7,675 research outputs found

    Fuzzy Predictive Controller for Mobile Robot Path Tracking

    Get PDF
    IFAC Intelligent Components and Instruments for Control Applications, Annecy, France 1997This paper presents a way of implementing a Model Based Predictive Controller (MBPC) for mobile robot path-tracking. The method uses a non-linear model of mobile robot dynamics and thus allows an accurate prediction of the future trajectories. Constraints on the maximum attainable angular velocity is also considered by the algorithm. A fuzzy approach is used to implement the MBPC. The fuzzy controller has been trained using a lookup-table scheme, where the database of fuzzy-rules has been obtained automatically from a set of input-output training patterns, computed with the predictive controller. Experimental results obtained when applying the fuzzy controller to a TRC labmate mobile platform are given in the paper.Ministerio de Ciencia y Tecnología TAP95-0307Ministerio de Ciencia y Tecnología TAP96-884C

    A layered fuzzy logic controller for nonholonomic car-like robot

    Get PDF
    A system for real time navigation of a nonholonomic car-like robot in a dynamic environment consists of two layers is described: a Sugeno-type fuzzy motion planner; and a modified proportional navigation based fuzzy controller. The system philosophy is inspired by human routing when moving between obstacles based on visual information including right and left views to identify the next step to the goal. A Sugeno-type fuzzy motion planner of four inputs one output is introduced to give a clear direction to the robot controller. The second stage is a modified proportional navigation based fuzzy controller based on the proportional navigation guidance law and able to optimize the robot's behavior in real time, i.e. to avoid stationary and moving obstacles in its local environment obeying kinematics constraints. The system has an intelligent combination of two behaviors to cope with obstacle avoidance as well as approaching a target using a proportional navigation path. The system was simulated and tested on different environments with various obstacle distributions. The simulation reveals that the system gives good results for various simple environments

    A reconfigurable hybrid intelligent system for robot navigation

    Get PDF
    Soft computing has come of age to o er us a wide array of powerful and e cient algorithms that independently matured and in uenced our approach to solving problems in robotics, search and optimisation. The steady progress of technology, however, induced a ux of new real-world applications that demand for more robust and adaptive computational paradigms, tailored speci cally for the problem domain. This gave rise to hybrid intelligent systems, and to name a few of the successful ones, we have the integration of fuzzy logic, genetic algorithms and neural networks. As noted in the literature, they are signi cantly more powerful than individual algorithms, and therefore have been the subject of research activities in the past decades. There are problems, however, that have not succumbed to traditional hybridisation approaches, pushing the limits of current intelligent systems design, questioning their solutions of a guarantee of optimality, real-time execution and self-calibration. This work presents an improved hybrid solution to the problem of integrated dynamic target pursuit and obstacle avoidance, comprising of a cascade of fuzzy logic systems, genetic algorithm, the A* search algorithm and the Voronoi diagram generation algorithm

    Nonlinear control of wheeled mobile robots

    Get PDF
    The purpose of this project is to implement an autonomous navigation system using nonlinear control techniques to control a wheeled mobile robot (WMR) to follow a preplanned trajectory and track a path. Two other aspects of navigation are studied: path planning and obstacle avoidance. Those three aspects are integrated into a navigation strategy that manages navigation and prevents deadlocks. Two nonlinear control techniques for path tracking and trajectory following have been developed and implemented. In the first approach, a fuzzy logic controller is used to drive the robot through a set of waypoints leading to the destination. In another approach, a controller derived from a Lyapunov function is used to track a reference trajectory that is time dependent. For path planning, a novel optimization technique based on dynamic programming has been developed. The curvature velocity method has been used for obstacle avoidance. The testing was conducted on a P3-AT all-terrain mobile robot equipped with encoders, a gyroscope, and sonar sensors for localization and environment perception. The test results validate the effectiveness of the different approaches that have been developed

    Realization of reactive control for multi purpose mobile agents

    Get PDF
    Mobile robots are built for different purposes, have different physical size, shape, mechanics and electronics. They are required to work in real-time, realize more than one goal simultaneously, hence to communicate and cooperate with other agents. The approach proposed in this paper for mobile robot control is reactive and has layered structure that supports multi sensor perception. Potential field method is implemented for both obstacle avoidance and goal tracking. However imaginary forces of the obstacles and of the goal point are separately treated, and then resulting behaviors are fused with the help of the geometry. Proposed control is tested on simulations where different scenarios are studied. Results have confirmed the high performance of the method
    corecore