmaxl). Therefore, the time complexity of Algorithm 8 becomes O(Z2 x 

Dmax x (Dmax + l)). Since l can be much smaller than IDmaxl (l « IDmaxl), time 

complexity of Algorithm 10 is the same as Algorithm 8 and is equal to O(Z2 x 1Dmaxl2). 

The same strategy can be applied for minimizing center Distance in Algorithm 10. 

The only difference is that in line 8, the distance to the center node is taken into account 

and the sorting of line 9 is based on this distance. Similar to Theorem 8, the approxima-

tion ratio of the algorithm for minimizing the center Distance is ~~·~x where d'max and 
min 

d'min are the maximum and minimum distances between any nodes in the Answer14 and 

the center node, respectively. 

Theorem 9 The above modification of Algorithm 10 generates a minAnswer that min-

imizes center Distance with the approximation ratio of ~vi~x where n is the number of 
1nin 

nodes in the input Answer and d'max and d'min are the maximum and minimum distances 

between any nodes in the Answer and the center node, respectively. 

Proof 

For a query with l keywords, the center Distances of the optimal and the approximation 

answers satisfy the following inequalities: 1) center Distanceopt ~ l x d~nin and 2) 

center Distanceapprox ~ l x d'max where d'max and d'min are the maximum and minimum 

distances between any nodes in the Answer and the center node, respectively. If center 

14If the center node is part of the Answer, it is excluded for computing d'min· 
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node is part of the Answer, it is excluded for computing d'min because in that case d'min 

is equal to zero. Therefore, the following can be easily derived: 

