
ABSTRACT

LAGRANGIAN APPROACH TO MINIMIZE MAKESPAN OF NON-IDENTICAL

PARALLEL BATCH PROCESSING MACHINES

Nurul Suhaimi, MS

Department of Industrial & Systems Engineering

Northern Illinois University, 2014

Purushothaman Damodaran, Director

Batch Processing Machines (BPMs) are commonly used in electronics manufacturing,

semi-conductor manufacturing, and metal-working – to name a few. Scheduling these machines

are not an easy task; practical considerations and the exponential number of decision variables

involved impede schedulers (or decision makers) from making good decisions. This research

focuses on minimizing the makespan of a set of non-identical parallel batch processing

machines. In order to schedule jobs on these machines, two decisions are to be made. The first

decision is to group jobs to form batches such that the machine capacity is not exceeded. The

second decision is to sequence the batches formed on the machines such that the makespan is

minimized. Both the decisions are intertwined as the processing time of the batch is determined

by the composition of the jobs in the batch. The problem under study is shown to be NP-hard. A

mathematical model from the literature is adopted to develop a solution approach which would

help the decision maker to make meaningful decisions.

Lagrangian Relaxation approach has been shown to be very effective in solving

scheduling problems. Using this decomposition approach, the mathematical model is

decomposed and a sub-gradient approach was used to update the multipliers. Two sets of

constraints were relaxed to consider two Lagrangian Relaxation models. Experiments were

conducted with data sets from the literature. The solution quality of the proposed approach was

compared with meta-heuristic (i.e. Particle Swarm Optimization (PSO) and Random Key

Genetic Algorithm (RKGA)) published in the literature and a commercial solver (i.e. IBM ILOG

CPLEX). On smaller instances (i.e. 10 and 20 jobs), the proposed approach outperformed PSO

and RKGA. However, the proposed approach and CPLEX report the same results. On larger

instances (i.e. 50, 100 and 200 job instances) with two and four-machines, the proposed approach

was better than PSO whenever the variability in the processing times were smaller. The proposed

approach generally outperformed RKGA and CPLEX on larger problem instances. Out of 200

experiments conducted, the proposed approach helped to find new improved solution on 34

instances and comparable on 105 instances when compared to PSO. The PSO approach was

much faster than all other approaches on larger problem instances. The experimental study

clearly identifies the problem instances on which the proposed approach can find a better

solution. The proposed Lagrangian Relaxation solution approach helps the schedulers to make

more informed decisions. Minor modifications can be made to use the proposed solution

approach for other practical considerations (e.g. job ready times, tardiness objective, etc.) The

main contribution of this research is the proposed solution approach which is effective in solving

a class of non-identical batch processing machine problems with better solution quality when

compared to existing meta-heuristic.

NORTHERN ILLINOIS UNIVERSITY

DEKALB, ILLINOIS

DECEMBER, 2014

LAGRANGIAN APPROACH TO MINIMIZE MAKESPAN OF NON-

IDENTICAL PARALLEL BATCH PROCESSING MACHINES

BY

NURUL MUBINAH BINTI SUHAIMI

©2014 Nurul Mubinah Binti Suhaimi

 A THESIS SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE

MASTER OF SCIENCE

DEPARTMENT OF INDUSTRIAL & SYSTEMS ENGINEERING

Thesis Director:

Dr. Purushothaman Damodaran

ACKNOWLEDGEMENTS

Many individuals have contributed their expertise, time, and resources to various areas of

this study, and to them I am most grateful. I would first like to express my deepest gratitude to

my thesis advisor, Dr. Purushothaman Damodaran, from whom I have learned so much, and who

has helped me shape and focus every aspect of this project. By sharing with me his exceptional

knowledge of scheduling and optimization research, I have gained a deeper understanding of this

research area which helped me building a better future path. As a mentor, he not only guided my

research skill but also helped me to become a more confident student and scholar. I am indebted

to my lecturer who was also the committee member for this thesis, Dr. Murali Krishnamurthi

who always went above and beyond to help his students. Learning with him was indeed a true

blessing. I am also indebted to Dr. Omar Ghrayeb and Dr. Christine Nguyen who have been a

great support system in realizing this thesis. Their commitment to be the committee members

was priceless. I would also like to thank my great friends who were there to help me in times of

need throughout the period of this thesis. To Nishanth Yalam, learning with you has never been

more fun and enjoyable. To Varun Kamarajan, Marianella Padilla, and Aziz Alomrani, your

endless support and encouragement have been the pillars of my strength to keep moving on. To

Maliha Afreen, Rabiah Anwar, Samar Rahman, and Tahanie Omar, all of you are my beacon of

light when it is all dark in the United States. From all of you, I learned the art of being thankful.

DEDICATION

For the kindest, most generous spirit I have ever known,

and that what is best in me, I owe to her

TABLE OF CONTENTS

LIST OF TABLES ...vi

LIST OF FIGURES .. vii

LIST OF APPENDICES ... viii

Chapter Page

1. INTRODUCTION ... 1

1.1 Problem Description ... 3

1.2 Research Objective and Scope ... 3

1.3 Organization... 4

2. LITERATURE REVIEW .. 5

2.1 Batch Processing Machine ... 7

2.1.1 Single Batch Processing Machine Environment ... 8

2.1.2 Parallel Batch Processing Machines Environment .. 9

2.2 Minimize Makespan in Batch Processing Machines .. 10

2.3 The Lagrangian Relaxation Approach ... 12

2.3.1 Scheduling with Lagrangian Relaxation Approach ... 12

2.3.2 Minimize Makespan with Lagrangian Approach .. 13

2.4 Summary .. 14

3. MATHEMATICAL FORMULATION .. 15

4. LAGRANGIAN RELAXATION APPROACH ... 19

4.1 Lagrangian Relaxation ... 21

4.2 Updating Lagrangian Multipliers ... 23

v

4.3 Upper Bound Heuristic .. 26

5. COMPUTATIONAL RESULTS .. 28

5.1 Average Percentage of Improvement (API) .. 31

5.1.1 Two-Machine Experiments ... 32

5.1.2 Four-Machine Experiments ... 34

5.2 Computational Time .. 35

5.3 Constraint Considerations .. 37

6. CONCLUSION AND FUTURE WORK .. 40

7. REFERENCES .. 43

LIST OF TABLES

Table 1: Literature Review Table .. 6

Table 2: Factors and Levels .. 18

Table 3: Average Computational Times (in seconds) for All Job Instances 37

LIST OF FIGURES

Figure 1: Step by Step of Lagrangian Relaxation ... 20

Figure 2: Main Effects Plot for 20 Jobs .. 30

Figure 3: Main Effects Plot for 100 Jobs .. 31

Figure 4: API in Makespan for Two-Machine Instances .. 33

Figure 5: API in Makespan for Four-Machine Instances .. 36

Figure 6: API Comparison between LR1 and LR2 for Two-Machine Problem 38

Figure 7: API Comparison between LR1 and LR2 for Four-Machine Problem 39

LIST OF APPENDICES

APPENDIX A: RKGA, PSO, CPLEX AND LR1 ���� RESULTS 47

APPENDIX B: AVERAGE PERCENTAGE OF IMPROVEMENT TOWARDS LR1 53

APPENDIX C: API RESULT FOR ALL JOBS ... 59

APPENDIX D: RKGA, PSO, CPLEX AND LR1 COMPUTATIONAL TIME 66

CHAPTER 1

INTRODUCTION

The term “batch processing” is used to describe a system where data was collected

together for a period of time before it was processed. Instead of processing every small job as

it arrived, jobs were queued until the processer was ready to process them all at once. Similarly

in manufacturing operations, the batch processing machines (BPM) act as the processor

whereas a job remains as a job. BPM are capable of processing several jobs in a batch form

concurrently as long as it does not exceed the machine capacity. Although processing multiple

jobs simultaneously could be an advantage, the variability they have in terms of job size and

processing time could be a drawback. Consequently, efficiently scheduling the BPM is vital in

order to maximize the machine utilization (or minimize the makespan). Research in the area of

scheduling batch processing machines has gained great attention in the past [1]. There are

several exact and heuristic solution approaches proposed for different machine configurations

with BPM. Generally, scheduling BPM are computationally difficult, even for simpler

objectives such as makespan, and it is a common practice to propose heuristic and meta-

heuristic solution approaches [1]. Heuristic and meta-heuristic solution approaches are known

to be the best neighborhood search, but Lagrangian Relaxation method is able to find the

optimal solution either locally or globally [3].

2

This research is motivated by a real life application in contract electronics

manufacturing (i.e. an electronics manufacturer who assembles and tests printed circuit boards

(PCBs) which are used in consumer products). In the company, environmental stress screening

(ESS) chambers are used to test PCBs in order to detect early failures before they are used in

the field. These chambers are capable of testing several PCBs concurrently. Hence, the

chambers are equivalent to BPM. The PCBs are regarded as jobs in this research. The

scheduler’s responsibility is to form batches and schedule the batches on the chambers so that

the completion time of the last batch is minimized (or maximize the utilization of the

chambers). When the batches are formed, the composition of the batch determines the

processing time of the batch. The batch processing time is equal to the job in the batch with the

longest processing time. In electronics manufacturing, it is acceptable to test a job for longer

than its prescribed testing time. However, testing a job for a longer time than its prescribed

time will result in a waste of valuable chambers availability.

The objective of this research is to find the optimal schedule for non-identical parallel

batch processing machines in order to minimize the makespan. Damodaran, et al. [4] showed

that the problem under study is NP-hard. They proposed a Particle Swarm Optimization (PSO)

algorithm. PSO is a meta-heuristic and does not guarantee an optimal solution. This research

proposes a Lagrangian Relaxation (LR) approach for the problem studied in [4] and compares

the effectiveness of the approach (in terms of solution quality and computational time) to PSO

and other approaches found in the literature.

3

1.1 Problem Description

The problem considered in this research is described as follows. For a set � of � jobs,

� = {��, … , ��}, the jobs should be grouped to form the batches and the batches are then

scheduled on a set � of � non-identical parallel batch processing machines, � = {��, … ,��}.

The processing time of each job (�), size of each job (
�) and each machine’s capacity (��)

is known. The maximum number of batches required to process all the jobs is easy to

determine. Assuming one job per batch will result in n batches, hence, the maximum number

of batches needed is also n. The batch processing time is equal to the longest processing time

of all the jobs in the batch. Eventually, the total size of all the jobs in the batch should not

exceed the machine capacity in which it is processed. The objective function is to minimize the

makespan (i.e. completion time of the last batch of jobs).

In order to schedule the batch processing machines, two decisions need to be made.

First, jobs need to be grouped into batches and second, the batches formed need to be

scheduled. Both decisions are considered dependent on each other as the formation of the

batch determines the batch processing time which then affects the makespan.

1.2 Research Objective and Scope

The objective of this research is to develop LR approach for scheduling non-identical

parallel batch processing machines to minimize the makespan. The effectiveness of the

proposed approach will be evaluated by solving benchmark problems from the literature and

4

comparing the solution with other meta-heuristic previously published in the literature. A

comparative study will also be conducted to evaluate the solution quality with the solution

obtained from a commercial solver (i.e. CPLEX). LR approach is capable of finding optimal or

near-optimal solution for certain class of problems. This research study will explore the LR

approach to verify if it is efficient to non-identical parallel batch processing machines with

makespan objective. The following assumptions are made in this research and are consistent

with the assumptions made in other relevant research work:

1. All jobs in a batch will begin and end processing at the same time.

2. All jobs are available at time 0.

3. The machines do not fail.

4. Once a machine begins processing a batch, new jobs cannot be added to the batch or

removed from the batch.

