319 research outputs found

    Development of Quantitative Structure-Property Relationships (QSPR) using calculated descriptors for the prediction of the physico-chemical properties (nD, r, bp, e and h) of a series of organic solvents.

    Get PDF
    Quantitative structure-property relationship (QSPR) models were derived for predicting boiling point (at 760 mmHg), density (at 25 \ub0C), viscosity (at 25 \ub0C), static dielectric constant (at 25 \ub0C), and refractive index (at 20 \ub0C) of a series of pure organic solvents of structural formula X-CH2CH2-Y. A very large number of calculated molecular descriptors were derived by quantum chemical methods, molecular topology, and molecular geometry by using the CODESSA software package. A comparative analysis of the multiple linear regression techniques (heuristic and best multilinear regression) implemented in CODESSA, with the multivariate PLS/GOLPE method, has been carried out. The performance of the different regression models has been evaluated by the standard deviation of prediction errors, calculated for the compounds of both the training set (internal validation) and the test set (external validation). Satisfactory QSPR models, from both predictive and interpretative point of views, have been obtained for all the studied properties

    QSPR calculation of normal boiling points of organic molecules based on the use of correlation weighting of atomic orbitals with extended connectivity of zero- and first-order graphs of atomic orbitals

    Get PDF
    We report the results of a calculation of the normal boiling points of a representative set of 200 organic molecules through the application of QSPR theory. For this purpose we have used a particular set of flexible molecular descriptors, the so called Correlation Weighting of Atomic Orbitals with Extended Connectivity of Zero- and First-Order Graphs of Atomic Orbitals. Although in general the results show suitable behavior to predict this physical chemistry property, the existence of some deviant behaviors points to a need to complement this index with some other sort of molecular descriptors. Some possible extensions of this study are discussed.SCOPU

    Pyrimidinylsalicylic Based Herbicides: Modeling and Prediction

    Get PDF

    Calculating the partition coefficients of organic solvents in octanol/water and octanol/air

    Get PDF
    Partition coefficients define how a solute is distributed between two immiscible phases at equilibrium. The experimental estimation of partition coefficients in a complex system can be an expensive, difficult, and time-consuming process. Here a computational strategy to predict the distributions of a set of solutes in two relevant phase equilibria is presented. The octanol/water and octanol/air partition coefficients are predicted for a group of polar solvents using density functional theory (DFT) calculations in combination with a solvation model based on density (SMD) and are in excellent agreement with experimental data. Thus, the use of quantum-chemical calculations to predict partition coefficients from free energies should be a valuable alternative for unknown solvents. The obtained results indicate that the SMD continuum model in conjunction with any of the three DFT functionals (B3LYP, M06-2X, and M11) agrees with the observed experimental values. The ighest correlation to experimental data for the octanol/water partition coefficients was reached by the M11 functional; for the octanol/air partition coefficient, the M06-2X functional yielded the best performance. To the best of our knowledge, this is the first computational approach for the rediction of octanol/air partition coefficients by DFT calculations, which has remarkable accuracy and precision