sumDistanceapprox d'max 
~~~~~~~- :::; -,~. 

sumDistanceopt dmin 

D 

4.6.2 Producing Top-k I All Minimal Answers 

To generate all or top-k duplication-free minAnswers, Algorithm 7 is needed to di-

vi de the search space and call Algorithms 8 and 10 to find a minAnswer in each sub-

space. This procedure works fine for finding the first best minAnswer in the whole 

search space. However, for finding subsequent answers, the search space is divided 

into subspaces, each with inclusion and exclusion constraints, and the best answer from 

each subspace is generated to compete for the next best answer. This requires that the 

minAnswer generated from each subspace contains all the nodes in the inclusion set 

of that subspace. However, when generating a minAnswer from an Answer and when 

the inclusion set is not empty, Algorithm 10 may delete some of the inclusion nodes if 

their keywords are covered by other nodes in the Answer. This may lead to generating 

duplicate answers by Algorithm 7. The problem can be illustrated with the following 

example. 

Consider the graph in Figure 4.5. It contains 6 nodes: a, b, c, de and f. Assume that 
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Figure 4.5: An example for clarifying the problem of violating inclusion property. 

the query consists of 4 keywords k 1 , k2 , k3 and k4 . The first best answer generated by Al­

gorithm 8 is {a, b }.·Since it is a minAnswer, the algorithm for finding an minAnswer 

also returns {a, b} as the first best minimal answer. For finding the second best answer, 

the search space is divided into two subspaces. The first subspace has the constraints 

Inc1 = {a} and Exc1 = {b} and the second one Inc2 = {0} and Exc2 = {a}. The 

procedure for finding the best answer in the first subspace returns {a, c, d} as the best 

Answer, which is then converted to { c, d} by Algorithm 10 as the minAnswer. Since 

node a is removed from the answer, the I nc1 constraint is violated. 

To solve this problem, we change Algorithm 8 so that all the inclusion nodes in the 

Answer produced by the algorithm must contain at least one unique input keyword. 

In this way, the inclusion nodes in the answer cannot be removed when converting the 

Answer to a minAnswer. Below we propose two approaches that use this strategy. 

The first one is called the incomplete approach. It is faster but may miss some answers. 

The second approach is called the complete approach. It considers all the answers but 
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has higher time complexity than the first approach. The algorithms for both approaches 

are named FindMinimalAnswer below. They are called in Algorithm 7 at the places 

where Algorithm 8 was called. Both approaches are independent of the weight function 

used to measure the quality of the answer. 

4.6.2.1 Incomplete Approach 

Based on the way the search space is divided in Algorithm 7, the nodes in the inclusion 

set of a subspace are part of a previously-generated minAnswer. Thus, each node in 

an inclusion set has at least one unique keyword among other nodes in the set. If in 

Algorithm 8 each Di contains only the nodes that do not contain any keyword that an 

inclusion node contains, the inclusion nodes will keep their uniqueness and will not 

be removed when converting the Answer to a minAnswer. This is the idea of the 

incomplete approach. 

The pseudo-code of this approach is presented in Algorithm 11. Its inputs are the 

same as the ones for Algorithm 8. It first collects the keywords covered by the inclusion 

nodes into CovK eywords. Then it calls procedure FindBestAnswerCovConstraint 

to generate a minAnswer. Procedure FindBestAnswerCovConstraint is similar to 

procedure FindBestAnswer (i.e., Algorithm 8) with two differences. The first differ­

ence is that in addition to other inputs, it also takes set CovK eywords as input and in line 

4 of procedure FindBestAnswer the algorithm also excludes from Di all the nodes that 
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contain a keyword in CovK eywords. Since Dis store the candidate nodes to be added 

to the answer, this exclusion guarantees that no node with a keyword in CovK eywords 

is added to the .answer. The second difference is that the procedure calls Algorithm 

10 after line 26 to convert a candidate answer to a minAnswer and then calculates the 

weight of the minAnswer. The best minAnswer is returned. In section 4.6.1, we have 

showed that calling Algorithm 10 within Algorithm 8 does not change the complexity of 

Algorithm 8. Thus, the time taken by Algorithm 11 is the same as Algorithm 8 and is 

equal to O(l2 
X 1Dmaxl 2

). 

Algorithm 11 Find.MinimalAnswer, Incomplete Approach 
Input: the input graph G; the query Q; the set of content nodes C; the set of inclusion 

nodes Inc; the set of exclusion nodes Exe 

Output: the best minAnswer satisfying both Inc and Exe constraints 

I: CovK eywords +---set of keywords covered by Inc 

2: minAnswer +--- FindBestAnswerCovConstraint(G, Q, C, Inc, Exe, 

CovK eywords) 

3: return minAnswer 

However, Algorithm 11 may miss some answers because it puts a too strong con-

straint on the search space and removes some good candidate nodes. Consider the exam-

pie in Figure 4.5. The best answer in the first subspace (I nc1 = {a} and Exc1 = { b}) is 

set {a, e}. However, since a belongs to the inclusion set, Algorithm 11 removes all of the 
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nodes that contain a keyword in a, i.e. k1 or k2. Thus, e is removed from the search space 

because it contains k2 . Therefore, Algorithm 11 is not able to produce answer {a, e}. It 

produces {a, f}, which has higher weight than {a, e}. 

4.6.2.2 Complete Approach 

To solve the missing-answer problem of the incomplete approach, we propose the com­

plete approach. Since each node in the inclusion set has at least one unique keyword, 

we first compute the set of unique keywords for each node in the inclusion set and then 

calculate the Cartesian product of these sets. For example, if Inc = {a, b} and a and 

b uniquely contain { k1, k2 } and { k3 , k4 } respectively, the Cartesian product of { k1, k2 } 

and { k3 , k4} is { k1, k3}, { k1, k4}, { k2, k3 } and { k2, k4}· Then, for each sets in the Carte­

sian product, procedure FindB estAnswerC ovC onstraint is called with s as the input 

value for CovK eywords to generate a minAnswer whose non-inclusion nodes do not 

contain any keyword ins. Among all of the minAnswers (each generated based on an 

element in the Cartesian product), the best minAnswer is returned as the solution. 

The pseudo-code of the complete approach is presented in Algorithm 12. It first 

gets the set of inclusion nodes as { n 1 , n 2 , ... , n 8 }. Then, for each content node ni E 

Inc, it gets the unique keywords covered by ni and stores them in Ki. The Cartesian 

product of {K1 , K 2 , ... , Ks} is calculated and stores in CKeywordSet in line 3. For 

each member CovKeywordsi of CKeywordSet, a minAnswer is found by calling 
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FindBestAnswerCovConstraint in line 8. Procedure FindBestAnswerCovConstraint 

is the same as the one used in the incomplete approach. It finds a minAnswer and 

makes sure that its non-inclusion no9es do not contain any keywords in CovK eywordsi. 

If the minAnswer is not NULL and its weight outperfonns previous minimal answers, 

leastWeight and bestMinAnswer are updated accordingly. The algorithm returns the 

minAnswer with the smallest weight among all the minAnswer s corresponding to the 

members of the Cartesian product. 

Since in each element CovK eywordsi of the Cartesian product, each inclusion node 

has a unique keyword, the keyword will remain unique in the Answer generated by 

FindBestAnswerCovConstraint because the nodes containing that keyword will not 

be added to the Answer. Hence, the inclusion nodes in the Answer cannot be removed 

when converting the Answer to the minAnswer. Therefore, Algorithm 12 does not vi­

olate the inclusion constraint. In addition, since all possible combinations of the unique 

keywords of the nodes in the inclusion set are evaluated, no answer is missed. For the 

example in Figure 4.5, the inclusion set of the first subspace is Inc1 = {a}. Since a con­

tains keywords k1 and k2, the Cartesian product CKeywordSet is { {k1}, {k2 } }. When 

{ k1 } is used as the value of C ov K eywordsi by calling FindB estAnswerC ovC onstraint, 

{a, e} is returned as the minAnswer, which is the best answer in the subspace that was 

missed by the incomplete approach. 

The time complexity of the algorithm is O((f1;=1 IKil) x. Z2 x 1Dmaxl2
), wheres is 
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Algorithm 12 FindMinimalAnswer, Complete Approach 
Input: the input graph G; the query Q; the set of content nodes C; the set of inclusion 

nodes Inc; the set of exclusion nodes Exe 

Output: the best minAnswer satisfying both Inc and Exe constraints 

1: {n1 , n 2 , ... , n8 } +--set of nodes of Inc 

2: Vi, 1 ~ i ~ s, Ki +--unique keywords of ni 

3: CKeywordSet +--Cartesian product of {K1 , K2, ... , Ks} 

4: leastW eight +-- oo 

5: bestMinAnswer +--NULL 

6: for i +-- 1 to size( CK eywordSet) do 

7: CovKeywordsi +-- CKeywordSet.get(i) 

8: minAnswer +-- FindBestAnswerCovConstraint(G, Q, C, Inc, Exe, 

CovK eywordsi) 

9: if minAnswer =/= NULL then 

10: weight +-- weight of minAnswer 

11: if weight < leastW eight then 

12: least TV eight +-- weight 

13: bestM inAnswer +-- minAnswer 

14: return bestM inAnswer 
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the average number of nodes in an inclusion set and I Ki I is the number of unique input 

keywords in the ith inclusion node. Note that I:::=1 IKil ::; l- l, where l is the number of 

input keywords. When the number of input keywords is small, the maximum cardinality 

of the Cartesian product is small. For example, for six keywords, the worst case happens 

when the inclusion set contains two nodes, one containing 3 unique keywords and the 

other containing 2 unique keywords. In this case, rr~=l Ki= IK1I x IK2I = 6. Similarly, 

when l = 3, 4, 5 or 7, f1:= 1 Ki is at most 1, 2, 4, or 8, respectively. Thus, since the number 

of query keywords is usually small in practice, Algorithm 12 is fixed-parameter tractable 

(FPT) [17]. 

4. 7 Discussion of Some Issues 

4.7.1 Graph Indexing 

In Algorithms 2 and 4, we need to compute the shortest distance between two nodes 

in the input graph. Calculating the shortest path while searching for the best answer is 

expensive. Since the shortest distance between any two nodes in a graph is independent 

of the query, we pre-built an index that stores the shortest distances between nodes. A 

straight forward indexing method is to calculate and store the shortest path between each 

pair of nodes. However, this index needs O(n2
) storage, where n is the number of nodes 

in graph G. This index is very large and not feasible for graphs with a large number of 
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nodes. We use the neighbor indexing method which is described in Section 3.8 to pre­

compute and store the shortest distances and paths for the pairs of nodes whose shortest 

distance is within a certain threshold r max. Note that the idea of indexing the graph using 

a distance threshold has also been used in [51, 60]. 

4. 7 .2 Presenting the Answers 

The Answers and minAnswer s produced by our algorithms are a set of content nodes. 

Often it is important to see how these nodes are connected to each other in the input 

graph. The neighbor index that we use stores not only the shortest distances but also 

the shortest paths between nodes. Thus, the relations between the nodes can be revealed 

using the index. In this work, we use two approaches to revealing the relationships 

between nodes in an answer. In the first approach, a Steiner tree that connects the nodes 

in an answer with the minimum weight is created after the answer is generated and the 

user indicates that he/she would like to see the connections. Figures 4.13 and 4.14 depict 

two trees created by our tree-generating procedure for two answers used in our user study 

(to be described later). Note that generating a Steiner tree from an answer is much faster 

than generating a tree directly from the input graph. We use an algorithm described in 

Section 3. 7 to generate the Steiner tree. In the second approach a multi-center sub-graph 

is generated to reveal the relations among content nodes in an answer. A center for each 

answer is any node in the graph with the distance up to r to any content node in the 
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answer [ 60]. A path between each pair of content nodes and centers is added to the sub-

graph. The advantage of using multi-center graphs rather than trees is that it reveals more 

relations. The disadvantages is that it might add some irrelevant nodes to the answer [35] 

and the size of an answer can be overwhelmingly large. Some other methods can also be 

used. 

4.8 Experimental Evaluation 

We implemented all the algorithms presented above. In addition, for the purpose of 

comparison and showing that previous approaches produce duplicate and non-minimal 

answers, we implemented four algorithms in the literature: Dynamic [16], ELIN KS 

[24], Community [60], and r-clique [35]. All of the algorithms are implemented in 

Java. The experiments are conducted on an Intel(R) Core(TM) i7-2720QM 2.20GHz 

computer with 16GB ofRAM15 • 

4.8.1 Data Sets and Queries 

Two real world data sets, DBLP and IMDb, are used in our experiments. The DBLP 

graph is produced from the DBLP XML data16• More details about this dataset can be 

found in Section 3.9.1. We used two approaches for assigning weights to the edges of 

15The reason for using a 16GB RAM is that the Dynamic method stores the whole graph in the main 
memory. Other methods including ours use proper indexing, for which smaller RAM can be used. 

16http://dblp.uni-trier.de/xml/ 
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the graph. In the first approach, the weight of the edge between two nodes v and u 

is (log2 (1 + Vdeg) + log2 (1 + udeg))/2, where vdeg and udeg are the degrees of nodes 

v and u respectively. This approach is called logarithmic edge weight and was used 

in [16, 32, 35, 60] . The second approach simply assigns the uniform weight of 1 to 

each edge. It is called uniform edge weight and was used in [51]. The set of input 

keywords used in our experiments and their frequencies in the input DBLP graph are 

shown in Table 3.2 in Section 3.9.1. The queries used in our experiments are randomly 

generated from this set of keywords with the constraint that in each query all keywords 

have the same frequency (in order to better observe the relationship between run time and 

keyword frequency). Note that the input keywords shown in Table 3.2 were generated 

by the authors of [60] and used to generate queries in [35, 60]. We use the same set of 

input keywords and the same way to generate queries to make our results comparable to 

others. 

The IMDb dataset contains the relations between movies and the users of the IMDb 

website that rate the movies 17. More details about this dataset can be found in Section 

3.9.1. The edges of the graph are weighted in the same way as for the DBLP graph. 

For the IMDb dataset we only present the results of query with keywords house, king, 

night, city, city, world and story. The same set of input keywords is used in [35, 60] 

and in Section 3.9.1. 

17http://www.grouplens.org/node/73 
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Figure 4.6: Percentage of duplicate answers of different methods with different edge weights on 

DBLP dataset. 

4.8.2 Duplication of Previous Approaches 

Our top-k method is guaranteed to generate duplication-free answers. In this section, 

we show the rates of duplicate answers of previous methods. Figure 4.6 shows the per-

centage of duplicate answers for four previous methods on the DBLP dataset with two 

different edge weights, different values of keyword frequency, different numbers of query 

keywords and different k values. 18 Two answers are considered duplicates if they have 

the same set of content nodes. The rate of duplicate answers in the Dynamic method 

18Unless it is mentioned otherwise, in our results for DBLP, when not changing, the number of keywords 
is 4, keyword frequency is 0.0009 and top-50 answers are found. For the Community and r-clique methods, 
the Trnax value is 8 and 5 for the logarithmic and uniform edge weights respectively. 
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[16] is higher than ELIN KS [24], Community [60] and r-cliques [35]. This is because 

it finds minimum cost connected trees, and in most of the cases; the same set of content 

nodes are connected via different connections. ELIN KS also has a high rate of dupli­

cation. It is due to its policy of defining trees based on a unique root. The same set of 

content nodes may have a different root. The Community and r-clique methods have the 

smallest rate of duplication among the existing methods because they divide the search 

space more wisely. But they still have some duplications. By increasing the frequency 

of keywords, the duplication rate of Dynamics and ELIN KS increases. By increas­

ing the number of keywords, the duplication rate generally decreases for Dynamic and 

ELIN KS. Changing the value of k does not have a significant effect on the duplica­

tion rate. All these previous methods have duplications for any value of k in the top-k 

answers. 

The percentage of duplicate answers for 4 different methods on the IMDb dataset 

is shown in Figure 4. 7, in which the edge weights are logarithmic and r max is 11 for 

the Community and r-clique methods. The Community and r-clique methods do not 

produce any duplicate answer for the queries used due to small numbers of content nodes 

(e.g., only 23 nodes contain keyword house). In addition, for 5 and 6 keywords, the 

duplication rate of all methods is close to zero due to small numbers of content nodes. 
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Figure 4.8: Percentage of non-minimal answers of different methods with different edge weights 

on DBLP dataset. 
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4.8.3 Non-Minimality of Previous Approaches 

Both the complete and incomplete approaches proposed in this chapter are guaranteed to 

generate only minAnswers. In Figure 4.8 we show the rates of non-minimal answers of 

four previous methods on the DBLP dataset with two different edge weights. The rates of 

non-minimal answers in Community and r-clique are higher than those of ELIN KS 

and Dynamic. This is because for each keyword, Community finds the closest keyword 

holder to the center of the community. However, the keyword may be covered by another 

node associated with another keyword in the answer. This leads to non-minimal answers. 

The similar scenario occurs for the results of r-clique. In Dynamic, when merging two 

trees, their keywords cannot overlap. This leads to a very small rate of non-minimality. 

This is also valid on the IMDb dataset (Figure 4. 7). 

4.8.4 Run-time Comparison 

One way to produce duplication-free answers is to post-process the answers generated. 

from a keyword search method by removing the duplicates. In this section, we would 

like to see if our approach (which avoids generating duplicates) is faster than using the 

post-pruning method. Below we compare the run time of our methods to that of the 

r-clique and Community methods with the post-pruning procedure. When comparing 

with Community, we use the center Distance function which is the weight function 
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Figure 4.9: Run time of different methods with sumDistance proximity function and 

logarithmic edge weight on DBLP dataset. r max is a distance threshold used in r-clique. 

used in Community. Note that minimize the center Distance function is slower than 

minimizing sumDistance. Note that the center Distance weight function is also used 

in BLINKS. We do not compare with Dynamic because Dynamic is too slow for 

its results to be put into the same graph with others. We do not directly compare with 

the original BLINKS algorithm because ELIN KS generates much fewer answers 

than others. That is, if we allow all the methods to generate all the possible answers, 

ELIN KS only generates a subset of them while ours generates them all (i.e., ELIN K 

misses some answers. 19
) Thus, due to the incompleteness of ELIN KS, we do not com-

19This is due to its use of distinct root semantic for producing answers. The number of answers produced 
by BLINKS is O(n) where n is the number of nodes in the graph. However, the number of answers in 
our model is O(IDmaxjl} where IDmaxl is the maximum size of Di for 1 ::; i ::; land l is the number of 
query keywords. See Section 4.2 for an example on the incompleteness of BL! N KS. 
