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NONLINEAR CONTROL OF A WHEELED MOBILE ROBOT

Elie Maalouf

SUMMARY

The purpose of this project is to implement an autonomous navigation system using
nonlinear control techniques to control a wheeled mobile robot (WMR) to follow a
preplanned trajectory and track a path. Two other aspects of navigation are studied: path
planning and obstacle avoidance. Those three aspects are integrated into a navigation
strategy that manages navigation and prevents deadlocks.

Two nonlinear control techniques for path tracking and trajectory following have been
developed and implemented. In the first approach, a fuzzy logic controller is used to drive
the robot through a set of waypoints leading to the destination. In another approach, a
controller derived from a Lyapunov function is used to track a reference trajectory that is
time dependent. For path planning, a novel optimization technique based on dynamic
programming has been developed. The curvature velocity method has been used for
obstacle avoidance.

The testing was conducted on a P3-AT all-terrain mobile robot equipped with encoders, a
gyroscope, and sonar sensors for localization and environment perception. The test
results validate the effectiveness of the different approaches that have been developed.



NONLINEAR CONTROL OF A WHEELED MOBILE ROBOT

Elie Maalouf

ABSTRACT

The purpose of this project is to implement an autonomous navigation system using
nonlinear control techniques to control a wheeled mobile robot (WMR) to follow a
preplanned trajectory and track a path. Two other aspects of navigation are studied: path
planning and obstacle avoidance. Those three aspects are integrated into a navigation
strategy that manages navigation and prevents deadlocks.

Two nonlinear control techniques for path tracking and trajectory following have been
developed and implemented. In the first approach, a fuzzy logic controller is used to
drive the robot through a set of waypoints leading to the destination. In another
approach, a controller derived from a Lyapunov function is used to track a reference
trajectory that is time dependent. For path planning, a novel optimization technique
based on dynamic programming has been developed. The curvature velocity method has
been used for obstacle avoidance.

The testing was conducted on a P3-AT all-terrain mobile robot equipped with encoders,
a gyroscope, and sonar sensors for localization and environment perception. The test
results validate the effectiveness of the different approaches that have been developed.



COMMANDE NONLINEAIRE D’UN ROBOT MOBILE A ROUES
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SOMMAIRE

Le but de ce projet de recherche est de développer un systéme de navigation autonome,
en utilisant des méthodes de commande non-linéaires pour contrdler un robot mobile a
roues pour le suivi d’un chemin ou la poursuite d’une trajectoire. Deux autres aspects de
navigation sont examinés, la planification de trajectoire et I’évitement des obstacles. Les
trois aspects sont intégrés dans une stratégie de navigation afin d’éviter le blocage du
robot et de bien gérer la navigation.

Deux techniques de commande non-linéaires ont été développées et implémentées pour
deux types différents d’exécution de trajectoire. Dans la premiére approche, un
contrOleur logique floue est utilisé pour contrdler le robot pour suivre des points
intermédiaires menant a la destination. Dans la deuxiéme approche ou la trajectoire de
référence est en fonction du temps, un contrdleur dérivé d’une fonction de Lyapunov a
été implanté. Pour la planification de trajectoire, une nouvelle technique d’optimisation
basée sur la programmation dynamique a été développée. Pour I’évitement d’obstacles,
la méthode des courbures-vitesses a été implémentée.

Les tests ont ¢été conduits sur le robot tout terrain P3AT équipé d’encodeurs, d’un
gyroscope, ainsi que des capteurs sonar pour la localisation et la perception de
I’environnement. Les résultats des tests ont validé la performance des travaux réalisés.



COMMANDE NONLINEAIRE DES ROBOTS MOBILES

Elie Maalouf

RESUME

Lors des deux derniéres décennies, de nombreuses recherches sur la navigation des
robots mobiles a roues motrices ont été réalisées. L’avancement en technologie VLSI et
la disponibilité de processeurs performants a des prix compétitifs a largement contribué
au développement de systémes des robots mobiles autonomes et semi autonomes. Les
robots mobiles sont de plus en plus disponibles sur le marché pour des applications dans
’agriculture, I’industrie des mines, I’exploration spatiale, les domaines militaires, ainsi
que dans de nombreuses autres applications ou 1’environnement peut €tre hostile a des
étres humains. La navigation en est un aspect commun dans tous les systémes de robots
mobiles. En gros, la navigation consiste en plusieurs tiches tel que la perception de
I’environnement, la localisation, la planification de trajectoire, 1’évitement d’obstacles,
ainsi que I’exécution d’une trajectoire. Le but de ce projet est de réaliser un systéme de
navigation dont la localisation et la perception de 1’environnement sont disponibles. Une
nouvelle technique de planification de trajectoire a €té développée en partant de la
programmation dynamique classique. Deux approches d’exécution d’une trajectoire ont
été réalisées, une fait appel a un contrdleur logique floue et I’autre en utilisant un
contréleur dérivé & partir d’une fonction de Lyapunov. Pour ce qui est de 1’évitement
d’obstacles, la méthode de courbure-vitesse a été utilisée. Le tout sera intégré dans une
stratégie de navigation sous la forme d’une machine a états finis. D a des contraintes de
temps, cette derniére étape n’a pas été implantée en temps réel, mais a été expliquée en
détail dans le Chapitre 7. Les trois éléments de navigation ont été implantés en temps
réel sur le robot P3-AT disponible dans le laboratoire du GREPCI a I’ETS. Ce robot
robuste et performant est équipé d’encodeurs, d’un gyroscope bidimensionnel pour la

localisation et de capteurs sonars pour la perception de I’environnement et la détection
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d’obstacles. La commande sur la dynamique n’est pas accessible, ce qui nous emmeéne a
faire une commande sur le modele cinématique du robot. Le robot est contrdlé par un
microcontréleur embarqué qui communique avec un PC ou un ordinateur embarqué par
un port série. Une interface de haut niveau sous la forme d’une librairie C++ orientée
objet dénommée ARIA s’occupe d’établir la communication avec le microcontrleur
alors que I’utilisateur peut mettre son effort sur la commande du robot a haut niveau. Le
calcul & haut niveau est alors fait sur I’ordinateur, tandis que 1’acquisition des données
des capteurs et la commande a bas niveau des moteurs sont faites par le microcontrdleur.
Le robot P3AT est un robot mobile & quatre roues qui est conduit par une traction
différentielle, qu’on distingue des robots mobiles de type voiture et les autres classes
mentionnées dans la premiere partic du Chapitre 3. Le modele cinématique en

coordonnées Cartésiennes ainsi que le modéle dynamique d’un robot a traction

différentielle sont développés dans la deuxiéme partie du troisiéme chapitre.

La planification de trajectoire est faite lorsqu’un modele de I’environnement du robot est
disponible d’avance, soit sous la forme d’une image ou d’autre. Le modéle de
I’environnement est discrétisé et est mit sous la forme d’une matrice de coiit. En
supposant que le robot se déplace dans un environnement bidimensionnel,
I’environnement peut étre classifié par des régions accessibles et des régions
inaccessibles (les obstacles). Les éléments de la matrice qui correspondent aux régions
inaccessibles sont négligés, et le reste est modélisé par des noeuds li€s par des liens avec
un colt qui correspond a la distance entre les nceuds. Plusieurs techniques ont été
développées dans la littérature pour trouver un chemin optimal entre le nceud qui
correspond a la position initiale du robot et le noceud qui correspond & une nouvelle
position désirée dans 1’environnement. La plus célebre de ces techniques est
’algorithme de recherche A* de graphes et ses différentes variantes. Cette technique fait
appel a une fonction heuristique pour estimer le colt jusqu’au nceud final & partir du
nceud initial et les nceuds intermédiaires. La fonction heuristique est choisie par le

programmeur, et la performance en dépend par conséquent. Dans ce projet, une nouvelle



technique pour déterminer une solution optimale a été développée en se basant sur la
programmation dynamique classique qui ne peut pas étre utilisée tel quel pour résoudre
un graphe. Aprés un nombre d’itérations déterministe sur les différentes couches, une
solution garantie optimale peut étre trouvée. Cette nouvelle technique est capable
d’exploiter le parallélisme dans un processeur multi-unités de traitement, tel qu’un DSP.
Le Chapitre 4 contient les détails de cette approche, ainsi qu’une preuve formelle que la
solution converge vers la solution optimale. Le seul défaut de cette approche par rapport
a I’algorithme de recherche A* est le temps de calcul. Cependant, ce calcul est fait hors
ligne lorsque le robot n’est pas entrain de se déplacer, et la performance, du temps réel
du robot, ne sera pas altérée aucunement. Cette approche a été implémentée sur
MATLAB dont I’interface facilite le développement rapide de programmes. La solution
optimale est donnée sous la forme d’une liste de nceuds intermédiaires entre le premier
nceud et la position finale désirée. Une trajectoire temporelle peut étre définie a partir de
cette liste de noeuds correspondants a des positions par rapport a un repére de référence
globale. La programmation dynamique itérative trouve actuellement toutes les
trajectoires optimales par rapport a tous les nceuds (le nceud initial bien-comprit) vers le
nceud final. Cette information est stockée en termes de pointeurs entre les noeuds qui
menent a la position finale en passant sur la trajectoire optimale. Chaque nceud contient
un seul pointeur vers un autre nceud. En suivant les pointeurs a partir d’un certain nceud,
on arrive obligatoirement vers le nceud final sur une trajectoire optimale. Cette méthode

a ¢té testée sur de nombreux cas, et on obtient une trajectoire optimale dans tous les cas.

En utilisant la solution obtenue par la trajectoire optimale, un contrdleur est nécessaire
pour conduire le robot sur cette trajectoire. Une approche pour le cas ou la solution
optimale n’est pas limitée par des contraintes temporelles a été développée. Un
contrdleur par logique floue inspiré de la conduite d’une voiture par un étre humain a été
réalisé. La trajectoire désirée consiste de la liste des nceuds positions qui forme la
solution optimale et sont utilisées en tant que points de référence ‘waypoints’, et le robot

traverse vers sa destination a proximité de ces points. Selon la vitesse actuelle et la
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courbure du trajet, le conducteur d’une voiture modifie la vitesse et oriente la voiture
selon sa perception visuelle. Si la courbure est faible, il garde la méme vitesse en
passant. Selon la courbure il agit sur la vitesse et la direction de fagon a obtenir une
trajectoire lisse et continue. Le ‘waypoint’ actuel est défini comme étant le nceud le plus
proche du robot sur la trajectoire optimale. Les deux angles entre le nceud actuel et les
deux prochains nceuds sont calculés pour déterminer un facteur qui correspond au degré
de la courbure. Ce facteur est utilisé comme une entrée ‘feed-forward’ pour le contrbleur
a logique floue. Les autres entrées du contrOleur sont les erreurs de position et
d’orientation ainsi que la vitesse actuelle. L’état de chaque entrée est déterminé par des
fonctions membres d’une maniére continue selon le niveau d’appartenance a un certain
état. Une certaine valeur d’une entrée peut appartenir a un ou plusieurs états. Les sortis
du controleur de type Takagi-Sugeno utilis€é dans ce projet ont des états discrets. Une
base de régles d’inférence fait le lien entre les états des entrées et les états des sorties.
Les sorties des contrdleurs sont les vitesses linéaire et angulaire, et sont calculées selon
le poids de chaque régle par rapport aux entrées. Le contrdleur a logique floue est
robuste et fiable, malgré la difficulté de prouver sa stabilité théoriquement pour quatre
entrées. Pour implanter le contréleur & logique floue, la librairie Free Fuzzy Logic
Library (FFLL) qui respecte un standard industriel sous forme de fichier FCL a été

utilisée. Les résultats de tests ont prouvé la fiabilité de cette approche.

Une autre approche dont la trajectoire est en fonction du temps a été implémentée. Le
contrdleur est dérivé par une fonction de Lyapunov, ce qui assure la stabilité du systéme.
Les erreurs en position et en orientation sont développées pour obtenir les équations des
erreurs sous forme d’un modele dans ’espace d’états. La fonction d’énergie de
Lyapunov est choisie de telle maniére a stabiliser les variables d’erreur autour de zéro.
La trajectoire de référence est obtenue en interpolant les positions de la trajectoire
optimale et en les dérivant pour obtenir I’orientation de références en fonction du temps.
Cette approche est moins robuste que I’approche précédente et a été utilisée pour faire

une étude théorique, malgré sa performance adéquate.
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Une approche en temps réel pour 1’évitement des obstacles en cas d’obstacles
dynamiques ou de changements dans 1’environnement lorsque le robot est en train
d’exécuter une trajectoire est nécessaire pour éviter des collisions éventuelles avec
d’autres objets. La méthode de courbure-vitesse pour I’évitement des obstacles qui est
bien connue dans la littérature a été le choix dans ce projet. Cette approche est
notamment connue pour sa fiabilité et son efficacité en temps de calcul. Cette méthode
peut étre utilisée également pour explorer un environnement inconnu. Les obstacles
percus par les capteurs sonar sont modélisés sous forme de cercles a rayon constant, ce
qui est convenable pour cette méthode qui fait appel & I’espace de courbure. Les
positions des centres des obstacles sont déterminées selon un calcul géométrique simple.
Les obstacles sont élargis par le rayon du robot pour étre capable de modéliser le robot
comme €tant un point dans 1’espace cartésien, ce qui sert a simplifier les calculs. Les
obstacles a plus de trois métres de robot seront négligés. Cette méthode consiste
essentiellement a optimiser une fonction linéaire dans I’espace des vitesses par rapport a
trois criteres : la vitesse de navigation, la sécurité de navigation, et la recherche de la
position cible désirée. Une ligne droite tracée passant par I’origine du robot correspond a
une courbure dans I’espace cartésien du repaire de référence global (voir Chapitre 6 pour
plus de détails). L’espace des vitesses est divisé sur des intervalles d’obstacles par des
lignes droites passant par 1’origine, et limité par les contraintes dynamiques du robot tel
que les accélérations et les vitesses maximales. Il s’agit de trouver un point dans ces
intervalles qui maximisent la fonction objective. Ce point correspond & un couple de
vitesses linéaire et angulaire. Des approximations ont ¢té faites pour respecter
Pefficacité du calcul en temps réel. Chaque intervalle entre deux courbures correspond a
une distance entre le robot et 1’obstacle. Les distances des intervalles qui ne contiennent
pas d’obstacles sont fixées a trois métres. Les intervalles créent des zones triangulaires
dans I’espace des vitesses émanant de 1’origine et sont limités par les contraintes sur les
vitesses et accélérations. La fonction objective dépend linéairement de la vitesse linéaire,
de la distance associée a I’intervalle et de 1’erreur d’orientation par rapport a la position

de destination. La fonction objective est alors maximale sur les extrémités extérieures,



viii

ce qui rend le temps de calcul assez raisonnable. Le calcul sera fait pour deux points
additionnels, I’origine et le point qui oriente le robot vers la position désirée. Ceci étant
dit, une stratégie de navigation pour faire la coordination entre les trois aspects de
navigation et pour éviter que le robot ne soit bloqué est nécessaire. La stratégie de
navigation est implantée sous forme d’une machine a états finis similaire & une
architecture hybride de commande. Sous cette architecture, les résultats de perception de
I’environnement sont utilisés par le module de planification de la trajectoire qui est
considéré a haut niveau ainsi que par les modules & plus bas niveau dans le sens
hiérarchique tel que 1’exécution d’une trajectoire et 1’évitement d’obstacles qui sont des
actions de type comportemental. La machine a états est toujours dans un de quatre
modes : mode d’arrét quand le robot est stationnaire, mode de planification de
trajectoire, mode d’exécution de trajectoire, ou en mode d’évitement d’obstacle. Au
début le robot est en mode d’arrét, et si un modéle de I’environnement est disponible, le
robot passe en mode de planification de trajectoire. Lorsque la trajectoire est planifiée, le
robot sera mit en mode d’exécution de trajectoire. Si un obstacle est détecté sur le
chemin du robot, le robot passera en mode d’évitement d’obstacles, avec un nceud cible
qui correspond a un ‘waypoint’ sur la trajectoire aprés 1’obstacle. Quand le nceud cible
intermédiaire est atteint, si un obstacle est encore sur la trajectoire, le robot reste en
mode d’évitement d’obstacles et une autre cible intermédiaire est fixée. Lorsqu’il n’y a
plus d’obstacle sur la trajectoire, le robot passe en mode d’exécution de trajectoire. Dans
le programme de la machine a états, on vérifie continuellement si le robot passe dans
une certaine région plus qu’une fois. Si c’est le cas, le robot passe en mode d’arrét et
puis en mode d’exécution de trajectoire. Le modele de I’environnement est toujours

modifié selon les valeurs retournées par les capteurs sonar.

Dans le cas ou I’environnement n’est pas connu d’avance, le robot passe en mode
d’évitement d’obstacles et construit I’environnement au fur et & mesure qu’il avance. Si
le robot est bloqué, le robot passe en mode d’arrét et puis en mode de planification de

trajectoire en utilisation toute information disponible sur I’environnement jusqu’a
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présent, et les régions inconnues seront considérées comme étant accessibles. Il y a
toujours des limitations pratiques sur cette approche étant donné que les encodeurs de
vitesse des moteurs ont une erreur de positionnement qui augmente tant que le robot se
déplace. La méme chose arrive avec le gyroscope, ce qui mene a une erreur d’orientation

qui augmente avec le temps.

En conclusion, ce travail a été une opportunité pour la réalisation d’un prototype pour un
systéme de navigation. D’autres étudiants qui vont faire la recherche sur le méme sujet
pourraient ajouter d’autres fonctionnalités tel qu’il est mentionné dans la section des

recommandations a la fin de ce document,
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INTRODUCTION

Wheeled mobile robots (WMR) are widely used today in a variety of fields such as
agriculture, industry, land mining, military applications, space exploration, and in many
other applications where the environment is inaccessible or hazardous to humans such as
in nuclear plants. Mobile robot navigation is a common aspect to all applications

involving WMR, and is a common research topic in almost all engineering faculties.

For stationary robots such as manipulators with a fixed base, a rather complex dynamic
controller is used to precisely control the motion of the robot, while trajectory planning
and tracking is more easily achieved since the environment of the robot can be easily
modeled and perceived. In the case of wheeled mobile robots, the problems of path

planning, trajectory following, and obstacle avoidance are the more challenging and

interesting topics.

The objective of this project is to develop an autonomous navigation system for the
P3-AT robot available at the GREPCI research laboratory at ETS. Localization and
sonar perception routines are already available with the robot through the ARIA
application interface. The aim is to develop an optimal path planning technique to make
good usage of any available information on the environment, and to develop a control

technique to drive the robot along the planned path.

If no information is available about the environment or if a dynamic obstacle suddenly
emerges, an obstacle avoidance technique that can autonomously drive the robot safely
to the destination position without colliding with objects on its way is desirable. Those
three aspects along with the already available localization and perception of the
environment are then integrated into a navigation strategy that can detect failures and

local minima and coordinate actions.



The project has been carried out having in mind that the navigation system might be

adapted later on for navigation on a rugged three dimensional terrain.

The main objectives of the project are as follows:

e Evaluation of several path tracking techniques and the development and
implementation of two techniques, one for path following and the other for trajectory
tracking;

¢ Development of a path planning technique that can be used to plan a trajectory in a
three-dimensional environment;

e Study and implementation of a real time obstacle avoidance technique available in
the literature;

¢ Integration of all developed aspects in a reliable and robust navigation strategy that

prevents the robot from getting blocked.

At the beginning of the project, a literature review of the available methodologies and
techniques for robot navigation and control related to path planning, path tracking, and
obstacle avoidance was performed. Some of the most remarkable researches done in
these fields were discussed and evaluated. In the second phase of the project, a path
planning algorithm was developed, analyzed, and tested. When the robot shipment
arrived, the main work was to get familiarized with the ARIA robot interface and the
operation of the robot, as well as with the user interface. Then two control techniques for
path following and trajectory tracking were developed and implemented in real time.
The first technique is based on fuzzy logic control while the second one is derived from
a Lyapunov function and is based on an article available in the literature. Afterwards, an
obstacle avoidance technique widely referred to in the literature was developed and
implemented. Finally, a navigation strategy in the form of a state machine to integrate
the three aspects of navigation developed throughout this project. This navigation

strategy fits in the class of hybrid control architectures.