5. When a machine completes processing a batch of jobs, the next batch can be

immediately loaded with no time lost in set up or delay due to operator availability.

1.3 Organization

The thesis report is organized as follows: Chapter 2 reviews literatures on BPM and LR

approach. Chapter 3 describes the mathematical model for the problem under study and

Chapter 4 presents the LR approach to solve the problem. Chapter 5 presents the experimental

study conducted. Finally, Chapter 6 concludes the research as well as proposes

recommendations for future research.

CHAPTER 2

LITERATURE REVIEW

Research on scheduling problems started as early as in 1960 by Hanssman and Hess [5]

when they implemented linear programming approach to production planning and employment

scheduling. To date, the research in machine scheduling has grown into various machine

environments, objectives, and methodologies. Machine environments in scheduling problems

are broadly divided into two major groups: discrete processing machines and batch processing

machines. Under machine environments, the scheduling problems can also be classified as

single machine, parallel machine, flow shop, hybrid flow shop, job shop, and open shop

problems.

The objectives considered varied from minimizing cost, tardiness, number of tardy

jobs, completion times, and makespan. The solution approaches proposed also varied from

exact methods (e.g. Branch-and-Bound, Dynamic Programming, Column Generation, etc.) to

heuristic methods (e.g. Simulated Annealing, Genetic Algorithms, etc.). This research focuses

on minimizing makespan on a set of batch processing machines (BPM) that can process

several jobs in a batch simultaneously with the Lagrangian Relaxation (LR) approach. Table 1

lists the literature reviewed for this research.

6

Table 1: Literature Review Table

Source
Single

BPM

Parallel BPM Scheduling Objective Methodology

Identical
Non-

Identical

Other

Objective
Makespan

Other

Approach

Lagrangian

Approach

[2] � � �

[4] � � �

[6] � � �

[7] � � �

[8] � � �

[10] � � �

[11] � � �

[12] � � �

[13] � � �

[15] � � �

[16] � � �

[17] � � �

[21] � � �

[22] � � �

[23] � � �

[24] � � �

[25] � � �

(continued on following page)

7

Table 1 (continued)

Source
Single

BPM

Parallel BPM Scheduling Objective Methodology

Identical
Non-

Identical

Other

Objective
Makespan

Other

Approach

Lagrangian

Approach

[26] � � �

[27] �

[31] � �

[32] � �

[33] � �

[34] � �

[35] � �

[36] � �

[38] � � �

[39] � � �

[40] � � �

[41] � � �

Suhaimi,

2014
 � � �

2.1 Batch Processing Machine

In BPM, jobs are grouped to form batches and processed at the same time

simultaneously. Potts and Kovalyov [1] reviewed the literature on scheduling with batching

8

decisions. The jobs are typically batched when they share the same setup on a machine or when

the machine can process multiple jobs simultaneously [1]. The applications of BPM can be

found in aeronautical industry [38], hospital sterilization services [2], electronic manufacturing

[4] and many more.

2.1.1 Single Batch Processing Machine Environment

Uzsoy [6] shows that scheduling a single BPM with non-identical job sizes to minimize

total completion times and makespan is NP-hard. Lee and Uzsoy [7] proposed polynomial and

pseudo-polynomial time algorithm to minimize makespan of single BPM with dynamic job

arrivals (i.e. job release times are not equal). The algorithm presented excellent results but took

long computational time. Chandru et al. [12] studied Branch-and-Bound (B&B) algorithms to

minimize total completion time or makespan in single BPM. The set of jobs to be scheduled are

grouped into a number of families, where all jobs in the same family have the same processing

time. In single BPM with non-identical job sizes, Perez et al. [10] proposed heuristic to

minimize the total weighted tardiness in the diffusion step of semiconductor wafer fabrication

process. Velez-Gallego et al. [39] studied constructive heuristics named as Modified

Successive Knapsack Problem (MSKP) to minimize makespan in single BPM under the

assumptions of non-identical job sizes and non-zero job ready times. The heuristic found to

outperform other comparative approach for test instances with 50 or more jobs.

9

2.1.2 Parallel Batch Processing Machines Environment

Both parallel and single BPM required jobs to be formed in batches before they are

processed. The formation resulted in a batch where the size of the batch is the sum of all the

size of the jobs in the batch. In any circumstances, the batch size should not exceed the capacity

of the machine that processes it [2]. In this research, literature on parallel BPM is divided into

two categories: identical and non-identical parallel BPM. Identical BPM simply means that all

the machines have the same capacity. As for non-identical, the capacities of the BPM are vary.

Identical parallel BPM scheduling problems have been widely researched. Ozturk et al.

[16] applied classical bin packing heuristic to minimize makespan of washing medical devices

operations. The washers used to wash the Reusable Medical Devices (RMD) were considered

as identical parallel BPM. Damodaran et al. [41] considered Greedy Randomized Adaptive

Search Procedure (GRASP) in minimizing makespan for parallel BPM in an electronics

manufacturing company. The proposed GRASP approach outperformed other approaches

mentioned in their paper and guaranteed optimal solution for 10 job problem instances.

Damodaran et al. [15] applied Simulated Annealing (SA) algorithm to minimize the makespan

on a group of identical parallel BPM and compared the results with GRASP in [41]. The

proposed approach shows a comparable result to GRASP in terms of solution quality and

computation time. Mokotoff [21] shows that minimizing makespan for identical parallel BPM

can be done with a new approximation algorithm based on Linear Programming (LP). The

MSKP heuristic in [39] was extended by Damodaran et al. [40] to identical parallel BPM and

named it as Progressive Successive Knapsack Problem (PSKP). The heuristic aimed to

minimize makespan with lesser computational time.

10

Another objective that was studied in identical parallel BPM is tardiness. Tardiness is

equal to lateness where the completion time of the job is greater than its due date [17]. Genetic

Algorithm (GA) approach was found to be able to minimize tardiness thus providing better

results in larger size and difficult problems than the comparing neighborhood exchange search

[11]. B&B algorithm was implemented in identical parallel BPM to minimize tardiness and was

compared with traditional SA solution [13].

Non-identical parallel BPM offers a harder problem than identical BPM scenario as the

machine capacity considerations are required for every batch formed. Common scheduling

objective studied for non-identical BPM scenario is minimizing the total completion time or

makespan [2]. One example of the research is done by Xu and Bean [24] where they presented

Random Key Genetic Algorithm (RKGA) in minimizing makespan for non-identical parallel

BPM. Following that, Damodaran et al. [4] proposed Particle Swarm Optimization (PSO)

approach to minimize the makespan for non-identical parallel BPM. They adapted the

mathematical formulation from [24] and simplified them with fewer binary variables. This

research also considers non-identical parallel BPM. This research compares its result with

RKGA method in [24] and PSO method in [4].

2.2 Minimize Makespan in Batch Processing Machines

Minimizing makespan has been one of the commonly studied objectives when it comes

to scheduling problems. Majority of the literature considers the case of non-identical jobs and

identical machines [20]. Earlier study on this objective may have been done by [2] where non-

11

identical job size is considered. The methods used to minimize the makespan objective vary

from exact approaches like B&B and Dynamic Programming (DP) to meta-heuristic

approaches such as SA and PSO. Chang et al. [22] developed SA algorithm in identical parallel

BPM to solve the makespan minimization problem. They compared the proposed approach

with CPLEX and found the approach to outperform CPLEX in most of the instances. Kashan et

al. [23] developed a Hybrid Genetic Heuristic (HGH) to minimize makespan with the same

environment as [22] and compared the two approaches. From the computational experiments

performed, HGH was shown to find optimal or near-optimal solutions faster than SA approach

presented in [22].

Xu and Bean [24] solved their mathematical formulation using a standard programming

software. But due to the difficulty of the problem, RKGA was proposed to schedule the non-

identical parallel BPM. Shao et al. [25] used neutral networks approach to minimize the

makespan with non-identical job sizes. The coding of neural networks approach is provided

with a new method, Master Weight Matrix which was proven to be effective towards large-

scale problem when compared with other heuristic. Li and Yuan [26] considered scheduling

with an approximation algorithm called polynomial-time approximation schemes for both

bounded and unbounded cases. In 2012, Damodaran et al. [4] presented PSO approach to

minimize the makespan by grouping the PCBs into batches and schedule them with known

testing times and non-identical PCB sizes. The PSO results were compared with a commercial

solver and the RKGA approach presented in [24].

12

2.3 The Lagrangian Relaxation Approach

The origin of Lagrangian approach is dated back to the early 1970s when Held and arp

[28] used a Lagrangian problem based on minimum spanning trees to formulate a successful

algorithm for the Traveling Salesman Problem [29]. With the breakthrough, the encouragement

to apply Lagrangian method in most general integer programming problem has gained ever

since. Additionally, Fisher [29] also stated in the research that Lagrangian method is able to

provide the best solution of any practical size for most scheduling or optimization problems.

The observation viewed many hard optimization problems as easy problems but complicated by

a relative set of side constraints [30]. By dualizing the side constraints, solution by Lagrangian

methods can be produced where the optimal solution is either the lower bound (for

minimization problems) or upper bound (for maximization problems) on the optimal value of

the original problem [30]. Moreover, the Lagrangian problem can be used in linear

programming relaxation to provide bounds in Branch-and-Bound algorithm.

2.3.1 Scheduling with Lagrangian Relaxation Approach

The first scheduling problem solved with Lagrangian Relaxation (LR) approach was as

early as in 1975 by Muckstadt and Koenig [31] when they applied the method in scheduling a

power generation system. They presented a mixed integer programming model to minimize the

sum of unit commitment and economic dispatch costs subject to demand, reserve, generator

capacity and generator schedule constraints. Lagrangian method is used to decompose the

13

problem into single generator and sub-gradient method is used to update the Lagrange

multipliers. In 1993, Luh [32] examined practical solution in three manufacturing scheduling

problem. Each problem is formulated by adding and modifying constraints to increase the real

world complexity. Again, LR is used to decompose the scheduling problems into job-level sub-

problem. The sub-problem is easier to solve than the main problem and resulted in near-optimal

schedule. To reduce computation time, Luh [32] used Lagrange multiplier from the last

schedule to initialize the multiplier in the next instance.

Liu, Luh and Resch [33] obtained near-optimal schedule in critical stages of flow shop

manufacturing with LR technique. Instead of using sub-gradient method to update the

multiplier, they used a high level Reduced Complexity Bundle Method implying that the

quality of the schedule is better than the common sub-gradient method. With the algorithm, the

penalties on the production tardiness were minimized effectively. Irohara [34] proposed LR

algorithms for Hybrid Flow-Shop (HFS) scheduling problems. They minimized the total

weighted tardiness and earliness for the job. In this study, the usual relaxation of machine

capacity is not only done, but also the precedence constraints. Perdomo et al. [35] applied

Lagrangian technique in surgery room operations. They addressed the approach to minimize

the completion time from assigning the patients to operating rooms and recovery beds.

