233 research outputs found

    A multi objective volleyball premier league algorithm for green scheduling identical parallel machines with splitting jobs

    Get PDF
    Parallel machine scheduling is one of the most common studied problems in recent years, however, this classic optimization problem has to achieve two conflicting objectives, i.e. minimizing the total tardiness and minimizing the total wastes, if the scheduling is done in the context of plastic injection industry where jobs are splitting and molds are important constraints. This paper proposes a mathematical model for scheduling parallel machines with splitting jobs and resource constraints. Two minimization objectives - the total tardiness and the number of waste - are considered, simultaneously. The obtained model is a bi-objective integer linear programming model that is shown to be of NP-hard class optimization problems. In this paper, a novel Multi-Objective Volleyball Premier League (MOVPL) algorithm is presented for solving the aforementioned problem. This algorithm uses the crowding distance concept used in NSGA-II as an extension of the Volleyball Premier League (VPL) that we recently introduced. Furthermore, the results are compared with six multi-objective metaheuristic algorithms of MOPSO, NSGA-II, MOGWO, MOALO, MOEA/D, and SPEA2. Using five standard metrics and ten test problems, the performance of the Pareto-based algorithms was investigated. The results demonstrate that in general, the proposed algorithm has supremacy than the other four algorithms

    Lagrangian approach to minimize makespan of non-identical parallel batch processing machines

    Get PDF
    Advisors: Purushothaman Damodaran.Committee members: Omar Ghrayeb; Murali Krishnamurthi; Christine Nguyen.Batch Processing Machines (BPMs) are commonly used in electronics manufacturing, semi-conductor manufacturing, and metal-working - to name a few. Scheduling these machines are not an easy task; practical considerations and the exponential number of decision variables involved impede schedulers (or decision makers) from making good decisions. This research focuses on minimizing the makespan of a set of non-identical parallel batch processing machines. In order to schedule jobs on these machines, two decisions are to be made. The first decision is to group jobs to form batches such that the machine capacity is not exceeded. The second decision is to sequence the batches formed on the machines such that the makespan is minimized. Both the decisions are intertwined as the processing time of the batch is determined by the composition of the jobs in the batch. The problem under study is shown to be NP-hard. A mathematical model from the literature is adopted to develop a solution approach which would help the decision maker to make meaningful decisions.Lagrangian Relaxation approach has been shown to be very effective in solving scheduling problems. Using this decomposition approach, the mathematical model is decomposed and a sub-gradient approach was used to update the multipliers. Two sets of constraints were relaxed to consider two Lagrangian Relaxation models. Experiments were conducted with data sets from the literature. The solution quality of the proposed approach was compared with meta-heuristics (i.e. Particle Swarm Optimization (PSO) and Random Key Genetic Algorithm (RKGA)) published in the literature and a commercial solver (i.e. IBM ILOG CPLEX). On smaller instances (i.e. 10 and 20 jobs), the proposed approach outperformed PSO and RKGA. However, the proposed approach and CPLEX report the same results. On larger instances (i.e. 50, 100 and 200 job instances) with two and four-machines, the proposed approach was better than PSO whenever the variability in the processing times were smaller. The proposed approach generally outperformed RKGA and CPLEX on larger problem instances. Out of 200 experiments conducted, the proposed approach helped to find new improved solution on 34 instances and comparable on 105 instances when compared to PSO. The PSO approach was much faster than all other approaches on larger problem instances. The experimental study clearly identifies the problem instances on which the proposed approach can find a better solution. The proposed Lagrangian Relaxation solution approach helps the schedulers to make more informed decisions. Minor modifications can be made to use the proposed solution approach for other practical considerations (e.g. job ready times, tardiness objective, etc.) The main contribution of this research is the proposed solution approach which is effective in solving a class of non-identical batch processing machine problems with better solution quality when compared to existing meta-heuristics.M.S. (Master of Science

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    Overview on: sequencing in mixed model flowshop production line with static and dynamic context