This step by step and modular structured approach to the project helped simplify the

development, testing, and debugging.



CHAPTER 1

LITERATURE REVIEW

1.1 Introduction

During the past two decades, extensive research effort has been invested in all aspects of
mobile robot navigation. The revolutionary advances that the VLSI industry has
witnessed and the availability of high performance embedded systems at reasonable
prices had a direct impact on the developments in mobile robotics. A literature review of
what has been achieved in path planning, path tracking, and real time obstacle avoidance
is presented. In the last section, mobile robot navigation architectures are briefly

discussed and their use in the context of this project is explained.

1.2 Path Planning and Trajectory Generation

In many applications, a model of the environment in which the robot operates is often
available. It would be quite advantageous to use this information to plan an optimal path
even if some changes in the environment might occur in real time due to the appearance
of some dynamic obstacles. In Chapter 3 of Pruski (1996), several of the techniques used
in modeling static environments are described. In a commonly used approach, the
environment is sampled at regular intervals and projected on a two dimensional space.
The discrete samples are referred to as nodes, with each node linked to all adjacent
nodes through links as in a graph. Each link is assigned a weight that would be
calculated based on some optimization criteria, such as the safety of the robot, the time

needed to traverse between two nodes, as well as other criteria that are task dependent.

A path planning algorithm is used to determine an optimal path from the current (start)



position of the robot to the desired destination position, also modeled as nodes. There
are numerous optimization algorithms that can be used for path planning. The most
widely used is the A* search algorithm (Pruski, 1996) and some of its variants
(hierarchical, differential, D*, parallel A*). Other algorithms that can be used include
Dijkstra and numerous tree searching techniques (Pruski, 1996). In this article, a new
algorithm based on dynamic programming that was developed will be described. The
creation and development of this algorithm was inspired by the work published in
Gifford and Murphy (1996). The advantage of this approach is that an optimal path is
guaranteed, and the optimal paths from all nodes (positions) in the environment towards
the destination nodes are determined in the process, which is useful in the case of a
multi-robot system. Another advantage is the ability to use parallelism when
implemented on a parallel processor without any compromise in the optimality of the

solution.

1.3  Path Following and Trajectory Tracking

In mobile robot navigation, the path tracking controller is usually implemented at a low
level in the control hierarchy. Its function is to execute a path planned by the higher
level path planner with the least possible error in position and with minimal control
effort. The high level planner’s function is planning a path either offline or online and
depending on environment changes. The path can also be generated in such a way as to
simply follow another robot. The task of the lower level path tracker controller is to
guarantee that the robot will track the path in a precise, reliable, and efficient manner.
The path following problem is highly nonlinear, and several approaches have been
developed to solve the problem of path tracking through direct control of the robot’s
dynamics. In some of these approaches (Xu and Yang, 2001; DeSantis, Hurteau et al.,
2002; Zhang, Xu et al., 2002), nonlinear controllers are derived based on the Lyapunov
approach. Other types of controllers were designed (Koh and Cho, 1995; Caracciolo, de

Luca et al., 1999; Zhang, Xu et al., 2001) using sliding mode control or other nonlinear



techniques and were applied to the nonlinear dynamic and kinematical model of the
robot. A behavioral approach (Yang, Li et al., 2003) for path tracking was implemented

using fuzzy logic control for wheel steering.

Irrespective of the performance of these approaches, they cannot be implemented if the
robot dynamics are inaccessible. If no direct control on motor torques and traction forces
can be done, such techniques cannot be used. A controller at a higher level can be used
to solve this problem. Motion is controlled using the kinematic model of the robot as the
system. The control law has to respect the kinematic constraints. The variables
calculated by the control law are the translational and rotational velocities, based on the
position, orientation, and the current values of the translational and rotational velocities.
Here is a brief overview of some of the control techniques for control at the higher level

on the kinematic model.

Many control techniques have been developed and proposed to control the robot at the
kinematic level. In Xu and Yang (2001), a controller is implemented using a biologically -
inspired shunting model integrated into a bang-bang controller. In another approach
(Weiguo, Huitang et al., 1999), a controller is designed using a back-stepping technique.
In Ollero and Heredia (1995) the stability of a pure pursuit path tracking algorithm is
analyzed for a kinematical model using a linearized kinematical model. The analysis is
done for the case of a straight line and a circle, with the reasoning that most trajectories

can be decomposed into pieces of constant curvature.

A generalization of the quadrature curve approach (Yoshizawa, Hashimoto et al., 1996)
has been implemented. The idea is to make the robot follow a quadratic curve to a
reference point on a desired path. The reference point is moved in time until the goal

destination reached.

A path tracking algorithm that uses a scalar controller (Davidson and Bahl, 2001) based



on static path geometry with position feedback has been implemented on three types of

wheeled mobile robots, one of which is differentially steered.

Despite the interesting features of all these controllers, they are difficult to tune, in
contrast to the flexibility that fuzzy logic control provides. Fuzzy logic control (FLC) is
an interesting tool to be applied to the problem of path tracking since the output varies
smoothly as the input changes. In this project, we will discuss a fuzzy path tracking
controller designed based on expert experience and knowledge that was implemented on
a four-wheel differentially steered mobile robot. The rules are based on reasoning
similar to that of a human driving a car on a road that is free of obstacles and other cars.
If the road is straight, the driver can displace at higher speeds. When faced with a
curvature, he lowers the speed and makes a smooth turn. The behavior of the human
driver is apparent in the fuzzy inference rules. The membership functions were derived
based on the kinematical constraints of the robot. The built-in PID controllers were used
to control the vehicle dynamics. Each wheel is controlled separately, and a user can only

change the gains of the PID, which is virtually futile for the purpose of path tracking.

If the built-in dynamic level controller doesn’t perform properly in accordance with the
controller at the kinematic level due to changes in the physical properties of the surface,
an adjustment technique can be used to sidestep the problem. An intelligent predictive
control approach that adapts the reference inputs (velocities) based on real-time learning
(Yang, He et al., 1998) is one good technique to be explored and added in cascade after
the path tracking controller in the control loop in case the robot dynamics are

inaccessible.

Some of the path tracking control techniques mentioned above will be discussed in more

detail in what follows.

Direct Wheel Servo Control: Path tracking at the lowest level of the control hierarchy is



done through direct servo control of the wheel motors. In (Koh and Cho, 1995), an
adaptive feed-forward wheel controller was added to the wheel servo to obtain a higher
level of accuracy. The wheel controller and the path tracking controller have been
integrated to obtain smooth motion. Model parameters were estimated using the least

squares method.

Sliding Mode Control (Zhang, Xu et al., 2001): The nonlinear dynamic model of the
robot with coupled inputs is obtained in state space representation using a nonlinear
transformation to decouple the inputs, and a state space trajectory is used as a reference.
The controller uses the state trajectory starting from any point of state space and

converges asymptotically on sliding surfaces towards an equilibrium position.

Backstepping Control (Weiguo, Huitang et al., 1999): A path tracking controller is
derived by applying the backstepping technique to the kinematic model in polar
coordinates. The translational velocity is assumed constant, and the model reference is
avoided using polar angle as parameter. Backstepping design has the merit of

simplifying the design of nonlinear control and rendering it simple.

In Laumond (2001), three types of control problems are discussed: path following,
trajectory stabilization, and stabilization of fixed configurations. In path following, the
robot traces a curve at a constant velocity. A control technique using state feedback is
proposed. In trajectory stabilization, the robot follows the reference curvature with time
constraints and the translation velocity is not a constant. Control stabilizes the error in
position and orientation to zero. In fixed configurations, the robot position and

orientation are controlled in time.

14 Real Time Obstacle Avoidance

Mobile robots often need to navigate and execute their tasks in environments cluttered



with obstacles. The robot must successfully reach a goal position without colliding with
the obstacles encountered on its path, so as to prevent the robot and the objects
encountered on its way from damage. Since no camera and laser range finder are
installed on the robot, it will be assumed that the environment is flat or very smoothly
inclined. In the case of a well known environment in which all obstacles are static, one
of the algorithms mentioned in section 1.1 can be used to find an optimal trajectory that

avoids all static obstacles.

These techniques are too costly to be used in real time applications in a dynamic
environment where objects can be displaced and new obstacles can come into the scene.
Consequently, a real time approach is usually needed so that the robot can avoid
obstacles in real time, and reach the destination. These techniques often drive the robot
in non optimal paths; however it is necessary to compromise optimality to improve

safety.

The first research done on obstacle avoidance in real time was done by Khatib (1985).
The concept of artificial potential fields is used to control the behavior of the robot,
hence the term behavioral approach. This approach is efficient in calculation time and is
independent of the geometric and kinematical transformations. The destination point in
the space or plane is considered as an attractive pole and is dotted with a positive weight,
while the obstacles are considered as repulsive poles and are dotted with negative
weights. In this approach, the robot is prone to get stuck in local minima. This approach
is also unstable when the destination point is close to an obstacle. The author’s main
interest at the time was in applying the technique on fixed base manipulators, but the

concept can be applied to mobile robots as well.

An approach that makes use of artificial potential fields with simulated annealing (Lee,
2001) is used to plan local and global trajectories. This approach has been designed to

avoid local minima and seems to produce interesting results. However the drawback of
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this approach is the calculation time required, which makes it too costly to be used in

real time.

In another technique (Ju, 2002), obstacles are modeled as ellipses so as to reduce the
complexity of calculation and detect collisions with moving obstacles. It has the
advantage of generating an optimal trajectory while avoiding the obstacles as modeled.
Still, the calculation time required renders it costly to be used in real time. The usage of
a single ellipse to represent elongated obstacles may result in a suboptimal trajectory

with respect to real obstacles.

Some other techniques using the same concept with some improvements have been
developed. The Vector Field Histogram (VFH) technique (Borenstein, 1990) has the
capacity to maintain a static representation of an obstacle at the level of the world model
and the intermediate data level. This approach has the advantage that the robot can
navigate in narrow corridors without oscillating and at high speeds. Still, this approach
can lead the robot into an obstacle in certain cases, and it does not take into account that
the robot moves in arcs and not in straight lines. The same authors (Ulrich, 1998)
improved this approach and enhanced its reliability. The VFH+ takes into account the
radius of the robot and leads the robot in smoother trajectories. This approach can lead
the robot to local minima and thus to a dead end. To eliminate this effect, the VFH+
technique was used along with the A* algorithm and upgraded it to become the VFH*
(Ulrich, 2000). This technique projects the trajectory of the robot on a few steps ahead
and evaluates the consequences. It is also capable of finding solutions for the case when
the robot should slow down and even stop. Although this method has been proved to be

effective, it is more costly in terms of the calculations involved.

In the curvature velocity method (Simmons, 1996), an objective function in the
curvature-velocity space is optimized in terms of speed of navigation, safety, and goal

seeking. This technique can be used if the environment is unknown and no reference
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trajectory is available, and can be used for exploration purposes as well. This method

will be used for this project.

Approaches based on the artificial potential fields act mainly as reactive systems and can
be integrated with a global path planner for planning long trajectories in case the

environment is partially known.

Supervised learning systems using neural networks, fuzzy logic, as well as neuro-fuzzy
techniques (Fagg, Lotspeich et al., 1994; Beom and Cho, 1995; Mucientes, Iglesias et
al., 2001; Macek, Petrovic et al., 2002; Xin, Vadakkepat et al., 2002) have been
developed so that the robot can navigate autonomously while avoiding obstacles. Even if
not all of the data corresponding to all possible single cases are supplied to the learning
system, an intelligent system can adapt to individual cases of distribution of obstacles

and perform adequately. Supervised learning can be either done online or offline.

1.5  Navigation Control Architectures

According to Driankov and Saffiotti (2001), navigation architectures that are used to

control robot navigation can mainly be classified into two architectures: hierarchical and
hybrid.

Exteroceptive sensors onboard the robot are used for the perception of the environment.
The most common exteroceptive sensors used on wheeled mobile robots (WMR) are
cameras, sonar arrays, and laser range finders. In contrast, proprioceptive sensors are
used for the perception of the internal state of the robot, such as acceleration, velocity,

and heading.

In hierarchical architectures (Figure 1) the data acquisitioned by exteroceptive sensors

are used at the higher planning level, such as path planning. Consequently, planning is
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done in real time, and a more expensive processor would be required to perform the

required computations since the whole model of the environment might be used.

4 )

Modeling Planning

— Execution

- J

proprioception
SpUDWWOD

exteroception

Figure 1 Hierarchical architecture: exteroception sensor readings are fed to the
top of the control hierarchy

In the case of a hybrid architecture (Figure 2), data acquisitioned by exteroceptive
sensors are used both the higher level functions and the lower level execution layer. This
would necessarily imply the need to separate the task into behaviors (actions) and the

need to coordinate behaviors according to their priority.
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Modeling
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exteroception
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SpUDWULOD

Figure 2 Hybrid architecture: exteroception sensor readings are fed to the top and
execution levels of the control hierarchy

In this project, the proposed navigation architecture can be classified as hybrid and is

implemented in the form of a state machine depending on sonar perception as input. In

case no information about the environment is available, the robot would run in the

curvature velocity mode, which is a combination of two different behaviors: goal

seeking and obstacle avoidance.

If information about the environment is available, then the higher level planner finds an

optimal path towards the user specified position if accessible from the current posture of
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the robot. Then, a lower level path tracker executes the trajectory. In case the sonar
arrays perceive obstacles in the path of the robot, the running routine switches to the
curvature velocity mode until the obstacle is bypassed and the waypoint behind the
obstacle on the path is reached, in which case the robot switches back to the initial mode

and continues executing the initially planned trajectory.

In Chapter 2, the technical specifications of the Pioneer 3AT robot as well as the client
interface are detailed. The types of wheeled mobile robots and the modeling of four-
wheeled skid-steered robots are discussed in Chapter 3. In chapter 4, a brief discussion
of the A* algorithm is presented and the dynamic programming approach is developed.
In Chapter 5, a fuzzy path following controller and a path tracking controller based on a
Lyapunov approach are examined. In Chapter 6, the implementation of the curvature
velocity method for obstacle avoidance is discussed. Finally, a proposed method for the
integration of the three aspects of navigation in a complete navigation strategy is

discussed in Chapter 7.



CHAPTER 2
TECHNICAL DESCRIPTION OF THE P3-AT MOBILE ROBOT AND ITS
CLIENT INTERFACE

2.1 The Pioneer 3-AT Robot

The algorithms and control methodologies developed throughout this project have been
tested on the Pioneer 3 All Terrain (P3-AT) mobile robot fitted with two sonar belts and

a heading correction gyroscope in addition to the built-in 100 tick motor encoders.

Figure 3 The P3-AT robot in the lab

The P3-AT is a four-wheel drive robot based on skid-steer motion (see Chapter 3 on
robot types and modeling). Its high power to weight ratio and its rigid aluminum
platform render it robust on rugged outdoor terrain. Its relatively small size (50cm x
49cm x 26cm body and 21.5cm pneumatic wheels diameter and 9Kg with one battery)
makes it suitable for indoor applications and navigation in narrow spaces. This also

makes the P3-AT easy to handle, repair, and transport. The P3-AT robot can climb sills
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of 9cm or ramps having a slope of 45%. On flat floor, it can move at speeds of up to
Im/sec and it can rotate in place or it can move in a circle at a radius of 40cm with
wheels moving on only one side. At slow speeds and on flat terrain, the P3-AT can carry
loads of up to 20Kg. The robot is powered by up to three 12 Volts batteries that have an
endurance of three to six hours, depending on charge and terrain. When only one battery
is used, it is well recommended to put it in the middle slot of the battery compartment at
the rear of the robot to maintain balance. When two batteries are used, one battery is

placed in each of the left and right slots.

The four reversible DC motors are powered by a 12 Volts terminal from the batteries
and are controlled by a MOSFET H-bridge, while there is a 5 Volts terminal to power
the onboard electronics. The robot’s power system is protected with fuses to protect all
electric and electronic onboard components from eventual current surges. Figure 4 is an

upper view of the motor-power interface PCB.

E-Stop H8-Power

r—lr—"—lﬁ[]ﬁ | H8S Interface | M(I)r:(t);rfzc:::er
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Pover 1 4 44 Il DDDDDBDDDB
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Figure 4 Power terminals on the P3-AT motor-power interface board

For more information on power connections, refer to Appendix B of the ‘Operations
Manual’ (Robotics, 2001).

2.1.1 Wireless Serial Communications

The user control panel on top of the robot (Figure 5) is the user’s hardware interface to
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control the robot. The original plate of the panel has been drilled to branch a 5 Volts

power terminal outlet to the power board.

Since the robot used for this project has not been fitted with an onboard computer, a
laptop computer fitted with a wireless serial connection has been used to control the

robot.

Figure 5 Close view of the user control panel

The wireless serial connection is simply used to replace a serial cable that is less
convenient and restricts robot motion. Since the robot is used in a lab or at close
proximity from the user, there is no need for an expensive industrial wireless serial
connection with ranges of 500 meters. Consequently, it was decided to use a relatively
cheap AlRcable Serial (Figure 6) which consists of two serial to serial wireless
connector modules: the Data Terminal Equipment (DTE) module and the Data

Communications Equipment (DCE) module with a reliable range of ten meters.
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Figure 6 AlRcable Serial DCE and DTE modules

Figure 7 Wireless connection schematic

The DTE has a Sub-D 9 pin female connector that is connected to the laptop’s COM1
serial port and the DCE has a Sub-D 9 pin male adapter that is connected to the robot
(Figures 7 & 8).

Since the robot does not support hardware handshake, the two modules cannot make a
connection. To remedy this problem, pins 7 and 8 of each of the two modules should be
shofted. The Request To Send (RTS) and Clear To Request (CTS) pins are shorted
(Figure 9). If the RTS signals a request, it is immediately cleared by the CTS without

requiring a handshake between the computer and the robot.
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Figure 8 DTE and DCE modules plugged on the laptop computer and the robot
respectively
Two DB9 connectors are used to short RTS and CTS for each module (Figure 10). The
RTS and CTS of each of the two modules are shorted by internally soldering a wire to
the two pins of the DB9 connector that will be plugged to the robot or laptop computer.

Figure 9 RTS and CTS pins shorted
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Figure 10 DTE and DCE modules with DB9 plugged into the intermediate DB9
connectors

2.1.2 Sonars

The P3-AT robot used in this project is fitted with two sonar arrays each having eight
transducers mounted on the front and rear sections of the robot. Every sonar element
returns a range to an object in a certain direction. Obstacles up to more than five meters
from the robot can be detected. The sonars in our case are used to detect obstacles and

navigate safely. The sonar arrangement in each array is shown in Figure 11.
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Figure 11 Sonar array front and top views
(Courtesy of ActivMedia Robotics, LLC)

Sonars can be used to detect obstacles of reasonable cross section with a sufficient
accuracy for navigation purposes. For pinpoint accuracy, a laser range finder can be
fitted onboard the robot. It scans in a horizontal plane and can accurately determine the
position of the object with respect to the robot. Due to budget limitations, the robot used

in this project was not fitted with a laser range finder.

2.1.3 The Activimedia Robotics Operating System (AROS)

The AROS is the operating system that acts as the interface between a client application
and the robot. In our case, the client application is an executable program on the laptop
computer. The server is the microcontroller and its peripherals that executes the client
application commands and provides it with sensor and robot information. The control
architecture of the robot is shown in Figure 12. The client application sends packets to
the robot server, containing motion commands and information requests on position and
velocity as well as sonar readings and receives back the information from the robot

server that executes the motion commands.
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Figure 12  Client-server control architecture

The communication between the control client and the robot is done using special client-
server communication packet protocols. In general there are two packet protocols, client
command protocol and the server information packet protocol. The client commands and
data requests are encapsulated in a packet using the former protocol, while the server
information data is encapsulated in the latter. The packets consist of a stream of bytes
that are sent through the wireless serial connection from one terminal and received and
decoded at the other terminal to determine the type of information in the packet and its
numerical arguments, if any. Fortunately, there is no need to deal with low level control
and communications, since Activmedia has developed a reliable high level interface to
control the robot. Thus the client program would make use of the ARIA library that will

be discussed in the next section.
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2.2 The SRI Simulator

Developed by the SRI International’s Artificial Intelligence Center, the SRIsim is an

excellent tool to test and debug client applications and specially those in the autonomous

B SRIsim: Simulator in C:\Documents and Setti... l_.._”g“i(_]
Connect Files Grow Shrink Wake Recenter

[Client open request

World: office.wld 101

Figure 13 SRI simulator with the P3-AT parameters loaded snapshot

mode before implementation and testing on the real robot. The SRIsim simulates real
robot behavior in regards to odometer and sonar readings. The robot parameters and the
environment can be loaded through the Files menu of the simulator window. The client
application is connected to the simulator through TCP port 8081 (by default). A custom
environment can be easily created using world files that can be loaded through the

simulator menu (see Appendix 3 for a sample myWorld.wld file).
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2.3  The Activmedia Robot Interface for Applications (ARIA)

To provide developers and researchers with a relatively easy to use interface, the ARIA
open source object-oriented user interface was developed in the C++ programming
language and is distributed with ActivMedia products. This library is used in the
development of a client application as an i.nterface to all the low-level tasks such as
establishing communication with the robot. It is highly versatile and flexible and can be
used to implement virtually any high level task without worrying about communication
with the server and provides easy to use methods to access all sensor information and
control the robot. The server on the robot is the AROS operating system that is
originally installed on the robot’s microcontroller. AROS manages all the low level tasks
of motion and motor control and performs sensor information (encoders, gyroscope, and
sonar) acquisition. Intelligent tasks such as navigation and sensor data fusion and

interpretation are done at the level of the client application.