2.3.2 Minimize Makespan with Lagrangian Approach

The Lagrangian approach has been used widely in the study of makespan minimization

[8, 27, 36]. Velde [36] presented B&B algorithm for two-machine flow shop problem in order

14

to minimize the sum of the job completion times. LR is used to provide the lower bounds for

the problem. The algorithms were then compared with previous researches and were proven to

outperform them. Chen, Chu, and Proth [27] used Lagrange multipliers to relax the capacity

constraints on machines. Instead of using the basic decomposition method on the relaxed

problem to break the problem into job level sub-problem, they proposed a pseudo-polynomial

time Dynamic Programming (DP) algorithm to prevent oscillation in the solution. Through LR,

the algorithm was able to find the optimal solution based on the “min-max” criteria for the job-

shop scheduling. Tang, Xuan, and Liu [8] designed a DP algorithm for solving identical

parallel machine sub-problems where jobs have negative weights. LR algorithm was used and

decomposition was applied to decompose the master problem into several sub-problems so that

the DP algorithm process is speeded up.

2.4 Summary

This research presents LR approach to solve makespan minimization problem in non-

identical parallel BPM. Past literatures show that the problem under study is typically solved

using heuristic and meta-heuristic. LR approach has worked for different types of scheduling

problems but has not been tried to solve makespan minimization in non-identical parallel BPM

environment.

CHAPTER 3

MATHEMATICAL FORMULATION

Xu and Bean [24] presented a Mixed Integer Linear Programming (MILP) model for

minimizing the makespan of non-identical parallel batch processing machines with non-

identical job sizes and equal release dates. Damodaran et al. [4] simplified the model in [24]

with fewer binary variables. The notation used in the model proposed by Damodaran et al. [4]

is presented below.

Sets

� ∈ �� Set of jobs

�� ∈ �� Set of positions on each machine

�� ∈ �� Set of machines

Parameters

	� Processing time of job

� Size of job
�� Capacity of machine �

16

Decision variables

��� Processing time of �th
 batch scheduled on machine �

���� Makespan

X���			= � 1, if job j is assigned to the k
th

 batch processed on machine	m

0, otherwise 		

The MILP proposed by Damodaran et al. [4] is presented below. This model is referred to as

model P from hereon.

Mixed Integer Linear Programming (P)

Minimize	���� (1)

subject to:

� � ����
�∈	�∈

= 1 ∀ ∈ � (2)

�
�����
�∈�

≤ �� ∀� ∈ �,� ∈ � (3)

��� ≥ 	����� ∀ ∈ �, � ∈ �,� ∈ � (4)

���� ≥ ����
�∈

 ∀� ∈ � (5)

��� ≥ 0 ∀� ∈ �,� ∈ � (6)

���� ≥ 0 ∀� ∈ � (7)

���� ∈ �0, 1� ∀ ∈ �, � ∈ �,� ∈ � (8)

17

The objective function (1) is to minimize the makespan. Constraint (2) ensures that

each job is assigned to exactly one batch on one machine. Constraint (3) ensures that the total

size of all the jobs assigned to the batch does not exceed the machine capacity. Constraint (4)

ensures that the processing time of the �th
 batch processed on each machine is at least equal to

the longest processing time job in the batch. Constraint (5) determines the makespan.

Makespan in this study is at least equal to the sum of all batch processing times on each

machine. Constraints (6), (7) and (8) impose the non-negativity and binary restrictions on the

decision variables.

In order to ensure a fair comparison with the previous approaches, the same data sets

used in [4] were also used in this computational study. Table 2 describes the factors and levels

used to generate the datasets for the problem under study. The number of jobs, �, considered

in each problem instance is 10, 20, 50, 100, and 200. The processing times, 	�, were generated

from a Discrete Uniform distribution with parameters from 1 to 10 and from 1 to 30. The sizes

of the jobs,
�, were generated from a Discrete Uniform distribution with parameters from 1 to

5 and from 1 to 20. Number of machines, �, considered were two and four. For the two

machine instances, the capacity of the machines, ��, were assumed to be 20 and 25, whereas

for the four machines, the capacity of the machines were assumed to be 18, 20, 25 and 27. For

each combination of the factors discussed above, five instances were generated. Altogether,

200 experiments were performed to evaluate the proposed solution approach. The solutions

from the proposed approach were compared to solutions from RKGA by Xu and Bean [24]

and PSO by Damodaran et al. [4]. In [4], the experimental study conducted clearly indicate

that commercial mixed integer programming solvers (such as CPLEX) would take

prohibitively long run time to solve modest size problems. Consequently, in this research LR

18

approach is proposed. More details on the proposed solution approach is presented in Chapter

4.

Table 2: Factors and Levels

Factors Levels

� 10, 20, 50, 100, 200

	� Discrete Uniform [1, 10] and Discrete Uniform [1, 30]

� Discrete Uniform [1, 5] and Discrete Uniform [1, 20]

�� Two machines : {20, 25}

Four machines : {18, 20, 25, 27}

CHAPTER 4

LAGRANGIAN RELAXATION APPROACH

The basic concept of Lagrangian Relaxation (LR) approach is to form a relaxed

problem from the original problem by introducing the constraints into the objective function

using a vector of Lagrangian multipliers. For a given set of Lagrangian multipliers, a

Lagrangian Dual (LD) problem is solved. The Lagrangian multipliers are updated using a sub-

gradient algorithm. Using the new multipliers, the LD is solved again to find a lower bound

(for a minimization problem) or upper bound (for a maximization problem). This procedure is

repeated until a termination criterion is met.

Figure 1 shows the process flow of the proposed LR approach. The linear

programming relaxation is solved and the solution is noted as LP. Initially, the best known

upper bound (UBbest) value is set to the sum of all job processing times. The best lower bound

(LBbest) value is set to a large negative value. The lower bound (LB) value is obtained by

solving the formulation obtained through LR. If the LB value is better (i.e. higher) than LBbest,

the LBbest is set to LB. Else, then LBbest is not updated and a counter is increased by 1. When

the counter reached a pre-determined limit, the scale parameter used in the Lagrangian

approach is adjusted. The lower bound solution obtained need not guarantee integer feasible

solution. Consequently, the infeasible solution is fed to an upper bound model after some data

manipulation (through a heuristic) to determine an integer feasible solution. If the upper bound

20

Figure 1: Flow Chart of Lagrangian Relaxation Approach

No

Yes

Update Slack, Step Size

and Multiplier

No

Yes

Solve UB model

UB < UBbest?

Update UBbest

Stopping

criterion

reached?

Update Scale

End

Start

Set initial UBbest, LBbest and

Lagrangian parameters

Solve LB model

LB > LBbest?

Set LBbest = LB

Counter + 1

Counter

limit

reached?

No

Yes

Yes

21

(UB) determined is better (i.e. less) than the UBbest, then the UBbest is updated to UB. Slack is

determined using the lower bound solution and then step size and multiplier is updated. With

the revised multiplier, the LB model is solved again and the process continues until the

stopping criterion is satisfied. In this study, two sets of constraints are relaxed to determine

lower bounds for the problem under study. As the resulting solution from the relaxed problem

may be infeasible for the original problem, a heuristic is applied to obtain a feasible schedule

from the infeasible schedule.

For a given set of multipliers, the relaxed problem is solved. The set of multipliers is

updated based on the degree to which the constraints of the relaxed solution are violated. With

the new set of multipliers, an updated relaxed problem is then formulated and solved. This

process continues until the termination criterion is reached. The solution quality is measured

by the relative duality gap explained later in the chapter. The dual objective value provides a

lower bound (��) for the optimal value of the original problem, while the objective value

(��) of the feasible schedule is an upper bound for the problem. The details for the solution

of the sub-problems, updating the Lagrangian multipliers, and construction of upper bound

heuristic are presented in the following sections.

4.1 Lagrangian Relaxation

In this study, two sets of constraints are relaxed independently to get two Lagrangian

Relaxation models (i.e. LR1 and LR2). In each proposed relaxation, the objective function can

22

be formed by using a vector of the Lagrangian multipliers, ��� (when constraint 3 from model

P is relaxed) and �� 	(when constraint 2 from model P is relaxed).

LR1: Relaxation of size constraint (Equation 3)

����(���) = min���� − ∑ ∑ ���(�� − ∑
�����)��� (9)

 subject to: (2), (4), (5), (6), (7) and (8)

which leads to the Lagrangian Dual (LD1):

���	 = max����(���), where ��� ≥ 0. (10)

LR2: Relaxation of “one” constraint (Equation 2)

����(��) = min���� − ∑ ��(1 − ∑ ∑ �����)�� (11)

 subject to: (3), (4), (5), (6), (7) and (8)

which leads to the Lagrangian Dual (LD2):

��� = max ����(��), where −∞ ≤ �� ≤ ∞. (12)

Based on the duality theorem, the problem can be viewed in two perspectives which

are the primal problem and the dual problem. In this study, the solution from the dual problem

(Lagrangian Dual) provides a lower bound to the solution of the primal problem (i.e. presented

in Chapter 3). The Lagrangian Dual (LD) is solved for different values of the multiplier. The

multiplier value is updated using the classical sub-gradient approach. The multiplier update

procedure is presented in section 4.2.

23

4.2 Updating Lagrangian Multipliers

In order to solve the dual problem, the classical sub-gradient method is adopted for

updating the Lagrangian multipliers. Here, the vectors of Lagrangian multipliers, ��� and ��
are updated by (13) and (14).

 ��� = max		(0, ��� + ���
� ����) (13)

 �� = �� + ��
���� (14)

where ���
� and ��

� are slacks (see equations 15 and 16), and ���� and ��� are the step sizes (see

equations 17 and 18).

���
� = �� − ∑
������∈� , ∀� ∈ �,� ∈ � (15)

��
� = 1 − ∑ ∑ ������ , ∀ ∈ � (16)

���� =
�(�������)

∑ ∑ (���
�)��∈��∈	

 (17)

��� =
�(�������)

∑ (�

�)�
∈�

 (18)

where �� is the upper bound value of the best known feasible solution, �� is the lower

bound value found by solving the Lagrangian, and scale (�) is between 0 and 2. Typically, the

scale parameter is reduced by half whenever the solution of the Lagrangian problem fails to

improve after a pre-determined number of iterations (�������). The pseudo code for solving

the LD1 is given below:

Begin

��� !"#�� ← 0

24

Let the objective of the linear programming relaxation of � be ���

$� ← ���

Set the initial parameter:

� ← 2, ��� ← 0

Initial Lower Bound (LB) is the solution of Lagrangian Relaxation model (LR1) as shown

in equation (9) using the initial parameter:

$% ← ����

Initial Upper Bound (UB) is set to the total processing time for all jobs:

&% ← ∑ 	��∈�

while ($� − $%) ≤ 0.00

��� !"#�� ← ��� !"#�� + 1

$% ← ����

if ����	'�(+ 0.00001 < $%, then

 ����(�) ← $%

 else

 �	���	 ← 	 �	���	 + 1

end if

if �	��� = 	�������, then

 � =
�

�

 �	��� ← 0

end if

25

Let x be the current job to batch assignment from the current $% and) be the job

assignment obtained from a heuristic (refer to Section 4.3)

)	 ←)�# �
��!(�)

Solve the Upper Bound model with the input from)

����()) ←)

If &%	 ≥ 	 ����()) then

 &%	 ← 	 ����())

 end if

 Compute the slack, ���
� as in equation (15)

 Compute the step size ���� as in equation (17)

 Update the Lagrangian multipliers, ��� as in equation (13)

 Solve $*1

$% ← ����

end while

End

The procedure to obtain a lower bound from LR2 is similar to the above pseudo-code, except

that the Lagrangian model is as in equation (11), the step sizes are updated using equation

(18), slack is computed using equation (16), and multipliers are updated by using equation

(14).