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Figure 4.10: Run time of different methods with center Distance proximity function 

and logarithmic edge weight on DBLP dataset. rmax is a distance threshold used in 

Community. 

pare with the post-pruning version of original ELIN KS, but its weight function is used 

in the Community method to compare with our approach with a modified Algorithm 8 

that minimizes BLINKS' weight function. 

Figures 4.9 and 4.10 shows the run time of different methods on DBLP with the 

logarithmic edge weight. The first method is r-clique (or Community in the second 

chart) which may generate duplicate and non-minimal answers. PP-Dup-Free refers 

to the r-clique (or Community in the second chart) method that post-prunes duplicate 

answers. PP-Dup-Free&Minimal refers to the r-clique (or Community in the second 

chart) method that post-prunes both duplicate and non-minimal answers. Dup-Free refers 
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Figure 4.11: Run time of different methods with sumDistance proximity function and 

uniform edge weight on DBLP dataset. rmax is a distance threshold used in r-clique. 

to our procedure for finding duplication free answers (i.e., Algorithms 7 and 8). The 

last two methods refers to our two approaches for finding duplication-free and minimal 

answers: the incomplete and complete approaches. To make fair comparisons, all of 

the methods use the same indexing method described in [35]. All the run times are the 

average time for producing one answer and presented in the logarithmic scale. 

The run time of r-clique and Community are slower than our duplication free method 

(Dup-Free) for all the three different settings. Sine they both use the same proximity mea-

sure, it seems to be a surprise. However, it is due to the fact that our method divides the 

search space into sub-spaces more wisely. The number of subspaces is usually smaller 

in our method. For example, for four keywords, assume that the best answer A contains 
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only two nodes. The r-clique and Community methods divides the search space into 

four subspaces (equal to the number of keywords). But our procedure divides the search 

space into two subspaces (equal to the number of nodes in A). Since the number of nodes 

is always no larger than the number of keywords, we gain better performance. 

The results show that finding duplication free answers with post-processing is two 

to four times slower than our procedure. Finding duplication free and minimal answers 

using post processing is three to ten times slower than each of our approaches. By in­

creasing the frequency of keywords, the number of keywords or the value of r max, the 

run time increases. In addition, the run time (for producing one answer) does not change 

when the value of k changes. It shows that they all scale well with any number of required 

answers. This is also the case for the uniform edge weight (See Figure 4.11). 

4.8.5 Incomplete vs. Complete Approaches 

The incomplete approach is faster in theory but it may miss some answers. On the other 

hand, the complete approach can produce all answers, but is slower. Figures 4. 9, 4 .10 and 

4.11 show that for up to 8 keywords, the run time difference between the two approaches 

is less than 5% (which may be hard to see on the log scale in the figures). This is due 

to the small cardinality of the Cartesian product when the number of keywords is small 

and also because the worse case rarely happens in practice. For 8 to 10 keywords, our 

experiments show that the run time difference is up to 20%. In terms of missing answers, 
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Figure 4.12: Average sumDistances ofresults from the exact and greedy algorithms for 

producing minimal answers on DBLP with logarithmic edge weight. The r max value is 

8, keyword frequency is 0.0009 and the number of keywords is 4. 

based on our experiments, the incomplete approach misses few answers for up to six 

keywords (less than 1 % comparing to the complete approach). For 7 to 10 keywords, the 

incomplete approach misses up to 5% of the answers. Thus, the performances of the two 

approaches are close in practice. 

4.8.6 The Quality of the Approximation Algorithm for Producing Minimal An-

swers 

To evaluate the quality of the minAnswer generated by the greedy Algorithm 10, we 

used exhaustive search to find the optimal (exact) answer that minimizes sumDistance. 

Figure 4.12 shows the average weight of the answers produced by the exact and greedy 

algorithms for different values of k. The results shows that the difference of the two 

algorithms is at most 10% in practice, suggesting the high quality of the proposed greedy 
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A distributable algorithm for 
optimizing mesh partitions 

Figure 4.13: A tree generated from a non-minimal answer. 

Recursive least-squares 
using a hybrid Householder 

algorithm on massively 
parallel SIMD systems 

How to Partition a Graph 
by a Multi-Agent Approach 

based on a Hybrid 
Optimization Tool 

Figure 4.14: A tree generated from a minimal answer. 

algorithm. Similar results are obtained for the center Distance function. 

4.8. 7 The Quality of the Minimal Answers 

Finding duplication free answers is well motivated. Clearly, users prefer answers without 

duplication. However, it may be unclear whether users prefer minimal (more compact) 

over non-minimal (less compact) answers. To investigate this issue, we conducted a user 
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study that compares minimal and non-minimal answers in terms of their relevancy to the 

query. For this purpose we used 4 meaningful queries for the DBLP dataset as shown 

in Table 3.4 in Section 3.9.1 and applied our Algorithms 7 and 8 to find duplication-free 

answers. We collected the first 10 non-minimal answers from the top-100 answers for 

each query, and used Algorithm 10 to convert them into minimal answers. We asked 8 

users (who are graduate students in computer science but not involved with this work) 

to compare each pair of non-minimal and minimal answers by giving each answer a 

relevance score between 0 and 1 with 1 meaning completely relevant and 0 completely 

irrelevant to the query. Each answer is presented to the user as a Steiner tree generated 

using the first answer presentation method discussed in Section 4.7. Figure 4.13 shows 

a tree generated from a non-minimal answer for the first query (i.e. "parallel graph 

optimization algorithm") and Figure 4.14 shows the tree for its corresponding minimal 

answer. 

For each answer we use the average of the relevance scores from the 8 users as the 

relevance score of the answer. For each query, we compute the average of the relevance 

128 



\' 

scores of its first k non-minimal answers, and the average of the relevance scores of their 

corresponding minimal answers, where k = 5 or 10. These average relevance scores are 

presented in Figure 4.15. minimal answers receive higher relevance scores than non-

minimal ones in all the queries. This indicates that users prefer more compact answers 

as long as the set of nodes cover all of the query keywords. Also, larger answers have 

higher chance to include irrelevant nodes. 

To further study the quality of the minimal answers, a state-of-the-art IR score is used 

to evaluate the answers. The IR scores are calculated based on the method used in [26]. 

The IR-score of a content node v for query Q is calculated as follows: 

S ( Q) 
_ L 1 + ln( 1 + ln( t f)) 

1 
N + 1 

core v, - ( ) cs x n dlf 1-s +s-
kEQnv AVcs 

where, for a word k that appears in both v and Q, t f is the frequency of k in v, 

df is the number of nodes of the same type as v that contains k20 , cs is the size of v 

in characters, A Vcs is the average size of all of the nodes with the same type as v in 

characters, N is the total number of nodes with the same type as v and s is a constant. 

The same as in [26], we set s to 0.2. Then, the combined score of the answer A that 

contains p content nodes is calculated as follows: 

C b. dS (A Q) I:f-1 Score( vi, Q) om ine core , = ---------
p 

2°For example, if v is a paper, df is the number of the papers containing keyword k in the dataset. 
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Figure 4.16: Results of the IR-Based ranking. 

The IR scores of minimal and non-minimal answers for the queries in Table 3.4 are 

presented in Figure 4.16. The result suggests that the IR scores of the minimal answers 

are generally higher than the non-minimal answers (except for the third query in which 

the IR-scores of both of the answer sets are very close.). 

4.9 Conclusion and Future Work 

We proposed novel and efficient methods for keyword search in graphs. A problem with 

existing approaches is that they may produce duplicate answers that have the same set 

of content nodes with trivial differences in their connections. To address this problem, 

we introduced a procedure that produces duplication free answers by wisely dividing the 

search space. In addition, since users are usually interested in exploring more compact 

answers [35] and in some applications (such as textbook selection) answers with unique 

contributions from each node are preferred, we defined minimal answers and proposed 

two algorithms for converting an answer to a minimal answer and two approaches to 

finding top-k or all duplication free and minimal answers. Our algorithms are guaranteed 
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to generate duplication-free and minimal answers. We presented the rates of duplicate 

and non-minimal answers produced by previous approaches. We compared the run-time 

of our proposed methods to that of using post-pruning techniques to remove duplicate 

answers. We showed that our approaches are faster than post-pruning techniques. We 

also showed that our greedy algorithm for minimizing the weight of a minimal answer 

produces minimal answers whose weights are close to the optimal weights produced by 

the exact algorithm. Finally, we show that the minimal answers have higher quality than 

non-minimal answers through a user study and a state-of-the-art IR weighting function. 

Our user study indicates that users prefer minimal answers to non-minimal ones. As a 

future work, we plan to improve the approximation ratio of the proposed algorithms. We 

also plan to apply our procedure for finding minimal answers in other domains other than 

keyword search over graphs and study the effectiveness of our approach. 
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5 ·Meaningful Keyword Search in Relational Databases 

with Large and Complex Schema 

Keyword search over relational databases offer an alternative way to SQL to query and 

explore databases that is effective for lay users who may not be well versed in SQL or 

the database schema. This becomes more pertinent for databases with large and complex 

schemas. An answer in this context is a join tree spanning tuples containing the query's 

keywords. As many answers can result of varying quality, and the user is often only 

interested in seeing the top-k answers, how to gauge the relevance of answers to rank 

them is of paramount importance. 

We focus on the relevance of join trees as the fundamental means to rank the answers 

We devise means to measure relevance of relations and foreign keys in the schema over 

the information content of the database. This can be done offiine with no need for ex­

ternal models. We compare against a gold standard that we create from a real workload 

over TPC-E and prove the effectiveness of our measures. Finally, we test performance 

of our measures against existing techniques to demonstrate a marked improvement, and 
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perform a user study to establish naturalness of the ranking. 

5.1 Introduction 

5.1.1 Motivation 

Much of the world's high-quality data remains under lock and key in relational databases. 

Access is gained through relational query languages such as SQL. This can suffice for 

people who are well versed in both SQL and in the schemas of the databases in which 

they have an interest. However, a lay user-anyone who does not know SQL or who 

is not well versed in the given schema-is effectively locked out. As the schemas of 

the databases that organizations field become increasingly more complex year by year, 

we all effectively become lay users. Keyword search over relational databases was pro­

posed a decade ago [1, 27] to offer an alternative way to query a database that neither 

requires mastery of a query language such as SQL, nor deep knowledge of the database's 

potentially quite complex schema. 

For keyword search over databases, the database schema is thought of as a graph: the 

relations are the nodes, and the foreign key relationships between them are the directed 

edges. A query is simply a set of words (keywords). The concept of what constitutes 

an answer, however, is more involved. For an answer, we want to convey elements 

from the database-namely tuples-that cover the keywords of the query, and a natural 
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CUSTOMER_ACCOUNT 
Name : Cynthia Witherspoon 

Vacation Account 

CUSTOMER 
First Name : Cynthia 

Family Name : Witherspoon 
Email : Cwitherspoon@attbi.com 

TRADE 
Date: 2005-01-11 

Price : $ 20.92 
Quantity: 400 

. SECURITY 
Name : Common of Arden 

Group, Inc. 

Company 
Name : Arden Group, Inc. 

CEO: Marry Moffet 
Open Date : 1949-04-03 

Figure 5.1: An answer considered non-minimal by DISCOVER. 

structure-a sub-graph of the database's schema-that spans those elements. This sub-

graph is commonly called a network in the literature [27, 28], but is effectively a tree, 

called a join tree in [ 1]. 

What is an admissible answer is usually further restricted. We are not interested 

in any tree; some may only very loosely connect the tuples containing our keywords. 

Previous work restricts answers over minimal trees [27, 28], meaning there is no answer 

over a sub-tree of the tree in question. However, there is another aspect of an anwer: 

relevance to the query. By restricting answers with a minimal structure, some relevant 

answers may be missed. 

Consider the keyword query "Cynthia Arden" over the TPC-E21 schema. The TPC-E 

benchmark simulates the on-line transaction processing (OLTP) workload of a broker-

21 http://www.tpc.org/tpce/ 
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age firm. 22 The keywords Cynthia and Arden may appear in different relations. Each 

could refer to the name of a customer, broker, company, or CEO of a company, or be 

in the title of a news_item. Of course, each of these different relations for Cynthia and 

for Arden potentially lead to rather different answers. For example, Figure 5.1 shows an 

answer for the keyword query "Cynthia Arden" on TPC-E, which says that a customer 

Cynthia buys the stocks of a company named Arden Group. This is an interesting and 

relevant relationship between Cynthia and Arden assuming the user wants to find out 

the relationship between customer Cynthia and company Arden Group. However, such 

an answer may be missed if we restrict the answer to be structually minimal while cover-

ing all the query keywards. This is because word Cythia also appears in an intermediate 

node of the tree and thus the customer node is pruned. 

Another issue in keyword search is to score answers for relevance. Some answers 

are more relevant than others, and thus the answers should be presented in order of de-

scending relevance. The relevance of an answer depends on the value of many factors: 

the tuples in the answer and how the keywords appear in them, the bridging tuples that 

do not contain keywords, and the join tree. How to measure the value of each of these is 

open to question. How to then combine these measures into a single relevance score is 

also open to debate. 

22The schema contains 33 tables that can be clustered into four parts [68]: customer, market, broker, and 
dimension. The TPC-E schema is shown in Figure 5.3. The database models information about financial 
transactions such as traded companies, fees of brokers, customer accounts and their related holdings, and 
the type of traded securities. 
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Prior work has addressed relevance. In [27], they offer the simplistic solution of 

scoring relevance as the reciprocal of the number of edges in an answer's tree. This 

heuristic assumes that fewer joins involved mean the tuples are related more closely. 

However, this relevance scoring method has the following problem. Consider the query 

{Anderson Joseph} over the TPC-E schema. Figure 5.2 shows four possible join trees 

of different sizes that could produce answers that connect company Ander son and cus­

tomer Joseph. If we ranks the trees according to their size (i.e., the number of edges or 

nodes), the first tree (a) which connects a customer and a company when they have the 

same status gets the highest rank. However, based on the TPC-E schema description, this 

is not a strong relationship. Status_Type is a dimension table and it is connected to six 

tables in the schema and stores the status value for other entities (such as companies or 

customers). An answer derived from this tree would say that both Ander son and Joseph 

are active. Looking at the customer and a company tables in TPC-E, it turns out that all 

the customers and companies have the Active status. Therefore, any given customer and 

any given company in the TPC-E database share the same status through the Status_Type 

table. Thus, the found relationship between Anderson and Joseph is not interesting or 

relevant. 

In [28], the authors take a very different track: they apply information-retrieval (IR) 

measures to the answers to determine an individual measure per answer. This leverages 

approaches from IR that work well in other domains of keyword search. An answer 
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COMPANY 

STATUS_TYPE 

(a) 

CUSTOMER COMPANY 
Joseph Anderson 

CUSTOMER 
Joseph 

(b) 

(c) (d) 

Figure 5.2: Four possible trees for the query "Andersen:company Joseph:customer". 

in this case, however, need not cover all the query's keywords to score well. And the 

approach de-emphasizes the importance of the tree. 

We believe that for keyword search in relational databases the relevance of the tree 

from which answers derive is paramount. We hypothesize that relevance as measured 

by adapted IR techniques is much less effective. Previous work on relevance has been 

tested over simple schemas. For application over more complex schemas, the importance 

of the schema (thus, answers's trees) becomes more pronounced. It is how the tuples are 

related (via the joins) that is meaningful for search in the relational domain, after all. 
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5.1.2 Objectives and Contributions 

While solutions have been proposed for the above problems, it is well recognized that 

there is room to improve. In this chapter, we tackle the problems by (1) defining an-

swers that incorporate the user's interest and (2) devising meaningful relevance scores 

for answers. 

We address the first issue by allowing the user to specify the role of each query 

keyword. A first step to keyword query evaluation in a relational database is to determine 

the tuples in the database that contain keywords from the query.23 We call a relation that 

contains a tuple containing a keyword a potential role for that keyword. Finding the 

potential roles for the query's keywords can be done efficiently, by using an inverted 

index structure or existing built-in support for full-text keyword search in the RDBMS 

[61]. 

In keyword search, the user does not commonly specify the roles; just the keywords. 

However, adding a role selection step is beneficial. First, the user focuses the query to 

roles of interest. Second, this will admit meaningful answers that would not otherwise 

be found. The answer in Figure 5.1 is not found by DISCOVER [27] because of the 

minimality constraint they add to their definition of "answer", and that roles are not part 

of the definition. This minimality issue is addressed in depth in Section 5.2. 

23 Keywords may appear in different columns and in different tables. This ambiguity may resolved by 
the user, or by using automated techn~ques such as in [7]. 
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Allowing the user to select a role for each query keyword may require the user have 

some knowledge of the database. However, a user-interface for the system could present 

options in a way that the user still need not be familiar with the database schema. Al­

ternatively, in [7], the authors propose a method for ranking the role of each keyword, 

which may be used to automatically select a role for each query keyword. 

To tackle the second problem (i.e., devising meaningful relevance scores for an­