ARIA provides extensive methods and features for robot control and sensor data
acquisition. The ARIA interface spares the user from developing all low level tasks such
as packet encoding and decoding and supplies all needed interfaces to the robot. Only

those methods and features used in this project will be discussed.

In this discussion, the C++ driver program in Appendix 1 that is based on the
“actionExample” distributed with the ARIA package is explained. This example
contains all the needed functionalities to operate the robot. There are other ways to
control the robot; however using actions is the most suitable way for this project. The
communication with the robot is done through a serial port as mentioned in the previous
section. ARIA provides us with the methods necessary to establish the communication
with the robot from the driver program without getting into the communications details.
The most suitable method to communicate with the robot is done with the
ArSimpleConnector method of the ARIA library. If the SRI simulator that is provided

with the ARIA package is open, ArSimpleConnector will connect to the simulator,
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even if the robot is connected to the COM]1 serial port. If no SRIsim window is open, it
tries to connect to the robot through the COMI1 serial port on the client computer. By
default, ArSimpleConnector connects to the robot on COM1, however if another COM
port is used, this has to be done by parsing the arguments through a command window.
The statements in the code of the main function that parses the arguments to

ArSimpleConnector are as follows:

ArSimpleConnector connector(&argc, argv);
Connector.parseargs( );

To change the settings as specified by the parsed arguments, the function

ArSimpleConnector::logOptions is called:

If (argc>1){
Connector.logOptions( );
exit(1);

If the number of arguments argc is not greater than 1, meaning no arguments are
specified other than the name of the executable, the default settings will be automatically

initialized.

To connect to the robot ArSimpleConnector::connectRobot is used to establish the
connection. This function takes as argument a pointer to an ArRobot object. ArRobot
will be discussed shortly thereafter in what follows. If the robot was correctly associated
with the pointer to the ArRobot object and a frue was returned by
ArSimpleConnector::setupRobot, a blocking connection is established with the robot,
or if not a false is returned. The function ArSimpleConnector::setupRobot is called
from connectRobot. This function first tries to establish a TCP connection on port 8101
with the simulator, if not it tries to connect to the device through the serial port and
returns frue. If none was available, a false is returned meaning no connection could be

established. The code in the main function in Appendix 1 is:
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if ( !connector.connectRobot(&robot)) {
printf(“Could not connect to robot ... exiting \n");
Aria::shutdown( );
return 1;

If a connection is established, execution of the main function proceeds, if not, a 1 is

returned and program execution ends here.

After this brief discussion about establishing a connection with the robot, we turn now to
discuss the ArRobot method that is the core of ARIA. As mentioned earlier, the AROS
operating system software installed on the microcontroller manages low level tasks such
as the execution of motion commands and the acquisition of sensor data. The robot
microcontroller acts as a server to a client (user program such as the one in Appendix1),
and thus ARIA is a high level interface between the client and the server. ArRobot acts
as a gateway between client and server communications, is the central database for
collection and distribution of state-reflection information coming from the robot, and is

the systems synchronization manager (Robotics, 2003).

The client-server communications adhere to packet-based protocols. ArRobot handles
the low level communications details such as encapsulating and sending data in packets
known as client command packets as well as receiving and decapsulating server
information packets and information extraction (see section of for more information
about packets and packet contents). Some more explanation about how the packets are
handled by ArRobot are available in Robotics (2003). For even more details, check the
header and source files ArRobot.h and ArRobot.cpp that are available with the ARIA
package. The standard server information packets (SIP) containing odometry and sensor
information are sent by the server every 100 msecs. The tasks that ArRobot performs
and are apparent in most client applications source codes are state-reflection as well as

motion commands. State reflection consists of determining the state of the robot in what
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regards position, speed, heading, sensor readings, as well as other stuff related to the
state of the robot. Motion commands are velocity and heading correction commands as
well as limiting speeds. State-reflection functions such as ArRobot::getPose,
ArRobot::getX, ArRobot::getY, ArRobot::getTh, ArRobo::getSonarRange, and a
multitude of other functions are used by the client code to get needed information on the
current state of the robot needed to issue motion commands or for other information

requests.

At every time interval, ArRobot executes a series of interdependent tasks in the

following order: SIP handling, sensor interpretation, action handling, and user tasks.

Almost all the other methods of ARIA act as peripherals for ArRobot of which
ArSimpleConnector discussed above is an example. ArSimpleConnector uses
ArRobot::blockingConnect to establish a blocking connection with the robot. This is

why a pointer to the ArRobot object was needed in the ArSimpleConnector.

In the client program of Appendix 1, an ArRobot object is first created in the main
function. Then the sonar range device is added to the robot using
ArRobot::addRangeDevice. All range devices should be added before actions are
added since some actions may require sonar readings to be executed, and thus will not
be added to the ArRobot object (robot in our case) if no sonar device is added to it. If

there is a gyroscope on the robot, it is automatically added to robot.

The motors are enabled by sending a special packet to the server through
ArRobot::comInt that makes use of an ArRobotPacketSender object in ArRobot, that
in turn calls packet encoders and sends the packet. Note that the arguments of comInt
are ArCommand::ENABLE (string of type unsigned char) and 1 (of type int ). If 0 was
used instead of 1, the motors would be disabled. After some string decoding, ENABLE

will be interpreted as a command (of type enum in ArCommands), and will be put in a
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client command packet and sent to the robot. So in comInt, ArCommands::Enable is
passed to the ArRobotPacketSender object that takes care of sending the command to

the robot, without the client programmer being concerned about any such details.

Now that the motors are enabled, the robot can be run using the ArRobeot::run function.
If the argument passed to it is frue, this function calls a synchronous loop that executes
until the client program is disconnected from the robot, at which point the function
returns and continue into the main function. And after that the client program execution

is closed.

The commands directly related to ArRobot in the main function are:

ArRobot robot;

robot.addRangeDevice ( &sonar );
robot.comint ( ArCommands:.ENABLE, 1),
robot.addAction ( &recover,100);
robot.addAction ( &myAction,50);

robot.run ( true );

Figure 14 Robot commands

This is what concerns the usage of ArRobot in the client program of Appendix 1.
ArRobot contains many other functions and utilities from which only the ones used in

the action class are pointed out here.

Before explaining the code in the action class, we will briefly mention one more detail in
the main function, the ArSomnarDevice method. This method is inherited from
ArRangeDevice and keeps track of sonar history and cumulative readings. An

ArSonarDevice object is created and added to the robot in the main function. Using
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ArRobot::getSonarRange, the distances to objects could be found without the user
being concerned about any calculation details involving sonar readings. Other functions

for sonar values interpretation are available in ArRobot.

The client application controls robot motion using one or more of the following: direct
commands, motion commands, and through actions. Through direct commands, the
client can send commands directly to the robot server from ArRobot. The list of
possible commands is specified as of type enum in the ArCommands method. These are
one byte commands with zero or more argument bytes associated with each of them. An
example of sending direct commands is the ArRobot::comInt that we have used to

enable the motors as indicated earlier.

Motion commands on the other hand are one level higher than direct commands in
ArRobot. Motion commands are built-in motion commands that handle direct motion
procedures, such as moving a certain distance from the current position in a straight line

using ArRobot::move, or setting velocities and headings, or simply to stop the robot.

As stated in the ARIA user manual (Robotics, 2003), it is recommended to use actions
instead of direct and motion commands to control robot motion. Actions are
implemented in ARIA using the ArAction method. The user can define his actions by
creating methods inherited from ArAction and overloading the ArAction::fire member
function.

ArAction is very useful to create autonomous tasks in client applications. Some built-in
functions are available in ARIA, of which only ArActionStallRecover is used in this
project. The fire function returns a pointer to an ArDesiredAction object. For more
information about how ArAction objects are interpreted and called by ArRobot and on
how the actions are resolved according to their priority, you are kindly requested to refer

to the ARIA user manual.
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We now go back to the code in Appendix 1 to point out how ArAction was used. First,
in the main function, the action objects are declared with the necessary parameters for
the constructor in case needed. Then the actions are added to the robot using
ArRobot::addAction that takes as argument a pointer to the action object to be added
and a priority number. A higher priority number indicates a higher priority for the action
to be added. This will be interpreted as such in the priority resolver. The recover action
undertakes a series of actions to recover in case one of the wheels is-stalled. It is given a
higher priority then the other action added to robet. The ActionGo method is the client
application action that carries out the task specified by the user. When addAction is
executed, a pointer to the ArRobot object is passed to the action through the

ArAction::setRobot function in case it was not overloaded in ActionGo, or else

ArActionStallRecover recover;
ActionGo myAction;

robot . addAction( &recover, 100);
robot . addAction( &myAction, 50);

Figure 15 Action declarations

ActionGo::setRobot will be called. In ActionGo::fire, member functions of other user
specified methods can be called to perform the necessary calculations needed to obtain

the arguments for the motion command. We will come back to this later on.

Let’s now take a look at the ActionGo definition at the beginning of the client program
of Appendix1. ActionGo is inherited from ArAction and the fire and setRobot functions
are overloaded. in ActionGo. The user’s class that performs the calculations of the
desired velocities at the highest level of control and is used in the client program of

Appendix 1 is CurvVel. A pointer to a CurvVel object is declared as a member variable
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to ActionGo. Other important member variables are mySonar, myTime to keep track of

time, and firstFire.

An important member variable of the base method ArAction is myRobot which is a
pointer to an ArRobot object. In the constructor, a CurvVel object is created, and
firstFire is initialized to 1. To take into account the time delay between establishing the
connection with the server and the first time ActionGo::fire is called and executed,
myTime is set to 0 if firstFire is 1. Then firstFire is set to 0 and remains so all

throughout program execution.

void ActionGo::setRobot (ArRobot* robot)
{
myRobot = robot;
mySonar = myRobot -> findRangeDevice ( “sonar”);
if ( sonar == NULL ) {
deactivate( ); / function in base class
return NULL;
}
}

Figure 16 SetRobot member function

In function ActionGo::setRobot that will be called by ArRobot::addAction, the
variable ArAction::myRobot is initialized to robot, the pointer argument of
ActionGo::setRobot. Then the ActionGo::mySonar variable is initialized to the sonar
range device associated with robot using ArRobot::findRangeDevice. Remember that
this association was done in the main function. If no sonar range device is found,
ActionGo::mySonar will be associated with a NULL pointer, and the action must be

disactivated.

As mentioned previously, ArAction::fire returns the desired action to be sent to the
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server. The desired action must be reset each time fire is called. Then again we check
for mySonar and if it is NULL the action must be deactivated and a NULL pointer

would be returned and the function exits here.

Then state-reflection functions are used to get the parameters needed to determine the
desired action. The angles returned are in degrees and distance parameters and sonar
ranges in millimeters. The translational and rotational speeds are in millimeters per
second and degrees per second. We can convert them to the units of our choice as we
deem convenient. The values of the sixteen sonar ranges are obtained using
ArRobot::getSonarRange and are stored in the range vector. All the needed
information about the state of the robot is stored in a structure of type dVInputs, whose
pointer will be passed to CurvVel::determineVels. The output of determineVels is a
structure that consists of two variables, the translational and rotational speeds. These are
converted to right and left velocities so as to use one motion command,
ArRobot::setVel2, and thus avoid delays that would otherwise occur between two
motion commands. Then the pointer to the desired action is returned. Function fire is
called every time ArRobot performs the action handling task in the cycle. One more
remark to add about the code in the main function is concerning the Aria::init and
Aria::shutdown. These two functions should be added at the beginning of the driver
function (the main) and just before the application ends. Aria::init initializes the thread
layer and the signal handling method. Aria::shutdown shuts down all ARIA processes
and/or threads.

2.4 Conclusion
In this chapter, the physical characteristics and the communication links to the P3-AT

mobile robot as well as the ARIA application interface were described. An example

application was discussed in detail to illustrate the operation of the ARIA interface. In
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the following chapter, the kinematic and dynamic models of a 4-wheel skid steer mobile

robot are developed.



CHAPTER 3

TYPES AND MODELING OF DIFFERENTIALLY STEERED WHEELED
MOBILE ROBOTS

3.1 Introduction

As mentioned in Chapter 2, the robot used in this project is the ActivMedia Pioneer 3AT
mobile robot available at the GREPCI laboratary. In the first section of this chapter, a
brief overview on the types of wheeled mobile robots (WMR) is presented, and is
followed by a development of the kinematic and dynamic models of four-wheeled skid-

steer WMR in the second section.

3.2  Types of Mobile Robots

A wide range of vehicles used for a wide variety of tasks can be classified under the
category of mobile robots. Unmanned aerial vehicles, ground vehicles with various
mechanical steering techniques, watercraft, submarine robots, and other types of
unmanned vehicles whether remotely controlled, semi-autonomous, or fully autonomous
all fall under the category of mobile robots. In this section, the discussion will be limited

to WMR and their characteristics.

Holonomic or omni-directional mobile robots can move in any of the set of possible
direction from its current posture without having to turn to that direction first. Non-
holonomic mobile robots on the other hand can only drive in one direction from their
current posture. For example, in a two-dimensional plane, a wheeled mobile robot can
only move in the direction of the current orientation of the wheels. Non-holonomic

mobile robots are limited by the kinematic constraints that restrict their motion. These
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constraints are often modeled using equations involving derivatives of the posture

variables.

3.2.1 Ackermann Steered WMR

Non-holonomic WMR such as cars adopt the Ackermann steering mechanism and are
usually four-wheeled, of which the two front wheels are passive and are used only for
steering while the active rear wheels that supply the traction force provide needed to
displace the vehicle are fixed and have a common axle. Three wheeled models often

referred to as tricycles use the same mechanism but are steered by only one front wheel.

When the front wheels are fixed at a constant angle and the linear velocity is different
from zero, the vehicle will follow a circle whose center is the intersection between the
axles of the front and rear wheels (Figure 17). Thus, when a vehicle is steered, it will

follow a path which is part of the circumference of its

Figure 17 Ackermann steering mechanism

turning circle, that will have a center point somewhere along a line extending from the
axis of the fixed axle. The steered wheels must be angled so that they are both at 90
degrees to a line drawn from the circle centre through the centre of the wheel. Since the

wheel at the outside of the turn will trace a larger circle than the wheel on the inside, the
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wheels need to be set at different angles. The Ackermann steering geometry arranges
this automatically by moving the steering pivot points inward so as to lie on a line drawn
between the steering kingpins and the center of the rear axle. The steering pivot points
are joined by a rigid but in length adjustable bar, the tie rod, which is also part of the
steering mechanism. This arrangement ensures that at any angle of steering, the centre

point of all of the circles traced by all wheels will lie at a common point.

3.2.2 Differentially Steered WMR

Differentially driven WMR are non-holonomic whose active wheels on the left and the
right sides of the vehicle are driven by independent motors. Most of these robots have
two active front wheels and one passive caster wheel in the back for stabilization
purposes. These types of robots have the property that they can turn at the spot by
applying equal and opposite forces on the wheels on each side, which makes them
suitable in narrow environments cluttered with many obstacles and are usually used for

indoor applications.

Another type used mainly in all terrain navigation has four fixed active wheels and is
based on skid steering motion. Skid steering is accomplished by creating a differential
velocity between the left and right wheels. Figure 18 is an upper view schematic of a

four wheel drive robot skid-steering around the center.

The front and rear wheels on each side are synchronized so as to avoid longitudinal
slippage. Although this type is usually slower than robots with Ackermann steering, they
are more robust and maneuverable on rough terrains. The disadvantage is the control
needed to make the robot move in a straight line since the angular speeds of each of the

active wheels must be exactly the same.
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Figure 18 Skid-steering motion around the center

3.2.3 Single Wheel Drive WMR

This non-holonomic WMR is a tricycle but with the front wheel used for both steering
and traction. The rear wheels are passive and fixed. This is considered to be the simplest
design for a mobile robot. Linear and angular velocities of the robot are completely
independent. For straight line motion (Figure 19 (a)), the front wheel axle is parallel to
the rear wheel axle. To move in curvilinear motion (Figure 19 (b)), the front wheel is

continuously angled depending on the curve to follow.

The robot can also spin around the center midway between the two rear wheels if the
angle of the axle of the front wheel is orthogonal to the axle of the two rear wheels
(Figure 19 (c)).
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Figure 19 (a) Straight line motion (b) Curvilinear motion (c) Purely rotational
motion around the center

3.2.4 Synchronous Drive WMR

The synchronously driven WMR is almost holonomic in that it can move in any
direction. All the wheels are active and used for steering. The axles of all the wheels are
always parallel to each other and the wheels turn at the same speed and in the same
sense. One possible design is to have one motor used for steering chained to all the

wheels and one motor for traction geared to all three wheels.

3.2.5 Other Types

Some other types of robots used for delicate missions with extreme conditions that
require high mobility, possess some of the features from the different types. The
Nomad2000 and the JPL explorer shown in Figure 20 have their left and right wheel
drives independent and the steering of each of the wheels is independent. This would

ensure maximum displacement capability in rough terrain.
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Figure 20 (a) Carnegie Mellon Nomad2000 (Courtesy of Carnegie Mellon) (b) NASA
Mars Rover for space exploration (Courtesy of NASA)

3.3  Modeling of Four-Wheeled Skid-Steered Mobile Robots

As mentioned in Chapter 2, the P3-AT mobile robot is a four wheeled skid-steered
mobile robot. In this section, the kinematic and dynamic models on a two dimensional

planar surface are derived.

3.3.1 Kinematic Modeling

The modeling of the kinematics of differentially steered wheeled mobile robots in a two-
dimensional plane can be done in one of two ways: either by Cartesian or polar
coordinates. The modeling in Cartesian coordinates is the most widely used and thus we
will limit our discussion to modeling in Cartesian coordinates. The robot has four wheels
and is differentially driven by skid steer motion. The motors that power the wheels at
each side are geared internally to ensure that the velocity of the two adjacent wheels at
each side are synchronized (having the same angular velocity) and thus the same

velocity at ground contact.

The analysis of the motion of mobile robots is usually done for motion in a flat planar
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surface using two frames of reference, one local frame of reference fixed on the robot
and the other one is a fixed reference from outside the robot as shown in Figure 21. Note
that the x-axis of the local frame of reference is parallel to the direction of motion of the
wheels and its origin is at the center of the rectangle formed by the centers of the four
wheels. The transformation of the coordinates of a certain point P from the fixed frame

of reference of the robot to the global frame of reference is given by:

°P| [cos® -—sing|’P Ox
¥ = | 3.1)
| °P, | [sin@ cos@ |'P,| |y,
’-OPx— rPx 0xref
o T |=RO), T+, (3.2)
L PJ’_ Py Ve

where 6 is the angle between the x-axis of the global frame of reference xy and the x-axis

of the robot frame of reference x,... It is positive if it goes in the anti-clockwise sense.

"P, and "P, are the x and y coordinates of P in the frame of the robot, °x,,, and °y,,

are the coordinates of the origin of the robot’s frame of reference with respect to the

global frame of reference. The term R(@) is the 2x2 rotation matrix.