26

4.3 Upper Bound Heuristic

Solving the Lagrangian Dual to optimality does not guarantee a feasible solution. The

feasibility is retained by applying a simple heuristic. Some of the X decision variables from

solving LR1 (or LR2) may take fractional values. With the heuristic, the integer feasibility is

retained when solving the upper bound model. The pseudo code for the heuristic to determine

the upper bound is shown below:

Heuristic(x)

Begin

 $% ← ����

Let x be the job to batch assignment from the LB.

For each x, let) be the job to batch assignment obtained from the heuristic.

if � > 0, then

) ← 1

else

) ← 0

 end if

 For each H, let X be the job to batch assignment in UB model.

if) > 0

 � ≤)

else

 � ← 0

27

end if

End

 The heuristic begins after LB model is solved. The decision variable solution obtained

from the LB model is used to set the upper bounds for all the decision variables in the UB

model. For example, if Xjkm = 0 in the LB solution, then the corresponding Xjkm in the UB is

bounded above by 0. In essence, this variable is fixed to zero. If Xjkm is a fractional value or 1

in the LB solution, then the corresponding Xjkm in the UB is bounded above by 1. After

establishing these bounds, the UB model is solved to obtain the upper bound which would be a

feasible solution for the problem under study as the X variables are defined as binary variables

in the UB model.

The LR approach was implemented in IBM ILOG CPLEX. A computational study was

conducted to evaluate its performance, in terms of its solution quality and computational time.

Details of the experimental study are presented in Chapter 5.

CHAPTER 5

COMPUTATIONAL RESULTS

In Chapter 4, two constraints were relaxed to obtain two different Lagrangian Duals.

Experiments were performed to evaluate the two Lagrangian Duals. The Lagrangian Relaxation

(LR) approach presented in Chapter 4 was implemented in IBM ILOG CPLEX. The

experiments were run on a personal computer with the following configuration: Intel® Core™

i5-2450M, 2.50 GHz, and 4 GB RAM. Data sets were generated as presented in Chapter 3.

Overall, 200 experiments were conducted for each relaxation. Results from this study are

compared with RKGA, PSO and CPLEX in terms of solution quality and computational time.

In comparing the solution quality, the average percentage of improvement (API) is used

and calculated as follow:

+�, =
����'� �-�"#
	���ℎ".
(− ����'$�/ ��/���(

����'� �-�"#
	���ℎ".
(× 100%
 (19)

From the equation, it can be inferred that the LR solution is equal or better than the other

approaches with an API value equal to zero or more. On the other hand, the previous

approaches are better than LR if the API value is less than zero.

A Design of Experiment (DOE) was conducted to choose the parameters used in the

LR approach. The parameters that were decided through DOE are number of positions (�),

29

same limit (�������), and multiplier update (��). Twenty job problem instances were used in

the DOE. Through DOE, the effect of different parameters on the solution quality was

determined and a main effects plot was developed (see Figure 2). The levels for the different

factors were defined as follows: the number of positions was to be decided between 6 (33% of

the number of jobs) or 10 (50% of the number of jobs). As the number of positions considered

increased, the computational time was longer. However, fewer positions may lead to poorer

solution with short run times. The same limit was between 5 or 15. This is the number of

iterations allowed in the LR approach before the scale parameter is reduced by half. Multiplier

update is the scale used to update the multiplier in case the multiplier update method explained

in Chapter 4 resulted in a negative value. In this DOE, the multiplier update tested is 0%, 33%,

or 50% from the current multiplier value. Figure 2 shows that the best parameter to achieve a

better API when compared to PSO is if the number of positions is 50% of the number of jobs,

same limit is 15, and multiplier update is 0. These parameters were used throughout the

experimental study for 10, 20 and 50 job instances.

For 100 and 200 job instances, the LR parameters set earlier through DOE leads to an

inferior solution even after a long computation run. Due to this reason, another DOE is

performed. In this DOE, only the number of positions is considered. The same limit and

multiplier update do not have any impact on the results for the larger instances. Number of

positions considered in this DOE is 25%, 50% and 60% of the number of jobs. The result of

the DOE is as shown in Figure 3 when the API is compared to PSO. Through the DOE, 60%

of the number of jobs is chosen as the number of positions to consider in each 100 and 200 job

instance. The number of positions considered increased with the number of jobs.

30

106

0.0

-0.4

-0.8

-1.2

-1.6

155

0.50.30.0

0.0

-0.4

-0.8

-1.2

-1.6

Posit ion

M
e
a
n

Same Limit

Multiplier Update

Main Effects Plot for 20 Jobs

Average % Improvement

Figure 2: Main Effects Plot for 20 Jobs

Some other parameters were also set in the beginning of the experiments. These parameters do

not have a significant effect on the results, therefore a formal DOE was not performed. The

parameters are as follows:

 initial multiplier (���) = 0.5

scale (�) = 2

31

605025

-0.02

-0.03

-0.04

-0.05

-0.06

k

M
e
a
n

Main Effects Plot for API

Data Means

Figure 3: Main Effects Plot for 100 Jobs

5.1 Average Percentage of Improvement (API)

With all the parameters set, experiments on LR1 approach were conducted. As

mentioned earlier, the higher (i.e. greater than zero) the API, the better the LR1 performance

than other methods. The results for each experimental run is provided in individual tables (see

Tables A-1 to A-5) included in Appendix A. The columns in the tables are numbered 1

through 9. Column 1 presents the run code. The run code is based on the number of jobs,

processing time of the jobs, size of the jobs, and instances number. For example, J1p1s1#1

indicate a 10 job instance (J1) with processing times from Discrete Uniform 1 to 10 (p1), sizes

from Discrete Uniform 1 to 5 (s1), and instance one (#1). The same run code is used for both

32

two-machine and four-machine problems. Columns 2 through 5 report the results for instances

with 2 machines. Columns 2, 3, 4, and 5 present the makespan from RKGA, PSO, CPLEX,

and LR1 approaches, respectively. Columns 6 through 9 report the results for instances with 4

machines. Columns 6, 7, 8, and 9 present the makespan from RKGA, PSO, CPLEX and LR1

approaches, respectively.

5.1.1 Two-Machine Experiments

Figure 4 shows the API when LR1 is compared with the previous solution approaches

(e.g. PSO, RKGA, and CPLEX) for two-machine problem instances. On 10 job instances with

two machines, the API is mostly zero, indicating that the LR1 solution is equal to the other

approaches. On two instances (J1p1s2#2 and J1p1s2#3), the API is positive when LR1 is

compared with RKGA, indicating that LR1 is slightly better than RKGA on these instances.

On average, LR1 is 0.35% better than RKGA. The API results for 10 job instances are shown

in Appendix B (Table B-1). On 20 job instances with two machines, it is found that the

solutions from LR1 and CPLEX were equal (API = 0). When compared with RKGA and PSO,

LR1 resulted in either zero or positive API value. Out of 20 instances tested, LR1 reported

better solution than RKGA on 15 instances and better than PSO on 5 instances. On an average,

LR1 is 6.02% better than RKGA and 0.75% better than PSO. Table B-2 in Appendix B

presents the API result for 20 job instances.

Figure 4: API in Makespan for Two-Machine Instances

3
3

34

On 50 job instances, LR1 outperforms both RKGA and CPLEX across all experiments.

A similar conclusion can be drawn on 100 and 200 job instances. However, LR1 is only better

or equal than PSO on some instances and on other instances PSO is better than LR1. It is

found that LR1 was able to outperform (or comparable) PSO on instances in which the

processing times are less variable (when generated from Discrete Uniform distribution with

parameters 1 and 10). For 100 and 200 job instances, CPLEX required prohibitively long

computational time. Even after running for several hours, CPLEX did not converge to an

optimum. Consequently, CPLEX was allowed to run for 1800 seconds and the best found

feasible solution was used to determine the API. API results for 50, 100 and 200 job instances

are presented accordingly in Appendix B (see Tables B-3 to B-5).

The API result for each instance is graphed and presented in Appendix C. Figure C-1

shows the API for two-machine problem by job instances. Figures C-2 to C-6 show the API

result breakdown by the processing time and the size of the jobs in two-machine problem job

instances.

5.1.2 Four-Machine Experiments

Figure 5 shows the API when LR1 is compared with the previous solutions approaches

(e.g. PSO, RKGA, and CPLEX) for four-machine problem instances. On 10 job instances with

four machines, all the four approaches (RKGA, PSO, CPLEX and LR1) report the same

solution. On 20 job instances, LR1 reported the same solution with CPLEX in all experiments.

LR1 outperforms RKGA and is marginally better than PSO on instances with larger variability

35

in job sizes (when generated from Discrete Uniform distribution with parameters 1 and 20).

On other instances, LR1 reported the same solution with RKGA and PSO. On average, LR1 is

6.71% better than RKGA and 0.73% better than PSO. LR1 is able to outperform both RKGA

and CPLEX on 50, 100, and 200 job instances. When compared with PSO, LR1 outperforms

(or comparable) on instances where there is less variability in the processing times. However,

PSO marginally outperforms LR1 on instances with high variability in the processing times.

As in the two-machine instances, CPLEX was unable to converge to an optimum even after

running for several hours. Consequently, CPLEX was allowed to run for 1800 seconds and the

best known solution was used to compute the API.

The API result for each instance is graphed and presented in Appendix C. Figure C-7

shows the API for four-machine problem by jobs instances. Figure C-8 to C-12 show the API

result breakdown by the processing time and the size of the jobs in four-machine problem.

5.2 Computational Time

Table 3 presents the average computation time required by each solution approach for

various problem instances. CPLEX did not converge to optimum even after running for several

hours on 50, 100, and 200 job instances. Consequently, CPLEX was allowed to run for 1800

seconds and the best feasible solution found was used for comparison. All the four approaches

took relatively a short run time to solve all 10 and 20 job instances. PSO was by far the fastest

solution approach for all instances. The run time required for RKGA and LR1 grew

Figure 5: API in Makespan for Four-Machine Instances

3
6

37

exponentially with the size of the problem. In LR1, the longer run times are primarily in

solving the upper bound model in CPLEX. An experimental study was conducted to set the

time limit (i.e. 100, 200, or 300 seconds) in order to solve the upper bound model. The

experimental study favored using 200 seconds as the time limit. As the upper bound model is

solved each time a better lower bound is formed, but the computational time for LR1 gets

longer for larger problem instances. Tables D-1 to D-5 in Appendix D show the computational

results for all instances.