swers), we seek to measure importance of edges and nodes (foreign keys and relations, 

respectively) in the graph (the database schema). The relevance of an answer's tree can 

be then determined based on the importance value of its nodes and edges. We adapt and 

leverage techniques from recent work on database summarization [ 67, 68] for this. 

Our relevance measures only rely on the database's schema and data. We do not rely 

on other models, workloads and logs, or other external information. Our node and edge 

relevance can be computed offiine and efficiently. 

Our contributions are as follows. 

1. Model for keyword queries in relational databases. 

Redefine answer via roles (as discussed above and defined in Section 5.2) that 

captures important answers missed by previous techniques. 

2. Schema-based ranking. 

(a) Devise importance measures for nodes, importance measures for edges, and 

a hybrid measure of the two. 
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(b) Devise relevance measures for join trees derived from the schema relevance. 

Consider the effect of penalizing larger trees. 

( c) Construct a gold standard for relevance of nodes and edges from an extensive 

workload of real SQL queries. This is used to evaluate the effectiveness of 

our measures which do not require such external information. 

3. Evaluation. 

Establish the efficacy of our approach by evaluation. 

(a) Perform a comprehensive evaluation based on TPC-E to demonstrate the vi-

ability of our methods and to compare against existing methods. The exper-

iments are over a much larger and more complex schema (TPC-E) than the 

experiments in previous work. 24 

(b) Run a user study to establish the meaningfulness of answers and ranking 

generated by our system. 

The chapter is organized as follows. In Section 5.2, we present our framework. In 

Section 5.3, we devise our measures for relevance of nodes and edges, and for join trees. 

We show how to compute these efficiently. In Section 5 .4, we discuss the comparison of 

the methods against the gold standard, we evaluate our methods against existing methods, 

and we present the results of the user study. In Section 5.5, we conclude. 

24In [9], keyword search over the Credit Suisse data-warehouse is considered, which has a complex 
schema. However, the authors use meta-data and patterns to build a model. We assume no extra informa­
tion. 
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5.2 Framework 

5.2.1 Problem Statement 

A relational database schema consists ofa set ofn relation schemas, denoted as {R1 , R2 , 

... , Rn}, where each R is described by a set of attributes. Two relation schemas, R 

and Rj, may be related by a foreign key relationship, denoted as R +-- Rj, where the 

primary key of R is referenced by the foreign key of Rj. Thus, a relational database 

. schema can be considered as a graph G = (V, E), where nodes are relation schemas and 

edges represent the foreign key relationships. 

A relational database is an instance of a relational database schema G. It consists of 

a set of relations, where each relation r(Ri) is a set of tuples conforming to the relation 

schema R in G. Given a relational database D and a set of l("2. 2) keywords (Q = 

{ k1 , k2 , ... , kz} ), the problem of keyword search in D is to find a set of tuples that are 

connected via foreign key relationships and cover all the keywords in Q. The most 

representative algorithm for this problem is DISCOVER [27], which finds niinimal total 

joining networks of tuples defined as follows. 

Definition 7 Minimal Total Joining Network of Tuples (MTJNT): Given a database 

with schema graph G and a query Q containing a set of keywords, a minimal total joining 

network of tuples is a tree T of tuples that satisfy the following conditions: 

• Joinable: for each edge (ti, tj) in T, where ti E r(Ri) and tj E r(Rj ), there is an 
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edge Ri +- Rj or Ri -+ Rj in G and ti !><I tj E r( Ri) 1><1 r( Rj ). 

• Total: each keyword in Q is contained in at least one tuple in T. 

• Minimal: if a tuple in T is removed, T is either not joinable or not total. 

The DISCOVER algorithm generates all the MTJNTs given a database and a query. 

It does not specify the role of a query keyword (e.g., it does not care in which relation 

a query keyword should appear). Thus, an answer that contains a tuple with a keyword 

in an interesting relation may not be found if the answer is not minimal. This occurs 

when an intermediate tuple connecting the tuples in the interesting relations with the 

query keywords also contains a query keyword, which leads to a tuple in an interesting 

relation being pruned to make the network minimal. To illustate this issue, an example is 

shown in Figure 5.1. Assume that the user is interested to see the relationships between 

a Cynthia: customer and a Arden: company. One of the most interesting relationships in 

TPC-E is thatCynthia buys the stocks of Arden, which is shown in Figure 5.1. However, 

it cannot be discovered by the DISCOVER algorithm since both keywords (Cynthia and 

Arden) appear in the intermediate tuples (i.e. customer_account and security) and thus 

the answer is considered non-minimal by DISCOVER. 

In our framework, the role of a query keyword can be specified by the user or auto­

matically detected using a method such as the one in [7]. For each query keyword, our 

algorithm first finds the list of relations that contain the keyword using an inverted index 

or the built-in support for full-text keyword search in DBMS [61], and then a relation is 
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chosen (either by the user or automatically) from the list as the role of the keyword. With 

specified keyword roles, our algorithm searches for answers that are defined as follows. 

Definition 8 Minimal Joining Network of Tuples Covering Roles: Given a database D 

with schema graph G and a query Q containing a set of keywords { k1 , k2 , ... , kz} and 

their respective roles { r 1 , r 2 , ... , rz} (where r i's are relations in D ), a minimal joining 

network of tuples for query Q is a tree T of tuples that satisfy the following conditions: 

• Joinable: for each edge (ti, tj) in T, where ti E r(Ri) and tj E r(Rj), there is an 

edge Ri +-- Rj or Ri ---+ Rj in G and ti CXJ tj E r( Ri) CXJ r( Rj ). 

• Role and keyword covering: for each query keyword role ri, there exists a node tj 

in T such that tj E ri and tj contains keyword ki. 

• Minimal: if a tuple in T is removed, T is either not joinable or does not cover all 

the roles or all the keywords. 

For brevity, we refer to the answer defined in Definition 8 as final answer in this 

chapter. Given a database, there may be many final answers to a query. Instead of 

producing all the answers which may overwhelm the user, the goal of our algorithm is 

to produce top-k most meaningful final answers. In the next section, we describe our 

procedure for generating top-k final answers. 
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5.2.2 Methodology 

The final answers defined above can be generated through a sequence of join operations 

on the database. To generate such answers, we first generate minimal joining networks 

of schemas ( MJNSs) that represent the join operations for producing the final answers. 

Below we define MJNS and then present our method for generating MJNSs. 

Definition 9 Minimal Joining Network of Schemas (MJNS): Given a database D with 

schema graph G and a set r of query keyword roles {r1 , r2, ... , rl} (where ri 's are re­

lations in D ), a minimal joining network of schemas that cover r is a tree T of relation 

schemas in G that satisfy the fallowing conditions: 

• Joinable: each edge in T is an edge in G. That is, each edge in T represents a 

foreign key relationship. 

• Role covering: for each query keyword role ri, its schema is in T. 

• Minimal: if a relation schema in T is removed, T is either not joinable or does not 

cover all the roles in r. 

Note that our MJNSs bear similarity to the candidate networks (CN) used in the 

DISCOVER algorithm [27] with the following differences. First, a CN is defined as a 

network of tuple sets, while our MJNS is defined at the schema level. Second, our MJNS 

must cover a set of specified roles (i.e., it must contain the schemas of a set of specified 

relations), while a CN does not have to. This second difference allows us to find some 
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interesting final answers that DISCOVER misses as discussed earlier. 

To generate MJNSs, we use a breadth-first search algorithm similar to the CN gen-

erator of DISCOVER. Our algorithm starts with a role schema as an initial tree T and 

extends T with a relation schema in G that has a foreign key relationship with a node 

in T. The expansion of T stops once the schemas of all the roles are covered in T. To 

avoid generating duplicate trees, each generated tree is assigned an ID based on tree iso-

morphism during the execution of the algorithm. The ID of a tree is checked with the 

existing IDs that are generated so far and the current tree is accepted if it is not generated 

previously. Figure 5.2 shows 4 MJNSs generated for query {Andersen, Joseph} and 

their respective roles {Company, Customer} over the TPC-E database. 

After MJNSs are generated, final answers can be produced by creating an execution 

plan to evaluate the MJNSs. Note that an MJNS may or may not produce a final answer25. 

But a final answer can be produced by one and only one MJNS. The union of the final 

answers produced by all the MJNSs is the set of all possible final answers. 

Since many final answers can be generated for a query and some answers may not 

be interesting, we aim at producing top-k most interesting final answers. To achieve this 

purpose, we first limit the number of nodes in an MJNS (which is a strategy taken by 

DISCOVER as well). This limits the size of a final answer too. The rationale is two-

25 In [27] it is claimed that all the candidate networks generated by DISCOVER lead to generation of 
an MTJNT (the final answer of DISCOVER). But its CN generation algorithm works at the schema level 
without checking whether a join in CN can produce an answer. Thus, there is no guarantee that a CN can 
produce at least one final answer. 
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fold. First, if two tuples in a final answer are far away from each other, it is not easy to 

interpret the answer [70]. Second, executing the query associated with a large MJNS is 

time consuming. Thus, a size control parameter, Dmax, is used to specify the maximum 

number of allowed nodes in an MJNS. In addition and more importantly, we rank the 

generated MJNSs according to an interestingness measure so that final answers from the 

top-ranking MJNS are produced first, and if the number of final answers produced so far 

is less than k, the next MJNS is used to produce more final answers until k final answers 

are produced. 

The overall procedure of our seach method is described below. Given a database D, 

a query containing keywords {k1, ... , kz}, an answer size control parameter Dmax, and 

a maximum number k of final answers to be returned, 

1. For each keyword ki, find the relations in D containing ki using an inverted index 

or the built-in support for full-text keyword search in DBMS [61]; 

2 .. Select a relation containing ki as the role of ki either by the user or automatically 

using a role-ranking method in [7]; 

3. Generate the MJNSs that cover all the selected roles and whose size is no more 

4. Rank the generated MJNSs according to an interestingness measure; 

5. For each MJNS mi in the ranked list, evaluate mi to generate a set si of final an­

swers, rank the answers in si according to a content-based IR-style ranking mea-
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sure, and add the answers in the ranked order into the final answer set A. This 

procedure stops until either A contains k answers or all mi's have been evaluated. 

The main focus of this chapter is on Step 4: how to rank MJNSs so that the most 

interesting answers will be presented to the user first and less interesting ones can be 

pruned. Note that the IR-style ranking measure in Step 5 is a secondary ranking measure 

for locally ranking the final answers generated from each MJNS, which is exactly the 

same as the method in [28]. In the next section, we present a number of measures for 

ranking MJNSs in Step 4. 

5.3 Ranking Models 

In this section, we propose a few methods for ranking minimal joining networks of 

schemas (MJNSs ). The proposed methods work only based on the database schema 

and its given instance, assuming that no extra information (e.g., query logs or inheritance 

relationships among the tables) is available. The methods use information-theoretic mea­

sures to evaluate the importance of a relation (i.e., table) and/or an edge in the given 

database, and rank the MJNSs based on the importance of the relations and/or edges in 

an MJNS. We classify the proposed methods into three categories: (1) ranking based on 

the importance of the nodes in MJNS, (2) ranking based on the importance of the edges 

in MJNS, and (3) ranking based on the importance of both nodes and edges in an MJNS. 
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5.3.1 Ranking by Importance of Nodes 

Given a database D, this type of methods assumes that the importance of an MJNS M is 

related to the importance of the tables in D that instantiate the schemas in M. There are 

two recent works in the literature that study the problem of measuring table importance 

in a database [30, 67]. Both methods define the importance of a table as the steady state 

probability of the table in a random walk over the database graph G. The purpose of the 

work in [30] is to generate a forms-based database query interface and that in [67] is to 

summarize a relational database. 

The method in [30] assumes that the importance of a table is proportional to the num­

ber of tuples, the number of attributes that it contains and the number of connections (i.e., 

foreign key joins) to other tables. Based on the assumption, a probability matrix for the 

random walk is built. As discussed in [67], this is a reasonable assumption for.an XML 

schema on which the method was evaluated, but they may fail to produce good results 

on relational databases, especially on data warehouses that have dimension tables (e.g. 

address and zip_code in TPC-E). Dimension tables usually have many connections to 

other tables. However, such connections hardly form an interesting relationship among 

the tuples they connect. For example, the first MJNS in Figure 5.2 connects the customer 

and the company through the status_type dimensional table. As mentioned before, it is 

not an interesting relationship between the given query keywords. The way the proba-

148 



bility matrix is defined in [30] results in dimension tables gaining more importance than 

fact tables, which is not desirable in relational databases and data warehouses. 

In [67], four methods for measuring the importance of a table are presented and 

shown to outperform the method in [30] for summarizing relational databases. Their 

experiments show that one of the methods, called variable entropy transfer (VE), outper­

forms the three other methods (See [67] for details of the three other methods). None of 

these methods have been used for keyword search. We propose to use the VE method 

to evaluate the importance of each table and rank MJNSs according to their table im­

portance. We further propose a modified version of the VE model, called key entropy 

transfer (KE). Below we first describe the VE method and then present the KE method. 

In our experiments, both methods are compared to the three other methods introduced in 

[67]. 

5.3.1.1 The VE Method 

Consider G0 = (V0 , E0 ) as an undirected graph representing a relational database D, 

where V0 is the set of nodes representing relations (i.e., tables) in D and E0 is the set 

of edges representing foreign key relationships. Both VE [ 67] and KE methods build a 

node-to-node transition probability matrix M based on the entropies of table attributes, 

and perform a random walk on G 0 with .Af. The steady-state probabilties of the random 

walk are then assigned as the importance scores of the tables. 
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Let r.A denote an attribute A in table r, and let a represent a value of r.A. The 

entropy of r.A is defined as follows: 

H(r.A) = - L p(a) x logp(a) (5.1) 
\faEr.A 

where p(a) is the probability that a occurs in column r.A (i.e. P(r.A =a)). 

For each table in D, a primary key is created that consists of all of the attributes 

in the table, and a self-loop using this key is added to the corresponding node in GD· 

This is done even when the table already has a primary key. The purpose of the self-

loop is to keep some of the table's information within the table during the random walk 

(i.e., to make the random walk have more probability to stay at a node). Assume that 

table r contains m attributes { r.A1 , ... , r.Am}, excluding the self loop attribute. The 

information content of table r in the VE model is defined in [67] as follows: 

m 

ICvE(r) =log lrl + L H(r.Ai) (5.2) 
i=l 

where lrl is the number of tuples in r, and log lrl is exactly equal to the entropy of the self 

loop attribute. The I Cv E value of a table measures the importance of the table without 

considering the foreign key relationships between tables. 

To take into account such relationships, the information transfer rate on a join edge 

starting from r.A (no matter if r.A is a primary or foreign key in the connection) is 
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defined as follows: 

( A , A') _ H(r.A) 
T r. --* r . - I I """"m ( ) log r + L,..i=l nxi · H r.Xi 

where nx denotes the total number of join edges involving attribute r.X, including the 

self loop. Since the self loop contains all the attributes of r, nxi 2: 1. Note that 

T(r.A --* r'.A') does not depend on r'.A', which means that the same amount infor-

mation is transferred from r.A along any edge starting from A. 

A transition probability matrix for the random walk is then built by 

II(r, r') = L T(r.A --* r'.A') r -=I- r' (5.4) 
r.A-r'.A' 

where the sum ranges over all the join edges between r and r' in the database graph GD. 

Additionally, II(r, r) is defined as: 

II(r, r) = 1 - L P(r.A--* r'.A') (5.5) 
r=/=r' 

The probability matrix is an n x n matrix, where n is the number of tables in the database. 

It is a matrix with numbers between 0 and 1 and each row sums up to 1. If two tables r 

and r' are connected together in G n, IT[r, r'] is greater than zero and its value determines 

the amount of information transferred along the (r, r') edge. If more than one join edge 

exists between two tables, the information on each join edge is summed up. 
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The importance of a table r is defined as its stable-state probability of a random 

walk on GD with the probability matrix IT. For any given probability matrix IT over a 

connected and non-bipartite graph G, there exits a unique stationary distribution J [55]. 

Therefore, the table's importance in the above model is well defined. The stationary 

distribution vector can be obtained by applying an eigenvector calculation method. We 

use an iterative method used in [ 67]. The method starts with an arbitrary non-zero vector 

J0
26

. Then, Ji+l =Ji x IT is computed repeatedly until the distance between Ji and Ji+l 

is less than a given threshold. Setting the threshold to zero results in stopping the method 

when the stationary distribution is reached. 

5.3.1.2 The KE Method 

To compute ICvE(r) in the VE method, entropies of all the attributes in r needs to 

be computed, including the numeric attributes. To compute the entropy for numeric at-

tribute, discretization should be performed first in order to compute the probabilities in-

valved in the entropy computation. Thus, the entropy value of a numeric attribute greatly 

depends on the discretization method used or the parameter value used in a discretiza-

tion method (such as the number of intervals in the equi-width discretization method). 

To avoid such dependencies, for a numeric attribute, we set its entropy to the maximum 

value, which is log Ir I. We further discovered in our experiments that for a non-joinable 

26The final value of stationary distribution J does not depend on the initial value J0 . However, we set J0 
to ICKE(R). 
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Figure 5.3: The TPC-E schema graph. (Figure from [68].) The direction of the edges are 

from the foreign key to the primary key. 

attribute (i.e., an attribute that is not a primary or foreign key), using its true entropy or 

the maximum entropy (i.e., log Ir I) does not make much difference in terms of finding 

