442 research outputs found

    Game Theory Based Privacy Protection for Context-Aware Services

    Get PDF
    In the era of context-aware services, users are enjoying remarkable services based on data collected from a multitude of users. To receive services, they are at risk of leaking private information from adversaries possibly eavesdropping on the data and/or the un--trusted service platform selling off its data. Malicious adversaries may use leaked information to violate users\u27 privacy in unpredictable ways. To protect users\u27 privacy, many algorithms are proposed to protect users\u27 sensitive information by adding noise, thus causing context-aware service quality loss. Game theory has been utilized as a powerful tool to balance the tradeoff between privacy protection level and service quality. However, most of the existing schemes fail to depict the mutual relationship between any two parties involved: user, platform, and adversary. There is also an oversight to formulate the interaction occurring between multiple users, as well as the interaction between any two attributes. To solve these issues, this dissertation firstly proposes a three-party game framework to formulate the mutual interaction between three parties and study the optimal privacy protection level for context-aware services, thus optimize the service quality. Next, this dissertation extends the framework to a multi-user scenario and proposes a two-layer three-party game framework. This makes the proposed framework more realistic by further exploring the interaction, not only between different parties, but also between users. Finally, we focus on analyzing the impact of long-term time-serial data and the active actions of the platform and adversary. To achieve this objective, we design a three-party Stackelberg game model to help the user to decide whether to update information and the granularity of updated information

    Context-Aware Generative Adversarial Privacy

    Full text link
    Preserving the utility of published datasets while simultaneously providing provable privacy guarantees is a well-known challenge. On the one hand, context-free privacy solutions, such as differential privacy, provide strong privacy guarantees, but often lead to a significant reduction in utility. On the other hand, context-aware privacy solutions, such as information theoretic privacy, achieve an improved privacy-utility tradeoff, but assume that the data holder has access to dataset statistics. We circumvent these limitations by introducing a novel context-aware privacy framework called generative adversarial privacy (GAP). GAP leverages recent advancements in generative adversarial networks (GANs) to allow the data holder to learn privatization schemes from the dataset itself. Under GAP, learning the privacy mechanism is formulated as a constrained minimax game between two players: a privatizer that sanitizes the dataset in a way that limits the risk of inference attacks on the individuals' private variables, and an adversary that tries to infer the private variables from the sanitized dataset. To evaluate GAP's performance, we investigate two simple (yet canonical) statistical dataset models: (a) the binary data model, and (b) the binary Gaussian mixture model. For both models, we derive game-theoretically optimal minimax privacy mechanisms, and show that the privacy mechanisms learned from data (in a generative adversarial fashion) match the theoretically optimal ones. This demonstrates that our framework can be easily applied in practice, even in the absence of dataset statistics.Comment: Improved version of a paper accepted by Entropy Journal, Special Issue on Information Theory in Machine Learning and Data Scienc

    Self-regulatory information sharing in participatory social sensing

    Get PDF
    Participation in social sensing applications is challenged by privacy threats. Large-scale access to citizens’ data allow surveillance and discriminatory actions that may result in segregation phenomena in society. On the contrary are the benefits of accurate computing analytics required for more informed decision-making, more effective policies and regulation of techno-socio-economic systems supported by ‘Internet-of Things’ technologies. In contrast to earlier work that either focuses on privacy protection or Big Data analytics, this paper proposes a self-regulatory information sharing system that bridges this gap. This is achieved by modeling information sharing as a supply-demand system run by computational markets. On the supply side lie the citizens that make incentivized but self-determined decisions about the level of information they share. On the demand side stand data aggregators that provide rewards to citizens to receive the required data for accurate analytics. The system is empirically evaluated with two real-world datasets from two application domains: (i) Smart Grids and (ii) mobile phone sensing. Experimental results quantify trade-offs between privacy-preservation, accuracy of analytics and costs from the provided rewards under different experimental settings. Findings show a higher privacy-preservation that depends on the number of participating citizens and the type of data summarized. Moreover, analytics with summarization data tolerate high local errors without a significant influence on the global accuracy. In other words, local errors cancel out. Rewards can be optimized to be fair so that citizens with more significant sharing of information receive higher rewards. All these findings motivate a new paradigm of truly decentralized and ethical data analytics.ISSN:2193-112

    Data fusion strategies for energy efficiency in buildings: Overview, challenges and novel orientations

    Full text link
    Recently, tremendous interest has been devoted to develop data fusion strategies for energy efficiency in buildings, where various kinds of information can be processed. However, applying the appropriate data fusion strategy to design an efficient energy efficiency system is not straightforward; it requires a priori knowledge of existing fusion strategies, their applications and their properties. To this regard, seeking to provide the energy research community with a better understanding of data fusion strategies in building energy saving systems, their principles, advantages, and potential applications, this paper proposes an extensive survey of existing data fusion mechanisms deployed to reduce excessive consumption and promote sustainability. We investigate their conceptualizations, advantages, challenges and drawbacks, as well as performing a taxonomy of existing data fusion strategies and other contributing factors. Following, a comprehensive comparison of the state-of-the-art data fusion based energy efficiency frameworks is conducted using various parameters, including data fusion level, data fusion techniques, behavioral change influencer, behavioral change incentive, recorded data, platform architecture, IoT technology and application scenario. Moreover, a novel method for electrical appliance identification is proposed based on the fusion of 2D local texture descriptors, where 1D power signals are transformed into 2D space and treated as images. The empirical evaluation, conducted on three real datasets, shows promising performance, in which up to 99.68% accuracy and 99.52% F1 score have been attained. In addition, various open research challenges and future orientations to improve data fusion based energy efficiency ecosystems are explored

    A Survey of Social Network Forensics

    Get PDF
    Social networks in any form, specifically online social networks (OSNs), are becoming a part of our everyday life in this new millennium especially with the advanced and simple communication technologies through easily accessible devices such as smartphones and tablets. The data generated through the use of these technologies need to be analyzed for forensic purposes when criminal and terrorist activities are involved. In order to deal with the forensic implications of social networks, current research on both digital forensics and social networks need to be incorporated and understood. This will help digital forensics investigators to predict, detect and even prevent any criminal activities in different forms. It will also help researchers to develop new models / techniques in the future. This paper provides literature review of the social network forensics methods, models, and techniques in order to provide an overview to the researchers for their future works as well as the law enforcement investigators for their investigations when crimes are committed in the cyber space. It also provides awareness and defense methods for OSN users in order to protect them against to social attacks

    Privacy preservation using game theory in e-health application

    Get PDF
    International audienceIn the domain of the new e-health applications, the ubiquitous nature of intelligent devices raises legitimate questions about the privacy of persons, and how to cope with the heterogeneity of user and application requirements in terms of security services. This requires the development of adaptive, context-aware and user-centric security solutions. Recent e-health applications (M2M/IoT/Web) permit remote monitoring of patient health, medical treatments, fitness information and parameters, alarm triggering, etc. Since the monitored device is tightly related to a human being, new changes arise regarding communications facilities constraints, private data protection, trust relationships, etc. In this work, we propose a Markovian game between data holder and data requester, in a weight loss program, to protect data privacy. We aim to reach a compromise between privacy concessions made by data holder and incentive motivation proposed by data requester. Finally, we show numerical results of executed experiments to evaluate the proposed model
    • …
    corecore