Table 3: Average Computational Times (in seconds) for All Job Instances

No. of

Jobs

m = 2 m = 4

RKGA* PSO* CPLEX* LR1
#
 RKGA* PSO* CPLEX* LR1

#

10 4.52 0.36 0.18 0.22 4.27 0.37 0.19 0.34

20 19.23 0.74 326.87 14.58 13.73 0.75 341.68 13.75

50 143.04 2.83 1800 1360.61 121.11 2.85 1712.08 2018.3

100 546.44 9.53 1800 1750.37 362.19 9.6 1709.71 2060.76

200 1780.31 35.42 1800 1529.87 1708.09 35.63 1805.21 2178.98

* indicates that the experiments were run on Pentium Core 2 Duo, T6400, 2.00 GHz computer with 3 GB RAM

indicates that the experiments were run on Intel® Core™ i5-2450M, 2.50 GHz computer with 4 GB RAM

5.3 Constraint Considerations

Two different constraints were relaxed to obtain two LR procedures namely LR1 and

LR2 as presented in Chapter 4. The API was determined by comparing LR1 with PSO and

LR2 with PSO. Figure 6 compares the API’s from this comparison. From this figure, it is

38

evident that LR1 is better than LR2 on two machine problem instances. A similar comparison

was also done for four machine problem instances (see Figure 7) and LR1 is found to

outperform LR2. In both figures (Figures 6 and 7), the API results are comparable in 10 and 20

job instances. However, LR2 performs poorly as the number of jobs in an instance increases.

LR1 is significantly better than LR2 on larger problem instances. Consequently, LR1 is

recommended for solving the problem under study.

Figure 6: API Comparison between LR1 and LR2 for Two-Machine Problem

39

Figure 7: API Comparison between LR1 and LR2 for Four-Machine Problem

CHAPTER 6

CONCLUSION AND FUTURE WORK

 Makespan minimization is a commonly used objective in the scheduling literature.

Different studies are carried out under different machine environments and makespan

objective. In this research, non-identical parallel batch processing machines are considered

with the makespan objective. As the problem under study is NP-hard, researchers in the past

proposed meta-heuristic such as Particle Swarm Optimization (PSO) [4] and Random Keys

Genetic Algorithm (RKGA) [38]. Although meta-heuristic are useful and effective in finding a

good solution, they may not guarantee an optimal solution. In this research, a Lagrangian

Relaxation (LR) approach is proposed. A mathematical model for the problem under study is

considered and two different constraint sets are relaxed using Lagrangian multipliers to obtain

two Lagrangian Duals (i.e. LD1 and LD2). A sub-gradient approach was used to update the

multipliers. A DOE was conducted to determine the best parameters for the LR.

An experimental study was conducted to evaluate the two Lagrangian models in terms

of solution quality and run time. The solutions obtained from the two models are compared to

PSO, RKGA, and CPLEX. Data sets from the literature were used to compare all the solution

approaches. When comparing the solution from LR1 with LR2, it was noted that the solution

from LR1 is almost always better than LR2. Consequently, the solution from LR1 was used to

compare with other solution approaches reported in the literature.

41

Based on the experimental study conducted, it can be concluded that for small job

instances (with 10 and 20 jobs) the solution from LR1 approach is similar to the solution

obtained from PSO. However, the solution from LR1 approach was better than the RKGA and

CPLEX on 50, 100, and 200 job instances with two and four machine problem instances. LR1

solution was better than PSO on larger problem instances (50, 100, and 200 jobs) when the

processing times are less variable (when generated with Discrete Uniform 1 to 10). But on

other instances where the processing times are highly variable, PSO solution was marginally

better than LR1. On four machine problem instances, LR1 solution was better than RKGA and

PSO on smaller problem instances. Similar to two-machine problem, LR1 was better than PSO

on large problem instances with smaller processing time variability in four-machine problem

instances. PSO was better than LR1 on larger processing time variability.

In terms of computational times, PSO approach was faster on all problem instances.

RKGA and LR1 required longer computational times – especially as the problem size grew.

CPLEX was unable to converge to optimum, hence, it was allowed to run for 1800 seconds and

the best found solution was used for comparisons.

Out of the 200 experiments conducted on two and four machine problem instances, the

proposed LR approach has resulted in finding 34 new improved solutions and 105 comparable

solutions (or equal) when compared to the PSO approach. The LR approach proposed in this

research can be improved by considering a Branch-and-Bound approach to retain feasibility

instead of solving the upper bound model as explained in Chapter 4. Another possibility is to

propose a better way to solve the upper bound model, perhaps a heuristic. These steps may help

to reduce the run time required for the LR approach. However, the solution quality is to be

evaluated if a heuristic is to be used.

42

This research can be extended to consider unrelated parallel machines easily. The only

change to be made is to account for the different job processing times on different machines.

The job ready times can also be considered by adding a couple of constraints. Other objectives

such as tardiness and weighted tardiness can be useful to some manufacturers.

 As mentioned in the previous literatures, most scheduling problems related to BPM are

solved with heuristic and meta-heuristic approaches. This research demonstrates the successful

application of LR approach to solve scheduling problems with non-identical parallel BPM –

especially to minimize the makespan. The main contribution of this research is the solution

approach based on sound Operations Research theory to solve a complex scheduling problem

commonly observed in the industry. In addition, the experimental study demonstrates that there

are several instances on which the LR approach outperforms several heuristics. This research

and its findings can benefit practitioners and academics in that a new approach, in addition to

the meta-heuristics already available, can be tried to solve BPM scheduling problems.

REFERENCES

[1] Potts, C. N., and Kovalyov, M. Y., 2000, “Scheduling with Batching: A Review,”

European Journal of Operation Research, 120, pp. 228-249.

[2] Ozturk, O., Espinouse, M-L., Mascolo, M., and Gouin, A., 2012, “Makespan

Minimization on Parallel Batch Processing Machines with Non-Identical Job Sizes and

Release Dates,” International Journal of Production Research, 50(20), pp. 6022-6035.

[3] Raidl, G. R., and Gruber, M., 2008, “A Lagrangian Relax-and-Cut Approach for the

Bounded Diameter Minimum Spanning Tree Problem,” International Conference on

Numerical Analysis and Applied Mathematics, pp. 446-449.

[4] Damodaran, P., Diyadawagamage D. A., Ghrayeb, O., and Velez-Gallego M. C., 2012,

“A Particle Swarm Optimization Algorithm for Minimizing Makespan of Nonidentical Parallel

Batch Processing Machines,” The International Journal of Advanced Manufacturing

Technology, 58, pp. 1131-1140.

[5] Hanssmann, F., and Hess, S. W., 1960, “A Linear Programming Approach to Production

and Employment Scheduling,” Management Technology, 1(1), pp. 46-51.

[6] Uzsoy, R., 1994, “Scheduling a Single Batch Processing Machine with Non-Identical Job

Sizes,” International Journal of Production Research, 32(7), pp. 1615-1635.

[7] Lee, C. Y., and Uzsoy, R., 1999, “Minimizing Makespan on a Single Batch Processing

Machine with Dynamic Job Arrivals,” International Journal of Production Research, 37, pp.

219-236.

[8] Tang, L., Xuan, H., and Liu, J., 2006, “A New Lagrangian Relaxation Algorithm for

Hybrid Flowshop Scheduling to Minimize Total Weighted Completion Time,” Computers and

Operations Research, 33(11), pp. 3344-3359.

[9] Liu, L. L., Ng, C. T., and Cheng, T. C. E., 2008, “Scheduling Jobs with Agreeable

Processing Times and Due Dates on a Single Batch Processing Machine,” Theoretical

Computer Science, 374, pp. 159-169.

[10] Perez, I. C., Fowler, J. W., and Carlyle, W. M., 2005, “Minimizing total weighted

tardiness on a single batch process machine with incompatible job-families,” Computers and

Operations Research, 32, pp. 327-341.

44

[11] Sivrikaya-Serifoglu, F., and Ulusoy, G., 1999, “Parallel Machine Scheduling with

Earliness and Tardiness Penalties,” Computers and Operations Research, 26, pp. 773-787.

[12] Chandru, V., Lee, C. Y., and Uzsoy, R., 1993, “Minimizing total completion time on

batch processing machine,” International Journal of Production Research, 31, pp. 2097-2121.

[13] Shim, S-O., and Kim, Y-D., 2008, “A Branch and Bound Algorithm for an Identical

Parallel Machine Scheduling Problem with Job-Splitting Property,” Computers and

Operations Research, 35(3), pp. 863-875.

[14] Lee, W-C., Wu C-C., and Chen, P., 2006, “A Simulated Annealing Approach to

Makespan Minimization on Identical Parallel Machines,” The International Journal of

Advanced Manufacturing Technology, 31, pp. 328-334.

[15] Damodaran, P., and Velez-Gallego, M. C., 2012, “A Simulated Annealing Algorithm to

Minimize Makespan of Parallel Batch Processing Machines with Unequal Job Ready Times,”

Expert Systems with Applications: An International Journal, 39(1), pp. 1451-1458.

[16] Ozturk, O., Espinouse, M-L., Di Mascolo, M., and Gouin, A., 2010, “Optimizing

Makespan of Washing Operations of Medical Devices in Hospital Sterilization Services,”

IEEE Workshop on Health Care Management (WHCM 2010), pp. 6.

 [17] Al-Ghamdi, F., Al-Khaldi, M., Khouki, A., and Al-Slamah, M., 2012, “Minimizing the

Tardiness in a Single Machine Batch Processing,” Proceedings of the 2012 International

Conference on Industrial Engineering and Operations Management, pp. 121-128.

[18] Li, K., and Yang, S-L., 2009, “Non-Identical Parallel Machine Scheduling Research with

Minimizing Total Weighted Completion Times: Models, Relaxations and Algorithms,”

Applied Mathematical Modelling, 33(4), pp. 2145-2158.

[19] Turkcan, A., Akturk M. S., and Storer, R. H., 2003, “Non-Identical Parallel CNC Machine

Scheduling,” International Journal of Production Research, 41(10), pp. 2143-2168.

[20] Dessouky, M. M., 1998, “Scheduling Identical Jobs with Unequal Ready Times on

Uniform Parallel Machines to Minimize the Maximum Lateness,” Computers and Industrial

Engineering, 34(4), pp. 793-806.

[21] Mokotoff, E., 1999, “Scheduling to Minimize Makespan on Identical Parallel Machines:

An LP-Based Algorithm,” Investigacion Operativa, 8, pp. 97-107.

[22] Chang, P., Damodaran, P., Melouk, S., 2004, “Minimizing Makespan on Parallel Batch

Processing Machines,” International Journal of Production Research, 42, pp. 4211–4220.

[23] Kashan, A. H., Karimi, B., Jenabi, M., 2008, “A Hybrid Genetic Heuristic for Scheduling

Parallel Batch Processing Machines with Arbitrary Job Sizes,” Computers and Operations

Research, 35, pp. 1084–1098.

45

[24] Xu. S., and Bean, J. C., 2007, “A Genetic Algorithm for Scheduling Parallel Non-

Identical Batch Processing Machines,” IEEE Symposium on Computational Intelligence in

Scheduling, pp. 143-150.

[25] Shao, H., Chen, H-P., Huang, G. Q., Xu, R., Cheng, B-Y., Wang S-S., and Liu, B-W.,

2008, “Minimizing Makespan for Parallel Batch Processing Machines with Non-Identical Job

Sizes Using Neural Nets Approach,” IEEE Conference on Industrial Electronics and

Applications, pp. 1921-1924.

[26] Li, S., and Yuan, J., 2010, “Parallel-Machine Parallel-Batching Scheduling with Family

Jobs and Release Dates to Minimize Makespan,” Journal of Combinatorial Optimization, 19,

pp. 84-93.

[27] Chen, H., Chu, C., and Proth, J-M., 1998, “An Improvement of the Lagrangian Relaxation

Approach for Job Shop Scheduling: A Dynamic Programming Method,” IEEE Transactions

on Robotics and Automation, 14(5), pp. 786-795.