meaningful MJNSs (which will be shown in our experimental results). Thus, to speed 

up the entropy computation, we use loglrl as the entropy value for all the non-joinable 

attributes. 
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Thus, we define the information content of a table r as follows: 

ICKE(r) = (IC~jl + 1) x log lrl + L H(A) 
AECt 

(5.6) 

where c~j and ct denote the set of non-joinable andjoinable columns of table r, respec-

tively. (Each column in Ct is part of at least one edge and is either a primary or foreign 

key attribute.) In this equation, each non-joinable column has the log lrl contribution to 

the importance of the table. 

Accordingly, the information transfer rate along a join edge (r.A, r'.A') is defined as 

follows: 

T(r.A -t r'.A') = H(r.A) (5.7) 
ICKE(r) + LxEct[(nr.x - 1) x H(r.X)] 

where nr.x is the total number of join edges that attribute r.X is involved, including the 

self loop primary key. 

Based on T, the probability matrix used in the random walk is built in the same way 

as described in Equations 5.4 and 5.5. The importance of a table is the table's stable-state 

probability of the random walk on G n with the probability matrix. Since the entropies 

of only primary and foreign keys are truly computed, this method is referred to as the key 

entropy (KE) method. 
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5.3.1.3 Ranking MJNSs 

The importance scores of the tables in a database can be computed offiine before a key-

word search starts27
. During the keyword search we use the scores to rank the minimal 

joining networks of schemas (MJNSs). Given a set of query keywords and their corre-

sponding roles, all the MJNSs generated in the procedure described in Section 5.2.2 share 

the same set of role relation schemas. Thus, to rank the MJNSs, we only need to consider 

the non-role relation schemas in each MJNS. We use the average importance score of the 

tables associated with these non-role relation schemas to compute an importance score 

for an MJNS M, as defined below: 

S (M) 
_ ~rfiRoles TableScore(r) coretable - _ __._ _______ _ 

n 
(5.8) 

where Roles is the set of role relations, n is the number of non-role relation schemas in 

M, and TableScore(r) is the importance score of table r computed using either the VE 

or KE method. Note that if a non-role relation schema appears more than once in the 

given MJNS, it is counted more than once (equal to the number of occurrences in the 

MJNS). This is reasonable since the more a relation schema appears, the more important 

it is for connecting the role relation schemas together in the MJNS. 

27The scores should be updated periodically if the database content changes. 
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Figure 5.4: Two different instances of the foreign key connections between tables rand 

r' 

5.3.2 Ranking by Importance of Edges 

Another approach to ranking the MJNSs is based on the importance (strength) of the 

edges (i.e. foreign key connections) that connect the nodes in an MJNS. 

A schema edge weighting function was recently introduced in [ 68] based on the in-

formation theory [63]. However, the function was used for summarizing schema graphs 

and has not been applied to keyword search. Below we first introduce this function and 

then present two new measures. In our experiments, all the three methods are evaluated. 

5.3.2.1 Edge Strength by Information Theory 

Let rand r' denote two relations in a database, and r.A and r'.A' denote the two attributes 

by which rand r' can be joined. Let a or a' represent a value ofr.A or r'.A', respectively. 
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Thejointentropy of two variables r.A and r'.A' is defined as follows: 

H(r.A, r'.A') = - p(a, a') x logp(a, a') (5.9) 
\f(a,a')E(r.A,r' .A') 

where p(a, a') denotes the joint probability p(r.A = a, r'.A' = a'). The marginal prob-

ability on r.A in the joint distribution of r.A and r'.A', denoted as Pr.A(a), is defined as 

follows: 

Pr.A(a) = L p(a, a') (5.10) 
\fa'Er'.A' 

In other words, Pr.A(a) is the probability that a occurs as the value of r.A in the instan-

tiatedjoin edges between r.A and r'.A'. The marginal probability Pr'.A'(a') is defined in 

the same way and is the probability that a' occurs as the value of r' .A' in the instantiated 

join edges between r.A and r' .A'. 

The pointwise mutual information of a and a' (belonging to r.A and r' .A', respec-

tively) is defined as follows: 

p(a a') 
i(a a') =log ' 

' Pr.A(a) X Pr1 .A1 (a') 
(5.11) 

The mutual information of r.A and r'.A' is defined as the expected value of the point-

wise mutual information. 

I(r.A, r'.A') = p( a, a') x i( a, a') (5.12) 
\f(a,a')E(r.A,r' .A') 

In [ 68], the following distance function is used to measure the dissimilarity between 
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two database columns: 

D( A , A') = _ I(r.A, r'.A') 
r. , r. 1 ( ) 

. H r.A, r'.A' 
(5.13) 

The smaller the D value, the closer the columns are. It can be proved that I ( X, Y) ~ 

H(X, Y), and D(X, Y) is a metric with D(X, Y) = 0 and D(X, Y) E (0, 1]. 

Using this distance function, the strength of the edge between the two database 

columns can be defined as: 

ST ( A , A') = I(r.A, r'.A') 
MI r. 'r · H(r.A, r'.A') (5.14) 

where the name STMI comes from STrengh by Mutual Information. 

Figure 5.4 shows two instances of foreign connections between tables rand r' through 

columns r.A and r'.A'. In the left-side instance, all of the primary key values are instanti-

ated by the foreign key column, while in the right-side instance, only half of the primary 

key values appear in the foreign key column. Obviously, the connections in the left in-

stance is stronger than the one on the right. Using Equation 5.14, the strengths between 

columns r.A and r'.A' are 1.0 for the left instance and 0.88 for the right instance. Note 

that in calculating these values, the virtual output of full outer join between R.A and 

R' .A' is used as the join distribution of the two variables. This is to be consistent with 

the method in [ 68]. The reason is that the outer join contains values that do no match. 

For example, in the right instance of Figure 5.4, there will be NU LL values in column 

A' that match with values c and d in column A. That is, ( c, NU LL) and ( d, NU LL) each 
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occur once in the joint distribution of (r.A, r'.A'). The reason is to penalize those joins 

with excessive numbers of unmatched values [68]. 

Note also that we do not need to perfonn the real joins in order to compute the 

strength score of an edge. The score can be computed by using the distribution of each 

involved column. 

5.3.2.2 Edge Strength by Instantiation Fraction 

Intuitively, edge strength can also be measured by the fraction of the join key values 

being instantiated. As mentioned in [67], the more fraction of primary key values are 

instantiated, the more important the edge is. However, in [67], the authors also assumed 

that by increasing the number of connections between two tables, the importance of the 

edge decreases. As we will show in the experiments, this assumption does not work 

for finding meaningful MJNSs. We propose the following measure, called instantiation 

fraction (IF), to quantify the importance of an edge based on the fractions of instantiated 

key values. 

N in st Ninst 
ST ( A I A') = ~ ~ IF r. ,r. N x 

r Nr' 
(5.15) 

where N:r:At is the number of tuples in r that instantiates the edge between r.A and r'.A', 

and Nr is the total number of tuples of table r. ST1p(r.A, r'.A') of the the left and right 

instances in Figure 5.4 is equal to 1 and 0.5, respectively. 

A modification of the above model is to consider the entropy of each column. By 
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adding the entropies, the information content of each column is taken into account. This 

version of the IF measure, denoted as IF _Ent, is defined as 

N in st inst 
( A 1 A') r.A rr'.A' ( A) ( 1 A') ST1 F _Ent r. ' r . = ----:;;::;- x -N x H norm r. x H norm r . 

lYr r' 
(5.16) 

where Hnorm(r.A) and Hnorm(r'.A') are normalized entropies of r.A and r'.A', respec-

Ninst Nin st 

tively. The values of ~N· and ~N, · ' lie between zero and one. Thus, to make instan-
r r 1 

· tiation fractions and entropies equally important to the strength of the edge, normalized 

entropies in range [O, 1] are used. 

5.3.2.3 Ranking MJNSs 

The same as the table importance scores, edge importance scores defined above can be 

computed offline. During a keyword search, to rank the MJNSs by edge importance, we 

compute a score for each MJNS using its average edge importance score, defined below: 

l:v(r.A,r'.A')EM EdgeScore(r.A, r'.A') 
Scoreedge(M) = -------------­

m 
(5.17) 

where Mis an MJNS, EdgeScore(r.A, r'.A') is an edge strength function and can be 

either STMJ, ST1F or ST1F _Ent, and mis the number of edges in the MJNS M. The 

same as in ranking MJNSs based on the node importance, if one edge appears more than 

once, it is counted more than once. Since the edge strength scores are pre-computed, 

computing S coreedge is fast and efficient. 
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5.3.3 The Hybrid Ranking Model 

Our last approach to ranking MJNSs is to rank them based on the importance of both 

nodes and edges. In this hybrid model, we consider node importance when measuring 

the edge strength. The new edge strength is computed as follow: 

Ed S ( A 
, A') TableScore(r) + TableScore(r') 

ge core r. , r . x 
2 

(5.18) 

If we use ST1F for edge strength and the KE method for computing node impor-

tance, the hybrid formula becomes: 

( I I) ( I ') KE ( R) + KE ( R') ST1p J<E R.A, R .A = ST1F R.A, R .A x 
2 

(5.19) 

Since the value of ST1p(R.A, R'.A') lies between zero and one, KE(R) and KE(R') 

should be normalized into range [ 0, 1]. 

To rank the MJNSs, the score of an MJNS is computed using Equation 5 .1 7 with 

ST1F _KE as the EdgeScore function. 

5.3.4 Penalizing MJNSs 

In all the MJNS ranking methods we described above, the average of node/edge impor-

tance scores is used to compute a score for an MJNS. Thus, the size of the MJNS (i.e., 

the number of nodes) is ignored in these ranking methods. Although we have shown that 

ranking MJNSs purely based on their size does not return satisfactory results in databses 
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with large and complex schema, completely ignoring the size may not be a good strategy 

either. Generally, interpreting and understanding larger MJNSs is harder than interpret-

ing smaller ones. Thus, for two MJNSs with similar average node or edge scores, the one 

with the smaller size should be ranked ahead of the larger one. To achieve this purpose, 

the final score of an MJNS M can be adjusted as28 : 

1 
Scorenew(M) = Scoreozd(M) x l ( s· ) og tree ize 

(5.20) 

where treeSize is the number of nodes in M, and Score0 zd can be either Scoretable or 

Scoreedge· 

In the following section, we evaluate all the scoring methods with and without the 

penalization factor. 

5.4 Experimental Evaluation 

We evaluate the proposed ranking methods for finding the most meaningful/relevant 

MJNSs. All of the evaluated methods are implemented in Java. The experiments were 

performed on a performance test machine with an Intel(R) Core(TM) i7 2.80 GHz pro-

cessor and 4GB of RAM. 

28This formula was used in [52] to penalize large XML trees. 
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Figure 5 .5: Results in Kendall's T coefficient without penalizing larger MJNSs. 

5.4.1 Dataset and Experimental Setup 

The experiments are conducted over the TPC-E database. TPC provides a transaction log 

which we use to generate a gold standard for ranking MJNSs (Section 5.4.2). Since no 

active transaction is performed, table Trade_Request is not loaded with any data. There-

fore, in our experiments, table Trade_Request is removed from the schema along with 

all of its foreign key connections. EGen, a package from TPC, is used for generating an 

instance of the database. The parameters of EGen are set to the same as those in [ 67, 68]. 

The number of customers, initial trade days and scale factor are set to 1000, 10 and 1000, 

respectively. 

The focus of this work is ranking the MJNSs. As described in Section 5.2, a major 

input to our MJNS generator is the keyword roles . That is, the main input to our ranking 

methods is a set of relation names (i.e., query keyword roles). Table 5.1 lists ten sets of 
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Table 5.1: List of 10 sets of query keyword roles. 

I No. I Keyword Roles (Query) 

1 Customer, Company 2 

2 Company, Broker 2 

3 Customer, Broker 2 

4 Customer, Customer 2 

5 Customer, Company, Industry 3 

6 Customer, Company, Trade_ Type 3 

7 Customer, Company, Broker 3 

8 Customer, Company, Exchange 3 

9 Customer, Company, Broker, Security 4 

10 Customer, Company, Broker, Customer_Account 4 

query keyword roles that we use as the input "queries" in our evaluation. For example, the 

first set of keyword roles specifies the names of two relations: Customer and Company, 

which may result from keyword query {Joseph, Ander sen}. As another example, the 

fourth "queries" is meant to find the relationships between two customers. 

The MJNS generator also receives the maximum size of the MJNS as an input. Since 

TPC-E has a large schema with some dimensional tables, setting the maximum MJNS 
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size to a value less than 6 results in generating MJNSs that are mostly connected through 

dimensional tables. On the other hand, setting the maximum value larger than 7 results in 

generating many MJNSs, whose results are hard to interpret by the users of the system. 

Thus, the maximum size (i.e., Dmax) of the MJNSs is set to 6 and 7 in our experiments. 

5.4.2 Gold Standard and Performance Measures 

TPC provides 12 transactions along with the TPC-E benchmark. The set of transactions 

represents the usage of the database. Thus, they could be considered as a query log for 

the TPC-E benchmark [68]. We parsed the pseudo-codes of transaction and recorded the 

number of times a join between a pair of attributes r.A and r' .A' is perfonned. Let us 

denote this number by n(r.A, r'.A'). The importance of the connection between r.A and 

r' .A' is calculated as n(~,R' .A'), where Ntotal represents the total number of joins in all 
total 

the pseudo-codes of all the transactions. Given an MJNS, its average edge importance 

score is calculated as its gold standard importance score. Given a set of MJNSs, their 

gold standard importance scores are used to rank the MJNSs to generate a gold stardard 

ranking. 

Given a query, we use our MJNS generator to produce all the MJNSs for the query 

and then use each of the ranking methods (listed in Table 5.2) to rank the MJNSs. The 

ranked list from a method is compared with the gold standard ranking of these MJNSs. 

To see how close a ranked list produced by a ranking method is to the gold standard 
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Figure 5.6: Results of the top-5 and top-10 overlaps without penalizing larger MJNSs. 

KE DISC-I MI IF IF Ent 

0.018 0.004 0.003 0.025 0.399 

0.000 0.001 0.032 0.000 0.903 
IF KE 

0.001 0.000 0.037 0.052 0.070 

0.000 0.0001 0.012 0.016 0.656 
0.153 0.023 0.002 0.040 
0.021 0.002 0.071 0.016 

IF_Ent 
0.193 0.017 1.000 0.004 

0.0000 0.000 0.001 0.207 

0.001 0.000 0.096 

0.000 0.000 0.541 
IF 

0.000 0.000 0.002 

0.000 0.000 0.002 

0.000 0.000 
0.000 0.000 

MI 
0.081 0.012 
0.462 0.009 
0.443 top-5 overlap without 

DISC-I 
0.021 top-10 overlap without 
0.096 top-5 overlap with penalization 
0.033 top-10 overlap with peqialization 

Figure 5.7: p-values oft-tests on the top-5 and top-10 overlap results. MNJS maximum 

size is 7. 
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Figure 5.8: Results of the top-5 and top-10 with penalizing larger MJNSs. 

ranking, we employ two measures used in the IR community [6]. The first one is a 

statistical measure for comparing two ranked lists, called Kendall's T coe:fficeint [44]. It 

returns a value between + 1 and -1, measuring the correlation between the two lists. If 

two lists are identical, it returns + 1. If they are reversely ordered, it returns -1. Generally, 

a positive value means that two lists are related, and a negative value means that they are 

reversely related. The statistical tests are performed using SPSS 15.0 for Windows. The 

second measure i~ the size of the overlap between the top-k items in the two lists. We 

call this measure top-k overlap. We use 5 and 10 as the values of k. In our evaluation, the 

performance score of a method is measured by the average score over the 10 "queries" 

listed in Table 5 .1. 

5.4.3 Results of Ranking Methods without Size Penalization 

We evaluated a total of 12 MJNS ranking methods. They are described in Table 5.2. In 

this section, we present the results of these ranking methods without penalizing larger 
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Table 5.2: List of methods for ranking MJNSs. 

Method Description 

DISC-I Size ofMJNSs [27] (i.e. DISCOVER I) 

IC Node's importance, information content, Equation 5.6 

VE Node's importance, variable entropy [67] 

CE Node's importance, constant entropy [67] 

VJE Node's importance, variable joinable entropy [67] 

CJE Node's importance, constantjoinable entropy [67] 

KE Node's importance, key entropy, Section 5.3.1.2 

Fanout Edge's importance, Definition 6 in [67] 

MI Edge's importance, mutual information [68] 

IF Edge's importance, instantiation fraction, Equation 5 .15 

IF_Ent Edge's importance, IF & entropy, Equation 5.16 

IFXE Hybrid method, IF & KE, Equation 5.19 

MJNSs. The results are not compared with the IR based ranking methods (such as DIS-

COVER II [28]) since those methods are suitable for ranking the final answers but not 

the set of MJNSs. 

The results of the 12 methods in tenns of Kendall's Trank correlation coefficient are 

presented in Figure 5 .5. The results suggest that for the maximum MJNS size of 6, the 
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ranking closest to the gold standard is achieved by the VE method. The best results for 

the maximum MJNS size of 7 are produced by IF, KE and IF _Ent. However, the 

correlation between VE and gold standard is not high when the maximum size of the 

MJNS is set to 7. This is not the case for IF and IF _Ent when the maximum size of the 

MJNS is set to 6. On the other hand, the correlation between KE and the gold standard is 

high for both of the maximum MJNS sizes. It achieves the best average and most stable 

result in terms of Kendall's T coefficient. 

We also observe that ranking MJNSs by their size does not work well (indicated by 

the result for DISC-I). Its Kendall's T coefficient is close to zero when the maximum 

MJNS size is 6, and it is negative when the size is 7. Therefore, ranking the results solely 

based on the number of nodes in the MJNS does not produce satisfactory results. Since 

only the size has been used to rank joining networks in previous methods, our proposed 

ranking methods outperform previous ones. 

The results also show that some measures for node/edge importance (such as CE and 

Fanout) produce poor results as well. The measures that we present in this chapter are 

much better than those measures. 

The results of the top-5 and top-10 evaluations are presented in Figure 5.6. By in­

creasing the maximum size of the MJNS from 6 to 7, the top-k overlap with the gold 

standard decreases. This result is expected since by increasing the maximum size, the 

number of generated MJNSs increases. As the value of k is a constant (i.e. it is set to 5 
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or 10) and there are more items (MJNSs) in the list, the chance for overlap in top-k lists 

decreases. 

Generally, the methods that rank MJNSs based on the edge importance work better 

than the ones based on the node importance. The difference between the two types of 

methods becomes greater when the maximum MJNS size is 7. In order to see whether 

different methods are significantly different from each other, we run the t-test. The p­

values of the t-tests are presented in Figure 5. 7 for the maximum MJNS size of 7. The 

results for the maximum size of 6 follows the same trend. Since the edge-based ranking 

methods work better than the node-based ranking methods, the the t-test results for the 

node-based ranking methods are not presented. 

Among the edge based methods, IF is the best in most of the cases. MI is the second 

best in general according to Figure 5.6. The t-test results show that their perfonnances 

are not significantly different (with p-values of 0.096 and 0.541) The other edge based 

method IF _Ent performs the best when the maximum MJNS size is 6, but not well when 

the maximum size is 7. Similar observation is found for the hybrid method IF _KE. 