The change of position of the center of the robot (i.e. the origin of the local frame of

reference) is characterized by x,, and y, with respect to the local frame of reference

and X%, and y, with respect to the global frame of reference. The relationship between

these four terms is as follows:

X X, cos@ -y, sind X,
o | | T 20 =R(@) 7 (3.3)
Vo X, SIn@ + ¥, cosd Vrer

The coordinates of the local frame of reference and the angle 6 are sufficient to

determine the posture of the robot with respect to the global frame of reference. The
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posture is defined by the [°x,ef 0 Ve 0 1" vector and is used to denote the instantaneous

position and direction.

A Yo

Figure 21 The two frames of reference used in the kinematic model
To get the accelerations, equation (3.3) is derived with respect to time:
i Rt = V10
H =R()" (34)
y 0 y ref +Xx ref 9

The motion of the wheels one to four (wheels 1 and 4 being on the left side and wheels 2

and 3 the wheels at the right side of the robot) is given by:
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xrl =Xy = xref _%0
er =xr3 =xref +%0
3.5
p 3-3)

yrl =yr4 :yref+59
. . . I .
yr2 =yr3 =yref _50

If the rotational speed of each of the four wheels is constant, the robot would turn in a

circle around a center whose coordinates with respect to the local frame are given by:

Cx -y/6
o || 38 (3.6)
Cy ref fC/ 0
If the speeds vary, as is usually the case, then these coordinates are referred to as the

instantaneous center of rotation. In case there is no slippage, y, would be zero and

1 Th cosd .
FO} _ [xf o } - R(e)[x’ef ] 3.7
Yo X,or SIN G 0

In this case, the center of the robot would be always moving in the direction of x,.s and

equation (3.3) becomes:

the velocity would be denoted by V. It can be proved geometrically that the rotational

speed w around the origin is equal to the derivative of 8 with respect to time.

The velocities of each of the four wheels would be;
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w -

X =%, =X, ——0

rl r4 ref 2

xr2 = .r3 =‘x"ref +%6

(3.8)

oy 1y

yrl yr4 2

. . l .

yr2=yr3=_59

And the most useful equation for controlling the robot at the kinematic level would thus

be given by:

X, VcosO
Yo |=| Vsin@ 3.9

from which the following motion constraint is imposed:

ycosf —xsinf =0 (3.10)

Usually, mobile robots have a minimal radius of turn which would impose another
constraint on motion. If the angular velocity is zero, the robot will be moving in a
straight line and the radius is infinite. Finally the instantaneous radius of rotation would

be given by:
R=Cy,, =%/6 (3.11)

3.3.2 Dynamic Modeling

Through the use of the basic equations of mechanics, the dynamic model can be derived
after drawing the free body diagram of forces. The dynamic model presented here is the
same as in Caracciolo, de Luca et al. (1999), where the robot is a skid-steer four wheeled

mobile robot and is similar to the P3-AT. The free body diagram of forces is presented



44

in Figure 22. F; are the traction forces applied by the torques 7; on each of the four

wheels. The relation between the torques and the resulting traction forces is:
,=2rF ,(i=1,2,3,4) 3.12)

where r is the radius of the wheels. It is to be noted also that the traction forces
developed by two wheels on the same side are equal due to the internal gearing of the

robot.

So the following relations would be valid:

=7, =>F=F,
,=1,=>F,=F, 3.13)
The weight distributed on the four wheels is dependent on the position of the center of

gravity G. For the analysis of the dynamic model, we take another frame on the robot

with the origin at the center of gravity.

R,; are the resistive forces on the wheels in the xg longitudinal direction. The distribution

of the weight on each of the four wheels is as follows:

F‘wl=F‘w2= bb@
a+tb 2 (.14)
F =F _ a mg

3 4 = A
v " oa+b 2

where a and b are the distances shown in Figure 22.

The ratios of the weight of the robot carried by each of the two front wheels on the front

are equal. The same applies to the rear wheels. If the coefficient of friction between the
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wheels and the ground is f;, then each of the longitudinal resistive force would be given
by:

R, = 1,F, sgn(%,) (3.15)

And the total resistive force in the xg direction would be:

=
=
I
M-
>

=ﬁ1”2§(sgn(xl)+sgn(x2 ) (3.16)

Figure 22 Free body diagram of forces

If the coefficient of friction in the lateral direction is A, then the lateral friction forces on

each of the four wheels is:

F, = AF,sgn(y,) (3.17)
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Then the total lateral friction forces would be:

4

m . .
F,=3F,=u p fb (bsgn(3,) +asgn(y,)) (3.18)

i=1

By applying Newton’s second law to the forces acting in the x and y¢ directions of the

local frame, we get:

ma, =2F, +2F, - R,
ma,=—-F (3.19)
16 =w(F,~F,)-M,

where the resistive moment M, around the center of gravity of the robot is calculated

around the center of gravity of the robot:

Mr = a(Fyl +Fy2)_b(Fy3 +Fy4)+%[(Rx2 +Rx3)—(Rxl +Rx4)]
(3.20)

- 12 (sgn(5, )~ sgn(3 )+ fr 25 (sgai,)-sen(s,)

a+

The centrifugal forces acting on the robot are negligible since the robot rolls at relatively
low speeds. Writing the dynamic model with respect to the global frame of reference,

the following formula would be obtained:
M +Clg.)= E(g)r (3.21)
where g =[x y 6],

0 R, cosf - F, sind
0|, Clg.4)= R, sinf+ F, cos@ |,
I M

r

m
M=|0
0

o 3 o©
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cosf/r cosf/r
E(g)=|sin@/r sin@/r|and 7, = 2rF (i = right,left)
w/2r  w/2r

Given that the wheels are synchronized, only the complete force supplied by two wheels

on the right or on the left needs to be considered.
3.4 Conclusion

In this chapter, a brief overview of the different types of mobile robots has been
presented, and the kinematic and dynamic models have been derived. In this project,
only the kinematic model will be used for path tracking control in Chapter 5. In the
following chapter, an optimization technique for path planning based on dynamic

programming will be discussed at length.



CHAPTER 4

PATH PLANNING

4.1 Introduction

Robots often navigate in pre-known environments modeled using different tools such as
maps. Making use of such information on the environment is advantageous. A path that
is optimal in terms of factors such as time, distance, and safety can be planned to reach a
desired goal position from the initial position of the robot. The available information can
be mapped to a graph whose nodes represent some discrete positions in the environment
and are linked by directional arcs with a cost value that is dependent on optimization
parameter(s). In this chapter, the A* search algorithm is briefly presented and the

iterative dynamic programming technique is described in full detail.

4.2  Cost Map Generation

As mentioned earlier, the path planning algorithm has been developed for outdoor and
rough terrain navigation. To be able to find an optimal or near optimal path offline in
this case, an aerial image of the terrain or previously stored information on the terrain on
which the robot will be operating is needed. The approach mostly used in the literature is
to sample the area into nodes at equal intervals in the form of a 2-D image. Given the
scale of the image, a regional traversability map is obtained through some calculation
procedure and is consequently converted to a cost map. The nodes are assigned a cost in
a manner similar to a 2-D black and white image where each pixel corresponds to a

certain gray level intensity value.
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One simple and efficient method for path planning on natural terrains (Howard and
Seraji 2001) makes use of fuzzy logic terrain-based path planning to find traversability,

and a traversal cost function was applied to get the cost matrix.

Due to the unavailability of a camera or a laser range finder and a 3-D gyroscope, the
cost matrix generation was applied on indoor flat surfaces where obstacles are given a

very high cost while traversable regions are given a uniform cost.

43  Formulating the Problem

In the previous section the cost map that was obtained by analyzing an aerial image or a
certain database of terrain information was obtained. Now the available cost map should
be put in a form that can be solved by the optimization techniques that will be discussed
later in this chapter. Given a certain position element of a certain node, it will be
assumed that the robot can traverse from eight different directions as shown in Figure23.
It will also be assumed that the cost to travel in a straight line between two opposite
position elements adjacent to the position element in question by passing through it in
any of the eight directions is the cost of the node itself. Nevertheless, optimization
techniques can still be applied in the general case where the cost to go from a certain

node A to an adjacent node B is different from the cost to go from B to A.

SN
NE N NW e .L.
~ N |
Oy B30 e ]
e gt—
SE § SW || & ®|°
o7

Figure 23 Eight passage directions through a node

The position elements will now be represented by nodes linked in two ways to all

adjacent nodes (Figure 24(b)).
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Each node will have eight links, one towards each of the adjacent nodes (Figure 24(a)).

The nodes now are put in the form of a general graph.

(a) (b)

Figure 24 Graphical illustration of connections between nodes

4.4  The A* algorithm

The most commonly used algorithm for path finding in mobile robot applications is the
A* algorithm. This algorithm has the advantage that it is highly efficient in calculation
time compared to the other methods. The convergence to the optimal path has been
proven in Hart, Nilsson, et al (1971); and its extensive use has proved it to be reliable if
the proper estimation function referred to as the heuristic is used to approximate the cost
to reach the goal. In the following discussion, N; refers to the node i and the term L;
refers to link j of node i. The terms and variables that will be used will be defined and

the pseudo-code of the algorithm will be presented.

G: The cost to move from the starting point S to a certain given node by following

the path generated to reach this node.

H: The estimated cost to move from that given node to the destination node. The
actual cost from the given node to the destination node is not yet known. This
heuristic is calculated by a function that can be dependent on the distance to the node

point or some other parameter. The only difficulty in applying the A* algorithm is in
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the choice of a suitable heuristic function to determine H. A heuristic function is an
estimate and generally cannot estimate the exact value of the variable in question
(the cost H in this case). The choice of the heuristic function affects the speed of
convergence and the probability of having an optimal solution. The choice of the

heuristic function is application dependent.

C: Total cost to reach the destination from the starting node by passing through the
current node. Since the actual cost from the current node in question is unknown, the
estimate H will be used. So:

C=G+H

Open list: Current list of open nodes. This is the list of the nodes that have been

opened but not yet processed.

Closed list: Current list of closed nodes. The nodes in Closed cannot be put in the
Open list again. These nodes are the candidates to be on the final optimal path to

reach the final destination node.

A pointer to the parent node is associated with each processed node. Initially the Closed
and Open lists are both empty. The steps below are iterated over and over again until the

destination node is put in the Open list (Pruski, 1996):
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1. Put Ny in Open and associate with it the cost F' (Ng) = H (Ny) and a NULL
pointer, since Ny is at the top of the hierarchy

If Open is empty, no solution and exit

Choose the node N; in Open that has the lowest cost F

Put N; in Closed

For all nodes Ny that can be reached directly from Ni

IENERREN

if N is in Closed
if C (Ny) is lower than the cost of N in Closed

Put Nk in Open and associate it with a pointer to Ni

else if N is in Open
if C (N,) is lower than the cost of node Ny
in Open
Associate N, with the new cost and dot it
with a pointer to N,
else  Put N, in Open without modification
if Ny is the destination node N
Exit
else
Gotostep 2

Figure 25 A* search algorithm pseudo code

The optimal path back from Ny is the inverse of the chained list going from the

destination node to the start node Nj.
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4.5 Dynamic Programming

4.5.1 Classical Dynamic Programming

The notation that will be used here is the same as in Hillier (1990). Given N+/ layers,
including a layer for the final node, and node N is a node on the last layer before the
final node. The decision variables x, (n=1 ,2,...,N) are the immediate destination on the
nth layer. The total cost of the best solution of the remaining layers (n, n+,...,N) towards
the goal node is given by f, (s, x» ). For an arbitrary node s on layer n+1 the optimal
solution from s to the goal by taking a decision x,* that minimizes f, ( s, x, ) will be

determined. The total cost is given by:

Jo*(s) =minfu( s, xn) =fu (s, Xn™*) “4.1)
and
In( 8, %n) = Csxp + frr1*(xn) (4.2)

where Csx, is the cost between s and x, and f,,+,*( x, ) is the minimum future cost (layer
n+1 through N+1). We start first at layer N and continue through layers N-1, N-2, ...,1.
The optimal costs for the nodes of layer N is f,( s, x, ) = Csx, which is the cost of the
single links between the nodes on layer N and the goal node.

The classical dynamic programming approach proceeds to find the optimal paths for all

the nodes of all layers, including the node representing the actual state.

4.5.2 Dynamic Programming: A Novel Approach

When the cost matrix that corresponds to the map obtained by the aerial image is
available, all inaccessible zones will be disregarded so as to minimize the number of
nodes, and thus the number of calculations. This is done through a recursive procedure
starting from the current position of the robot. Once the cost matrix of the terrain nodes

is available, and given the initial or current position and the final or desired position, a
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modified version of dynamic programming is used to find the optimal path that leads to
the node that corresponds to the desired destination position. Given that the node that
corresponds to the final destination is G, all nodes will be put in layers starting from
node G as follows: The first layer contains nodes that have a direct link to node G, the
second layer contains the nodes that can reach G through a minimum of two links, the
third layer contains the nodes that can reach G through a minimum of three links, and
the kth layer contains the nodes that can be linked to G through a minimum of % links.
By applying conventional dynamic programming on this graph, the optimality of the
path cannot be guaranteed since it does not account for the links between nodes that

belong to the same layer and for links going from lower to higher layers.

Layer 1

Layer?2

- Layer K-1

(N wmsem LayerK

Figure 26 (a) Layers emanating from the goal node (b) Layers arranged from the
goal node downwards

Nodes belonging to the same layer can only have links to nodes on the same layer, to
nodes in the layer that immediately precedes it, and to nodes in the layer just after it
(Figure 26).
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In other words, if the node that corresponds to the initial position of the robot belongs to
layer I, and the optimal path to the node that corresponds to the desired goal position
passes from the initial position to another node on the same layer /, or goes through the
higher layer /+/ and back to / and towards the goal, then the classical dynamic
programming approach cannot be used to find an optimal path that can go back and forth

until it reaches the goal position.

The proposed approach is a generalization of the classical approach in that it makes it
possible to have links between nodes belonging to the same layer, as well as links
directed from an inferior to a superior layer. The classical approach will be used at the
beginning to find a suboptimal solution and then iterations similar to the classical
approach are applied to nodes on the same layer and superior layers to find a globally

optimal solution.

In Figure 27, node S represents the initial position of the robot and node G represents the
final goal position. In classical dynamic programming, the analysis starts from the goal
node and upwards towards the higher layers, until the optimal path is found for all nodes
including the node that corresponds to the initial position. The first layer contains nodes

that have a direct link with node G.

There are five different layers in Figure 27. The start node S is on the first layer,

however the optimal solution passes through the nodes 1 to 24 pointed to by the arrows.
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Figure 27 Graph with nodes

By applying classical dynamic programming, the optimal solution would be to go from
S to G directly since it is the only solution available. The direct path from S to G might
be very costly, and it might be more interesting to go backwards and then go towards G.
As mentioned previously, the nodes on the same layer cannot have links between each
other. In Figure 28, the problem is reshaped to be solved using dynamic programming.
Clearly, the optimal path goes from S to node 1 on the second layer and then to node 2
on the second layer also, then to node 3 on the third layer, then to nodes 4 through 9 on
the fourth layer, then goes forth to node 10 on layer 3, and so on. In this case, the fifth
layer was discarded for clarity since the optimal path does not pass through it. However
when the optimal path was calculated, it was tested and taken into account. The

approach must guarantee a globally optimal solution.

A global optimal solution is required in the case of a labyrinth where only the globally

optimal solution is acceptable, since all the other solutions pass through walls.
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Figure 28 Nodes aligned in stages

Compared to classical dynamic programming in which the links between nodes are
unidirectional and go from a superior layer to an inferior layer, and the nodes that belong
to the same layer have no links between them, the new approach can take all the links
and their sense into account. Moreover, the cost between adjacent nodes can depend on
the direction of the link. That is, given two adjacent nodes 7 and j, the cost Cij to go from
node i to node j can in general be different from the cost Cji from j to i. This flexibility is
useful in the case of 3D terrain navigation. The cost to go up a slope is always different
from the cost of descending it. The approach that is used to find a globally optimal
solution starts by applying classical dynamic programming on the links allowable by this
approach, that is from superior towards inferior layers only and to the goal position
finally. Then links between nodes belonging to the same layer are tested to determine if

a more optimal solution can be found. At the end of the process, links towards the
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superior layer are tested to determine if an even more optimal solution can be found.
This process is repeated (N+1)xM times where N is the number of layers and M the

number of nodes belonging to the layer that contains the maximum number of nodes.

4.5.2.1 Convergence to the Optimal Solution

In general, if there are N nodes other than the goal node, the maximum number of nodes
that a path can pass through before reaching the goal node is N, or all the nodes other
than the goal node, thus passing only once at each node. The goal is to find the
absolutely optimal procedure to reach the goal node among all possibilities. To this end,
the layered solution graph will be introduced. To simplify the graph, the connections of

the nodes from a certain layer i to a layer j are represented by a vector link.

The vector link in Figure 29(b) represents only links going from nodes on layer i to layer
Jj in one direction from 7 to j. Nodes on a certain layer can be either connected to other
nodes in the same layer, to nodes in the next higher layer and to nodes at an immediately
inferior layer. So the difference between / and j can only be 1, 0, or -1. To represent the
links between nodes on the same layer, the nodes are duplicated as in Figure 30 (a) and

represented by a vector link from i to i (Figure 30(b)).

Layer j

f

Layer i
®)

Figure 29 (a) Links going from nodes on layer i to layer j (b) are represented by a
vector link from i to j
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Layer i

i

Layer i
®

Figure 30 Inter layer connections

At layer 1, all the nodes are connected to the goal node, and these links are represented

by a vector link from layer 1 to the goal node G as in Figure 31 below.

1

Layer1
(b

Figure 31 Connections to the final goal layer

Now that some simplifications are made, the layered solution graph can be presented
(Figure 32). On top is the goal node with layer 1 directly below it and connected to it
with a vector link. The links from the goal node to nodes of layer 1 will not be used
since the objective is only to reach the goal node. In the next step, layers 1 and 2 are
inserted below layer 1 and also linked to layer 1. This should not cause any confusion.
One can imagine layer 1 on level 2 as having different nodes from layer 1 on level 1 but
having the same connections and costs. At the Kth level, all the layers would be
contained. Levels K+1 to N-I contain all the layers in order with each layer having
vector links with maximum three layers (layers 2 to K-1 and two vector links for layers 1
and K) at the level above it as in Figure 32. More specifically, a certain layer & at level n
is connected to its duplicate at level »-1 and also to layers k-/ and k+1 at level n-1 if

they exist. The layered solution graph contains all the possible solutions (paths) to reach
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the goal node from any other node. Classical dynamic programming can now be applied

to those virtual layers stuffed in levels to find an optimal solution.

©

Levell Layerl

Level2 I Layerl Layer2 l

Level3 Layer1 Layer2 ] Layer3 '

[ * [l “w.

) ) [}
. ) [ -
-
-
1 1 1 - -

LevelK I Layer1 Ley?r 2 Layer3 |====< LayerK-1 I LayerK
Xt /N1 X
Level K+l | Layerl Layer2 I Layer3 |====< LayerK-1 I I LayerK |

LevelN-1 | Layerl Layer2 i i Layer3 [====~ LayerK-1 i LayerK
X1 Xt/Z/\t.
Level N l Layer l Layer2 [Eyor 3 = LayerK-1 LayerK

Figure 32 Layered solution graph

Let the operation of DP (i, j) denote the operation on all nodes of layer i of equations
(4.1) and (4.2) with layer j being the layer that contains the next destination nodes. The
first operation would be DP (1, G) at level 1 to the goal node G. The next step would be
DP (1, 1) from level 2 to level 1, followed by DP (2,1) also on level 2, and so forth until
the whole graph has been analyzed. The number of DP operations is equal to the number

of vector links ¥ on a layered solution graph and is given by:

V=(N—K—1)(3K—2)+§(2+3k)+1

=(N-K-DBK-2)+2K+3K(K-1)/2+1 4.3)
=3NK -2N -3K* +K +3K(K -1)/2+3
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The optimal solution from a certain starting node to the goal node would be the
minimum of the cost between all its virtual duplicates at the levels 1 through N. It is
guaranteed that at the optimal solution, the path cannot pass twice by the same node
since all the costs of going from one node to another are positive and the minimum will
not pass through the same node twice. In other words, if L; is used to denote level i and
layer j, and some node  belongs to layer j, then the cost C* of the optimal solution to go

from » to G would be given by:
€ =min(n, < Lij),,, , @44

where #; is the duplicate of node » at level i.
4.5.2.2 Iterative Procedure

Putting all these layers in a layered solution graph is very costly in terms of memory
space. But since the layers at the different levels are all duplicates, if each node was
associated with a current optimal cost C* to reach G and a pointer p to the next node to
follow that lie on the current optimal path towards G, with DP (i, /) being executed in the
same order as in the layered solution graph. After every DP (i, j) operation, only the

costs needs to be determined

So only the graph of Figure 26 (b) rearranged in layer-vector link representation in
Figure 33 is needed and an iterative procedure would be followed to determine the

optimal solution.
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Figure 33 Layer-vector link representation of the graph

The pseudo code to perform all the ¥ operations needed to reach the optimal solution is

presented in Figure 34.