[28] Held. M., and Karp, R. M., 1970, “The Traveling-Salesman Problem and Minimum

Spanning Trees,” Operations Research, 18, pp. 1138-1162.

[29] Fisher, M. L., 1981, “The Lagrangian Relaxation Method for Solving Integer

Programming Problems,” Management Science, 27(1), pp. 1-18.

[30] Fisher, M. L., 1985, “An Applications Oriented Guide to Lagrangian Relaxation,”

Interfaces, 15(2), pp. 10-21.

[31] Muckstadt, J. A., and Koenig, S. A., 1975, “An Application of Lagrangian Relaxation to

Scheduling in Power-Generation Systems,” Operations Research, 25(3), pp. 387-403.

[32] Luh, P. B., and Hoitomt, D. J., 1993, “Scheduling of Manufacturing Systems Using the

Lagrangian Relaxation Technique,” IEEE Transactions on Automatic Control, 38, pp. 1066-

1079.

[33] Liu, G., Luh, P. B., and Resch, R., 1997, “Scheduling Permutation Flow Shops Using the

Lagrangian Relaxation Technique,” Annals of Operations Research, 70, pp. 171-189.

[34] Irohara, T., 2008, “Lagrangian Relaxation Algorithms for Hybrid Flow-Shop Scheduling

Problems with Limited Buffers,” Biomedical Soft Computing and Human Sciences, 15(1), pp.

21-28.

[35] Perdomo, V., Augusto, V., and Xie X., 2006, “Operation Theatre Scheduling Using

Lagrangian Relaxation,” International Conference on Service Systems and Service

Management, pp. 1234-1239.

[36] Velde, S. L., 1990, “Dual Decomposition of a Single-Machine Scheduling Problem,”

Mathematical Programming, 69, pp. 413-428.

46

[37] Balin, S., 2010, “Non-Identical Parallel Machine Scheduling with Fuzzy Processing

Times Using Genetic Algorithm and Simulation,” The International Journal of Advanced

Manufacturing Technology, 61(9), pp. 1115-1127.

[38] Malapert, A., Gueret, C., and Rousseau, L-M., “A Constraint Programming Approach for

a Batch Processing Problem with Non-Identical Job Sizes,” European Journal of Operation

Research, 221(3), pp. 533-545.

[39] Velez-Gallego, M. C., Damodaran, P., and Rodriguez, M., 2011, “Makespan

Minimization on a Single Batch Processing Machine with Unequal Job Ready Times,”

International Journal of Industrial Engineering, 18(10), pp. 536-546.

[40] Damodaran, P., and Velez-Gallego, M. C., 2010, “Heuristics for Makespan Minimization

on Parallel Batch Processing Machines with Unequal Job Ready Times,” International Journal

of Advanced Manufacturing Technology, 49, pp. 1119-1128.

[41] Damodaran, P., Velez-Gallego, M. C., and Maya, J., 2011, “A GRASP Approach for

Makespan Minimization on Parallel Batch Processing Machines,” Journal of Intelligent

Manufacturing, 22, pp. 767-777.

APPENDIX A: RKGA, PSO, CPLEX AND LR1 �
���

 RESULTS

Table A-1: RKGA, PSO, CPLEX and LR1 �
���

 results for 10 job instances

Runcode

(1)

m = 2 m = 4

RKGA

(2)

PSO

(3)

CPLEX

(4)

LR1

(5)

RKGA

(6)

PSO

(7)

CPLEX

(8)

LR1

(9)

J1p1s1#1 9 9 9 9 9 9 9 9

J1p1s1#2 10 10 10 10 10 10 10 10

J1p1s1#3 10 10 10 10 10 10 10 10

J1p1s1#4 10 10 10 10 10 10 10 10

J1p1s1#5 10 10 10 10 10 10 10 10

J1p1s2#1 17 17 17 17 10 10 10 10

J1p1s2#2 8 8 8 8 8 8 8 8

J1p1s2#3 12 12 12 12 9 9 9 9

J1p1s2#4 24 24 24 24 14 14 14 14

J1p1s2#5 14 14 14 14 9 9 9 9

J1p2s1#1 27 27 27 27 27 27 27 27

J1p2s1#2 30 30 30 30 30 30 30 30

J1p2s1#3 29 29 29 29 29 29 29 29

J1p2s1#4 30 30 30 30 30 30 30 30

J1p2s1#5 26 26 26 26 26 26 26 26

J1p2s2#1 39 38 38 38 28 28 28 28

J1p2s2#2 46 44 44 44 30 30 30 30

J1p2s2#3 40 40 40 40 30 30 30 30

J1p2s2#4 30 30 30 30 30 30 30 30

J1p2s2#5 35 35 35 35 29 29 29 29

4
8

Table A-2: RKGA, PSO, CPLEX and LR1 �
���

 results for 20 job instances

Runcode

(1)

m = 2 m = 4

RKGA

(2)

PSO

(3)

CPLEX

(4)

LR1

(5)

RKGA

(6)

PSO

(7)

CPLEX

(8)

LR1

(9)

J2p1s1#1 10 10 10 10 10 10 10 10

J2p1s1#2 12 11 11 11 10 10 10 10

J2p1s1#3 11 10 10 10 10 10 10 10

J2p1s1#4 10 10 10 10 10 10 10 10

J2p1s1#5 10 10 10 10 10 10 10 10

J2p1s2#1 22 21 21 21 14 11 11 11

J2p1s2#2 37 35 34 34 20 19 19 19

J2p1s2#3 33 33 32 32 19 17 16 16

J2p1s2#4 32 28 28 28 17 14 14 14

J2p1s2#5 32 31 30 30 19 16 16 16

J2p2s1#1 30 30 30 30 30 30 30 30

J2p2s1#2 34 30 30 30 30 30 30 30

J2p2s1#3 29 29 29 29 29 29 29 29

J2p2s1#4 36 30 30 30 30 30 30 30

J2p2s1#5 36 31 31 31 29 29 29 29

J2p2s2#1 125 117 117 117 64 61 58 58

J2p2s2#2 89 87 85 85 49 45 45 45

J2p2s2#3 90 84 81 81 46 41 41 41

J2p2s2#4 100 98 98 98 60 53 51 51

J2p2s2#5 59 57 57 57 33 28 28 28

4
9

Table A-3: RKGA, PSO, CPLEX and LR1 �
���

 results for 50 job instances

Runcode

(1)

m = 2 m = 4

RKGA

(2)

PSO

(3)

CPLEX

(4)

LR1

(5)

RKGA

(6)

PSO

(7)

CPLEX

(8)

LR1

(9)

J3p1s1#1 26 23 24 23 16 12 13 12

J3p1s1#2 23 20 22 19 16 10 10 10

J3p1s1#3 27 22 23 22 16 12 13 12

J3p1s1#4 22 19 21 19 14 10 12 10

J3p1s1#5 24 21 23 21 15 11 12 11

J3p1s2#1 77 74 76 74 40 36 40 37

J3p1s2#2 67 60 62 60 36 31 34 32

J3p1s2#3 72 67 71 67 38 34 37 34

J3p1s2#4 77 70 69 68 38 35 36 35

J3p1s2#5 65 61 61 61 35 30 32 31

J3p2s1#1 75 69 74 70 41 35 39 36

J3p2s1#2 65 56 62 57 40 29 32 30

J3p2s1#3 77 66 69 67 49 37 40 39

J3p2s1#4 71 62 67 62 46 31 33 32

J3p2s1#5 74 65 68 66 46 33 35 33

J3p2s2#1 190 177 184 178 100 88 99 90

J3p2s2#2 175 159 170 163 91 79 86 83

J3p2s2#3 237 218 219 219 119 108 115 111

J3p2s2#4 239 225 222 222 126 110 116 111

J3p2s2#5 217 174 180 179 102 87 97 90

5
0

Table A-4: RKGA, PSO, CPLEX and LR1 �
���

 results for 100 job instances

Runcode

(1)

m = 2 m = 4

RKGA

(2)

PSO

(3)

CPLEX

(4)

LR1

(5)

RKGA

(6)

PSO

(7)

CPLEX

(8)

LR1

(9)

J4p1s1#1 49 43 54 42 29 22 33 21

J4p1s1#2 47 40 56 40 26 20 30 20

J4p1s1#3 43 36 48 36 25 19 27 19

J4p1s1#4 41 34 50 34 23 18 26 18

J4p1s1#5 44 37 50 37 25 19 26 19

J4p1s2#1 135 126 154 126 71 62 83 60

J4p1s2#2 143 131 163 130 73 65 83 65

J4p1s2#3 158 142 171 141 79 72 96 70

J4p1s2#4 159 146 181 140 80 74 89 71

J4p1s2#5 149 135 164 135 73 67 95 66

J4p2s1#1 125 103 137 106 69 53 74 55

J4p2s1#2 146 121 173 123 81 63 83 63

J4p2s1#3 137 120 159 125 76 61 86 61

J4p2s1#4 125 108 146 112 73 56 79 57

J4p2s1#5 135 119 159 121 80 59 81 60

J4p2s2#1 391 360 440 373 202 181 231 188

J4p2s2#2 422 395 484 399 219 195 240 199

J4p2s2#3 424 393 471 403 212 196 251 200

J4p2s2#4 449 413 488 420 224 206 253 211

J4p2s2#5 427 389 478 397 221 195 241 199

5
1

Table A-5: RKGA, PSO, CPLEX and LR1 Cmax results for 200 job instances

Runcode

(1)

m = 2 m = 4

RKGA

(2)

PSO

(3)

CPLEX

(4)

LR1

(5)

RKGA

(6)

PSO

(7)

CPLEX

(8)

LR1

(9)

J5p1s1#1 88 73 122 72 48 37 64 37

J5p1s1#2 89 74 120 73 47 37 66 37

J5p1s1#3 84 71 115 70 48 36 65 36

J5p1s1#4 84 71 115 70 46 36 67 36

J5p1s1#5 88 73 121 73 47 37 67 36

J5p1s2#1 276 255 346 250 138 128 165 122

J5p1s2#2 333 315 378 311 167 156 201 153

J5p1s2#3 302 280 349 281 152 140 174 144

J5p1s2#4 314 293 369 291 162 147 193 141

J5p1s2#5 307 283 351 281 153 140 191 133

J5p2s1#1 242 201 347 207 135 101 189 103

J5p2s1#2 282 241 400 250 153 121 203 120

J5p2s1#3 270 232 367 243 146 117 196 120

J5p2s1#4 262 219 356 228 147 112 195 117

J5p2s1#5 275 224 380 231 145 112 200 117

J5p2s2#1 808 739 994 773 405 365 481 374

J5p2s2#2 886 823 1125 851 451 411 550 426

J5p2s2#3 808 752 946 769 434 378 514 391

J5p2s2#4 833 765 1007 787 425 386 561 397

J5p2s2#5 879 814 1071 832 451 404 569 426

5
2

APPENDIX B: AVERAGE PERCENTAGE OF IMPROVEMENT TOWARDS LR1

Table B-1: Average percentage of improvement towards LR1 for 10 job instances

Runcode

(1)

m = 2 m = 4

RKGA

(2)

PSO

(3)

CPLEX

(4)

RKGA

(5)

PSO

(6)

CPLEX

(7)