Thus, these two methods are not stable compared to IF and]\;[ I. 

Looking at the results for the node based methods in Figure 5.6, we observed that the 

results of VE and KE are very similar. Thus, using KE is better than using VE due to 

its faster computation of information content, as discussed in Section 5 .3 .1.2. 
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5.4.4 The Effect of Penalizing Larger MJNSs 

The results of the top-5 and top-10 evaluations with penalizing larger MJNSs are pre­

sented in Figure 5.8 and some of its t-test results are shown in Figure 5.7. Note that the 

penalization technique (Equation 5 .20) is applied to the computation of gold standard as 

well. 

Comparing the results in Figures 5.6 and 5.8, we observe that the MI method is 

significantly negatively affected by the use of the size penalization technique, while the 

performance of other methods remain pretty much the same. 

This set of results also suggests that the edge importance based methods are better 

than the node based methods, and that the edge based method IF is a stable method 

with the best overall performance. Again, the edge based IF _Ent method and hybrid 

method IF _KE have the best or close to best performance for the maximum MJNS size 

of 6, but their performance descreases significantly for the maximum MJNS size of 7. 

In addition, both Figures 5.6 and 5.8 suggest that the size based method (DISC-I) has 

the worst performance. The t-test results show that it is significantly worse than other 

methods. 
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Figure 5.9: Top-5 and Top-10 precision of answers. 

5.4.5 Relevance Evaluation of Final Answers by a User Study 

Q4 

To see how effective ranking ofMJNSs impacts the.final answers of the keyword search, 

we compare the top-k final answers from our keyword search method that uses the IF 

method for ranking MJNSs with the final answers produced by the method that ranks the 

final answers based on the number of joins (Discover I [27]) and the one based on the 

IR techniques (Discover II [28]) in terms of how relevant their answers are to the query. 

A common metric of relevance used in information retrieval is top-k precision, defined 

as the percentage of the answers in the top-k answers that are relevant to the query. To 

evaluate the top-k precision of the methods, we conduct a user study. We use 4 sets 

of keyword related to the first, second,. fifth and sixth queries in Table 5 .1 to evaluate 

the search results by human user. For example, the first query is "Jacob Insurance" 

in which "Jacob" is associated with the customer table and "Insurance" is associated 

with the company table (i.e., their roles are customer and company, respectively). In 

the experiment, top-5 and top-10 answers are produced for each query by each search 
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method. 

We ask 8 graduate students in computer science, information technology, and math­

ematics to judge the relevancy of the answers. A user assigns a score between 0 and 1 to 

each final answer, where 1 means completely relevant and 0 means completely irrelevant 

to the query. This score may vary among the users. Thus, the average of the relevancy 

scores from the 8 users is used as the final relevancy score for an answer. The top-k 

precision is computed as the average relevancy score of the top-k answers. 

The top-5 and top-10 precisions for each query are presented in Figure 5.9. Clearly, 

the IF method which ranks the answers based on the edge strength between the associ­

ated entities achieves much better precisions than DISC-I and DISC-II in all the queries 

for both k values. The reason for DISC-I and DISC-II to have a lower precision is that in 

most of the cases, the tuples of the final answers are connected together by the dimension 

tables (e.g. status_type) and fact tables are not involved. Thus, most of the users find the 

answers not so meaningful and assign them lower scores. 

5.5 Conclusion and Future Work 

Our goal was to improve relevance scoring of answers. Based on their networks Goin 

trees) in light of larger and more complex database schema. To this end, we propose 

a series of measures, and algorithms to compute them, using different approaches to 

capture the intended semantic of queries based on the importance of the connections 
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involved in the networks. As the information for ranking the MJNSs can be pre-built 

as an index, the ranking model works fast. Extensive experiments and a user study on a 

large and complex TPC-E schema establish that the proposed methods are able to capture 

well the intended semantics behind queries. 

While our methods prove to be effective, there is much room for further research and 

improvement. Keyword search evaluation can be optimized in a number of ways. We 

can apply previous techniques as pipelining in DISCOVER I [27] to our approach to im-

prove the efficiency. Multi-query optimization [62] over the SQL queries generated for 

the MJNSs could exploit commonalities among them to speed up greatly evaluation. Fur-

thermore, while in this work we sought to demonstrate how effective deriving relevance 

of the "nodes" and "edges" of the database schema could be based on just the schema 

and data, by no means are we advocating that auxiliary information cannot improve it. 

We would like to explore the use of Linked Data29 and WordNet30 . 

29http://linkeddata.org 

30http ://wordnet. princeton. edu 
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6 Finding Affordable and Collaborative Teams from a 

Network of Experts 

Given an expert network, in which a node represents an expert that has a cost for using 

the expert service and an edge represents the communication cost between the two cor­

responding experts, we tackle the problem of finding a team of experts that covers a set 

of required skills and also minimizes the communication cost as well as the personnel 

cost of the team. Since two costs need to be minimized, this is a bicriteria optimization 

problem. We show that the problem of minimizing these objectives is NP-complete. We 

use two approaches to solve this bicriteria optimization problem. In the first approach, 

we propose several (a, ,B)-approximation algorithms that receive a budget on one objec­

tive and minimizes the other objective within the budget with guaranteed performance 

bounds. In the second approach, an approximation algorithm is proposed to find a set 

of Pareto-optimal teams, in which each team is not dominated by other feasible teams 

in terms of the personnel and communication costs. The proposed approximation al­

gorithms have provable performance bounds. Extensive experiments on real datasets 
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demonstrate the effectiveness and scalability of the proposed algorithms. 

6.1 Introduction 

An expert network contains a group of professionals who can provide specialized in-

formation and service. With the widespread use of the Internet, online expert networks 

have become popular where more and more businesses seek subject matter experts to 

complete a task or project. There are many expert network providers, such as Gerson 

Lehrman Group31 and the Network of Experts32
. In such networks, an expert is de-

scribed by their areas of expertise, education background, location, etc. In addition, an 

expert can specify his/her consulting rate. 

We consider the problem of finding a team of experts from such a network to com-

plete a project. A team must possess a set of required skills in order to complete the tasks 

of the project. In addition, a project is usually constrained by the budgeted amount of 

money available for the project. Different experts may incur different fees for conducting 

the activities of the project. It is desirable to find a team of experts whose total cost is 

minimized. Furthermore, the success of a project greatly depends on how well the team 

members of the project communicate and collaborate with each other. Experts located 

in different countries may not communicate as easily as the ones living in the same city 

31 http://www.glgresearch.com/ 

32http://www.networkofexperts.com/ 
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Figure 6.1: An example of all feasible teams. 

when face-to-face meetings are required. Thus, it is important to minimize the commu-

nication cost among the experts. This turns the problem into a bicriteria optimization 

problem. 

The problem of finding a team of experts from a network which minimizes the com-

munication cost has been tackled in [34, 48]. However, previous works in this domain 

did not consider the budget of the project nor the fees that may be associated with the ex-

perts. In the real world, an expert needs to be paid for his/her service, and it is preferred 

that the personnel cost of a project is minimized or under a budget. Only minimizing the 

communication cost may result in a team with high personnel cost. For example, assume 

that all the feasible teams of experts for a project are shown in Figure 6.1. Each team has 

three experts that together cover all of the required skills. Assume that the communica-
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tion cost of a team is calculated using the sum of distances between experts in the team. 

The communication costs of teams A, B, C, D, E, F, G and Hare 5, 180, 27, 62, 40, 

81, 57 and 78, respectively. The personnel costs of these teams are $255, $18, $87, $43, 

$202, $152, $90 and $62, respectively. Figure 6.2 shows these eight teams on a diagram. 

If one wants to minimize only the communication cost, team A is the best. However, its 

personnel cost is the highest. On the other hand, if one wants to minimize the personnel 

cost, team B is the best choice but has the highest communication cost. If one wants to 

have a team in which the members collaborate most effectively and at the same time the 

personnel cost is the lowest or reasonable, there is not an obvious best choice. 

Clearly, there is a trade-off between the personnel cost and the communication cost. 

A good method should either allow the user to provide a tolerance limit on one of the 

objectives and produce the best answer on the other objective, or provide a set of best 

trade-off solutions for the user to choose from. For example, in the above example, if a 

budget is given on the personnel cost as $300, the best team is A. However, for budgets 

of $100 or $50, the best team is C or D respectively. Alternatively, if the budget is not 

available, we can provide users with a set of solutions that are not worse than any other 

solutions on both objectives. These solutions are called Pareto-optimal solutions [33]. 

Teams A, B, C and D in Figures 6.1 and 6.2 are Pareto-optimal solutions since none of 

them is worse than other teams on both costs. However, the remaining teams ( E, F, G 

and H) are worse than at least one Pareto solution. 
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Figure 6.2: Feasible and Pareto optimal solutions. 

The contributions of this chapter are summarized as follows. 

1. We define the problem of finding an affordable and collaborative team in an ex-

pert network. We use two furictions to measure the communication cost and one 

function to measure the personnel cost of a team. 

2. We show the problem we tackle is NP-complete and propose a series of new (a, (3)-

approximation algorithms (to be defined later) to solve the bi-objective team for-

mation problem, which optimizes one objective given a budget on the other objec-

tive with proved performance bounds. 

3. For finding a set of Pareto-optimal solutions, a new approximation algorithm is 

proposed that can find solutions with guaranteed perfonnance bounds. 

4. The effectiveness and efficiency of the proposed algorithms are evaluated exten-

sively on two large real datasets. 

The chapter is organized as follows. In Section 6.2, we present problem statement. In 
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Section 6.3, we present a series of algorithms for finding a team of experts with bounded 

budget. An algorithm for finding Pareto-optimal teams is presented in Section 6.4. In 

Section 6.5, experiments on real datasets are presented. In Section 6.6, we conclude. 

6.2 Problem Statement 

Let C = { c1 , c2 , ... , cm} denote a set of m experts, and S = { s 1 , s2 , ... , Sr} denote a 

set of r skills. Each expert ci has a set of skills, denoted as Q(ci), and Q(ci) ~ S. If 

si E Q(ci), expert ci has skill Sj· In addition, a subset of experts C' ~ C have skill 

Sj if at least one of them has si. For each skill Sj, the set of all experts having skill Sj 

is denoted as C( Sj) = { ci lsi E Q( ci)}. A project P ~ S is defined as a set of skills 

required to complete the project. A subset of experts C' ~ C is said to cover a project P 

ifVsj E P 3 Ci EC', Sj E Q(ci). 

The experts are connected together in a network, modeled as an undirected and 

weighted graph (G). Each node in G represents an expert in C. Below, tenns node 

and expert are used interchangeably. Each node in the graph is associated with a cost 

representing the amount of money he/she is paid for completing a project. The cost of 

an expert ci is denoted as t(ci). Two experts may be connected by an edge in the graph. 

The weight on an edge represents the communication cost between the two experts. The 

lower the weight, the more easily the two experts can collaborate or communicate, and 

the lower the communication cost between them. The communication cost between two 
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experts can be defined according to the application need. For example, it can be defined 

as the geometric distance between two experts, which is a good communication cost 

measure when face-to-face meetings are needed in the project. The communication cost 

can also be defined by the collaboration ability or familiarity between the two experts. In 

this case, two nodes are connected by an edge if the experts have communicated or col­

laborated before, and the weight of the edge represents the strength of the relationships 

between the two experts. Such relationships can be obtained from social networks (such 

as Linkedln), scientific collaboration networks (such as DBLP), or other sources. 

Definition 10 (Team of Experts) Given a set C of experts and a project P that re­

quires skills s1 , s2 , ... , and Sn, a team of experts for P is a set of n skill-expert pairs: 

{ (s1, c8 i), (s2, C82 ), ••• , \sn, c5J }, where C8i is an expert in C having skill Sj for j = 

1, ... , n. A skill-expert pair (si, c8J means that expert c8 i is responsible for skill Si in the 

project. 

Note that an expert in a team may be responsible for more than one required skill, 

that is, c8 i can be the same as c8 i for i i- j. To evaluate the communication cost of a 

team, we define the sum of distances or diameter of a team, which has been used in [34] 

and [ 48] respectively. 

Definition 11 (Sum of Distances) Given a team T of experts from a graph G for a 
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project: { (s1, c8i), (s2, C82 ), ••• , (sn, csJ }, the sum of distances ofT is defined as 

n n 

sumDistance = L L d( Csi, Csi) 

i=l j=i+l 

where d( c8i, c8i) is the sum of weights on the shortest path between C8 i and C8i in G, i.e., 

the shortest distance between C8 i and C8i. 

The use of the shortest distance in the above definition implies that the communica-

tion cost between two experts can be estimated by using their communication costs with 

a third expert, especially when the two experts are not directly connected. This can be 

easily justified when, say, travel distances are used as edge weights in the graph. In case 

familiarity is used to weigh an edge, the use of the shortest distance implies that two 

people who have not collaborated before can collaborate if they have collaborated with a 

third person. This can be justified by Newman's finding on scientific networks [56]: two 

people are much more likely to collaborate if they have both worked with a third person. 

Definition 12 (Diameter) Given a graph G and a team of experts T consisting of some 

experts in G, the diameter of team T is the largest shortest distance between any two 

experts of T in G. 

Definition 13 (Personnel Cost) Let the set of experts in a team T be { c1, c2 , ... , Cq}. 

The personnel cost ofT is defined as: 

q 

PCost(T) = Lt( ci) 
i=l 
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Problem 5 (Affordable and Collaborative Team Formation) Given a project P and a 

graph G representing a network of experts, the problem of affordable and collaborative 

team formation is to find a team of experts T for P from G so that the communication 

cost of T, defined as either the sum of distances or diameter ofT, and the personnel cost 

ofT, defined as PCost, are minimized. 

Clearly, Problem 5 is a bi-criteria optimization problem. It has been proved that 

finding a team T of experts in a graph while minimizing the sum of distances or diameter 

of T is an NP-complete problem [34, 48]. Below we show that minimizing PCost is 

also NP-complete. 

Theorem 10 Finding a team of experts in a graph G to cover a set of skills while mini­

mizing PCost is NP-complete. 

Proof 

Given a set of m elements (called universe) and n sets whose union is the universe, the 

set cover problem is to identify the smallest number of sets whose union still contains all 

elements in the universe. Weighted set cover is a variant of set cover in which each set has 

a cost associated with it and the objective is to pick sets that cover the universe with the 

minimum total cost. Consider the set of required skills in our problem as the universe and 

the experts in G as the sets whose union is the universe. Each expert is associated with 
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a cost. Then, finding a team of experts while minimizing PC ost is equivalent to solving 

weighted set cover problem. Since the weighted set cover problem is NP-complete [64], 

finding a team of experts while minimizing PCost is NP-complete. 0 

Since minimizing the sum of distances, diameter or personnel cost is NP-complete, 

solving Problem 5 is NP-complete. Thus, we have to rely on approximation algorithms 

for solving this problem. Many (if not most) methods for solving bi-criteria optimization 

problems combine two objectives into a single one by using a weighted sum of two 

functions [39]. If the weight value is not chosen correctly, the result may not be reliable. 

Also, such methods are usually very sensitive to small changes in weight values [25]. 

In this chapter we use two other approaches to solve this bicriteria problem. In the first 

approach, a budget value (bound) is specified on one objective and the other objective is 

optimized under this budget. In the second approach, the set of Pareto optimal answers 

[58] are found, which represent optimal trade-offs between the two objectives. Below in 

Section 6.3 we propose several (a, /))-approximation algorithms for our problem, which 

take the first approach, and then in Section 6.4 we propose an algorithm for finding a set 

of Pareto-optimal solutions. 

6.3 Finding a Team of Experts with Bounded Budget 

We first define the concept of (a, JJ)-approximation algorithm, and then propose a few 

(a, /))-approximation algorithms for solving our problem. 
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Definition 14 An (a, /])-approximation algorithm for an (A, B)-bicriteria problem is 

defined as a polynomial time algorithm that produces an answer in which the value of 

the.first objective (A) is at most a times a budget, and the value of the second objective 

(B), is at most /3 times the minimum for any answer that is within the budget on A. 

6.3.1 Finding a Team of Experts with a Budget on the Communication Cost 

In this subsection, we propose two algorithms for solving Problem 5. Both algorithms 

receive a budget on the communication cost of the team and minimize the personnel cost. 

The first algorithm uses the diameter and the second algorithm uses the sum of distances 

as the communication cost function. 

6.3.1.1 Budget on the Diameter 

The algorithm takes a budget on the diameter and minimizes the PC ost function. It 

is a (2, log n )-approximation algorithm where n is the number of required skills of the 

project. The diameter budget is specified as D. The (2, log n)-approximation means that 

the answer produced by the algorithm has a diameter at most twice the budget (D) and 

its PC ost value is at most log n times the cost of the minimum PC ost for any answer 

within the D diameter. 

The idea of the first algorithm is as follows. It first collects the experts with the 

rarest required skill Srare (i.e., the required skill with the least number of experts). Then, 
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for each expert cri that possesses Srare, all of the experts having other required skills 

