939 research outputs found

    On the use of biased-randomized algorithms for solving non-smooth optimization problems

    Get PDF
    Soft constraints are quite common in real-life applications. For example, in freight transportation, the fleet size can be enlarged by outsourcing part of the distribution service and some deliveries to customers can be postponed as well; in inventory management, it is possible to consider stock-outs generated by unexpected demands; and in manufacturing processes and project management, it is frequent that some deadlines cannot be met due to delays in critical steps of the supply chain. However, capacity-, size-, and time-related limitations are included in many optimization problems as hard constraints, while it would be usually more realistic to consider them as soft ones, i.e., they can be violated to some extent by incurring a penalty cost. Most of the times, this penalty cost will be nonlinear and even noncontinuous, which might transform the objective function into a non-smooth one. Despite its many practical applications, non-smooth optimization problems are quite challenging, especially when the underlying optimization problem is NP-hard in nature. In this paper, we propose the use of biased-randomized algorithms as an effective methodology to cope with NP-hard and non-smooth optimization problems in many practical applications. Biased-randomized algorithms extend constructive heuristics by introducing a nonuniform randomization pattern into them. Hence, they can be used to explore promising areas of the solution space without the limitations of gradient-based approaches, which assume the existence of smooth objective functions. Moreover, biased-randomized algorithms can be easily parallelized, thus employing short computing times while exploring a large number of promising regions. This paper discusses these concepts in detail, reviews existing work in different application areas, and highlights current trends and open research lines

    A review of the Tabu Search Literature on Traveling Salesman Problems

    Get PDF
    The Traveling Salesman Problem (TSP) is one of the most widely studied problems inrncombinatorial optimization. It has long been known to be NP-hard and hence research onrndeveloping algorithms for the TSP has focused on approximate methods in addition to exactrnmethods. Tabu search is one of the most widely applied metaheuristic for solving the TSP. Inrnthis paper, we review the tabu search literature on the TSP, point out trends in it, and bringrnout some interesting research gaps in this literature.

    Two-echelon freight transport optimisation: unifying concepts via a systematic review

    Get PDF
    Multi-echelon distribution schemes are one of the most common strategies adopted by the transport companies in an aim of cost reduction, but their identification in scientific literature is not always easy due to a lack of unification. This paper presents the main concepts of two-echelon distribution via a systematic review, in the specific a meta-narrative analysis, in order to identify and unify the main concepts, issues and methods that can be helpful for scientists and transport practitioners. The problem of system cost optimisation in two-echelon freight transport systems is defined. Moreover, the main variants are synthetically presented and discussed. Finally, future research directions are proposed.location-routing problems, multi-echelon distribution, cross-docking, combinatorial optimisation, systematic review.

    Genetic algorithm for the continuous location-routing problem

    Get PDF
    This paper focuses on the continuous location-routing problem that comprises of the location of multiple depots from a given region and determining the routes of vehicles assigned to these depots. The objective of the problem is to design the delivery system of depots and routes so that the total cost is minimal. The standard location-routing problem considers a finite number of possible locations. The continuous location-routing problem allows location to infinite number of locations in a given region and makes the problem much more complex. We present a genetic algorithm that tackles both location and routing subproblems simultaneously.Web of Science29318717

    A large neighbourhood based heuristic for two-echelon routing problems

    Full text link
    In this paper, we address two optimisation problems arising in the context of city logistics and two-level transportation systems. The two-echelon vehicle routing problem and the two-echelon location routing problem seek to produce vehicle itineraries to deliver goods to customers, with transits through intermediate facilities. To efficiently solve these problems, we propose a hybrid metaheuristic which combines enumerative local searches with destroy-and-repair principles, as well as some tailored operators to optimise the selections of intermediate facilities. We conduct extensive computational experiments to investigate the contribution of these operators to the search performance, and measure the performance of the method on both problem classes. The proposed algorithm finds the current best known solutions, or better ones, for 95% of the two-echelon vehicle routing problem benchmark instances. Overall, for both problems, it achieves high-quality solutions within short computing times. Finally, for future reference, we resolve inconsistencies between different versions of benchmark instances, document their differences, and provide them all online in a unified format

    Multi-echelon distribution systems in city logistics

    Get PDF
    In the last decades , the increasing quality of services requested by the cust omer, yields to the necessity of optimizing the whole distribution process. This goal may be achieved through a smart exploitation of existing resources other than a clever planning of the whole distribution process. For doing that, it is necessary to enha nce goods consolidation. One of the most efficient way to implement it is to adopt Multi - Echelon distribution systems which are very common in City Logistic context, in which they allow to keep large trucks from the city center, with strong environmental a dvantages . The aim of the paper is to review routing problems arising in City Logistics , in which multi - e chelon distribution systems are involved: the Two Echelon Location Routing Problem ( 2E - LRP) , the Two Echelon Vehicle Routing Problem (2E - VRP) and Truck and Trailer Routing Problem (TTRP), and to discuss literature on optimization methods, both exact and heuristic, developed to address these problems

    A GRASP Algorithm Based on New Randomized Heuristic for Vehicle Routing Problem

    Get PDF
    This paper presents a novel GRASP algorithm based on a new randomized heuristic for solving the capacitated vehicle routing problem, which characterized by using a fleet of homogenous vehicle capacity that will start from one depot, to serve a number of customers with demands that are less than the vehicle capacity. The proposed method is based on a new constructive heuristic and a simulated annealing procedure as an improvement phase. The new constructive heuristic uses four steps to generate feasible initial solutions, and the simulated annealing enhances these solutions found to reach the optimal one. We tested our algorithm on two sets of benchmark instances and the obtained results are very encouraging

    Efficient routing of snow removal vehicles

    Get PDF
    This research addresses the problem of finding a minimum cost set of routes for vehicles in a road network subject to some constraints. Extensions, such as multiple service requirements, and mixed networks have been considered. Variations of this problem exist in many practical applications such as snow removal, refuse collection, mail delivery, etc. An exact algorithm was developed using integer programming to solve small size problems. Since the problem is NP-hard, a heuristic algorithm needs to be developed. An algorithm was developed based on the Greedy Randomized Adaptive Search Procedure (GRASP) heuristic, in which each replication consists of applying a construction heuristic to find feasible and good quality solutions, followed by a local search heuristic. A simulated annealing heuristic was developed to improve the solutions obtained from the construction heuristic. The best overall solution was selected from the results of several replications. The heuristic was tested on four sets of problem instances (total of 115 instances) obtained from the literature. The simulated annealing heuristic was able to achieve average improvements of up to 26.36% over the construction results on these problem instances. The results obtained with the developed heuristic were compared to the results obtained with recent heuristics developed by other authors. The developed heuristic improved the best-known solution found by other authors on 18 of the 115 instances and matched the results on 89 of those instances. It worked specially better with larger problems. The average deviations to known lower bounds for all four datasets were found to range between 0.21 and 2.61%
    corecore