J1p1s1#1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

J1p1s1#2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

J1p1s1#3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

J1p1s1#4 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

J1p1s1#5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

J1p1s2#1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

J1p1s2#2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

J1p1s2#3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

J1p1s2#4 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

J1p1s2#5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

J1p2s1#1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

J1p2s1#2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

J1p2s1#3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

J1p2s1#4 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

J1p2s1#5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

J1p2s2#1 2.56% 0.00% 0.00% 0.00% 0.00% 0.00%

J1p2s2#2 4.35% 0.00% 0.00% 0.00% 0.00% 0.00%

J1p2s2#3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

J1p2s2#4 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

J1p2s2#5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Average 0.35% 0.00% 0.00% 0.00% 0.00% 0.00%

5
4

Table B-2: Average percentage of improvement towards LR1 for 20 job instances

Runcode

(1)

m = 2 m = 4

RKGA

(2)

PSO

(3)

CPLEX

(4)

RKGA

(5)

PSO

(6)

CPLEX

(7)

J2p1s1#1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

J2p1s1#2 8.33% 0.00% 0.00% 0.00% 0.00% 0.00%

J2p1s1#3 9.09% 0.00% 0.00% 0.00% 0.00% 0.00%

J2p1s1#4 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

J2p1s1#5 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

J2p1s2#1 4.55% 0.00% 0.00% 21.43% 0.00% 0.00%

J2p1s2#2 8.11% 2.86% 0.00% 5.00% 0.00% 0.00%

J2p1s2#3 3.03% 3.03% 0.00% 15.79% 5.88% 0.00%

J2p1s2#4 12.50% 0.00% 0.00% 17.65% 0.00% 0.00%

J2p1s2#5 6.25% 3.23% 0.00% 15.79% 0.00% 0.00%

J2p2s1#1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

J2p2s1#2 11.76% 0.00% 0.00% 0.00% 0.00% 0.00%

J2p2s1#3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

J2p2s1#4 16.67% 0.00% 0.00% 0.00% 0.00% 0.00%

J2p2s1#5 13.89% 0.00% 0.00% 0.00% 0.00% 0.00%

J2p2s2#1 6.40% 0.00% 0.00% 9.38% 4.92% 0.00%

J2p2s2#2 4.49% 2.30% 0.00% 8.16% 0.00% 0.00%

J2p2s2#3 10.00% 3.57% 0.00% 10.87% 0.00% 0.00%

J2p2s2#4 2.00% 0.00% 0.00% 15.00% 3.77% 0.00%

J2p2s2#5 0.00% 0.00% 0.00% 15.15% 0.00% 0.00%

Average 6.02% 0.75% 0.00% 6.71% 0.73% 0.00%

5
5

Table B-3: Average percentage of improvement towards LR1 for 50 job instances

Runcode

(1)

m = 2 m = 4

RKGA

(2)

PSO

(3)

CPLEX

(4)

RKGA

(5)

PSO

(6)

CPLEX

(7)

J3p1s1#1 3.39% 0.00% 0.00% 25.00% 0.00% 7.69%

J3p1s1#2 11.54% 0.00% 4.17% 37.50% 0.00% 0.00%

J3p1s1#3 17.39% 5.00% 13.64% 25.00% 0.00% 7.69%

J3p1s1#4 18.52% 0.00% 4.35% 28.57% 0.00% 16.67%

J3p1s1#5 9.09% -5.26% 4.76% 26.67% 0.00% 8.33%

J3p1s2#1 12.50% 0.00% 8.70% 7.50% 2.78% 7.50%

J3p1s2#2 3.90% 0.00% 2.63% 11.11% 0.00% 5.88%

J3p1s2#3 8.96% -1.67% 1.61% 10.53% 0.00% 8.11%

J3p1s2#4 6.94% 0.00% 5.63% 7.89% 0.00% 2.78%

J3p1s2#5 11.69% 2.86% 1.45% 11.43% 0.00% 3.13%

J3p2s1#1 6.15% 0.00% 0.00% 12.20% -2.86% 7.69%

J3p2s1#2 6.67% -1.45% 5.41% 25.00% -3.45% 6.25%

J3p2s1#3 12.31% -1.79% 8.06% 20.41% -5.41% 2.50%

J3p2s1#4 12.99% -1.52% 2.90% 30.43% -3.23% 3.03%

J3p2s1#5 12.68% 0.00% 7.46% 28.26% 0.00% 5.71%

J3p2s2#1 10.81% -1.54% 2.94% 10.00% -2.27% 9.09%

J3p2s2#2 6.32% -0.56% 3.26% 8.79% -5.06% 3.49%

J3p2s2#3 6.86% -2.52% 4.12% 6.72% -2.78% 3.48%

J3p2s2#4 7.59% -0.46% 0.00% 11.90% -0.91% 4.31%

J3p2s2#5 7.11% 1.33% 0.00% 11.76% -3.45% 7.22%

Average 10.38% -0.52% 4.08% 17.83% -1.33% 6.03%

5
6

Table B-4: Average percentage of improvement towards LR1 for 100 job instances

Runcode

(1)

m = 2 m = 4

RKGA

(2)

PSO

(3)

CPLEX

(4)

RKGA

(5)

PSO

(6)

CPLEX

(7)

J4p1s1#1 14.29% 2.33% 22.22% 27.59% 4.55% 36.36%

J4p1s1#2 14.89% 0.00% 28.57% 23.08% 0.00% 33.33%

J4p1s1#3 16.28% 0.00% 25.00% 24.00% 0.00% 29.63%

J4p1s1#4 17.07% 0.00% 32.00% 21.74% 0.00% 30.77%

J4p1s1#5 15.91% 0.00% 26.00% 24.00% 0.00% 26.92%

J4p1s2#1 6.67% 0.00% 18.18% 15.49% 3.23% 27.71%

J4p1s2#2 9.09% 0.76% 20.25% 10.96% 0.00% 21.69%

J4p1s2#3 10.76% 0.70% 17.54% 11.39% 2.78% 27.08%

J4p1s2#4 11.95% 4.11% 22.65% 11.25% 4.05% 20.22%

J4p1s2#5 9.40% 0.00% 17.68% 9.59% 1.49% 30.53%

J4p2s1#1 15.20% -2.91% 22.63% 20.29% -3.77% 25.68%

J4p2s1#2 15.75% -1.65% 28.90% 22.22% 0.00% 24.10%

J4p2s1#3 8.76% -4.17% 21.38% 19.74% 0.00% 29.07%

J4p2s1#4 10.40% -3.70% 23.29% 21.92% -1.79% 27.85%

J4p2s1#5 10.37% -1.68% 23.90% 25.00% -1.69% 25.93%

J4p2s2#1 4.60% -3.61% 15.23% 6.93% -3.87% 18.61%

J4p2s2#2 5.45% -1.01% 17.56% 9.13% -2.05% 17.08%

J4p2s2#3 4.95% -2.54% 14.44% 5.66% -2.04% 20.32%

J4p2s2#4 6.46% -1.69% 13.93% 5.80% -2.43% 16.60%

J4p2s2#5 7.03% -2.06% 16.95% 9.95% -2.05% 17.43%

Average 10.76% -0.86% 21.42% 16.29% -0.18% 25.35% 5
7

Table B-5: Average percentage of improvement towards LR1 for 200 job instances

Runcode

(1)

m = 2 m = 4

RKGA

(2)

PSO

(3)

CPLEX

(4)

RKGA

(5)

PSO

(6)

CPLEX

(7)

J5p1s1#1 18.18% 1.37% 40.98% 22.92% 0.00% 42.19%

J5p1s1#2 17.98% 1.35% 39.17% 21.28% 0.00% 43.94%

J5p1s1#3 16.67% 1.41% 39.13% 25.00% 0.00% 44.62%

J5p1s1#4 16.67% 1.41% 39.13% 21.74% 0.00% 46.27%

J5p1s1#5 17.05% 0.00% 39.67% 23.40% 2.70% 46.27%

J5p1s2#1 9.42% 1.96% 27.75% 11.59% 4.69% 26.06%

J5p1s2#2 6.61% 1.27% 17.72% 8.38% 1.92% 23.88%

J5p1s2#3 6.95% -0.36% 19.48% 5.26% -2.86% 17.24%

J5p1s2#4 7.32% 0.68% 21.14% 12.96% 4.08% 26.94%

J5p1s2#5 8.47% 0.71% 19.94% 13.07% 5.00% 30.37%

J5p2s1#1 14.46% -2.99% 40.35% 23.70% -1.98% 45.50%

J5p2s1#2 11.35% -3.73% 37.50% 21.57% 0.83% 40.89%

J5p2s1#3 10.00% -4.74% 33.79% 17.81% -2.56% 38.78%

J5p2s1#4 12.98% -4.11% 35.96% 20.41% -4.46% 40.00%

J5p2s1#5 16.00% -3.13% 39.21% 19.31% -4.46% 41.50%

J5p2s2#1 4.33% -4.60% 22.23% 7.65% -2.47% 22.25%

J5p2s2#2 3.95% -3.40% 24.36% 5.54% -3.65% 22.55%

J5p2s2#3 4.83% -2.26% 18.71% 9.91% -3.44% 23.93%

J5p2s2#4 5.52% -2.88% 21.85% 6.59% -2.85% 29.23%

J5p2s2#5 5.35% -2.21% 22.32% 5.54% -5.45% 25.13%

Average 10.70% -1.21% 30.02% 15.18% -0.75% 33.88%

5
8

APPENDIX C: API RESULT FOR ALL JOBS

60

Figure C-1: API Result for Two-Machine Problem

Figure C-2: API Result for 10 Jobs in Two-Machine Problem

61

Figure C-3: API Result for 20 Jobs in Two-Machine Problem

Figure C-4: API Result for 50 Jobs in Two-Machine Problem

62

Figure C-5: API Result for 100 Jobs in Two-Machine Problem

Figure C-6: API Result for 200 Jobs in Two-Machine Problem

63

Figure C-7: API Result for Four-Machine Problem

Figure C-8: API Result for 10 Jobs in Four-Machine Problem

64

Figure C-9: API Result for 20 Jobs in Four-Machine Problem

Figure C-10: API Result for 50 Jobs in Four-Machine Problem

65

Figure C-11: API Result for 100 Jobs in Four-Machine Problem

Figure C-12: API Result for 200 Jobs in Four-Machine Problem

APPENDIX D: RKGA, PSO, CPLEX AND LR1 COMPUTATIONAL TIME

Table D-1: RKGA, PSO, CPLEX and LR1 computational time (in seconds) for 10 job instances

Runcode

(1)

m = 2 m = 4

RKGA

(2)

PSO

(3)

CPLEX

(4)

LR1

(5)

RKGA

(6)

PSO

(7)

CPLEX

(8)

LR1

(9)

