10,850 research outputs found

    Phase Transitions of Neural Networks

    Full text link
    The cooperative behaviour of interacting neurons and synapses is studied using models and methods from statistical physics. The competition between training error and entropy may lead to discontinuous properties of the neural network. This is demonstrated for a few examples: Perceptron, associative memory, learning from examples, generalization, multilayer networks, structure recognition, Bayesian estimate, on-line training, noise estimation and time series generation.Comment: Plenary talk for MINERVA workshop on mesoscopics, fractals and neural networks, Eilat, March 1997 Postscript Fil

    On Page Rank

    Get PDF
    In this paper the concept of page rank for the world wide web is discussed. The possibility of describing the distribution of page rank by an exponential law is considered. It is shown that the concept is essentially equal to that of status score, a centrality measure discussed already in 1953 by Katz. A structural classification of users in the web is given in terms of graph theoretical concepts

    Cluster and Feature Modeling from Combinatorial Stochastic Processes

    Full text link
    One of the focal points of the modern literature on Bayesian nonparametrics has been the problem of clustering, or partitioning, where each data point is modeled as being associated with one and only one of some collection of groups called clusters or partition blocks. Underlying these Bayesian nonparametric models are a set of interrelated stochastic processes, most notably the Dirichlet process and the Chinese restaurant process. In this paper we provide a formal development of an analogous problem, called feature modeling, for associating data points with arbitrary nonnegative integer numbers of groups, now called features or topics. We review the existing combinatorial stochastic process representations for the clustering problem and develop analogous representations for the feature modeling problem. These representations include the beta process and the Indian buffet process as well as new representations that provide insight into the connections between these processes. We thereby bring the same level of completeness to the treatment of Bayesian nonparametric feature modeling that has previously been achieved for Bayesian nonparametric clustering.Comment: Published in at http://dx.doi.org/10.1214/13-STS434 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Generating functions for generating trees

    Get PDF
    Certain families of combinatorial objects admit recursive descriptions in terms of generating trees: each node of the tree corresponds to an object, and the branch leading to the node encodes the choices made in the construction of the object. Generating trees lead to a fast computation of enumeration sequences (sometimes, to explicit formulae as well) and provide efficient random generation algorithms. We investigate the links between the structural properties of the rewriting rules defining such trees and the rationality, algebraicity, or transcendence of the corresponding generating function.Comment: This article corresponds, up to minor typo corrections, to the article submitted to Discrete Mathematics (Elsevier) in Nov. 1999, and published in its vol. 246(1-3), March 2002, pp. 29-5

    A new correlator in quantum spin chains

    Full text link
    We propose a new correlator in one-dimensional quantum spin chains, the ss-Emptiness Formation Probability (ss-EFP). This is a natural generalization of the Emptiness Formation Probability (EFP), which is the probability that the first nn spins of the chain are all aligned downwards. In the ss-EFP we let the spins in question be separated by ss sites. The usual EFP corresponds to the special case when s=1s=1, and taking s>1s>1 allows us to quantify non-local correlations. We express the ss-EFP for the anisotropic XY model in a transverse magnetic field, a system with both critical and non-critical regimes, in terms of a Toeplitz determinant. For the isotropic XY model we find that the magnetic field induces an interesting length scale.Comment: 6 pages, 1 figur

    Thermodynamic formalism for dissipative quantum walks

    Full text link
    We consider the dynamical properties of dissipative continuous-time quantum walks on directed graphs. Using a large-deviation approach we construct a thermodynamic formalism allowing us to define a dynamical order parameter, and to identify transitions between dynamical regimes. For a particular class of dissipative quantum walks we propose a quantum generalization of the the classical PageRank vector, used to rank the importance of nodes in a directed graph. We also provide an example where one can characterize the dynamical transition from an effective classical random walk to a dissipative quantum walk as a thermodynamic crossover between distinct dynamical regimes.Comment: 8 page
    corecore