DP(1,G)
fori=1to K
forj=1toi
if j==
DP(j.J)
ifi#1
DP(j,j*+1)
end
elseifj==i-18&j#1
DP(j.J-1)
DP(j.J)
elseifj==i
DP(j,F1)
else
DP(j.Jj-1)
DP(j.J)
DP (j,j+1)
end
end
end
fori=1to N-K




63

forj=1to K
DP (j.J)
ifj#1
DP(j,j-1)
end
ifj# K
DP(j,j+1)
end
end
end

Figure 34 Pseudo code of the iterative procedure
4.6 Implementation on Parallel Processors

Going back to the solution graph (Figure 32) and supposing that the DP operations have
reached a certain level L; and the DP operations (DP (j, j-1), DP (j, j), DP (j, j+1)) are to
be done on a certain layer j at L;. For these three DP operations on layer j corresponding

to L; to be executed, all the DP operations for all levels L (k € [1,i —2]) and for all layers

between [max(l, j - (i — k), min(; + (i - k), K )] must have been executed.

Conversely, if at a certain level L;, all the DP operations have been done till a certain
layer j, then all the DP operations for all levels L from L;+; up to L;;.; for layers [1, j-k]
in these levels can be executed independently of the rest of the DP operations

corresponding to the rest of the solution graph.

Furthermore, if all the DP operations till a certain level L; have been executed, then all
the DP operations for all the layers in level L;;; can be executed independently from

each other.



64

These properties of dynamic programming make its implementation on parallel
processors attractive. The parallel processor can be exploited to the maximum with this

algorithm.

4.7 Implementation on MATLAB

Since the new dynamic programming algorithm was developed before the robot was
available, the MATLAB technical computing software was used to implement and test
the algorithm. Although less flexible and powerful than the C++ programming language
in terms of speed and performance, the ease of implementation of the algorithm in
MATLAB made it the right choice. Since most MATLAB operations and data are

represented as matrices, all the data structures have been represented as matrices.

The program (script) where the cost maps in matrix forms are defined and the plotting is
done is the ‘main.m’ file. The user is prompted to select one of six maps, and to select
the start and goal positions. The function ‘getOptimal’ takes °‘startPosition’,
‘goalPosition’, the ‘MAPCOSTS’ matrix, and ‘scale’ as input arguments and returns

‘WayPoints’ as well as ‘OPTIMAL’. Let’s start first by the input arguments:

‘startPosition’ : /x2 input vector containing the x and y coordinates of the initial
position of the robot in meters. The origin is at the lower left corner of the map.
‘goalPosition’ : same as ‘startPosition’ but with the goal coordinates.
‘MAPCOSTS’: MxN matrix of costs as explained in section 4.1.

‘scale’: Is the horizontal or vertical distance in meters between two adjacent

nodes in ‘MAPCOSTS’. In all the tests, the scale was assumed to be / meter.

And the output arguments:
WayPoints: Wx2 matrix containing the coordinates of the nodes that lie on the

optimal path from ‘startPosition’ to ‘goalPosition’ inclusive, and in order.
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OPTIMAL: Nx3 matrix whose first column contains the number of all accessible
nodes on the map from 7 to N and whose second column contains the next node
towards the target goal for all nodes of the first column respectively. The third
column contains the cost of going from the node in the first column towards the
goal node. The goal node is the only node having a cost of zero in the third

column.

The rest of the code in ‘main.m’ is for plotting the graph of the map with the obstacles
and the optimal path from the start position to the goal position.

The function ‘getOptimal’ is the interface to use the dynamic programming technique
that has been developed to obtain the optimal solution. This function and its sub
functions will be now briefly discussed. The first step in ‘getOptimal’ is to get the
MAPCOSTS matrix indices corresponding to the start and goal positions. Then the
function ‘determineNodes’ finds all accessible positions from the start position, assigns
to them a node number, and determines the connections between nodes. The goal
position should be chosen in an accessible region. The OPTIMAL matrix is calculated
using the function ‘dynamicProg’. At the end, the WayPoints matrix is calculated from
OPTIMAL.

The function ‘determineNodes’ takes as arguments MAPCOSTS and
startPositionIndices determined in ‘getOptimal’. In this function, two matrices are
calculated: NODES and MAPINDEXROW. NODES is the matrix that contains the
nodes and the nodes they are connected to along with the costs. MAPINDEXROW is
the Nx3 matrix containing the node number as well as their corresponding index in
MAPCOSTS. The recursive function findAccessibleRegions is used to calculate these
two matrices. Inaccessible nodes are disregarded.

In the function ‘getOptimal’, the function ‘dynamicProg’ calculates the matrix
OPTIMAL and is the bulk of the program. This function takes as input arguments the
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following variables that have already been calculated: NODES, startNode, targetNode,
MAPCOSTS, and MAPINDEXROW. Let’s take a look inside the function

‘dynamicProg’.

Starting from targetNode, all the nodes are classified and ordered into layers as
explained. The function ‘findStages’ uses a sorting routine to return the matrix stages
whose rows contain the nodes of each of the layers. The number of columns in stages is
determined by the number of nodes in the layer that contains the maximum number of
nodes. The rows are filled starting from the beginning, and the remaining unused slots
are filled by zeros. Although this is not efficient in terms of memory usage, no better
performance can be achieved using MATLAB, since MATLAB offers no pointer usage

as in C or C++.

The three dimensional matrix NODESLowMedUp is calculated using NODES and
stages. NODESLowMedUp orders the connections to nodes in NODES into
connections to the next lower, the same, and the next upper layer for all nodes. The
pseudo code in Figure 34 is then implemented using the function ‘DP’. Finally the
matrix OPTIMAL is returned to ‘getOptimal’, where the matrix WayPoints is
calculated and returned to ‘main’ along with OPTIMAL. Figure 35 is a hierarchical

diagram of the functions used to implement the dynamic programming algorithm.
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main
getOptimal
determineNodes dynamicProg
findAccessibleRegions findStages DP

Figure 35 Hierarchy of functions

48 A* and Dynamic Programming: A Comparison

Both the A* algorithm and the dynamic programming technique presented in this
chapter yield optimal solutions to a graph. The advantages and disadvantages of the
dynamic programming technique relative to the A* algorithm can be summarized as

follows:

Advantages:

- The dynamic programming algorithm determines the optimal solutions for all the
nodes of the graph towards the goal node, which is advantageous in a muiti-robot
environment or in case the robot deviates from its original path due to a real time
dynamic obstacle.

- The dynamic programming algorithm can be executed on several computational
resources in parallel while the A* algorithm can only be executed sequentially.

- The dynamic programming algorithm is generic and its performance is not dependent
on the choice of any heuristic function as is the case with the A* algorithm.
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Disadvantages:

- The only disadvantage of the dynamic programming algorithm with respect to the A*
is in the calculation time which is significantly much higher if implemented sequentially
on a single computational unit.

4.9 Performance and Results

The dynamic programming algorithm has been tested on numerous cases which were
compared to the solutions obtained using the A* algorithm. The solutions were exactly
identical using both techniques and the graphic results presented here were obtained
using both techniques. In Figure 36, the environment is a 2-D environment where
obstacles are represented by grey cases and free space by the white cases. The cases are
essentially the nodes of the graph. It was assumed that the cost of displacement in free
space from one case to another adjacent case horizontally or vertically is 1 and that the
cost of moving in diagonals is 1.41. It is important to note that displacement is limited to
eight directions: it can be either horizontal, vertical or along diagonals at slopes of 45
degrees. This implies that displacement is valid only between adjacent cases. The cost is
thus proportional to the distance traveled. The start position and the desired destination

are represented by an ‘x’. The optimal path was obtained in both cases.
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Figure 36 Two test cases in a 2-D environment

In Figure 37, the cost between the nodes is variable and not only dependent on distance,
as is the case in a 3-D terrain. All nodes in this environment are accessible. The cost of
the displacement from one node to an adjacent node was chosen to be the value assigned
to the adjacent node. This allows for testing the dynamic programming algorithm in a
general graph where the costs of displacement between two nodes in the opposite senses
are not necessarily the same. The white cases were given a cost value of 1. The other

cases were given values of 3, 10, 15, and 40 from lightest to darkest. To better visualize
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the solution, the environment was created such that the optimal solution is purely on the
white cases. The concentric rectangles emanating from the goal node join nodes that
belong to the same layer. The node that represents the initial position of the robot lies on
the fourth layer. It is clear that the optimal solution passes through nodes on layers

higher than the initial node and by nodes that lie on the same layer.

0 ' , . .
5 §
10} ]
15| .
20} .
2% - L 1 '

0 5 10 15 20 25

Figure 37 Optimal solution in a 3-D environment

Figure 38 is the result of another case in a general 3-D environment. All the nodes are
accessible and the cost ranges from 1 to 40 from lightest to darkest cases. With some
inspection, it is obvious that the solution is optimal. In Figure 39, the dynamic
programming technique was used to find the solution to a labyrinth. The graphical
results displayed in this section demonstrate the effectiveness of the dynamic

programming algorithm in finding an optimal solution to a graph.
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4.10 Conclusion

The dynamic programming algorithm that was developed in this chapter has some
interesting advantages over the widely used A* algorithm. Nevertheless, the calculation
time of the A* algorithm remains a big advantage. A lot of algorithms and techniques
that determine an optimal solution in a graph have been developed by many researchers,
yet the A* algorithm remains the most efficient since its inception. The purpose of
developing the dynamic programming algorithm was to create a new technique that has
some advantages and to implement it. A more exhaustive study can be done to assess the
execution of the dynamic programming algorithm on parallel computational resources.
The optimal path is obtained in the form of waypoints corresponding to the positions of
the nodes. In the following chapter, two path tracking techniques for controlling the

robot motion along the waypoints of the optimal path are described and analyzed.



CHAPTER 5

HIGH LEVEL PATH TRACKING AND TRAJECTORY FOLLOWING

5.1 Introduction

In the literature review in Chapter 1, a variety of approaches for path tracking control of
wheeled mobile robots have been presented. As discussed there, most of path tracking
approaches controlling the robot at the dynamics level, and thus cannot be implemented
if the robot dynamics are inaccessible. In this project, two types of controllers for path
tracking and trajectory following were developed and tested in real time. In both
approaches, control is done at the kinematic level. The controller in the first approach is
based on fuzzy logic control (FLC). In the second approach, a classical control law was
derived from a Lyapunov function. The control variables in this case are the desired
translational and rotational speeds. The speeds are varied depending on the variations in
the path and on the posture of the robot. The implementation on the P3-AT proves the

performance of both approaches.

5.2  Fuzzy Logic Path Tracking Controller

In this section, a fuzzy logic controller (FLC) for the path tracking of a wheeled mobile
robot based on controlling the robot at a higher level is presented. Motion is controlled
by the translational and rotational velocities. The speeds are varied depending on the
variations in the path and posture of the robot. The heuristic rules of the FLC are based
on an analogy with a human driver and the optimization of the controller is based on

experimentation.
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5.2.1 Path Tracker Parameters

The path tracking controller that was implemented here is based on the controller in
Driankov and Saffiotti (2001) but with some major changes in the inputs and outputs of
the Fuzzy Logic Controller (FLC) and the rules, as well as in the path representation.

The controller equation is as follows:

1 [fU1C,dR,d6,V,)
= (5.1)
w| | f2C,dR,d8,v,)

where V and w are the translational and rotational velocities of the robot, C is the look
ahead curvature (LAC) which is a feed forward input, dR the distance from the actual
position of the robot to the next desired position, df the difference between the angles of
the line joining the current position to the next desired position and the actual heading of

the robot, ¥, the current linear velocity (see Figure 40).

The functions f7 and f2 are the control laws of a Sugeno type fuzzy controller. Sugeno
controllers take in fuzzy inputs and discrete outputs. The outputs are calculated
separately. At first let’s describe the parameters used for the controller. C is obtained
using another fuzzy logic module whose inputs are a/ and a2. In Figure 40, the input
parameters of the controller are illustrated for a certain posture of the robot. The
trajectory is described by a set of discrete node positions N; to Nina linked to each other

starting from the initial position to the final desired position.

The task of the robot is to pass at the proximity of these points in the required order in a
continuous and smooth manner. A continuous trajectory can be discretized as needed.
The behavior of the controller is such that if the discrete points are close to each other,

high precision but lower speeds will result.



75

If less precision is needed, the discrete points are selected further apart and the robot will
move at higher speeds. The current node N; is defined as the node whose position is
nearest to the robot’s current position. The next node Nj,; is the next node in the list of
nodes on the trajectory and Nj;; is the one next to Ni;;. The angles al and a2 are the
angles between the lines NiNj;; and Ni:Njs2, and between the lines Nj;Njs» and
Ni+2Nis3, respectively. If al and a2 are large, then the robot must speed down to be able
to make a smooth turn. C is a parameter that is function of angles a/ and o2 used to
indicate the steepness of the curvature. The path is represented by a linked list of nodes
starting with the start node and ending with the destination node. A pointer to the current
node N; points initially to the first node of the list. Whenever the robot gets nearer to the
next node position Nj;, the pointer would point to it, and it becomes the new current
node. Consequently, the robot always heads in the direction of the node next to the
current node. The pointer to the current node can only change incrementally starting

from the beginning of the list.

Figure 40 FLC parameters
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If a robot has a high current velocity V., and needs to make a sharp turn d6, then it must
first slow down while turning smoothly. When it has slowed down sufficiently, the robot
can start making turn in response to the curvature. All the parameters to the input of the
controller can be calculated knowing the current node and the robot’s current position
and heading, as well as its current velocity. The block diagram of Figure 41 is the

general structure of the control loop.

Trajectory al
a2
I |
d8 [V}
Calculation Ve > Fuzzy Logic | _Iwﬁ
Module Controller Robot
X
Y
17
Vs

Figure 41 Control diagram

The calculation module takes in the position, heading, and current velocity of the robot,
determines the current node state of the robot with respect to the trajectory, and
calculates the controller parameters. The fuzzy logic controller then determines ¥ and w

so that the robot follows the trajectory in a smooth and efficient manner.

5.2.2 Fuzzy Path Tracking Controller

The task of the path tracking fuzzy controller is to direct the robot to follow the
trajectory in a smooth and continuous manner as precisely as possible. It might not be
necessary that the robot passes exactly through the points on the trajectory, but at least
pass at their proximity and arrive to the final destination. The closer the discrete points

are to each other, the more precise the robot will be in executing the trajectory but at a
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lower speed. Figure 42 shows the schematic of the FLC. The first module determines the
look-ahead curvature (LAC) value and the path tracker module determines the linear
velocity and angular speed to be output to the robot. Both modules are Sugeno type
fuzzy inference systems of order zero. The document International Technical
Commission (IEC) (1997) contains a brief and practical introduction to fuzzy control.
For a more detailed analysis on fuzzy control, Farinwata (2000) provides a more in-
depth theoretical study. The LAC uses the angles o/ and a2 to determine the value of C.
The membership functions of each of the parameters are shown in Figure 43. The
membership functions of al are Straightl, Highl, and VeryHighl and those of a2 are
Straight2, High2, and VeryHigh2. The membership functions of C are singletons that
take values between zero and five. The zero value indicates that there is no curvature
meaning that a/ and a2 are small and the robot will follow a straight line at the current
state. If the curvature is high then the robot must speed down to make the sharp turn.
The inference rules map the membership functions of the input parameters to the

membership functions of the output.

ol —_—) C
LAC >
a2 v
Fuzzy Path
db . grackirlllg
ontroller )
Ve >

Figure 42 FLC Schematic

For example the rule:

IF al is Straight] AND a2 is VeryHigh2 THEN C is cHigh
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Maps membership functions Straight] and VeryHigh2 of the inputs to membership
function cHigh of the output. If the two conditions of the inputs are satisfied for this
rule, then the value four corresponding to cHigh is returned for this rule. The truth value
for the rule is obtained by using the product of the truth values of Straight! and
VeryHigh2:

A; = p(Straight1(al)) u(VeryHigh2(a?2)) (5.2)

Where u is a value between zero and one that indicates the truth value that an input
value belongs to some membership function. The values of all rules are returned and the
output returned by the LAC module is defuzzified using the center of gravity method for
singleton (COGS) (International Technical Commission (IEC), 1997). The formula of
this method is:

SU4,(t)
Ul = —— 53)

2. 4(t)

Where 4; are the singleton values (i.e. truth values) of the individual rules, and U, their
corresponding outputs. Figure 44 shows the input-output characteristics of the LAC. It is

clear that the output rises faster as al increases. The rule base is shown in Table 1.
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Figure 43 LAC parameters and their corresponding membership functions

Table I

Inference rules for LAC

al Straightl Highl VeryHighl

a
Straight2 | NoCurvature cHigh cVeryHigh
High2 cModerate cHigh cVeryHigh
VeryHigh2 cHigh cHigh cVeryHigh
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Curvature

Alpha2 (degrees)

Alpha1 (degrees)
Figure 44 Input-Output surface for LAC

The value C is then fed to the path tracking controller along with dR, df, and V.. The

membership functions of each of the input and output parameters are shown in Figure

45. As expected, C ranges from zero to five.
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Figure 45 Membership functions of path tracker parameters

Input dR ranges between zero and 7000 mm, df ranges from -180 to +180 degrees, and
Vc from zero to 1000 mm/sec. The linear velocity output ranges from zero to 800

mm/sec and the angular speed from -30 to +30 degrees/sec.
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The inference rules maps the input membership functions to the output membership
functions. The behavior of the controller is such that it changes linear velocity and
angular speed in a smooth and almost continuous manner. When the curvature is sharp,
the controller decreases the speed and outputs the needed rotational speed in the right
direction to make the turn smoothly. When the curvature is smooth, the robot will speed

up and the rotational speed is small so as to stay on track. For example the rule:
IF C is High THEN V'is §300

sets the speed to 300mm/sec when the curvature value is high no matter what the other
values at the inputs are if it is the only inference rule that is activated by the inputs. If
not, the COGS defuzzification method mentioned above is used again to calculate the
outputs. The value of rotational speed is not affected by this rule. Another example is
when the current velocity V. is high and either df or C is high, the robot should slow
down first before making the turn. Figures 46 and 47 show the input-output
characteristics at C and ¥, both set to zero. Note the symmetry with respect to the plane
that satisfies d6=0.

______
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60 ..~

40 .
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0
dR (cm) 20 dTheta (degrees)

Figure 46 'V output when C and Vc are zero
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Figure 47 Angular speed output for C and Vc are zero

5.2.3 Real Time Implementation

The path tracking FLC shown above is implemented using the C++ Free Fuzzy Logic
Library (FFLL) along with the Activmedia Robotic Interface for Application (ARIA)
library that provides extensive methods to control the Pioneer robot, communicate with
it, and obtain its sensor information. The fuzzy controllers are specified in a Fuzzy
Control Language (FCL) files using the IEC 61131-7 industrial standard (International
Technical Commission (IEC), 1997). The FFLL contains methods to read FCL files that
contain the input and output information and membership functions, the defuzzification
method(s), and the inference rules. The FFLL also contains the methods needed to
calculate the outputs once the FCL files are read. A new interface with the robot that
provides 3D views was used. The real time implementation was tested on the Pioneer
3AT four-wheel differentially driven mobile robot used for all terrain navigation. The

lower level controllers of the motors are separate with a PID controller for each motor
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alone. Only the values of the gains of the PID controllers can be modified to cope with

the weight of the robot, but only reference speeds or positions can be controlled.