than Srare and within D distance from cri are collected into a set V. A candidate team 

based on cri is then formed by including cri and selecting experts from V to cover all 

the required skills. The expert selection is a greedy procedure that iteratively selects an 

expert c'k that maximizes the ratio of the number of currently uncovered required skills 

covered by c'k to the cost of c'k until all the required skills are covered by the team. That 

is, the quality of an expert is evaluated using the number of uncovered skills per unit 

cost. The algorithm outputs the team that has the smallest personnel cost among all the 

candidate teams built around the experts with Srare· If more than one team has the least 

cost, the one with the lowest diameter is chosen. The reason for starting a team with an 

expert with Srare is to keep the number of candidate teams as small as possible. 

The pseudo code of this approximation algorithm for solving the (diameter, PCost) 

problem is presented in Algorithm 13. The algorithm first obtains the set C(si) of experts 

having required skill si for each i. This can be done quickly by using a pre-built inverted 

index that maps a skill to its experts. In the code, d(cri, ci) is the shortest distance 

between experts cri and cj, which can be efficiently obtained by consulting a pre-built 

index. Using a pre-built index to obtain the shortest distance between nodes has been 

used in other graph search methods such as the ones in [34, 51, 60]. The time complexity 

of Algorithm 13 is O(IC(srare)I X (ICI + IVI X n)) where IC(srare)I is the number of 

experts with the rarest required skill, IC I is the number of experts with other required 
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Algorithm 13 (2, log n)-approximation algorithm for solving (diameter, PCost) prob­

lem 
Input: graph G, project P = { s1 , s2 , ... , sn}, and budget Don the diameter. 

Output: the best team and its personnel cost 

1: for i +-- 1 to n do 
2: C(si) f- the set of experts with Si 
3: Srare +-- argmin IC(si)I, 1 :::; i:::; n 

4: C +-- LJ~=l&i=f:rare C(si) 
5: bestTeam +-- 0 
6: leastCost +-- oo 

7: for each expert cri in C(srare) do 
8: requiredSkill +-- P - Q(cri) 
9: v f- 0 

for each expert Cj in C do 10: 

11: 

12: 

13: 

14: 

15: 

16: 

if (d(cri, Cj) :::; D) & (Q(cj) n requiredSkill f- 0) then 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

24: 

25: 

26: 

27: 

add Cj to V 

{cf, ... ,c~} +-- V 
skillV +-- LJi=i Q(cY) 
if requiredS kill ~ skillV then 

team +-- {(qi, cri), (q2, cri), ... , (qki cri)} where q1, q2, ... qk are the required 

skills that cri has, i.e., {q1, q2,. · .. qk} = P n Q(cri) 
cost +-- t( cri) 
while requiredSkill f- 0 do 

S 1 t k t lrequiredSkillnQ(c%)1 . . . d 
e ec ~ s. . t(c%) 1s max1m1ze 

team +-- team U { (q1, c%), (q2, ck), .... , (qk, c%)} where {q1, q2, ... qk} 
requiredSkill n Q(c%) 
cost +-- cost + t( c%) 
requiredSkill +-- requiredSkill - Q( c%) 

if cost < leastC ost then 
bestTeam +-- team 
leastC ost +-- cost 

else 
if cost = leastCost and team.diameter < bestTeam.diameter then 

28: bestTeam +-- team 
29: return bestTeam, leastCost 

187 



skills, IVI is the number of experts within D distance to a member of C(srare) and n is 

the number of required skills. Since the number of experts with the required skills is at 

most the number of all experts in G, i.e. m, the run time of the algorithm in the worst 

case is O(m2 x n). However, in practice, IC(srare)I, ICI and IVI are much less than m. 

Theorem 11 Algorithm 13 is a (2, log n) approximation algorithm for solving (diameter, 

PCost) problem where n is the number of required skills. 

Proof 

The algorithm forms a team by using an expert cri with the rarest required skill and the 

experts within D distance from cri, which means that all the experts in the team are 

within D distance from cri. Assume that the two nodes that have the largest shortest 

distance among all pairs of nodes are n 1 and n 2 . Since the shortest distance satisfies the 

triangle inequality, we have: 

Since dist(cri, ni) ::; D and dist(cri, n2 ) ::; D, then dist(n1 , n2 ) ::; 2 x D. Thus, the 

diameter of the team is at most 2 x D. 

Every team should have a member cri with Srare· Around cri, all of the experts with 

other required skills and within D distance are considered to be added into a team . Thus, 

all of the teams containing Srare and with diameter less than or equal to D are considered 

by the greedy procedure in Lines 18-22. The greedy procedure tries to find the team with 
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the minimum personnel cost by selecting experts using a heuristic that is the same as the 

one in the greedy algorithm for solving the weighted set cover problem [ 64]. It has been 

shown that the algorithm has a log n approximation ratio [64]. Thus, the personnel cost 

of the team produced by Algorithm 13 is at most log n times the cost of the optimal team 

with diameter at most D. D 

6.3.1.2 Budget on the Sum of Distances 

The algorithm takes a budget on the sum of distances and minimizes the PC ost function. 

It is a (n, log n)-approximation algorithm where n is the number ofrequired skills of the 

project. The pseudo code of this approximation algorithm for solving the ( sumDistance, 

PCost) problem is presented in Algorithm 14. The algorithm is similar to Algorithm 13, 

but has two major differences. First, instead of using only the rarest skill holders, this 

algorithm uses all the required skill holders as the seed of a candidate team. Second, for 

each seed (cri), this algorithm only considers adding its neighbors within the radius of 

;!!1 into the team, where SD is the sumDistance budget. The time complexity of this 

algorithm is O(m2 x n 2
) where n is the number of required skills and mis the number 

of experts in G. 

Theorem 12 Algorithm 14 is a ( n, log n )-approximation algorithm for solving the prob­

lem of ( sumDistance, PC ost) where n is the number of required skills. 
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Proof 

The algorithm forms a team by using an expert cri which has at least one required skill 

and the experts within ;!!1 distance from cri33 . It means that all the experts in the team 

are within ;!!i distance from cri. Assume that the two nodes that have the largest shortest 

distance among all pairs of nodes are n 1 and n 2 . Since the shortest distance satisfies the 

triangle inequality, we have: 

the worst case, the maximum distance between each pair of nodes is at most 2 x ;~ . 

Since the sum of distances function sums up (n)x~n-l) pairwise distances, the maximum 

possible value for the sum of distances is as follows: 

(n) x (n - 1) 2 x SD 
sumDistance :=:; x = n x SD 

2 (n - 1) 

Therefore, the sum of distances is at most n x SD. The rest of the proof is similar to 

Theorem 11. D 

Note that the two approximation ratios (n and log n) only occur in the worst case. We 

will show in the experiments that the real ratios are much smaller than n and log n in our 

experiments on real data sets. 

33Note that if the distance is set to a value smaller than ;,_!!1 , some of the teams with sumDistance 
less than or equal to SD might be missed. On the other hand, if it is set to a value larger than ;!!

1
, the 

approximation ratio is increased. 
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Algorithm 14 (n, logn)-approximation algorithm for solving (sumDistance, PCost) 

problem 

Input: graph G, project P = { s 1 , s 2 , ... , sn}, and budget SD on the sum of distances. 

Output: the best team and its personnel cost 

1: for i ~ 1 ton do 

2: C(si) ~the set of experts with si 

3: C ~ LJ~= 1 C(si) 
4: bestTeam ~ 0 
5: leastCost ~ oo 

6: for h ~ 1 to n do 

7: for each expert cri in C( sh) do 

8: requiredSkill ~ P - Q( cri) 

9: v ~ 0 
10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

22: 

23: 

24: 

25: 

26: 

27: 

for each expert Cj in C do 

if (d(cri, Cj) ~ :!!i) & (Q(cj) n requiredSkill -=I- 0) then 
V ~VU {cj} 

{ cy, ... , c~} ~ V 
skillV ~ Uf=1 Q(ci) 
if requiredS kill ~ skillV then 

team~ { (q1, cri), (q2, cri), ... , (qk, cri)} where qi, q2, ... qk are the required 

skills that cri has, i.e., {q1, q2, ... qk} = p n Q(cri) 

cost ~ t( cri) 
while requiredS kill -=/:- 0 do 

S 1 t k t lrequiredSkillnQ(ck)I . . . d 
e ec s. . t(ck) · · 1s maxnmze 

team ~ team U { (q1, ck), (q2, c%), ... , (qk, c%)} where {q1, q2, ... qk} 
requiredSkill n Q(ck) 

cost ~ cost + t( c%) 

requiredSkill ~ requiredSkill - Q(c%) 
if cost< leastCost then 

bestTeam ~team 

l eastC ost ~ cost 

else 

if cost = leastCost & team.sumDistance < bestTeam.sumDistance 
then 

28: bestTeam ~team 

29: return bestTeam, leastCost 
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6.3.2 Finding a Team of Experts with a Budget on the Personnel Cost 

In practice, there is often a budget on the personnel cost and the goal is to minimize 

the communication cost within the personnel budget. Below we propose approximation 

algorithms that minimize the communication cost under a personnel budget for solving 

the (PCost, diameter) and (PCost, sumDistance) problems. 

According to [54], bicriteria· problems are generally hard when the two criteria are 

hostile with respect to each other, meaning that the optimization of one criterion conflicts 

with the optimization of the other criterion. Two minimization objectives in our problem 

are hostile because the minimum value of one objective is monotonically non-decreasing 

as the bound (budget) on the value of the other objective is decreased. This can be proved 

as follows. By decreasing the budget on the communication cost, the set of possible 

teams under the new budget becomes a subset of possible teams before the budget is 

decreased. Since the optimal team in a subset cannot be better than the optimal team 

in the superset, the personnel cost of the optimal team with the lower budget on the 

communication cost cannot be lower than the personnel cost of the optimal team with a 

higher budget on the communication cost. 

In [54], a generic procedure was proposed that uses an (a, ,6)-approximation al­

gorithm for the (A, B) problem to solve the (B, A) problem in polynomial time and 

with the approximation ratio of (,6, a). The procedure applies to only hostile bicrite-
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ria problems. Since the two criteria in our problem are hostile and the algorithms we 

proposed in the last subsection for the (diameter, PCost) and (sumDistance, PCost) 

problems are (a, ,B)-approximation algorithms, we can adapt the generic procedure in 

[54] to derive (,B, a)-approximation algorithms to solve the (PCost, diameter) and 

(PCost, sumDistance), respectively. Note that this is the first time that this generic 

procedure is adapted to find teams of experts. 

The (logn, 2)-algorithm for solving the (PCost, diameter) problem is presented in 

Algorithm 15. The basic idea of the algorithm is to conduct a binary search over the 

range of diameter values for a diameter value that is as small as possible and at the same 

time the PC ost value of the team is not over the budget B. The algorithm starts with 

the diameter of the input graph G, and stores it in Dprev· It calls Algorithm 13 with 

Dprev as the diameter budget to find the best (approximate) team that minimizes PC ost. 

If the PC ost value of the found team is greater than the input budget B on PC ost, no 

solution exists because if the diameter is lowered, the minimal PC ost value will not 

decrease (due to the hostile relationship between the two objectives). But if the PCost 

value of the team found by Algorithm 13 is less than B, then there may exist teams with 

lower diameters and also under the PC ost budget. Thus, the algorithm continues and 

checks the diameter which is half of the previous value in Dprev by calling Algorithm 

13 with this new diameter value (stored in Dnew) as the diameter budget. If the PCost 

value of the answer returned by Algorithm 13 is more than B, there is no solution that 
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Algorithm 15 (logn, 2)-approximation algorithm for solving (PCost, diameter) prob-

lem 
Input: graph G, project P = { s1 , s2 , ... , sn}, budget Bon PCost, and precision thresh-

old E. 

Output: the best team and its diameter 

1: MaxDiameter ~ maxdist(ci, cj), 1 ::; i,j::; m and mis the number of nodes in 

G 

2: Dprev ~ M axDiameter 

3: \teamprev' PCostprev) ~Algorithm13(G, P, Dprev) 

4: if PC ostprev > B then 

5: return 0, oo 

6: Dtower ~ 0 

7: while (Dprev - Dtower) > E do 

8: D ~ Dprev+Dtower 
new 2 

9: \teamnew 1 PCostnew) ~Algorithm13(G, P, Dnew) 

10: if teamnew -=/: 0 and PC ostnew ::; B then 

11: 

12: \teamprev 1 PCostprev) ~ \teamnew, PCostnew) 

13: else 

14: Dtower ~ Dnew 

15: return teamprev, Dprev 
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has a diameter under or equal to Dnew (due to the hostile relationship between diameter 

and PCost). The algorithm then increases the value in Dnew to (Dprev + Dnew)/2 and 

calls Algorithm 13 again with the new value in Dnew to continue the search. However, 

if the PCost value of the answer returned by Algorithm 13 is less than B, there may 

exist solutions with lower diameter values and thus the algorithm decreases the value in 

Dnew by half and continues the binary search. In each iteration, the optimal diameter 

lies between Dprev and Dzowm which are the upper and lower boundaries of the current 

search range, and Dnew is the middle value between Dprev and Dzower· The boundaries 

are adjusted according to whether the PC ost value of the team returned by Algorithm 

13 is greater than B or not. Thus, when the search range gets smaller, we get closer to 

the team with the minimum diameter under the PC ost budget. The process stops when 

the difference between Dprev and Dzower is smaller than an input precision threshold, and 

it outputs the last valid team returned by Algorithm 13, stored in teamprev. 

The maximum number of iterations of Algorithm 15 is log2 M axD~ameter + 1. Thus, the 

time complexity of Algorithm 15 in the worst case is 0 ( m 2 x n x (log2 M axD~ameter + 1)), 

where 0 ( m 2 x n) is the worst case complexity of Algorithm· 13. Since l\!l ax Diameter 

is the largest shortest distance between any two nodes in the input graph G, which is at 

most m times the maximum edge weight on the shortest path (where m is the number of 

nodes in G), the algorithm is polynomial in terms of input data. 

Theorem 13 Algorithm 15 is a (log n, 2)-approximation algorithmfor solving the (PCost, 
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diameter) problem where n is the number of required skills in the project. 

Proof 

If G does not contain a B-bounded team, the algorithm returns (0, oo) and tenninates. 

Now, assume that G contains a B-bounded team. Let the minimum (optimal) diameter 

of a B-bounded team in G be Optn. Let Approxn and ApproxB specify the diameter 

and PC ost values returned by Algorithm 15 respectively. Due to the hostility of the 

objectives, during any iteration of the binary search, we have Dzower ~ Optn ~ Dprev· 

Let D{;~~; and D~;~~z denote the final values of Dzower and Dprev respectively. We have 

nt:~~l ::; D{;~~; + E. Thus, nt:~~l ::; Optn + E. It is not difficult to see that the team 

returned by the algorithm is generated by Algorithm 13 with D£;~~t as the diameter bud­

get. Thus, according to the approximation ratio of Algorithm 13, Approx D ~ 2D£;~~z ~ 

2( Optn + E). Since E is a small precision threshold, it can be ignored. Thus, Algo­

rithm 15 returns a team from G whose diameter is at most 2 times that of the optimal 

B-bounded team. Let Opt B denote the optimal PC ost value under the diameter budget 

D£;~;z, according to the approximation ratio of Algorithm 13, ApproxB ::; lognOptB. 

Since Opt B ::; B, we have Approx B ::; log nB. D 

Since the general structure of Algorithm 15 is generic, it can be changed to solve 

(PCost, sumDistance) problem by calling the appropriate algorithm at the places where 

Algorithm 13 is called. 
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6.4 Finding Pareto-optimal Teams 

The algorithms above allow the user to provide a budget on one objective and finds the 

best solution on the other objective under the budget. Sometimes, the user may not want 

to specify budgets, but prefer to see all the optimal choices in the two-objective space 

so that he/she can select a solution that best fits his/her preferences. To this end, in this 

section we propose an algorithm that produces a set of optimal solutions that are not 

dominated by others. Below we define the relevant concepts , present the algorithm and 

prove the bounds of the solutions produced by the algorithm. 

Definition 15 (Dominance) A team T dominates a team T' (denoted by T -< T') with 

respect to the communication and personnel costs if T is better than T' in one objective 

and not worse than T' in the other objective. 

Definition 16 (Pareto-optimal team) Given a project P, a team T is a Pareto-optimal 

team for project P if there does not exist a team T' that contains all the skills required 

by P such that T' -< T. 

The set of all Pareto-optimal teams for project P is called the Pareto set of P. The 

teams in a Pareto set usually forms a convex curve (called Pareto curve) in the two­

obj ective space. 

A popular approach for finding Pareto-optimal solutions for multi-objective problems 

in the literature is to use an evolutionary algorithm, which is a heuristic method that 
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Algorithm 16 An approximation algorithm for finding Pareto Set of Team of Experts 

minimizing diameter and PC ost. 
Input: graph G, project P = { s1 , s2 , ... , sn}, and precision threshold E. 

Output: ParetoSet 

1: Max Diameter f- max dist ( ci, Cj), 1 ::; i, j ::; m and m is the number of nodes in 

G 

2: PT f- 0 /*for storing generated teams*/ 

3: Diameter f- MaxDiameter 

4: while Diameter ~ 0 do 

5: (team, cost) f-Algorithm13(G, P, Diameter) 

6: flag = 0 I* for indicating whether t is dominated *I 

7: if team =I= 0 then 

8: if Algorithm 13 is an approximation algorithm then 

9: for each t in PT do 

1 O: if t -< team then 

11: flag= 1 

12: break the for loop 

13: else 

14: if team -< t then 

15: remove t from PT 

16: if flag= 0 then 

17: insert team into PT 

18: else 

19: return PT 

20: Diameter f- Diameter - E 

21: return PT 
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mimics the process of natural evolution. A problem with such a method is that there is 

no provable bound for the approximation ratio. Here we propose a·new general procedure 

that makes use of the (a, {3) approximation algorithms that we proposed in the last section 

to find a set of (approximate) Pareto-optimal solutions with performance bounds. 

The algorithm for producing (approximate) Pareto-optimal answers based on diameter 

and PC ost is presented in Algorithm 16. It repeatedly calls Algorithm 13 with a set of 

diameter budgets, starting from the diameter value of the input graph and decremen­

tally changing the budget value by E, which is an input precision threshold. In this way, 

a set of teams is generated each of which minimizes the personnel cost (PCost) un­

der a diameter budget. If Algorithm 13 is an exact algorithm, the generated teams are 

guaranteed to be Pareto-optimal (See the proof of Theorem 14 below). If Algorithm 

13 is an approximation algorithm (such as the Algorithm 13 proposed in Section 3), 

Algorithm 16 checks whether a newly-generated team is dominated by (or dominates) 

a previously-generated team . If it is dominated by a generated team, it is ignored. 

If it dominates a generated team, the generated team is removed and the new team is 

added to the set of Pareto teams. The worst case time complexity of Algorithm 16 is 

Q ( M axD~ameter X ( m 2 X n + M axD~ameter)) where rn., 2 X n is the Worst time taken by 

Algorithm 13. 

Theorem 14 Algorithm 16 produces Pareto-optimal teams if Algorithm 13 in line 5 re-

turns an exact answer. 
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Proof 

Assume that T is a team returned by Algorithm 16 and that there exists a team Q that 

dominates T. Q dominates T if and only if one of the three conditions holds. We show 

none of these conditions can occur. 

(1) PCost( Q) < PCost(T) and diameter( Q) < diameter(T). Since Q is better 

than T in both objectives, if Algorithm 13 is an exact algorithm, T would not be chosen 

under any diameter budget. 

(2) PCost( Q) = PCost(T) and diameter( Q) < diameter(T). This is not possible 

since for teams with the same personnel cost, Algorithm 13 chooses the one with the 

least diameter. 

(3) PCost(Q) < PCost(T) and diameter(Q) = diameter(T) T would not be 

chosen by Algorithm 13 if Algorithm 13 is an exact algorithm since Q is better than Tin 

the personnel cost under any diameter budget no less than diameter(T). 

Since team Q does not exist, team Tis Pareto-optimal. D 