J1p1s1#1 4.53 0.32 0.12 1.01 4.28 0.36 0.13 2.47

J1p1s1#2 4.15 0.30 0.08 0.98 4.10 0.30 0.09 2.34

J1p1s1#3 4.22 0.29 0.09 0.77 4.06 0.30 0.17 2.89

J1p1s1#4 4.47 0.29 0.09 0.27 4.07 0.24 0.17 0.89

J1p1s1#5 4.19 0.30 0.11 0.56 4.06 0.30 0.19 1.46

J1p1s2#1 4.23 0.41 0.14 64.40 4.13 0.40 0.25 10.32

J1p1s2#2 4.50 0.44 0.14 51.32 4.29 0.45 0.13 12.33

J1p1s2#3 4.58 0.40 0.25 59.13 4.12 0.41 0.19 8.32

J1p1s2#4 4.99 0.49 0.86 66.58 7.33 0.49 0.70 16.69

J1p1s2#5 5.98 0.47 0.34 65.41 4.11 0.49 0.25 14.65

J1p2s1#1 4.16 0.31 0.08 0.30 4.06 0.30 0.17 0.72

J1p2s1#2 4.46 0.30 0.11 1.06 4.06 0.29 0.17 0.45

J1p2s1#3 4.17 0.30 0.08 1.05 4.06 0.30 0.16 0.69

J1p2s1#4 4.17 0.29 0.11 0.89 4.06 0.29 0.16 0.55

J1p2s1#5 4.46 0.30 0.11 0.28 4.06 0.29 0.16 1.14

J1p2s2#1 4.19 0.41 0.17 117.10 4.11 0.42 0.14 10.44

J1p2s2#2 4.21 0.43 0.20 100.60 4.11 0.42 0.16 8.19

J1p2s2#3 5.62 0.43 0.27 106.76 4.10 0.45 0.17 2.78

J1p2s2#4 4.21 0.42 0.14 71.41 4.11 0.43 0.13 8.58

J1p2s2#5 4.95 0.38 0.19 94.64 4.11 0.38 0.16 1.06

 6
7

Table D-2: RKGA, PSO, CPLEX and LR1 computational time (in seconds) for 20 job instances

Runcode

(1)

m = 2 m = 4

RKGA

(2)

PSO

(3)

CPLEX

(4)

LR1

(5)

RKGA

(6)

PSO

(7)

CPLEX

(8)

LR1

(9)

J2p1s1#1 11.14 0.52 0.39 114.075 10.53 0.48 0.83 6.188

J2p1s1#2 22.78 0.53 1.93 520.531 10.54 0.53 1.31 8.549

J2p1s1#3 11.75 0.54 0.69 33.322 10.53 0.53 1.00 5.134

J2p1s1#4 11.22 0.47 0.39 13.807 10.51 0.47 0.77 6.189

J2p1s1#5 22.64 0.53 0.44 15.025 10.53 0.53 0.81 6.225

J2p1s2#1 33.24 0.90 28.24 440.596 12.65 0.91 143.13 122.884

J2p1s2#2 15.01 1.00 139.68 389.546 18.56 1.01 1797.44 85.811

J2p1s2#3 18.12 0.95 593.41 362.093 12.63 0.95 386.79 70.341

J2p1s2#4 11.10 0.95 1800.00 96.004 13.66 0.95 87.19 122.65

J2p1s2#5 29.71 0.98 1800.00 89.763 15.59 1.02 546.86 19

J2p2s1#1 16.13 0.53 0.28 4.415 10.51 0.53 0.75 12.807

J2p2s1#2 19.77 0.53 0.48 0.967 10.52 0.54 0.89 6.7

J2p2s1#3 14.39 0.53 0.42 0.718 10.50 0.53 0.69 0.72

J2p2s1#4 21.15 0.53 6.27 1.155 10.78 0.53 1.26 2.786

J2p2s1#5 12.38 0.53 33.28 17.332 10.56 0.53 1.19 6.291

J2p2s2#1 12.65 1.10 29.91 99.401 27.55 1.13 120.18 97.889

J2p2s2#2 21.81 0.91 400.88 138.089 11.65 0.93 1800.00 65.71

J2p2s2#3 15.65 0.99 423.85 313.557 15.13 1.02 106.81 99.786

J2p2s2#4 34.64 0.94 1141.62 88.825 19.13 0.98 1800.00 67.124

J2p2s2#5 29.34 0.85 135.14 72.447 22.47 0.87 35.65 62.343

 6
8

Table D-3: RKGA, PSO, CPLEX and LR1 computational time (in seconds) for 50 job instances

Runcode

(1)

m = 2 m = 4

RKGA

(2)

PSO

(3)

CPLEX

(4)

LR1

(5)

RKGA

(6)

PSO

(7)

CPLEX

(8)

LR1

(9)

J3p1s1#1 100.81 2.17 1800.00 313.756 73.88 2.15 1799.88 313.756

J3p1s1#2 103.15 1.93 1800.00 172.067 55.55 1.99 42.87 1131.44

J3p1s1#3 87.91 2.02 1800.00 61.254 71.05 2.03 1800.00 1030.54

J3p1s1#4 137.98 2.01 1800.00 57.021 93.03 2.01 1799.88 1235.35

J3p1s1#5 137.26 2.02 1800.00 208.5 76.53 2.05 1799.96 2080.5

J3p1s2#1 179.49 3.90 1800.00 1033.13 163.71 3.88 1799.94 3304.22

J3p1s2#2 148.00 3.49 1800.00 1527.03 148.47 3.53 1799.91 2655.82

J3p1s2#3 165.33 3.53 1800.00 653.188 147.50 3.56 1800.00 2494.31

J3p1s2#4 157.86 3.68 1800.00 2170.78 152.11 3.69 1799.91 1965.04

J3p1s2#5 174.13 3.58 1800.00 824.977 144.75 3.62 1799.94 653.052

J3p2s1#1 143.18 2.12 1800.00 1309.86 116.81 2.13 1799.88 3342.34

J3p2s1#2 154.05 2.02 1800.00 1472.03 82.11 2.03 1799.91 1890.65

J3p2s1#3 108.16 2.01 1800.00 2934.09 84.83 2.02 1799.89 2934.09

J3p2s1#4 147.71 2.02 1800.00 1956.54 83.87 2.03 1799.91 1876.09

J3p2s1#5 129.08 2.09 1800.00 2417.59 93.08 2.11 1799.89 2417.59

J3p2s2#1 165.12 3.57 1800.00 1060.54 176.40 3.59 1799.97 1309.86

J3p2s2#2 201.85 3.37 1800.00 1546.24 143.84 3.40 1799.86 2423.51

J3p2s2#3 197.79 3.65 1800.00 1333.45 162.44 3.66 1799.96 2934.09

J3p2s2#4 171.95 3.91 1800.00 1902.34 182.63 3.88 1799.97 1956.54

J3p2s2#5 50.00 3.59 1800.00 1434.75 169.61 3.61 1799.97 2417.59

 6
9

Table D-4: RKGA, PSO, CPLEX and LR1 computational time (in seconds) for 100 job instances

Runcode

(1)

m = 2 m = 4

RKGA

(2)

PSO

(3)

CPLEX

(4)

LR1

(5)

RKGA

(6)

PSO

(7)

CPLEX

(8)

LR1

(9)

J4p1s1#1 554.33 6.76 1800.00 3354.21 362.43 6.78 1799.77 2031.09

J4p1s1#2 446.51 6.78 1800.00 2103.45 401.75 6.82 1799.81 2616.968

J4p1s1#3 428.19 6.64 1800.00 2233.43 486.74 6.70 1799.72 2468.003

J4p1s1#4 492.46 6.73 1800.00 2097.54 364.61 6.79 1799.78 1220.956

J4p1s1#5 477.60 6.56 1800.00 3124.57 489.46 6.64 1799.77 1808.403

J4p1s2#1 535.44 12.15 1800.00 2341.052 566.48 12.23 1799.58 3102.431

J4p1s2#2 707.50 12.06 1800.00 3811.296 627.73 12.14 1799.69 3141.972

J4p1s2#3 588.59 12.18 1800.00 4190.459 682.78 12.32 1799.58 2743.377

J4p1s2#4 530.44 12.82 1800.00 2135.67 568.40 12.93 1799.72 2588.803

J4p1s2#5 585.41 11.99 1800.00 1831.77 838.79 12.02 1799.79 1334.962

J4p2s1#1 529.13 6.59 1800.00 1098.75 418.49 6.64 1799.69 1804.193

J4p2s1#2 599.85 6.79 1800.00 1132.43 470.49 6.90 1799.74 1726.076

J4p2s1#3 513.68 6.89 1800.00 1564.32 582.29 6.93 1799.75 1904.039

J4p2s1#4 462.02 6.69 1800.00 1980.54 461.25 6.69 1799.68 1505.297

J4p2s1#5 587.91 6.93 1800.00 2209.85 465.06 6.94 1799.77 2607.081

J4p2s2#1 549.31 12.31 1800.00 1615.662 660.34 12.50 1799.61 2119.655

J4p2s2#2 594.79 12.36 1800.00 2346.75 674.74 12.50 1799.92 1188.084

J4p2s2#3 550.85 12.68 1800.00 4320.76 849.61 12.75 1799.63 1349.823

J4p2s2#4 570.14 12.73 1800.00 1123.56 683.24 12.73 1799.68 2174.49

J4p2s2#5 624.57 12.02 1800.00 2464.643 589.10 12.14 1799.60 1779.494

 7
0

Table D-5: RKGA, PSO, CPLEX and LR1 computational time (in seconds) for 200 job instances

Runcode

(1)

m = 2 m = 4

RKGA

(2)

PSO

(3)

CPLEX

(4)

LR1

(5)

RKGA

(6)

PSO

(7)

CPLEX

(8)

LR1

(9)

J5p1s1#1 1718.45 24.55 1800.00 171.573 1698.09 24.67 1798.36 1673.162

J5p1s1#2 1759.82 24.15 1800.00 136.069 1694.01 24.38 1798.47 3165.128

J5p1s1#3 1756.97 24.16 1800.00 167.724 1598.89 24.34 1798.10 3242.3

J5p1s1#4 1753.38 24.42 1800.00 116.504 1696.59 24.53 1798.46 1970.229

J5p1s1#5 1754.88 24.53 1798.00 248.021 1696.87 24.74 1798.13 1816.126

J5p1s2#1 1797.00 46.42 1798.49 1705.421 1720.97 46.77 1807.61 1071.23

J5p1s2#2 1822.90 49.09 1798.10 1625.061 1722.34 49.22 1811.36 2610.976

J5p1s2#3 1813.89 44.93 1798.60 2545.125 1733.64 45.36 1809.14 1596.429

J5p1s2#4 1815.92 45.64 1798.19 2515.782 1727.90 45.73 1810.38 2427.649

J5p1s2#5 1816.54 45.59 1798.61 1569.421 1726.61 45.72 1815.48 2489.978

J5p2s1#1 1757.43 24.32 1798.50 117.922 1704.31 24.44 1798.95 2080.542

J5p2s1#2 1756.23 24.75 1798.71 1354.532 1702.06 24.86 1798.66 1039.68

J5p2s1#3 1765.60 24.47 1798.55 2132.919 1701.54 24.68 1799.59 1144.364

J5p2s1#4 1762.61 24.39 1798.80 1114.392 1700.65 24.77 1798.94 2765.4

J5p2s1#5 1763.56 24.59 1798.71 1117.875 1701.51 25.50 1807.29 2237.6

J5p2s2#1 1812.66 46.05 1810.24 3124.57 1729.24 46.48 1810.00 2176.53

J5p2s2#2 1820.05 46.78 1798.54 2341.052 1725.83 47.58 1810.25 1348.65

J5p2s2#3 1807.23 45.16 1811.28 3811.296 1725.87 45.43 1805.39 4365.76

J5p2s2#4 1737.01 47.56 1798.46 4190.459 1725.05 47.00 1809.55 2080.542

J5p2s2#5 1814.10 46.80 1798.47 2132.919 1729.86 46.40 1820.03 1039.68

7
1