5.2.3.1 FFLL and FCL Files

To implement the fuzzy logic path tracker and the look-ahead curvature (LAC)
approximation, the free fuzzy logic library (FFLL) developed for artificial intelligence
(Al) applications implemented in C++ was used. FFLL is easy to use and is compliant
on the “basic level” with the fuzzy control language (FCL) as stated in table 6.1 1 of
IEC 61131-7 [ref]. It is distributed for free and is open source. As specified by its
developers, FFLL was designed to be fast in performing fuzzy calculations. FFLL makes
use of look-up tables thus trading memory for some significant gain in speed. All details
on FFLL are available on Site (2002). Only the application programmer interface (API)
functions used in this project will be described as well as the FCL files. The API header
file FFLLAPI . h contains the prototypes of all the functions that are used by a user
application. To compile, build, and execute an application that makes use of FFLL, the
API header file along with the FFLLAPI . LIB and FFLLAPI . DLL are the only files
needed from the FFLL package that can be downloaded from Site (2002).

We will now discuss how the API functions are used in a program. First a model is
created using ffll_new_meodel and an int value that refers to the created model is
returned. Then the FCL file (file that contains all the description of the fuzzy logic
module, such as input and output membership functions as well as the defuzzification
technique and the fuzzy inference functions) is loaded into the model using
ffll_load_fcl_file. Then a child object of the model is created using ffll_new_child.
More than one child can be created for the same model, in the case that two or more
exactly identical fuzzy inference systems are used for the same application. The child
object will be used to implement the fuzzy module, and thus takes the inputs and returns

the outputs of the fuzzy outputs. All these functions are for initialization and are used
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only once for each fuzzy logic module. Function ffll_set_value takes as arguments the
feedback inputs as well as the child object number returned when ffll_new_child was
used. After setting the inputs, ffll_get_output is used to return the outputs. These two
functions will be used in a sequence of two all throughout program execution as
specified by the user. The usage of these functions to implement the fuzzy logic path

tracker will be presented in the next subsection.

The three FCL files corresponding to the three fuzzy modules are available in Appendix
2. An FCL file is a standard used for fuzzy logic industrial applications, each with its
own application interface. FFLL is actually an interface for two FCL files for a certain
control applications. The first keyword in an FCL file is FUNCTION BLOCK, and a
name of the FUNCTION BLOCK can be specified. Its delimiter is the end
FUNCTION_BLOCK at the end of the file. The VAR INPUT and VAR _OUTPUT are
used to indicate the list of inputs and outputs respectively. Both must end with the
END VAR indicator. FUZZYFY followed by the name of the variable specified in
VAR INPUT or VAR _OUTPUT is used to specify the membership functions for each of

the inputs and outputs.

The member functions are specified as a set of discrete points corresponding to points on
the actual continuous curve using the TERM keyword. The defuzzification method and
the interpretation of the AND of membership functions are indicated after DEFUZZIFY
followed by AND and METHOD. And finally the fuzzy inference rules are listed after
RULEBLOCK. Special attention to the format of the FCL file should be made for all
terms to be put correctly. Comments are inserted between (* and *) characters and are
disregarded by the FCL interface. The three FCL files corresponding to each of the

fuzzy logic modules used in the path tracker application are available in Appendix 2.
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5.2.3.2 C++ Implementation

For the purpose of modularity, all the inner functionalities of the path tracking
controllers have been implemented outside the ArAction method of Appendix 1. The
inner functionalities have been implemented in the PathTracker. All what needs to be
done ArAction is to create a PathTracker object and call the PathTracker ::
FLPathTrackerC function along with all inputs required to calculate the feed back
inputs to the fuzzy models, as well as PathTracker :: setTrajectory in order to load the
waypoints into the PathTracker object. The initialization and creation of the FFLL
models and their corresponding childs, as well as the input and output setting and

recuperation on each of the child objects are implemented in the PathTracker method.

The PathTracker :: currentState variable is a pointer to the current nearest next
waypoint. In the constructor, it is initialized to the first waypoint of the trajectory.
PathTracker :: PathNodesList is the list of waypoints of the trajectory. The fuzzy
models and child objects are also created in the constructor using PathTracker ::
initializeFuzzyControllers. The type int variables corresponding to the models and
childs are member variables of PathTracker, and are used in PathTracker ::
initializeFuzzyControllers as well as in input and output extraction to refer to each of
the fuzzy child objects. PathTracker :: findCurrentState is used to find the
instantaneous next waypoint. PathTracker :: FLPathTrackerC is the function used as
the interface to obtain the output from a set of inputs. This function calculates all inputs
to the fuzzy modules and returns a pointer to the VelParameters structure containing
the translational and rotational velocities. The functions PathTracker::findCurvature,
PathTracker::velocityOutput, and PathTracker::omegaOutput make use of the
FFLL-API functions ffll_set_value and ffll_get_output to send input and get the output
from the FFLL child objects.
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5.2.4 Simulation and Experimental Results:

The path tracking controller has been simulated on the SRI simulator with the
parameters of the P3-AT robot as well as on the robot itself. The controller corrects the
path of the robot relying on the position returned to it by the encoders and therefore
some error due to localization will be unavoidable. To evaluate the performance of the
controller, tests were conducted on trajectories having some sharp turns and some others
that are smoother. The first such one is shown in Figure 48, a straight line path
discretized at 25cm intervals with the robot initially at a distance of 1m from the path.
The robot joins the path and traverses at the proximity of the node points with an error
inferior to lcm when it reaches the straight line. This very small error is due to the

dynamics of the system.
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Figure 48 Straight line with the robot 1meter away



88

Figure 49 shows the performance on a sine wave trajectory with a period of two meters
discretized at about 25cm. The initial error of about 15cm is due to the initial orientation
of the robot. When the robot is on track the error was less than 2cm. The desired and

actual trajectories almost coincide with each other.

Y (m)

14

Error (cm)

50

T (sec)

Figure 49 Sine wave trajectory at 25 cm discretization

Figure 50 shows the results of simulations performed on a general trajectory with some
very sharp turns in an area of 10mx10m. The way points are interspaced at more than
one meter apart. The error was mostly inferior to 30cm. The sharp discontinuities in the

errors are due to the fact that the errors are measured by the distance fron the line joining
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two waypoints to the actual position. This is due to the fact that there is no continuous

reference trajectory. The results are acceptable for most mobile robots applications.
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Figure 50 General trajectory

The behavioral fuzzy logic path tracking controller that we have implemented proved to
be very reliable and robust in terms of precision and speed. Despite the fact that fuzzy
logic control is not based on a precise mathematical model, it is robust and flexible. A
lower level controller can be implemented independent from the path tracking problem

or other behaviors that can be independently integrated.
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5.3  Lyapunov Based Control Law Approach to the Problem of Path Tracking

In this section, a more theoretical approach based on a Lyapunov function was used to
implement a path tracking controller. The approach used is the same as in Kanayama,
Kimura et al. (1990) and is based on the error model of the kinematic model.

5.3.1 The Control Technique

Knowing that the kinematical model of a differentially steered wheeled mobile robot in

Cartesian coordinates is given by the following equation:

x cos@ O

7 |=|sing o[v} (5.4)
. w

6l | o 1

The objective is to track a reference robot. The relation between the velocities of the
reference robot V, and w,, and its posture by x,, y,, and 8, is as follows:

X cosd, 0

7. |=| sing, o{“} (5.5)
. w
6 0 1

r
r

Then, three error variables ey, e,, and ey that correspond to the instantaneous errors in

posture variables are chosen as:

e, cosd sinfd Ofx, —x
e,|=|—sinf cosé Ofy, ~y (5.6)
e, 0 0 1}6,-6

These errors would be the errors in posture with respect to the local frame of reference

of the robot. The transformation matrix converts global coordinates to local coordinates.
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Calculation of the derivatives of the errors using the constraint %, siné, = y, cos@, and

with 8, = e, =8, — 0 gives (Kanayama, Kimura et al., 1990):
A y
x,(f)

P,®)=y,®
6,()

- x(t)
P(r)=| y(t)
@)

\J

Figure 51 Current and reference postures and posture errors

¢, =(x, —x)cos@+(p, — y)sind —(x, —x)4, sin@ +(y, — y)hcosd
=e,w-v+x,c080+y,sind

=e0-Vv+X, cos(8, —8,)+ y,sin(6, -6,)

=e,0-v+ %,(cos8, cos8, +sind, sinh, )+ y,(sind, cos@, —cosh, sind, ) 7
=e,0-v+ (%, cos@, + 3, sin@, )cosh, + (%, sin@, + y, cosh, )siné,

=e,0—Vv+v,cosb,

and
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é, = (%, - %)sin@ +(y, - y)cos@ - (x, ~ x)g. cos@ +(y, — y)9sin6
=—e ®+xsinf + ycosf —x,sinf + y, cosd
=—e.w+x,sin(@, —6,)+y, cos(d, -6,)

. . ) . (5.8

=—e,w+%,(sin@, cosf, —cos @, sind, )+ y,(cosf, cosd, +siné, sinf,)

=—e o+ (%, cosf, +y,sind,)sind, +(x, sinf, + y, cosé, JcosH,

=-—e w+v,sind,

Which we put in matrix format:
é, -1 e, v, cose,
é,|=| 0 [v+|-e, @+ v,sine, (5.9)
€, 0 -1 o,

From equation (5.9) above, the aim of a control law is to make the errors converge to
zero. The proposed velocity inputs vrand ws of the control law (Kanayama, Kimura et
al,. 1990) are:

v, =v cose,+K e
f (2]

’ SR (5.10)
o, =w,+V Ke +K,sine,

By substituting vyand w, in the errors of equation (5.9), we get:

é, ey(a), +v,(Kyey +K, sinea))— K.e,
¢, |=|-e.l@ +v.(K e, +K,sine, )+v, sine, (5.11)
€, -v,\K,e, +K,sine,

The Lyapunov energy function ¥} is chosen as such:

1-cose
2 ]
Y)+ K

v, =l(ef +e
2 Y

(5.12)
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If the proposed control law was used, there will be a stable equilibrium at ¢ =0 if v,>0,

e

X

where e = e,

€s

By deriving ¥; with respect to time, we get:

V,=eé, +eé, +[— (a), +v,(Kyye +K, sinae))xe +v, sinGe]ey +

v, (K, . + K, sin6, Jsing, /K, =~k 2 - Ko ¢

xXTx

<0 (5.13)

y

Given that X, K,, and Ky are all positive constants, the above inequality would be

satisfied and the system with the control law would be stable.

Furthermore, if v, and w, are continuous and bounded, then € =0 is uniformly
asymptotically stable. The error system is linearized around e =0, to get a linearized
system of the form ¢ = 4z .

The nonlinear system is of the form:

£,@)
e=|f,@)|=fe) (5.14)
£,@)

To linearize the system using the Taylor equation for derivatives, the matrix 4 would be

calculated as follows:

o o 9.
Oe, Oe, Oe,
¥ -K 1) 0
of, 0 0 * ¢
A=a—]: = 5 9 9, =| -, 0 v, (5.15)
Oel,., |Oe, Oe, Oe, 0 —vK —vEK
¥ o U Ty
Oe, Oe, Oe, -
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The eigenvalues of 4 can be obtained by the following equation:

det(4-AI)=0 (5.16)

which gives an equation of the form:

al+a, > +ai+a, =0 (5.17)

where

a, =1
a, =K, +v.K,
a=KKy, +v,'K, +o, (5-18)

2 2
a,=K.Kv +0vK,

Since all terms are positive, the Routh-Hurwitz criterion can be used to determine that

all the eigenvalues A are negative, and thus the system is asymptotically stable at e =0.
5.3.2 Generating the Reference Trajectory:

Given the Cartesian coordinates of the waypoints of a trajectory planned offline, it is
required to find the linear and angular velocity, and the posture (position and
orientation) as a function of time so that the robot can pass through the waypoints in a
certain predefined time # starting from ¢, at the first waypoint.

Given N waypoints, the time to pass from a waypoint i to the next waypoint i+/, is

calculated by the following:

At = ka6, 2 G (5.19)
Vmax Vmax

where d; is the distance between waypoints i and i+1, A8+, is the change in direction at
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waypoint i+, K is a constant factor, and V. the maximum linear velocity the robot

can attain.

The higher the Af;.;, the more time will be allotted to make a turn and change the
direction. If A8;+;=0, then minimum time is allowed so that the robot rolls at V.. All
At; are then rounded to the nearest 100 milliseconds, knowing that the robot sample time

is 100 milliseconds. To obtain the time from ¢, till waypoint i/, we sum all the At before i,
t, = Z At (5.20)
j=1

We use a cubic spline to interpolate the coordinate x(t) with respect to t, and y(t) with
respect to t, using the two sets { #y,...t; xo,...xr} and {fo,...ts; xo, ...x7}respectively. What

we get is a matrix of coefficients for each of the two sets:

ey a; 4, 4, by b, b, by
by by by

Ay Ay1 vy An3 |y byo byi byy bys Nxd
and thus we have:

a, +ayt+apt’ +ast’ et
Ay +ayt +ant’ +ayt’ telt,n]

x(t) = (5.21)

2 3
Ao + Ayt +ay,t? +ayt,tefty .ty ]

and
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by, + byt +b,t? +b,t ety 1]

2 3
by + byt +byt® + byt e[t 1]

y(t) = (5.22)

2 3
Buo + byt +by,t? +byt t ety t,]

Therefore x(¢) and y(t) are independent, and it is simple to calculate their derivatives

x(¢) and y(t) respectively.

ay, +2a,t +3a,t? ety ]
ay +2a,t +3a,t’t e [tl ,tz[

i(t) = (5.23)
ay, +2a,,t +3a,,t t ety oty ]
and
by, +b,t +byt? ety ]
) b, +bt+b,.t telt,t
y(t)= 21 22 23 [1 2[ (5.24)

by +byst +byst €ty oty ]

The linear velocity V(#) and the orientation angle 6(#) can then be calculated as follows:
vy =2 @) + 352 ®) (5.25)

and
0(t) = ATAN2(y(t),x(t)) (5.26)

where atan2 refers to the inverse tangent that takes into account the signs of the sin and
cos so as to determine a unique angle. And finally the angular velocity w(?) is calculated

simply by deriving 6(t) with respect to ¢, and we get:
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"= 1 JOI(E) = 5(2) y(t)
1+ (y(t)/ %)) X2 (t)

(5.27)

There is a kinematics constraint on the radius of curvature. The robot can turn around
itself with a zero radius of curvature; otherwise its radius of curvature must be greater
than a certain R,,;,. The instantaneous radius of curvature is:

V)

R(H) = o0 (5.28)

If R is smaller than R,,,, we can limit w(?) to V(¢)/Run SO as to respect this kinematics

constraint. Given x(?), y(t), 6(t), V(t), and w(t), the reference trajectory is fully defined.

5.3.3 Real Time Implementation

To implement the controller described in this section, the same logic for implementing
the fuzzy controller in the previous section was used, but without using FFLL. Instead, a
vector containing the coefficients of the trajectory intervals returned by the cSpline
function as well as the controller gains are initialized. In this technique, the time factor is
used since the robot has to follow a reference trajectory. The reference position,
velocities, and accelerations are calculated using the coefficients stored and the
reference time. The function c¢Spline is defined in Spline.h. The member function that
returns the desired velocities is PathTracker::PathTrackerC. The header files and

their corresponding source files are available in Appendix 2.

5.3.4 Simulation Results

The approach has been implemented and tested on the P3-AT in real time. The gains of
the control law were chosen according to the recommendations of Kanayama, Kimura et
al. (1990), K,=2.5, K,=0.75, and Ky=1.41. The robot successfully followed its path and

reached its target destination. The testing results for three different cases are displayed in
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Figures 52 to 57. In Figure 52 the reference trajectory is a unit step function with the
initial position of the robot at the origin and the initial heading is horizontal at zero
degrees. The response to a sharp discontinuous change in reference position is slower
than the response of the fuzzy logic controller. The steady state errors in distance are
inferior to 20 cm. In Figure 53 the reference and actual velocities are displayed. To note
is the large errors in velocities at the beginning when the robot is converging to the

trajectory.

In the case of a sine wave trajectory with the robot initially at the origin and heading
horizontally at zero degrees (Figure 54), the error is also inferior to 20 cm compared to 3
cm of error for the fuzzy logic controller. We note however the fast response to the
discontinuous change in heading at the beginning when compared to the fuzzy logic

controller. The velocities errors (Figure 55) are comparable to those of the step response.

Finally Figures 56 and 57 display the results for a general trajectory with some sharp

turns. The error in distance is always inferior to 20 cm.

Reference Trajectory Actual Trajectory Emor in X (m)
T

E 06

0 5 0 15 20 0 5 10 15 20 o 10 20 30 40
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time (secs) time (secs)

Figure 52 Position and position errors
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54 Conclusion

The fuzzy logic controller for path following described in this chapter proved to be
highly reliable and robust. It has several advantages over the classical Lyapunov based
approach for trajectory following. The fuzzy controller controls robot motion along the
discrete waypoints of an optimal path planned by the dynamic programming algorithm
of Chapter 4. Position control is performed successively along the waypoints till the

desired position that corresponds to the last waypoint on the path is reached.

In the Lyapunov derived approach, a continuous reference trajectory that connects the
waypoints of the optimal path is calculated. The reference trajectory is a time dependent
variable, and reference position, heading, and velocities are calculated at e\;ery time
instant of the trajectory. The Lyapunov based controller is thus used to regulate three
variables in addition to position. This imposes several constraints that result in a lower

performance in position control relative to the fuzzy controller.

If the purpose of the navigation is to reach a desired destination along the optimal path
without imposing any time constraints, the fuzzy controller is way more efficient and
robust. The fuzzy inference rules are set to allow maximum speed while respecting
navigation safety. If the robot is required to follow an exact trajectory that is function of
time, the Lyapunov derived controller can be satisfactorily used. The performance of the
Lyapunov based approach in real time is not as outstanding as the fuzzy position control
approach due to the high friction of the wheels of the P3AT designed for rough terrain
navigation being used in an indoor test environment. This becomes more evident in real-
time implementation when controlling several variables. Furthermore, it is more
recommended to control robot motion at the dynamic level if higher accuracy and
exactitude are desired. The P3AT dynamics controls are not directly accessible. In the
following chapter, the curvature velocity method for obstacle avoidance will be
described.



CHAPTER 6

REAL TIME OBSTACLE AVOIDANCE

6.1 Introduction

Obstacle avoidance in real time is one of the crucial aspects in mobile robot navigation.
The technique implemented in this project is the curvature velocity method (CVM)
(Simmons, 1996). This technique is widely mentioned in the literature and is said to be
reliable and computationally efficient. In this chapter, the CVM is described, and the
modifications done to adapt it so that it can be implemented using sonar perception

instead of a laser range finder are pointed out.

6.2  Obstacle Representation in Real Time

Since the curvature velocity method for obstacle avoidance (Simmons, 1996) deals
mainly with curvatures, it is convenient that obstacles be modeled as circles represented
by the coordinates of their center with respect to the local frame of reference (with the X
and Y axes of the local frame introduced in Chapter 3 interchanged to stay in line with

the article notation) and their radius (Figure 58).

The positions of the centers of obstacles are determined using a simple geometric
interpretation of the readings of the two sonar arrays. The obstacles are enlarged by
adding the radius » of the robot to the radius of the obstacles so as to accommodate for
the width of the robot, since the motion of the robot is represented only by the center of
the robot. The sonar array elements are fixed to the robot and their readings can only be
interpreted to be in their corresponding discrete directions, unlike the laser range finder

that scans in a plane and can achieve highly accurate models of obstacles surrounding
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the robot. Since the obstacles cannot be accurately determined, all obstacles will be
assumed to have a radius of half a meter. In the case of a wall, when the robot gets close
enough, the obstacles would be overlapping and the modifications to the original

curvature velocity method would take this effect into account (more on this later).

O

O O

Figure 58 Robot local frame of reference and obstacles

Figure 59 Obstacle representation in real time

If a sonar element returns a reading that is inferior to three meters, the obstacle would be

assumed to be centered on the line in the direction of the sonar reading at a distance R
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away from the presumed point of impact of the sonar wave with the obstacle
(Figure 59).

If a reading superior to three meters is returned by a sonar element, no obstacle will be
associated with the reading. The significance of representing obstacles will be clearer as

the curvature-velocity method is discussed in detail.