    ์‹ฌ์ธตํ•™์Šต์„ ์ด์šฉํ•œ ์•ก์ฒด๊ณ„์˜ ์„ฑ์งˆ ์˜ˆ์ธก

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ํ™”ํ•™๋ถ€,2020. 2. ์ •์—ฐ์ค€.์ตœ๊ทผ ๊ธฐ๊ณ„ํ•™์Šต ๊ธฐ์ˆ ์˜ ๊ธ‰๊ฒฉํ•œ ๋ฐœ์ „๊ณผ ์ด์˜ ํ™”ํ•™ ๋ถ„์•ผ์— ๋Œ€ํ•œ ์ ์šฉ์€ ๋‹ค์–‘ํ•œ ํ™”ํ•™์  ์„ฑ์งˆ์— ๋Œ€ํ•œ ๊ตฌ์กฐ-์„ฑ์งˆ ์ •๋Ÿ‰ ๊ด€๊ณ„๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์˜ˆ์ธก ๋ชจํ˜•์˜ ๊ฐœ๋ฐœ์„ ๊ฐ€์†ํ•˜๊ณ  ์žˆ๋‹ค. ์šฉ๋งคํ™” ์ž์œ  ์—๋„ˆ์ง€๋Š” ๊ทธ๋Ÿฌํ•œ ๊ธฐ๊ณ„ํ•™์Šต์˜ ์ ์šฉ ์˜ˆ์ค‘ ํ•˜๋‚˜์ด๋ฉฐ ๋‹ค์–‘ํ•œ ์šฉ๋งค ๋‚ด์˜ ํ™”ํ•™๋ฐ˜์‘์—์„œ ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๋Š” ๊ทผ๋ณธ์  ์„ฑ์งˆ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์šฐ๋ฆฌ๋Š” ๋ชฉํ‘œ๋กœ ํ•˜๋Š” ์šฉ๋งคํ™” ์ž์œ  ์—๋„ˆ์ง€๋ฅผ ์›์ž๊ฐ„์˜ ์ƒํ˜ธ์ž‘์šฉ์œผ๋กœ๋ถ€ํ„ฐ ๊ตฌํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด ์‹ฌ์ธตํ•™์Šต ๊ธฐ๋ฐ˜ ์šฉ๋งคํ™” ๋ชจํ˜•์„ ์†Œ๊ฐœํ•œ๋‹ค. ์ œ์•ˆ๋œ ์‹ฌ์ธตํ•™์Šต ๋ชจํ˜•์˜ ๊ณ„์‚ฐ ๊ณผ์ •์€ ์šฉ๋งค์™€ ์šฉ์งˆ ๋ถ„์ž์— ๋Œ€ํ•œ ๋ถ€ํ˜ธํ™” ํ•จ์ˆ˜๊ฐ€ ๊ฐ ์›์ž์™€ ๋ถ„์ž๋“ค์˜ ๊ตฌ์กฐ์  ์„ฑ์งˆ์— ๋Œ€ํ•œ ๋ฒกํ„ฐ ํ‘œํ˜„์„ ์ถ”์ถœํ•˜๋ฉฐ, ์ด๋ฅผ ํ† ๋Œ€๋กœ ์›์ž๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์„ ๋ณต์žกํ•œ ํผ์…‰ํŠธ๋ก  ์‹ ๊ฒฝ๋ง ๋Œ€์‹  ๋ฒกํ„ฐ๊ฐ„์˜ ๊ฐ„๋‹จํ•œ ๋‚ด์ ์œผ๋กœ ๊ตฌํ•  ์ˆ˜ ์žˆ๋‹ค. 952๊ฐ€์ง€์˜ ์œ ๊ธฐ์šฉ์งˆ๊ณผ 147๊ฐ€์ง€์˜ ์œ ๊ธฐ์šฉ๋งค๋ฅผ ํฌํ•จํ•˜๋Š” 6,493๊ฐ€์ง€์˜ ์‹คํ—˜์น˜๋ฅผ ํ† ๋Œ€๋กœ ๊ธฐ๊ณ„ํ•™์Šต ๋ชจํ˜•์˜ ๊ต์ฐจ ๊ฒ€์ฆ ์‹œํ—˜์„ ์‹ค์‹œํ•œ ๊ฒฐ๊ณผ, ํ‰๊ท  ์ ˆ๋Œ€ ์˜ค์ฐจ ๊ธฐ์ค€ 0.2 kcal/mol ์ˆ˜์ค€์œผ๋กœ ๋งค์šฐ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๊ฐ€์ง„๋‹ค. ์Šค์บํด๋“œ-๊ธฐ๋ฐ˜ ๊ต์ฐจ ๊ฒ€์ฆ์˜ ๊ฒฐ๊ณผ ์—ญ์‹œ 0.6 kcal/mol ์ˆ˜์ค€์œผ๋กœ, ์™ธ์‚ฝ์œผ๋กœ ๋ถ„๋ฅ˜ํ•  ์ˆ˜ ์žˆ๋Š” ๋น„๊ต์  ์ƒˆ๋กœ์šด ๋ถ„์ž ๊ตฌ์กฐ์— ๋Œ€ํ•œ ์˜ˆ์ธก์— ๋Œ€ํ•ด์„œ๋„ ์šฐ์ˆ˜ํ•œ ์ •ํ™•๋„๋ฅผ ๋ณด์ธ๋‹ค. ๋˜ํ•œ, ์ œ์•ˆ๋œ ํŠน์ • ๊ธฐ๊ณ„ํ•™์Šต ๋ชจํ˜•์€ ๊ทธ ๊ตฌ์กฐ ์ƒ ํŠน์ • ์šฉ๋งค์— ํŠนํ™”๋˜์ง€ ์•Š์•˜๊ธฐ ๋•Œ๋ฌธ์— ๋†’์€ ์–‘๋„์„ฑ์„ ๊ฐ€์ง€๋ฉฐ ํ•™์Šต์— ์ด์šฉํ•  ๋ฐ์ดํ„ฐ์˜ ์ˆ˜๋ฅผ ๋Š˜์ด๋Š” ๋ฐ ์šฉ์ดํ•˜๋‹ค. ์›์ž๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์— ๋Œ€ํ•œ ๋ถ„์„์„ ํ†ตํ•ด ์ œ์•ˆ๋œ ์‹ฌ์ธตํ•™์Šต ๋ชจํ˜• ์šฉ๋งคํ™” ์ž์œ  ์—๋„ˆ์ง€์— ๋Œ€ํ•œ ๊ทธ๋ฃน-๊ธฐ์—ฌ๋„๋ฅผ ์ž˜ ์žฌํ˜„ํ•  ์ˆ˜ ์žˆ์Œ์„ ์•Œ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ๊ธฐ๊ณ„ํ•™์Šต์„ ํ†ตํ•ด ๋‹จ์ˆœํžˆ ๋ชฉํ‘œ๋กœ ํ•˜๋Š” ์„ฑ์งˆ๋งŒ์„ ์˜ˆ์ธกํ•˜๋Š” ๊ฒƒ์„ ๋„˜์–ด ๋”์šฑ ์ƒ์„ธํ•œ ๋ฌผ๋ฆฌํ™”ํ•™์  ์ดํ•ด๋ฅผ ํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•  ๊ฒƒ์ด๋ผ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ๋‹ค.Recent advances in machine learning technologies and their chemical applications lead to the developments of diverse structure-property relationship based prediction models for various chemical properties; the free energy of solvation is one of them and plays a dominant