The following theorem states how close a team generated by Algorithm 16 is to a 

Pareto-optimal team in the worse case if Algorithm 13 is the approximation algorithm as 

presented in Section 3. 

Theorem 15 For each team s' produced by Algorithm 16, there exists a team s in the 

Pareto set such that diameter( s') ~ 2 x diameter( s) and PCost( s') ~ log n x 

PCost(s). 
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Proof 

This can be easily derived from Theorems 11 and 14. 0 

The following theorem states how well the teams in the Pareto Set are represented by 

the teams produced by Algorithm 16. 

Theorem 16 For each team s in the Pareto set, there exists a team s' produced by 

Algorithm 16 such that diameter(s') ::; 2 x (E + diameter(s)) and PCost(s') < 

log n x PCost( s ), where Eis the input precision threshold of Algorithm 16. 

Proof 

For any team s in the Pareto set, there is a team r in the Pareto set that is generated 

by Algorithm 16 if Algorithm 13 were an exact algorithm such that diameter(r) ::; 

E+diameter( s ), because the interval of the diameter budgets used in Algorithm 16 to call 

Algorithm 13 is E. Let s' be the team generated by Algorithm 16 when Algorithm 13 is the 

approximation algorithm under the diameter budget that r were generated with the exact 

Algorithm 13. According to Theorem 11, we have diameter ( s') ::; 2 x diameter ( r). 

Thus, diameter(s') ::; 2 x (E + diameter(s)). 

For PCost, we have PCost(s') ::; logn x PCost(r). Also, since r is on the Pareto 

curve, PCost(r)::; PCost(s). Thus, we have PCost(s')::; logn x PCost(s). D 

To find the Pareto optimal solutions for minimizing sumDistance and PC ost, the 

appropriate algorithms can be used in Algorithm 16 at the places where Algorithm 13 is 

called. The corresponding approximation bounds can be derived similarly. 
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6.5 Experimental Evaluation 

6.5.1 The Datasets and Experimental Setup 

The DBLP and IMDb data sets are used in the experiments. The DBLP graph is produced 

from the DBLP XML data34 taken on April 25, 2011. The dataset contains infonnation 

about a collection of papers and their authors. The set of experts and skills are generated 

in the same way as in [34, 48] as follows. For each paper, the name(s) of the author(s ), 

the conference where it was published and the title of the paper are specified. We only 

keep the papers of some major conferences in computer science: SIG MOD, VLDB, ICDE, 

ICDT, EDBT, PODS KDD, WWW, SDM, PKDD, ICDM, ICML, ECML, COLT, UAI, SODA, 

Foes, STOC, and STACS. The set of experts consists of authors with at least 3 papers in 

the DBLP. The skills of an expert is the set of tenns that appear in the titles of at least two 

papers of the expert. Two experts are connected together if they have at least two papers 

together. The weight of the edge between two nodes ni and n1· is equal to 1 - I Pni = Pnt I 
Pni Pnj 

where Pni is the set of papers of author ni. The cost of an expert in the DBLP is set to be 

the number of publications of the expert, assuming that the more publications an expert 

has, the more expensive he/she is. The final graph has 6,229 nodes and 9,400 edges. 

The part of the IMDb dataset35 used in our experiments contains information about 

the actors and the list of movies that each actor played in. It is processed in the same way 

34http://dblp.uni-trier.de/xml/ 

35http://www.imdb.com/interfaces 
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as described in [34, 48]. The expert cost in IMDb is defined as the number of movies the 

actor plays in. The IMDb graph has 6,784 nodes and 35,875 edges. In our experiments, 

the DBLP and IMDb datasets show similar trends. Thus, most of the results presented 

below are from DBLP. 

The projects used in the experiments are generated as follows. ·Each project is de­

termined by a set of skills. The number of skills in a project varies from 4 to 10. For 

each number of skills, 100 projects are generated randomly. The average result over 

100 projects is computed and used as the result of each algorithm. Skills have different 

frequencies. The frequency of a skill is the percentage of experts in the expert network 

that possess the skill. The frequency of the skills in our experiments varies from 0.1 to 

5.0 percent. Other values of skill frequency show similar trends. All the algorithms are 

implemented in Java. The experiments are conducted on an Intel(R) Core(TM) i7 2.80 

-GHz computer with 4 GB of RAM. 

6.5.2 Single Objective Methods 

In this section, we show that single objective methods fail to find an affordable team of 

experts with acceptable communication cost. We implemented 3 single objective algo­

rithms for such a purpose. The first algorithm is called Rarest Fir st. It was introduced 

in [ 48] for minimizing the diameter. Note that this algorithm does not minimize the 

personnel cost. The second algorithm is called Alg-PCost. It minimizes the personnel 
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Figure 6.3: The diameter and PCost values of single objective methods for different 

number of required skills on DBLP dataset. 

cost and do not minimize the communication cost. Note that Alg-PCost is the weighted 

greedy set cover algorithm [64]. In addition, we also implemented the greedy set cover 

algorithm (Set Cover) [64]. The objective of the greedy set cover problem is to minimize 

the number of experts and it does not minimize the communication cost nor the person-

nel cost. Figure 6.3 shows the diameter and PCost values of these methods for different 

numbers of required skills. As expected, the diameter of the Rarest Fir st algorithm 

is much smaller than other methods because it minimizes the diameter of the answer. 

However, in terms of PCost, its values are the highest. Alg-PCost achieves the lowest 

personnel cost, but its teams have high diameter values. The results of the Set Cover 

method lie in the middle of other methods on both measures. 
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Figure 6.4: The personnel cost (shown in logarithmic scale) produced by our algorithms 

that receive a budget on the communication cost on DBLP and IMDb datasets. For some 

budget values, no team exists in the graph. 

6.5.3 Results of Algorithms with Given Budget 

6.5.3.1 Hostility between two objectives 

Figure 6.4 shows the PCost values of the teams produced by our algorithms that receives 

budget on the communication cost for different budgets on diameter or surnDistance. 

Since the two objectives are hostile, by increasing the communication budget, the per-

sonnel cost decreases. For teams with the same budget, the more the required skills, 

the higher personnel costs. The results also show that our algorithms are able to find 
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teams with both small personnel cost and small communication cost. For example, for 

4 required skills, our Algorithm 13 is able to find a team with a PCost value of 16 and 

within a diameter budget of 4. Such a team cannot be found by the single objective 

methods that minimize either communication cost or personnel cost 

6.5.3.2 Quality of Approximation Algorithms 

We compare our approximation algorithms with the exact algorithms in terms of the qual­

ity of the answers. The answers of the exact algorithms are obtained using exhaustive 

search. Figure 6.5 shows the communication and personnel costs of the teams produced 

by the exact algorithms and Algorithms 13 and 14 for different budget values on diam­

eter or sum of distances for projects with four skills. Due to the poor perfonnance and 

long run time of the exhaustive search, the results of higher number of skills and higher 

communication cost budgets are not presented. The results show that the costs of the 

teams produced by our approximation algorithms are very close to those produced by the 

exact algorithms. The ratio of the diameter from Algorithm 13 or sum of distances from 

Algorithm 14 to the one from the exact algorithm is at most 1.29 or 1.68 respectively, 

although the theoretical bound for the approximation ratio is 2 (as shown in Theorem 

11) or 4 (which is the number of required skills as shown in Theorem 12). This means 

that our approximation algorithms perfonn very well in practice, much better than the 

worse case scenario. The results also show that the PC ost values of the teams produced 
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by Algorithms 13 and 14 are sometimes slightly smaller than the ones from the exact 

algorithm. This seems a surprise. However, the reason is that some of the teams returned 

by the approximation algorithms have larger diameter/sum of distances than the bud­

get. These teams are not considered by the exact algorithm. Therefore, they might have 

smaller personnel cost than the teams that actually lie within the communication budget. 

Note that these results do not violate the (2, logn) approximation ratio of Algorithm 13. 

The personnel cost of the approximation algorithm is at most log n times of the personnel 

cost of the exact answer. In this case, it is even smaller than the cost of the exact answer. 

For brevity, only the results of Algorithms 13 and 14 are presented. Other approximation 

algorithms have similar performance. 

6.5.3.3 Precision vs. Run Time 

As discussed before, the value of E in Algorithm 15 dete1mines the precision of the output 

teams. However, by increasing the precision (i.e., decreasing the value of E), the run time 

increases. Figure 6.6 shows how the run time of Algorithm 15 changes with the E value 

for different numbers of required skills on the DBLP dataset. As expected, by decreasing 

the value of E, the run time increases close to linearly. It is because the run time is 

logarithmically related to the ratio of the diameter of the graph G to E. 
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Figure 6.5: The costs of the teams from exact algorithms and Algorithms 13 and 14 on 

DBLP for projects with 4 skills. 

6.5.4 Results of the Pareto Set Algorithm 

In this section the effectiveness and efficiency of the proposed method for finding Pareto 

solutions are evaluated. The proposed method (Algorithm 16) is referred to as Approx-

Pareto. To the best of our knowledge, there does not exist a Pareto optimization method 

for team formation. However, we implemented the following methods to compare with 

Approx-Pareto: (1) Exact-Pareto: The exact Pareto set is found using exhaustive search. 

(2) Random-Pareto: This method randomly selects a set of connected teams (1 % of total 

teams), and then removes the teams that dominated by other generated teams. (3) GA-

Pareto [25]: We apply a genetic algorithm for finding Pareto solutions proposed in [25] 
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Figure 6.6: The run time of Algorithm 15 for different values of Eon DBLP dataset. 

to our team formation problem. All the parameters are set in the same way as in [25]. 

We use the following performance measures: (1) Hypervolume (HV) [73]: It mea-

sures (in percentage) the volume of the dominated space by a generated Pareto set within 

search space composed by bounds of objective values. The higher the value, the better 

the Pareto set. (2) Average Distance (Davg) and Maximal Distance (Dmax) [13]: Given 

a true Pareto set R and a set S of approximate Pareto teams, D avg is the average dis-

tance from each y E R to the closest team in S and Dmax is the maximum distance 

between them. For both measures, lower values are preferred. (3) Precision and Recall: 

Pr . ion = I True ParetoSet n Retrieved ParetoSetl Recall = !True ParetoSet n Retrieved ParetoSetl 
ecis !Retrieved ParetoSetl ' ITrue ParetoSetl ' 

where I · I denotes set cardinality. (4) Run time. The result of the Exact-Pareto method 

is used as the true Pareto set for calculating H, Davg and Dmax indicators. 

Table 6.1 shows the results of the algorithms for different numbers of required skills. 

The overall best results and best results among non-exact methods are highlighted in 
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Table 6.1: Results of algorithms for finding Pareto set (For Approx-Pareto, E is set to 

0.1). 

#Skill Method HV(%) Dmax Davg Precision(%) Recall(%) Time (ms) 

3 Exact-Pareto 47.6 0 0 100 100 10,563 

3 Approx-Pareto 42.6 4.31 0.89 64 34.5 498 

3 GA-Pareto 29.8 150.81 39.60 3 1.1 353 

3 Random-Pareto 30 102.83 18.23 7.1 3.6 104 

4 Exact-Pareto 45.8 0 0 100 100 42,376 

4 Approx-Pareto 40.2 12.5 1.44 70.4 28.23 647 

4 GA-Pareto 34 58 10.06 4.4 2.9 921 

4 Random-Pareto 37 90.8 15.87 2 0.87 242 

5 Exact-Pareto 55.3 0 0 100 100 92,235 

5 Approx-Pareto 50.87 17 3.47 21.43 13.64 968 

5 GA-Pareto 50.14 28.01 8.37 0 0 2030 

5 Random-Pareto 49.35 140 13.22 6.67 4.55 496 

bold. Not surprisingly, Exact-Pareto gives the best or perfect results on all the quality 

measures (HV~ Davg, Dmax· Precision and Recall). However, its run time is orders 

of magnitude longer than those of the three non-exact methods. This indicates the need 

for non-exact algorithms. The results also indicate that Approx-Pareto significantly out­

performs the other non-exact methods in terms of all the quality measures (HV, Davg, 

Dmax· Precision and Recall). Its HV values are close to those of the exact method. In 
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run time, the random method is the fastest as expected. Compared to the GA method, 

Approx-Pareto is slower than GA-Pareto when the number of required skills is 3, but is 

much faster than GA when the number of skills becomes a bit bigger. It is because by 

increasing the number of required skills from 3 to 4 or 5, the search space expansion of 

GA-Pareto is much more than Approx-Pareto. 

6.6 Conclusion and Future Work 

We studied the problem of finding an affordable and collaborative team from an expert 

network that minimizes two objectives: the communication cost among team members 

and the personnel cost. We proved that the problem we tackle is NP-complete. Two 

functions are used to measure the communication cost of a team and another function 

is proposed to evaluate the personnel cost of the team. A suite of algorithms classified 

into two approaches are proposed to solve this bicriteria problem. In the first approach, 

a budget is given on one objective and the purpose is to minimize the other objective 

under the budget. The budget could be either on the communication cost or the personnel 

cost. In the second approach, a set of approximate Pareto-optimal solutions are generated 

in which there exists no other team that dominates the solution in both of the costs. 

All of the proposed algorithms have provable approximation bounds. We evaluated the 

proposed algorithms on the DBLP and IMDb datasets and showed that our proposed 

algorithms are effective and efficient. 
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As future work, we consider adding another objective, i.e., maximizing the level of 

expertise in the team, into the problem, which leads to a challenging three objective opti­

mization problem. Other communication and personnel cost functions might be applied 

and the approximation ratio of the proposed algorithms could be improved as well. 
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7 Conclusions 

7.1 Review of Contributions 

Original research has been accomplished in pursuit of this degree, and the results have 

been published in top-tier venues as TKDE [38], VLDB' 11 [35], ICDE' 12 [37], ICDM' 11 

[36], SDM' 13 [40], CIKM' 11 [34] and ECML-PKDD' 12 [39]. Some other parts of this 

dissertation are still under review in top-tier conferences/journals. In the course of this 

research, several topics in databases, data mining and theoretical computer science have 

been studied and extended. 

In terms of keyword search over graph data, we propose to find r-cliques. The benefit 

of finding r-cliques are in two folds. First, the content nodes within an answer are guar­

anteed to be close to each other. Second, in the search process, only content nodes are 

explored rather than the whole graph. This improves the run time of the search process. 

Previous work in graph keyword search might return duplicate or very similar an­

swers which is obviously not desirable to the users. We propose a procedure which pro­

duces non-duplicate answers in polynomial delay. We further show that this procedure is 

213 



faster than finding non-duplicate answers by post processing of the answers produced by 

previous methods. We define minimal answers as the one in which every content node 

covers an input keyword uniquely and illustrate some applications in which minimal an­

swers are desirable. We propose approximation algorithms for finding duplication free 

and minimal answers efficiently. 

For keyword search over relational databases which uses the schema based approach, 

the following ideas are proposed and implemented. We redefine answers via roles that 

capture important answers missed by previous techniques. In terms of ranking the net­

works of interconnected tuples, we devise importance measures for nodes, importance 

measures for edges, and a hybrid measure of the two. Then, we devise relevance mea­

sures for join trees derived from the schema relevance and study the effect of penalizing 

larger trees. A gold standard is constructed for relevance of nodes and edges from an 

extensive workload of real SQL queries. This is used to evaluate the effectiveness of our 

measures which do not require such external information. A comprehensive evaluation 

is performed based on the TPC-E schema to demonstrate the viability of our methods 

and to compare against existing methods. 

We propose a suite of algorithms for finding a team of experts in a social network 

that minimizes both the communication cost and the personnel cost of the team. They 

are classified into two approaches as follows. In the first approach, a budget is given 

on one objective and the purpose is to minimize the other objective under the budget. 
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The budget could be either on the communication cost or on the personnel cost. In the 

second approach, a set of approximate Pareto-optimal solutions is generated in which 

no solution is dominated by any feasible solution in terms of the two costs. All of the 

proposed algorithms have provable approximation bounds and their viability are showed 

by extensive experiments on two real datasets. 

7.2 Future Directions 

We have provided novel and effective solutions to improve the state of the art in keyword 

search over graphs and relational databases, and in team formation from expert networks. 

However, there is still room for further research and improvement. The following direc­

tions can be explored, most of which have been mentioned in previous chapters. 

• The approximation ratio of the proposed approximation algorithms for finding r­

cliques might be improved or alternatively the ratio might be proved to be tight. 

• The indexing method can be improved by efficiently updating the index in case of 

updating the input graph. The current indexing method does not support updates. 

• Building keyword search engines over graph data using the MapReduce program­

ming model can be another extension to this disse1tation. In this case, the search 

engine is able to handle graphs with billions of nodes/edges in a distributed envi-

ronment. 

• The ratio of the proposed approximation algorithms for finding minimal answers 
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might be improved. 

• Finding more applications for minimal answers in other domains (e.g., bioinfor-

matics and computation biology networks) and applying the procedure proposed 

in this dissertation could be an interesting item of future work. 

• Our work on finding meaningful answers for keyword search over relational databases 

could be improved by applying previous techniques such as pipelining in DIS-

COVER I [27]. Multi-query optimization [62] over the SQL queries generated 

for the MJNSs could be utilized to speed up evaluation greatly by exploiting the 

commonalities among queries. 

• In finding meaningful answers for keyword search over relational databases, we 

seek to demonstrate how effective deriving relevance of the "nodes" and "edges" 

of the database schema could be based on just the schema and data. However, the 

results could be further improved by applying auxiliary information such as Linked 

Data36 and WordNet37 .. 

• In the team formation problem, other communication and personnel cost functions 

might be applied. The approximation ratio of the proposed algorithms might be 

improved as well. 

• Another extension to the team fonnation problem could be adding more criteria to 

36http://linkeddata.org 

37http://wordnet.princeton.edu 
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the problem, such as the level of expertise or the availability of the experts. 
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