6.3  The Curvature-Velocity Method

The curvature-velocity method is an obstacle avoidance technique that optimizes a linear
objective function in the velocity space of the robot with respect to the requirements and
specifications mentioned in Simmons, (1996). The velocity space for a wheeled mobile
robot (WMR) such as the P3-AT operating on a flat planar surface consists of the
translational and rotational velocities. As indicated in the kinematic modeling in Chapter
3, a differentially driven WMR moves along a circle whose radius is the ratio of the
translational velocity (TV) and the rotational velocity (RV) (Radius =TV / RV ') in case
TV and RV are constant. The curvature is defined to be the inverse of the radius. Each

point in the velocity space maps to a curvature in the Cartesian space (Figure 60).

RV, Y\

T.V. X

Figure 60 A point in velocity space maps to a curvature in Cartesian space
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A positive curvature corresponds to clockwise motion of the robot relative to the global
frame of reference. Furthermore, the set of TV and RV forming a line emanating from
the origin (origin excluded) of the velocity space corresponds to the same curvature in

Cartesian space due to the fact that the curvature is the ratio of TV to RV.

The distance d, that the robot would travel before hitting an obstacle along a curvature ¢
can be calculated using simple geometrical formulas. First it is to be noted from the
geometry of the motion (Figure 61) that the center of the arc d, lies on the abscissa of the

local frame of reference. The angle @ of the arc is obtained and d. can be calculated

using:
|,
d_(c,0bs) = {| 1 /yc ec :: ) (6.2)
Y

Figure 61 Calculation of travel distance before collision

The distance function for an obstacle obs in velocity space is defined as:
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d_ (rv/tv,obs),tv 0

6.3
o0, otherwise (63)

d,(tv,rv,0bs) = {

And the cumulative distance for a set of obstacles OBS affected by a (v, rv) pair is given
by:
D, (tv,rv,0BS) = min(L,min ,,_,c d, (tv,7v, 0bs)) (6.4)

where L is a limiting distance (three meters as in Simmons (1996)). The distances Dy,
constitute a set of constraints in the velocity space. Another set of constraints is

introduced by the translational and rotational velocity and acceleration limits:

v

vt

VSV .

rvsrv,, (6.5)
V21V, = (g X Tt

VSV gy + (Pl X Tt

wt,, +@ta, xT,..)

where Womax, Vminy Pmax, and PV, correspond to the minimum and maximum attainable
translational and rotational velocities, rv.,» and v, are the instantaneous rotational and
translational velocities respectively, rams and fa,q. are the maximum rotational and
translational accelerations respectively, and T, is the sampling time which
corresponds to the cycle time of the robot (see Chapter 2 on actions). An objective
function f{tv,rv) that takes into consideration the different performance criteria is

optimized while taking the constraints into consideration.

f(@v,rv) = a,speed(tv) + a,dist(tv,rv) + a,head (rv)
speed(tv) =tv/tv,_,,

dist(tv,rv) = D, (tv,rv,OBS)/ L

head(rv)=1- ’0g -rvxT,

(6.6)

¥ 3
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The speed variable favors higher translational speeds, the dist variable favors longer
travel along the curvature defined by #v and rv without colliding with obstacles and is
thus dependent on Dy, and finally the head variable which favors moving towards the
goal position, with 6, being the angle of the goal heading measured in the local frame of
reference and 7 being a time constant (taken as one second) and is used to determine the
heading of the robot if it spins at v for T, seconds. Note that all the terms of the
objective function are normalized to be between zero and one. The constant coefficients
(a1, a2, and a3) are chosen to have a sum of one. The optimal (¢v, rv) pair is the pair that
maximizes f in the allowable space. To find the optimal pair of (#v, rv) in the space
limited by the constraints, some approximation technique such as simulated annealing

can be used to determine the maximum of f.

6.4  Modifications for Real Time Implementation

The problem with the above explained approach is that it is not computationally efficient
in real time. This problem is addressed by approximating D, with a finite set of intervals
with each interval being assigned a constant distance to an obstacle. The distance d,(c,
obs) will be assumed constant between cp;, and Cpgy, the minimum and maximum

curvatures at the boundaries of the obstacle interval (Figure 62).

Figure 62 Curvatures at the boundaries of an obstacle
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Given the x,5s and y,s;, the coordinates of the center of an obstacle, ¢y, and cpmgx can be

determined by:

2 2 2
Cmin =2 (Xobs -robs )/(Xobs +YObs -robs )

2 2 2
cmax =2 (xobs +r0bs )/(Xobs +y0bs _robs )

6.7)

The circles formed by cin and g, are tangent to the circle representing the obstacle and

intersect with it at (Xmin, Ymin) 80d (Xmax, Vmax) respectively, which are determined as

follows:

Xpmin = 1/€ iy +abS(1/C i )o( X g =1/€ i )/ (-1, +abs(1/c ;. )
Y min =abs(1/cmin)'YObs /('robs +abs(1/cmin ))

6.8
X pax = 1/C +abs(1/c, . ). (X s = 1/€ 0, )/ (1, +abs(l/c,, ) (6.8)
Yomax =abs(17€ .. ) .Y s / (1, +abs(l/c,,. )
The distance d, can be calculated using equation (6.8) above and d, is given by:
J - {min(dc (¢, »0DS), arc (Crag»0D8)), € SHV/tVEcC,, 69)
o0, ,otherwise

Dyimir can be determined through the use of the min-union of the intersection between

obstacle intervals as will be explained in the next subsection.

6.4.1 Modification of Curvature Intervals

The curvature intervals are described by a curvature interval data structure (<c;c;> ,
d;2) with ¢, <c, based on some rules. The distance d; ; is the distance associated with
the interval <cj, c,>. After the first curvature interval corresponding to the first obstacle
is determined, every new interval that will be added will result in the modification of
already available intervals or in the new interval being modified or in both

consequences. Suppose a new curvature interval (<Cmin, Cmaxr>, d;) 1S to be added and
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(<cy, ¢2>, d; 2 ) is an already existing interval. In the case of overlapping intervals, the
intervals are divided such that there is no intersection between any two intervals. The

modifications are applied according the following set of rules:

o If the intervals <cj, ¢;> and <Cmin, Cmax> are disjoint then no
modifications to neither intervals is done.

o If <Cmin Cmax> contains <cj, ¢;>, ¢, <c, and c,<c then dl,2 is

max ’
replaced by the minimum between d; ; and d,.

o If <Cmin, Cmax> Is contained by <c,, ¢;> (c¢,<c,, and c_., <c,) and
di<d,,, , then <cjc;> is divided into three intervals: (<cj, Cmin>, di2),
(<CminCmax>, Ay), and (<Cmax,c2>, d}2). If di>d) 2 then <cpin, Cmax> Will be
eliminated and not compared to the other existing intervals.

o If<cy, c;> and <cCpin, Cmax> overlap with ¢, <c,,. , then the two intervals
are modified as follows:

o Ifd; < d;, then <c;c;> is replaced by (<c;, Cmin>, d12) and
<Cmin,Cmax> IS NOt changed.

o Ifd;;<d; then <cpuimCmax> is replaced by (<cj, Cmax>, di3) and
<cj,¢2> is not changed.

o If<cy, c2> and <Cmin, Cmax> Overlap with c_,, <c,, then the two intervals
are modified as follows:

o Ifd; < d;j then <cj, c;> is replaced by (<Cmar, ¢2>, di3) and
<Cmin,Cmax>> 1S nOt changed.

o Ifd;; < d; then <Cumin, Cmax> is replaced by (<c;, Cmax>, dy) and
<c},¢2> is not changed.

The interval <cpim, Cmax> is compared to all the existing intervals, and this is done to all
obstacles. At the end, the distances of each of the intervals would correspond to the Djjp;
distance. The initial curvature is always taken to be (<-00,00>,L), and other intervals are
added afterwards. The significance of this approach and its efficiency in calculating the

optimal (#v, rv) pair will be clearer later on.

In the example of Figure 63, the use of these rules is illustrated. The initial curvature is
(<-0,00>,L). Starting with the first obstacle interval <c,,c;>, d,y; corresponds to the

minimum between d; and d, corresponding to c; and c; respectively, which is d; in this
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case. The second rule applies in this case when comparing (<czc;>, d;) with (<-
,00>,L). So we will now have three intervals: (<-o0,c;>,L), (<cz,¢/>, d;), and (<cj,00>,L).
The interval <c4c3> is added with d; taken as d,43 (using min(ds,ds)). The intervals
<cyc> and <cy,c3> overlap, having d,q 3<d,>; along with c3<c,, thus the conditions of
the first criterion of the last rule is satisfied. Hence (<c4c3> ,d3) will not be modified

while interval (<c,,c;>, d;) would be replaced by (<cs,c,>, d)).

The interval <cg,c5> is to be added. Compared to <c3,c;> and to <c4c3>, it is found to be
disjoint. The final set of intervals would be (<-0,c6>,L), (<cs,c5>, ds), (<cs5,cs>, L),

(<cs,c, d3), (<c3,c>, dp) and (<c;,00>,L).

Vi<

Figure 63 Curvature intervals and piecewise constant approximation of Dy
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6.4.2 Optimization of the Objective Function

After all the curvature intervals are obtained, the optimal pair (tv,rv) lies in the region of
the intervals bounded by the velocity and acceleration constraints. Since the objective
function increases linearly with #v, the optimal (#v,7v) of the objective function lies on
the boundaries drawn by the constraints. So the objective function will only be
calculated at the vertices on the upper boundaries (Figure 63) of each of the curvature
intervals. The objective function is also calculated at the vertex that corresponds to
moving directly towards the goal position, which lies at 7v=0,/T,. Then the (tv,rv) pair
that yields the maximum value of the objective function would be the optimal set of

commands to control the robot motion.

The objective and its variables are as shown below:

f(tv,rv) = a,speed(tv) + a, dist(tv,rv) + a;head (rv)
speed(tv) =tv/tv,,,

dist(tv,rv) = D, (tv,rv,OBS)/ L

head(rv) =1- 103 -rvxT,

(6.10)

¥ 3

6.5 Real Time Implementation

The implementation in real time was done using modular blocks so as to facilitate
debugging and testing. Sonar range acquisition was done by using the member function
ArRobot::getSonarRange ( ) in ActionGo::fire( ) in the ‘main.cpp’ file. The
calculation of obstacle positions and the establishment of a list of obstacles are
implemented in ‘SonarCalc.h’. The list of obstacles is passed to a CurvVel object. The
CurvVel class contains member functions to calculate the curvature velocity intervals
and determine the optimal solution. There was a problem using the standard libraries in
respecting the 100ms cycle time of the robot control system; however the calculation

time has been reduced to an acceptable level through a special use of pointers.
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6.6 Conclusion

In this chapter, the curvature velocity method (CVM) for obstacle avoidance was
described and adapted for implementation in real time. This method optimizes an
objective function in the curvature velocity space with velocity and acceleration
constraints. The CVM was coded and tested in real time. The approach however was not
fully tested and debugged due to time limitations. The code is functional with a
probability close to 60% of the cases when the robot passes next to an obstacle. In the
rest of the cases the robot hits the obstacle due to unidentified bugs. In the next chapter a
navigation strategy is proposed to combine all three navigation aspects developed

throughout this project.



CHAPTER 7

PROPOSED NAVIGATION STRATEGY

7.1 Introduction

To obtain a fully autonomous navigation system, path planning, path tracking, and
obstacle avoidance need to be integrated into a navigation strategy that coordinates and
synchronizes them. In this chapter, a hybrid control architecture in the form of a state

machine is proposed.

7.2  Navigation Strategy

The purpose of a navigation strategy is to coordinate the different behaviors that execute
the desired task. The desired task in this project is to displace the robot from its current
position to another position specified by the user, while avoiding obstacles that might
get in its way and at the least possible calculation cost. For this end, the navigation
controller constantly monitors the environment and the robot posture and activates the
action that best leads to the execution of the desired task. At first, if the environment is
known then the dynamic programming algorithm discussed in Chapter 4 can be used to
find an optimal trajectory. Otherwise, the robot must be capable of finding its way to the
goal position while avoiding obstacles and making a model of the environment for future

use.

As long as the robot is connected to its client, the sonar signals (exteroceptive sensors)
will continuously be read and used to update the model of the environment in the
proximity of the robot. The position and velocities (proprioceptive sensors) are also
continuously checked. In case the robot was in navigation mode, the information coming

from the proprioceptive and exteroceptive sensors is used to switch command to the
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appropriate mode of action. The four states of the finite state machine are used to

represent four modes of action. The modes are:

Stop mode: The robot is stopped (both translational and rotational velocities are
set to zero).

Path Planning mode: Command switches to this mode only after being at stop

mode, since it might take a few seconds to plan a new trajectory, and it is safer if
the robot is stationary when a new trajectory is being planned. In this project the
dynamic programming algorithm of Chapter 4 is used in the path planning mode.

Path Tracking Mode: In this mode, the robot tracks the trajectory that was

planned when the robot was in the path planning mode.

Obstacle Avoidance mode: In this mode, the curvature velocity method discussed

in Chapter 6 is activated. This method integrates both the seek goal and avoid

obstacle behaviors.

The model of the environment is represented by the cost matrix (see Chapter 4), and will
be updated based on sonar readings and robot position and posture with respect to the
environment. Since the robot will be traveling in a two dimensional environment, the
obstacles would be modeled as in Chapter 6, and the matrix elements included in the

circle used to represent the obstacle would be assigned very high values. (Figure 64).
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Figure 64 Matrix elements eclipsed by obstacles
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The robot at the beginning is usually in the stop mode waiting for commands. When the
user specifies a destination, the application program checks if a model of the
environment is available and if the position of the robot with respect to the model is
known. Both conditions are satisfied, command switches to the path planning mode. The
optimal path is determined, and command switches to the path tracking mode, and
remains so until an obstacle lying on one of the next three waypoints on the path is

detected or the destination was reached.

If an obstacle is detected, command switches to the obstacle avoidance mode, and the
intermediate goal would be set to the waypoint where no obstacle is present. When the
intermediate goal position is reached and no obstacle stands in the way, command is
switched back to trajectory tracking mode. Throughout the navigation process, multiple

switches can occur between trajectory tracking mode and obstacle avoidance.

The application program keeps track of the trajectory and constantly checks if the robot
passes through the same region twice to check if the robot is stuck in a local minimum.
In such a case, the robot would be put in the stop mode, and then in trajectory planning
mode to plan a new optimal path and then switches to trajectory tracking mode. This
process will continue until the robot reaches goal position. In case the goal position

cannot be reached, the robot is put in stop mode and will wait for user commands.
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Figure 65 Obstacle on the path of the robot

The state machine diagram in Figure 66 summarizes the whole process of the navigation
strategy. The implementation of the navigation strategy as a state machine simplifies the

navigation procedure and is very efficient and practical.

If no model of the environment was available at the beginning, the robot is initially in
the stop mode and would then switch to the obstacle avoidance mode. As the robot starts

navigating, a model of the environment would be established.
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Figure 66 Navigation strategy state machine

The application program constantly keeps checking for a local minimum, and in case
one is detected, the robot is put in stop mode and a trajectory is planned using the
partially available model of the environment. All the regions not yet modeled will be
assumed obstacle free. The robot would then switch to the trajectory tracking mode, and

the process continues.
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73 Conclusion

The navigation strategy proposed in this chapter works supposedly well, but has some
limitations due to localization and positioning errors due to slippage. This error increases
as the robot moves and the model of the environment would become increasingly
erroneous. A global positioning system (GPS) device and a compass would solve the

problem of localization.



CONCLUSION

The work presented in this research project is a solid foundation for a fully autonomous
navigation system for a wheeled mobile robot. The navigation system that was proposed
is flexible and can be further expanded to include more functionalities and to integrate
the usage of additional sensors and instruments as well as additional computational
resources. The technical details have been fully documented taking into consideration
the possibility of further development and research. Three functionalities crucial to an
autonomous navigation system for a wheeled mobile robot have been developed and
implemented in real time on the P3-AT mobile robot. The localization and sonar
perception routines available with the ARIA interface have been used without any
modifications. The main focus of this project was on path planning, path tracking, and
obstacle avoidance implemented using an application program that controls the robot
and is run on a laptop computer that is connected to the robot through a wireless serial

communication link.

The iterative dynamic programming algorithm for path planning is a sound contribution
in the field of optimization algorithmics. It has some interesting advantages over the
widely used A* search algorithm. The dynamic programming algorithm determines the
optimal solutions for all the nodes of the graph towards the goal node, which is
advantageous in a multi-robot environment. This is also advantageous if the robot
deviates from its original path due to a real time dynamic obstacle, since there would be
no need to plan a new optimal path from the current position in real time. The dynamic
programming algorithm can be executed on several computational resources in parallel
while the A* algorithm can only be executed sequentially. The dynamic programming
algorithm is generic and its performance is not dependent on the choice of any heuristic
function as is the case with the A* algorithm. Its only disadvantage with respect to the
A* is in the computation time which is significantly much higher if implemented

sequentially on a single computational unit. A more exhaustive study can be done to
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assess the execution of the dynamic programming algorithm on parallel computational

resources.

The environment is represented by a graph whose nodes represent some discrete
positions sampled at regular intervals. The nodes are linked by directional arrows
associated with a cost of traversability. If the robot operates in a 2-D indoor
environment, the cost would be a function of the distance between the positions
represented by two nodes. If the environment is a rugged 3D terrain, a methodology is
needed to assess the traversability of the terrain and calculate the cost accordingly. The
cost would depend on terrain characteristics such as slopes and terrain roughness in
addition to distance. The cost of traveling between two nodes needs not be the same in
both directions. To minimize calculations, nodes pertaining to positions inside obstacles
or unsafe regions are given a very high cost of traversability and are eliminated using a

recursive function similar to the branch and bound technique.

The fuzzy logic controller for path following was designed based on an analogy with a
human driver. The path is a discrete set of waypoints in the form of a linked list whose
first and last elements are the initial and destination positions respectively. As is usually
the case, it is the optimal path obtained by using the iterative dynamic programming
technique. The controller drives the robot at the proximity of those discrete waypoints
without requiring a continuous reference trajectory. This characteristic enhances the
reliability and the robustness when used for real life situations. The results of real time

implementation proved this controller to have a high performance.

A classical controller for trajectory following derived from a Lyapunov function of
errors in position and heading and their derivatives was implemented and tested in real
time. The reference trajectory is continuous and is determined by interpolating the
discrete set of waypoints by a cubic spline. The reference trajectory is a function of time.

Reference velocities and heading are derived from the reference trajectory. The
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controller is used to regulate the robot position as well as velocities and heading. With

this approach, the robot would be actually following a virtual reference robot.

Although there is no solid basis to compare the two approaches analytically, the fuzzy
controller has proved to be more reliable and robust. It can be made to follow a
trajectory that is more precise by inserting intermediate waypoints between the
waypoints. The performance of the classical controller varies if different reference
trajectories are used. The gains that yield optimal performance with a reference
trajectory that is a straight line are not necessarily the same to have an optimal
performance of a sinus reference trajectory. If the reference path changes in real time,
the fuzzy controller would not require cubic splines to interpolate the waypoints to
obtain a continuous reference trajectory as is the case with the classical controller. The
classical controller can be effectively used if an application requires that the robot tracks

a trajectory with a predetermined timing.

The curvature velocity method (CVM) for obstacle avoidance is valid theoretically and
has been implemented in real time. This approach has the advantage that the robot can
be used to explore an unknown environment. Due to time limitations, the program could
not be fully tested and debugged, but it works in almost 60% of the cases. Simpler

methods for obstacle avoidance can be more easily implemented nevertheless.

Several architectures have been developed in the literature to coordinate all aspects and
behaviors of navigation systems. For this project, a state machine with four modes

comparable to the hybrid architecture has been proposed to control the robot.



RECOMMENDATIONS

In this project, an autonomous navigation system was developed, partially implemented,
and tested on a flat surface indoor environment. While scanning through the mobile
robot navigation, a lot of inspiring ideas and suggestions for the development of
interesting applications and take maximum advantage of the P3-AT capabilities come to
mind. The P3-AT has the capability of being equipped with a multitude of sensors and

can be used in rough and unstructured terrain navigation outdoors.