role as a fundamental measure of solvation chemistry. Here, we introduce a novel machine learning-based solvation model, which calculates the target solvation free energy from pairwise atomistic interactions. The novelty of our proposed solvation model involves rather simple architecture: two encoding function extracts vector representations of the atomic and the molecular features from the given chemical structure, while the inner product between two atomistic features calculates their interactions, instead of black-boxed perceptron networks. The cross-validation result on 6,493 experimental measurements for 952 organic solutes and 147 organic solvents achieves an outstanding performance, which is 0.2 kcal/mol in MUE. The scaffold-based split method exhibits 0.6 kcal/mol, which shows that the proposed model guarantees reasonable accuracy even for extrapolated cases. Moreover, the proposed model shows an excellent transferability for enlarging training data due to its solvent-non-specific nature. Analysis of the atomistic interaction map shows there is a great potential that our proposed model reproduces group contributions on the solvation energy, which makes us believe that the proposed model not only provides the predicted target property, but also gives us more detailed physicochemical insights.1. Introduction 1 2. Delfos: Deep Learning Model for Prediction of Solvation Free Energies in Generic Organic Solvents 7 2.1. Methods 7 2.1.1. Embedding of Chemical Contexts 7 2.1.2. Encoder-Predictor Network 9 2.2. Results and Discussions 13 2.2.1. Computational Setup and Results 13 2.2.2. Transferability of the Model for New Compounds 17 2.2.3. Visualization of Attention Mechanism 26 3. Group Contribution Method for the Solvation Energy Estimation with Vector Representations of Atom 29 3.1. Model Description 29 3.1.1. Word Embedding 29 3.1.2. Network Architecture 33 3.2. Results and Discussions 39 3.2.1. Computational Details 39 3.2.2. Prediction Accuracy 42 3.2.3. Model Transferability 44 3.2.4. Group Contributions of Solvation Energy 49 4. Empirical Structure-Property Relationship Model for Liquid Transport Properties 55 5. Concluding Remarks 61 A. Analyzing Kinetic Trapping as a First-Order Dynamical Phase Transition in the Ensemble of Stochastic Trajectories 65 A1. Introduction 65 A2. Theory 68 A3. Lattice Gas Model 70 A4. Mathematical Model 73 A5. Dynamical Phase Transitions 75 A6. Conclusion 82 B. Reaction-Path Thermodynamics of the Michaelis-Menten Kinetics 85 B1. Introduction 85 B2. Reaction Path Thermodynamics 88 B3. Fixed Observation Time 94 B4. Conclusions 101Docto