    Get PDF
    In the present work a literature overview was given on solution techniques considering basic as well as more advanced and consequently more complex arrangements of mixed model flowshops. We first analyzed the occurrence of setup time/cost; existing solution techniques are mainly focused on permutation sequences. Thereafter we discussed objectives resulting in the introduction of variety of methods allowing resequencing of jobs within the line. The possibility of resequencing within the line ranges from 1) offline or intermittent buffers, 2) parallel stations, namely flexible, hybrid or compound flowshops, 3) merging and splitting of parallel lines, 4) re-entrant flowshops, to 5) change job attributes without physically interchanging the position. In continuation the differences in the consideration of static and dynamic demand was studied. Also intermittent setups are possible, depending on the horizon and including the possibility of resequencing, four problem cases were highlighted: static, semi dynamic, nearly dynamic and dynamic case. Finally a general overview was given on existing solution methods, including exact and approximation methods. The approximation methods are furthermore divided in two cases, know as heuristics and methaheuristic

    Minimizing Cumulative Batch Processing Time for an Industrial Oven Scheduling Problem

    Get PDF
    We introduce the Oven Scheduling Problem (OSP), a new parallel batch scheduling problem that arises in the area of electronic component manufacturing. Jobs need to be scheduled to one of several ovens and may be processed simultaneously in one batch if they have compatible requirements. The scheduling of jobs must respect several constraints concerning eligibility and availability of ovens, release dates of jobs, setup times between batches as well as oven capacities. Running the ovens is highly energy-intensive and thus the main objective, besides finishing jobs on time, is to minimize the cumulative batch processing time across all ovens. This objective distinguishes the OSP from other batch processing problems which typically minimize objectives related to makespan, tardiness or lateness. We propose to solve this NP-hard scheduling problem via constraint programming (CP) and integer linear programming (ILP) and present corresponding CP- and ILP-models. For an experimental evaluation, we introduce a multi-parameter random instance generator to provide a diverse set of problem instances. Using state-of-the-art solvers, we evaluate the quality and compare the performance of our CP- and ILP-models, which could find optimal solutions for many instances. Furthermore, using our models we are able to provide upper bounds for the whole benchmark set including large-scale instances

    Performance Comparison of New Heuristic With Genetic Algorithm in Parallel Flow Line Set Up

    Get PDF
    A new heuristic has been developed to solve the problem in parallel flow line scheduling. It involves the minimization of the makespan by the optimal allocation of a finite number of jobs to finite number of lines in the first phase and the optimal sequencing of allocated jobs in each line in the second phase. Here new heuristic and genetic algorithm for analyzing the parallel flow line scheduling are discussed and executed on a set of randomly generated problems. The results obtained for the test problems suggest that the developed new heuristic can be used successfully to solve large scale parallel flow line scheduling problems

    A general Framework for Utilizing Metaheuristic Optimization for Sustainable Unrelated Parallel Machine Scheduling: A concise overview

    Full text link
    Sustainable development has emerged as a global priority, and industries are increasingly striving to align their operations with sustainable practices. Parallel machine scheduling (PMS) is a critical aspect of production planning that directly impacts resource utilization and operational efficiency. In this paper, we investigate the application of metaheuristic optimization algorithms to address the unrelated parallel machine scheduling problem (UPMSP) through the lens of sustainable development goals (SDGs). The primary objective of this study is to explore how metaheuristic optimization algorithms can contribute to achieving sustainable development goals in the context of UPMSP. We examine a range of metaheuristic algorithms, including genetic algorithms, particle swarm optimization, ant colony optimization, and more, and assess their effectiveness in optimizing the scheduling problem. The algorithms are evaluated based on their ability to improve resource utilization, minimize energy consumption, reduce environmental impact, and promote socially responsible production practices. To conduct a comprehensive analysis, we consider UPMSP instances that incorporate sustainability-related constraints and objectives
    corecore