For navigation on a rough terrain, the trajectory planning algorithm needs not to be
changed. However a technique is required to assess terrain and generate a cost matrix for

a 3D terrain. Refer to section 2 of Chapter 4 for more detail.

For trajectory following, it is recommended to add a terrain smoothness factor as input
to the fuzzy controller to take account of terrain irregularities. For this purpose a camera
and a 3D gyroscope can be used to make an assessment of the terrain while making use

of an image processing technique.

Furthermore, the navigation aspects developed throughout this project can be adapted
for some specific applications and tasks. For example a manipulator can be added on top
the robot to perform certain tasks, and this might require some modifications in path
planning, path tracking, and obstacle avoidance, as well as in the overall navigation

strategy.

The usage of a camera and a laser range finder can be useful for a precise modeling of
the environment as well as to track a certain object, and this is important for applications

in a multi-robot environment such as a soccer team or robot convoys.
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This is the driver program based on actionExample that is provided with the ARIA

package examples. This program is the driver and the interface between the robot

control techniques and the robot or simulator. The code of this program is often referred

to in the explanation of the ARIA interface in Chapter 2.

#include "Aria.h"
#include "CurvVel.h"
#include <fstream>
#include <iostream>
#include <list>
#include <vector>

using namespace std;

/*
*/

This demonstrates how to make actions and how to use them ..

class ActionGo : public ArAction

{

public:

// constructor, sets myMaxSpeed and myStopDistance

ActionGo (double maxSpeed, double stopDistance);

// destructor, its Jjust empty, we don't need to do anything
virtual ~ActionGo(void) {delete CurvVelPtr;}:;

// fire, this is what the resolver calls to figure out what this

action wants

virtual ArActionDesired *fire(ArActionDesired currentDesired);
// sets the robot pointer, also gets the sonar device
virtual void setRobot (ArRobot *robot);

protected:

// this is to hold the sonar device form the robot
ArRangeDevice *mySonar;

// what the action wants to do

ArActionDesired myDesired;

// initialize PathTracker;
//PathTracker* PathTrackerPtr;
CurvVel* CurvVelPtr;

// maximum speed

double myMaxSpeed;

// distance to stop at

double myStopDistance;

ArTime myTime;

short firstFire;
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/*

This is the constructor, note the use of constructor chaining with the
ArAction... also note how it uses setNextArgument, which makes it so
that

other things can see what parameters this action has, and set them.
It also initializes the classes variables.
*/
ActionGo: :ActionGo (double maxSpeed, double stopDistance)
ArAction ("Go")
{

mySonar = NULL;

myMaxSpeed = maxSpeed;

myStopDistance = stopDistance;

setNextArgument (ArArg ("maximum speed"”", &myMaxSpeed, "Maximum
speed to go."));

setNextArgument (ArArg ("stop distance", &myStopDistance, "Distance
at which to stop."));

CurvVelPtr = new CurvVel();

firstFire=1;

}
/*

Sets the myRobot pointer (all setRobot overloaded functions must do
this),
finds the sonar device from the robot, and if the sonar isn't there,
then it deactivates itself.
*/
void ActionGo::setRobot (ArRobot *robot)
{

myRobot = robot;

mySonar = myRobot->findRangeDevice ("sonar");

if (mySonar == NULL)

deactivate ()

/*

This fire is the whole point of the action.

*/

ArActionDesired *ActionGo::fire(ArActionDesired currentDesired)

{
double timeD;

if (firstFire==1) {
myTime.setToNow( );
firstFire=0;

}
timeD= (myTime.mSecSince( ));

// reset the actionDesired (must be done)
myDesired.reset ( );



// if the sonar is null we can't do anything, so deactivate
if (mySonar == NULL)
{
deactivate():;
return NULL;
}

double myCurrentHeading = myRobot -> getTh( )*pi/180 ;

VelParameters* myCurrentVel=new VelParameters;

myCurrentVel->velocity = ( myRobot -> getVel( ) ) / 1000 ;
myCurrentVel->omega = ( myRobot -> getRotVel({ ) ) * pi/180 ;
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Position myCurrentPosition ( (myRobot -> getX( ))/1000, (myRobot -

>getY())/1000);
Position* myCurrentPositionPtr = &myCurrentPosition ;
Position goalPosition(100,0);
if ( myCurrentPosition.findDistance(goalPosition) < .5)
{

myRobot->setVel2 (0,0);
return &myDesired;

cout<<"myCurrentPosition: \t"<<myCurrentPosition;
cout<<"myCurrentHeading: \t"<<myCurrentHeading<<"\t
myCurrentVelocity
\t"<<myCurrentVel->velocity<<endl;

static VelParameters* myDesiredVel;

static VelParameters myDesiredvV;

static vector<double> range(l16);

// get the range of all sonars 0 through 15

//double myRobotRadius=myRobot->getRobotRadius( )/2;
//cout<<endl<<myRobotRadius<<endl;

for(int i=0;i<16;i++)

{

range[i] = ( myRobot->getSonarRange(i) ) * .001 +
myRobotRadius ;
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cout<<"Range["<<i<<"] = "<<range[i]*1000<<endl;
}

static dVInputs mydVInputs;

mydVInputs.currentHeading = myCurrentHeading;
mydVInputs.currentPosition = myCurrentPosition;
mydVInputs.currentVel=(*myCurrentVel);
mydVInputs.sonarReadings = range;

static dVInputs* mydVInputsPtr = & mydVInputs;

// set goal position
CurvVelPtr->setGoalPosition(goalPosition);

myDesiredV = CurvVelPtr->determineVels (mydVInputsPtr);
myDesiredVel = &myDesiredV;
static double leftVelocity, rightVelocity;

leftVelocity = myDesiredV.velocity - (myDesiredV.omega)*490/2;
rightVelocity = myDesiredV.velocity +(myDesiredV.omega)*490/2;

cout<<"velocity \t"<<myDesiredVel->velocity<<"omega \t"<<
myDesiredVel->omega<<endl;

cout<<"leftVelocity \t"<<leftVelocity<<"\t rightvelocity
\t"<<rightVelocity<<endl;

myRobot->setVel2 ( leftVelocity , rightVelocity );/**/

delete myCurrentVel;

// return a pointer to the actionDesired, so resolver knows what
to do

return &myDesired;

}

int main{int argc,char** argv)

{
ofstream trajectory ("Trajectory.txt",ios::trunc);
ofstream RefTrajectory ("RefPosition.txt",ios::trunc);
ofstream RefVels ("RefVels.txt",ios::trunc);
ofstream RobotVels ("RobotVels.txt",ios::trunc);

// the robot
ArRobot robot;

// the sonar device
ArSonarDevice sonar;
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// some stuff for return values
std::string str;

// the behaviors from above, and a stallRecover behavior that

uses defaults

range

ActionGo go (500, 350);
ArActionStallRecover recover;

// this needs to be done

Aria::init( );

ArSimpleConnector connector (&argc, argv);
connector.parseArgs ( );

if (argc > 1)

{
connector.logOptions( );
exit(1l);

// add the range device to the robot, you should add all the

// devices and such before you add actions
robot.addRangeDevice (&sonar) ;

// do a blocking connect, if it fails exit

if (!connector.connectRobot (&robot))

{
printf ("Could not connect to robot... exiting\n");
Aria::shutdown{();
return 1;

}

// enable the motors, disable amigobot sounds
robot.comInt (ArCommands: : ENABLE, 1);
robot.comInt (ArCommands: : SOUNDTOG, O0);

// add our actions in a good order, the integer here is the

priority,

// with higher priority actions going first
robot.addAction ( &recover, 100);
robot.addAction ( &go, 50);

// run the robot, the true here is to exit if it loses connection
robot.run(true);

// now just shutdown and go away
Aria::shutdown{ );
return 0;
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Fuzzy Control Language Files (FCL)
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2.1  Fuzzy Control Language (FCL)

This appendix contains the three FCL files for each of the three fuzzy modules described
in Chapter 5. Comments are included between ‘(* *)’ characters. The VAR _INPUT and
VAR _OUTPUT statements are indicators to locate the inputs and outputs respectively.
The statement FUZZIFY followed by an input name is an indicator to the definition of
the member functions of this input. The statement DEFUZZIFY followed by an output
name is an indicator to the defuzzification method used to defuzzify the weights
obtained from the inference rules. And finally the rules are added after the statement
RULEBLOCK.

2.2  Look Ahead Curvature (LAC) FCL

FUNCTION BLOCK

VAR_INPUT
alphal REAL; (* RANGE(0 .. 180) *)
alpha2 REAL; (* RANGE(0 .. 180) *)
END_VAR

VAR _OUTPUT
Curv REAL; (* RANGE(O .. 6) *)
END_VAR

FUZZIFY alphal

TERM Straightl :=(0,0) (0, 1) (20, 0);

TERM Highl := (1, 0) (20, 1) (95, 0) ;

TERM VeryHighl := (85, 0) (140, 1) (180, Q) ;
END_FUZZIFY

FUZZIFY alpha?

TERM Straight2 :=(0,0) (0, 1) (30, 0);

TERM High2 := (10, 0) (20, 1) (95, 0) ;

TERM VeryHigh2 := (80, 0) (140, 1) (180, 0) ;
END_FUZZIFY

FUZZIFY Curv
TERM NoCurvature := 0 ;
TERM Moderate := 1.5 ;
TERM cHigh := 4
TERM cVeryHigh :
END_FUZZIFY

" ~e

5



DEFUZZIFY Curv
AND: PROD

.
’

METHOD: COGS;

END DEFUZZIFY

RULEBLOCK first
AND:PROD;
ACCUM:MAX;
RULE 0: IF
RULE 1: IF
RULE 2: IF
RULE 3: IF
RULE 4: IF
RULE 5: IF
RULE 6: IF
RULE 7: IF
RULE 8: IF

END_RULEBLOCK

Straightl
Straightl
Straightl
Highl AND
Highl AND
Highl AND
VeryHighl
VeryHighl
VeryHighl

END_FUNCTION BLOCK

2.3 V-Controller FCL

FUNCTION_BLOCK

o~

AND Straight2 THEN NoCurvature;
AND High2 THEN Moderate;

AND VeryHigh2 THEN cHigh;
Straight2 THEN cHigh;

High2 THEN cHigh;

VeryHigh2 THEN cHigh;

AND Straight2 THEN cVeryHigh;
AND High2 THEN cVeryHigh;

AND VeryHigh2 THEN cVeryHigh;

VAR INPUT
Curvature REAL; (* RANGE(O 5.5) *)
dR REAL; (* RANGE(O .. 4000) *)
dPhi REAL; (* RANGE(-180 .. 180) *)
CurrentVelocity REAL; (* RANGE(O .. 1000) *)
END VAR
VAR_OUTPUT
Velocity REAL; (* RANGE(O .. 1000) *)
END_VAR
FUZZIFY Curvature
TERM Low :=(-0.1,0) (0, 1) (1.5, 0);
TERM High := (1, 0) (2, 1) (5.5, 0)
(3 (

TERM VeryHigh

7
TERM NoMatterWhat :=

END_FUZZIFY

FUZZIFY dR
TERM Nea
TERM Clo
TERM Far

r
se

:=(0, 0)

(150, O

TERM NoMatterWhat

1) (5.5, 1) (5.5, 0) ;
,0) (0,1) (5.5,1) (5.5,0)

(0, 1) (106, 0);
= (20, 0)
)

(200, 1) (1400, 0) -
(500, 1) (7000, 1) (7000, 0) ;
(0,0) (0,1) (7000,1) (7000,0) ;
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END_FUZZIFY

FUZZIFY dPhi
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TERM nVeryHigh :=(-181,0) (-181,1) (-100, 1) (=50, 0);
TERM nHigh := (~100, 0) (-10, 1) (-1, 0) ;
TERM Small := (-10, 0) (0, 1) (10, 0) :
TERM VeryHigh :=(50,0) (100, 1) (180, 1) (180, 0) ;
TERM High := (1, 0) (10, 1) (100, 0) ;
TERM NoMatterWhat := (-181,0) (-181,1) (181,1) (181,0) ;
END FUZZIFY
FUZZIFY CurrentVelocity
TERM Low := (0, 0) (0, 1) (200, 0) ;
TERM VeryHigh :=(400,0) (500, 1) (1000, 0);
TERM High := (100, 0) (250, 1) (1000, 0) ;
TERM NoMatterWhat := (0,0) (0,1) (1000,1) (1000,0) .

END_FUZZIFY

FUZZIFY Velocity

TERM Stop := 0 ;

TERM S100 := 100 ;
TERM S$200 := 200 ;
TERM S300 := 300 ;
TERM S400 := 400 ;
TERM S500 := 500 ;
TERM S$600 := 600 ;
TERM S700 := 700 ;
TERM S800 := 800 ;
TERM NoValue :=

END_FUZZIFY

DEFUZZIFY Velocity
AND: PROD;
METHOD: COGS;

END DEFUZZIFY

RULEBLOCK first
AND:PROD;
ACCUM:MAX;

RULE 0: IF High AND
NoMatterWhat THEN S300;

RULE 1:
NoMatterWhat THEN S200;

RULE 2: IF NoMatterWhat AND
S700;

RULE 3: IF High AND Far AND

RULE 4: IF VeryHigh AND Far

RULE 5: IF NoMatterWhat AND
THEN S300;

RULE 6:
THEN S300;

IF NoMatterWhat AND

(éO0,0) (901,0) (902,0);

NoMatterWhat AND NoMatterWhat AND

IF VeryHigh AND NoMatterWhat AND NoMatterWhat AND

Far AND Small AND NoMatterWhat THEN
Small AND NoMatterWhat THEN S300;
AND Small AND NoMatterWhat THEN S300;
NoMatterWhat AND High AND VeryHigh

NoMatterWhat AND nHigh AND VeryHigh



RULE 7:
VeryHigh THEN
RULE 8:
VeryHigh THEN
RULE 9:
NOT (VeryHigh)

RULE 10:

NOT (VeryHigh)

RULE 11:

NOT (VeryHigh)

RULE 12:

NOT (VeryHigh)
END_RULEBLOCK

IF NoMatterWhat AND NoMatterWhat AND VeryHigh AND
5200;

IF NoMatterWhat AND NoMatterWhat AND nVeryHigh AND
5200;

IF NoMatterWhat AND NoMatterWhat AND High AND

THEN S300;

IF NoMatterWhat AND NoMatterWhat AND nHigh AND
THEN S300;

IF NoMatterWhat AND NoMatterWhat AND VeryHigh AND
THEN S5200;

IF NoMatterWhat AND NoMatterWhat AND VeryHigh AND
THEN S5200;

END_FUNCTION BLOCK

2.4 ®-Controller FCL

FUNCTION_ BLOCK

VAR INPUT
Curvature REAL; (* RANGE (0 5.5) *)
dR REAL; (* RANGE (0 4000) *)
dPhi REAL; (* RANGE(-180 180) *)
CurrentVelocity REAL; (* RANGE (O 1000) *)
END_VAR
VAR OUTPUT

Omega REAL;

END_VAR

(* RANGE (-35 .. 35) *)

FUZZIFY Curvature

TERM Low :=(-0.1,0) (0, 1) (1.5, 0);
TERM High := (1, 0) (2, 1) (5.5, 0) ;
TERM VeryHigh := (3, 0) (4, 1) (5.5, 1) (5.5, 0) ;
TERM NoMatterWhat := (0,0) (0,1) (5.5,1) (5.5,0) ;
END FUZZIFY
FUZZIFY dR
TERM Near :=(0, 0) (0, 1) (100, 0);
TERM Close := (20, 0) (700, 1) (1400, 0) ;
TERM Far := (1000, 0) (1500, 1) (7000, 1) (7000, O) ;
TERM NoMatterWhat := (0,0) (0,1) (7000,1) (7000,0) ;
END_FUZZIFY
FUZZIFY dPhi
TERM nVeryHigh :=(-~181,0) (-181,1) (-100, 1) (=50, 0);
TERM nHigh := (-100, 0) (-10, 1) (-1, O) ;
TERM Small := (-10, 0) (0, 1) (10, 0) ;
TERM VeryHigh :=(50,0) (100, 1) (181, 1) (181, 0);
TERM High := (1, 0) (10, 1) (100, 0) :
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TERM NoMatterWhat := (-181,0) (-181,1) (181,1) (181,0) ;
END FUZZIFY

FUZZIFY CurrentVelocity

TERM Low := (0, 0) (0, 1) (200, 0) ;

TERM VeryHigh :=(300,0) (400, 1) (1000, 0);

TERM High := (100, 0) (250, 1) (1000, Q) ;

TERM NoMatterWhat := (0,0) (0,1) (1000,1) (1000,0) ;
END FUZZIFY

FUZZIFY Omega

TERM n35 := =35 ;
TERM n30 := =30 ;
TERM n25 := =25 ;
TERM n20 := =20 ;
TERM nl5 := =15 ;
TERM nl0 := -10 ;
TERM n5 := -5 ;

TERM Stop := 0 ;
TERM p5 := 5 ;

TERM pl0 := 10 ;
TERM pl5 := 15 ;
TERM p20 20 ;
TERM p25 25 ;
TERM p30 := 30 ;
TERM p35 := 35 ;
TERM NoValue := (-10,0) (0,0) (0,0);
END_FUZZIFY

DEFUZZIFY Omega
AND:PROD;
METHOD: COGS;

END_DEFUZZIFY

RULEBLOCK first

AND:PROD;

ACCUM:MAX;

RULE 0: IF NoMatterWhat AND Near AND NoMatterWhat AND
NoMatterWhat THEN Stop;

RULE 1: IF NoMatterWhat AND NoMatterWhat AND Small AND
NoMatterWhat THEN Stop;

RULE 2: IF Low AND Far AND Small AND NoMatterWhat THEN Stop;

RULE 3: IF NoMatterWhat AND NoMatterWhat AND High AND VeryHigh
THEN pl0;

RULE 4: IF NoMatterWhat AND NoMatterWhat AND nHigh AND VeryHigh
THEN nl0;

RULE 5: IF NoMatterWhat AND NoMatterWhat AND VeryHigh AND
VeryHigh THEN plO;

RULE 6: IF NoMatterWhat AND NoMatterWhat AND nVeryHigh AND
VeryHigh THEN nl0;

RULE 7: IF NoMatterWhat AND NoMatterWhat AND nHigh AND
NoMatterWhat THEN n30;
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RULE 8: IF NoMatterWhat AND NoMatterWhat AND High AND
NoMatterWhat THEN p30;

RULE 9: IF NoMatterWhat AND NoMatterWhat AND VeryHigh AND
NoMatterWhat THEN p35;

RULE 10: IF NoMatterWhat AND NoMatterWhat AND nVeryHigh AND
NoMatterWhat THEN n35;

END_ RULEBLOCK

END FUNCTION_ BLOCK
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This appendix contains a sample world file that comes with the ARIA library. The width

and height of the environment as well as all measures are defined in millimeters.

width 12640
height 5759
OriginPad 12630 5757

Start Goal 11390 4334 "Chris"
End

Start Goal 1035 3002 "Webpion”
End

Start Line 1820 1239 1820 3719
AttachID 2

1820 1239 1820 3719
End

Start Goal 9110 4394 "Matt"
End

Start Line 6410 5619 6980 5619
AttachID 4

6410 5619 6980 5619
End

Start Line 7930 4369 7930 4919
AttachID 5

7930 4369 7930 4919
End

Start Line 11710 1749 11710 859
AttachID 6

11710 1749 11710 859
End

Start Goal 6650 4154 "Servers"
End

Start Line 0 3489 0 2599
AttachID 8

0 3489 0 2599
End

Start Line 10 2599 250 2599
AttachID 9

10 2599 250 2599
End

Start Line 10180 10 10180 360
AttachID 10
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10180 10 10180 360
End

Start Line 12070 5759 12090 5759
AttachID 11

12070 5759 12090 5759
End

Start Line 10130 360 10170 360
AttachID 12

10130 360 10170 360
End

Start Line 560 1869 790 1869
AttachID 13

560 1869 790 1869
End

Start Line 7940 4369 8100 4369
AttachID 14

7940 4369 8100 4369
End

Start Line 12090 4969 12090 5759
AttachID 15

12090 4969 12090 5759
End

position 7760 675 0O

Start Chair 8310 1862 400 520 260 200 -0.915101
8510 2122 8510 1602
8510 1602 8110 1602
8110 1602 8110 2122
8110 2122 8510 2122
End
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