    A practical overview of quantitative structure-activity relationship

    Get PDF
    Quantitative structure-activity relationship (QSAR) modeling pertains to the construction of predictive models of biological activities as a function of structural and molecular information of a compound library. The concept of QSAR has typically been used for drug discovery and development and has gained wide applicability for correlating molecular information with not only biological activities but also with other physicochemical properties, which has therefore been termed quantitative structure-property relationship (QSPR). Typical molecular parameters that are used to account for electronic properties, hydrophobicity, steric effects, and topology can be determined empirically through experimentation or theoretically via computational chemistry. A given compilation of data sets is then subjected to data preprocessing and data modeling through the use of statistical and/or machine learning techniques. This review aims to cover the essential concepts and techniques that are relevant for performing QSAR/QSPR studies through the use of selected examples from our previous work

    A Review on Progress in QSPR Studies for Surfactants

    Get PDF
    This paper presents a review on recent progress in quantitative structure-property relationship (QSPR) studies of surfactants and applications of various molecular descriptors. QSPR studies on critical micelle concentration (cmc) and surface tension (ฮณ) of surfactants are introduced. Studies on charge distribution in ionic surfactants by quantum chemical calculations and its effects on the structures and properties of the colloids of surfactants are also reviewed. The trends of QSPR studies on cloud point (for nonionic surfactants), biodegradation potential and some other properties of surfactants are evaluated

    Prediction of the functional properties of ceramic materials from composition using artificial neural networks

    Get PDF
    We describe the development of artificial neural networks (ANN) for the prediction of the properties of ceramic materials. The ceramics studied here include polycrystalline, inorganic, non-metallic materials and are investigated on the basis of their dielectric and ionic properties. Dielectric materials are of interest in telecommunication applications where they are used in tuning and filtering equipment. Ionic and mixed conductors are the subjects of a concerted effort in the search for new materials that can be incorporated into efficient, clean electrochemical devices of interest in energy production and greenhouse gas reduction applications. Multi-layer perceptron ANNs are trained using the back-propagation algorithm and utilise data obtained from the literature to learn composition-property relationships between the inputs and outputs of the system. The trained networks use compositional information to predict the relative permittivity and oxygen diffusion properties of ceramic materials. The results show that ANNs are able to produce accurate predictions of the properties of these ceramic materials which can be used to develop materials suitable for use in telecommunication and energy production applications
    • โ€ฆ
    corecore