
Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE 

UNIVERSITÉ DU QUÉBEC 

THESIS PRESENTED TO 

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE 

AS A PARTIAL REQUIREMENT 

TOOBTAIN A 

MASTERS IN ELECTRICAL ENGINEERING 

M.Eng. 

BY 

ELIE MAALOUF 

NONLINEAR CONTROL OF WHEELED MOBILE ROBOTS 

MONTREAL, 2 SEPTEMBER 2005 

© Ali rights reserved by Elie Maalouf 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

THIS THESIS HAS BEEN EV ALUATED 

BY A JURY COMPOSED OF: 

Mr. Maarouf Saad, projet director 
Department of electrical engineering at École de technologie supérieure 

Mr. Hamadou Saliah-Hassne, codirector 
Télé Université 

Mr. Vahé Nerguizian, president of jury 
Department of electrical engineering at École de technologie supérieure 

Mr. Bruno De Kelper, member of jury 
Department of electrical engineering at École de technologie supérieure 

IT HAS BEEN PRESENTED BEFORE A JURY AND PUBLIC 

ON THE 22 OF JUNE 2005 

AT ÉCOLE DE TECHNOLOGIE SUPÉRIEURE 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

NONLINEAR CONTROL OF A WHEELED MOBILE ROBOT 

Elie Maalouf 

SUMMARY 

The purpose of this project is to implement an autonomous navigation system using 
nonlinear control techniques to control a wheeled mobile robot (WMR) to follow a 
preplanned trajectory and track a path. Two other aspects of navigation are studied: path 
planning and obstacle avoidance. Those three aspects are integrated into a navigation 
strategy that manages navigation and prevents deadlocks. 

Two nonlinear control techniques for path tracking and trajectory following have been 
developed and implemented. In the first approach, a fuzzy logic controller is used to drive 
the robot through a set of waypoints leading to the destination. In another approach, a 
controller derived from a Lyapunov function is used to track a reference trajectory that is 
time dependent. For path planning, a novel optimization technique based on dynamic 
programming has been developed. The curvature velocity method has been used for 
obstacle avoidance. 

The testing was conducted on a P3-AT ali-terrain mobile robot equipped with encoders, a 
gyroscope, and sonar sensors for localization and environment perception. The test 
results validate the effectiveness of the different approaches that have been developed. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

NONLINEAR CONTROL OF A WHEELED MOBILE ROBOT 

Elie Maalouf 

ABSTRACT 

The purpose of this project is to implement an autonomous navigation system using 
nonlinear control techniques to control a wheeled mobile robot (WMR) to follow a 
preplanned trajectory and track a path. Two other aspects of navigation are studied: path 
planning and obstacle avoidance. Those three aspects are integrated into a navigation 
strate gy that manages navigation and prevents deadlocks. 

Two nonlinear control techniques for path tracking and trajectory following have been 
developed and implemented. In the first approach, a fuzzy logic controller is used to 
drive the robot through a set of waypoints leading to the destination. In another 
approach, a controller derived from a Lyapunov function is used to track a reference 
trajectory that is time dependent. For path planning, a novel optimization technique 
based on dynamic programming has been developed. The curvature velocity method has 
been used for obstacle avoidance. 

The testing was conducted on a P3-AT aH-terrain mobile robot equipped with encoders, 
a gyroscope, and sonar sensors for localization and environment perception. The test 
results validate the effectiveness of the different approaches that have been developed. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

COMMANDE NONLINÉAIRE D'UN ROBOT MOBILE À ROUES 

Elie Maalouf 

SOMMAIRE 

Le but de ce projet de recherche est de développer un système de navigation autonome, 
en utilisant des méthodes de commande non-linéaires pour contrôler un robot mobile à 
roues pour le suivi d'un chemin ou la poursuite d'une trajectoire. Deux autres aspects de 
navigation sont examinés, la planification de trajectoire et l'évitement des obstacles. Les 
trois aspects sont intégrés dans une stratégie de navigation afin d'éviter le blocage du 
robot et de bien gérer la navigation. 

Deux techniques de commande non-linéaires ont été développées et implémentées pour 
deux types différents d'exécution de trajectoire. Dans la première approche, un 
contrôleur logique floue est utilisé pour contrôler le robot pour suivre des points 
intermédiaires menant à la destination. Dans la deuxième approche où la trajectoire de 
référence est en fonction du temps, un contrôleur dérivé d'une fonction de Lyapunov a 
été implanté. Pour la planification de trajectoire, une nouvelle technique d'optimisation 
basée sur la programmation dynamique a été développée. Pour l'évitement d'obstacles, 
la méthode des courbures-vitesses a été implémentée. 

Les tests ont été conduits sur le robot tout terrain P3AT équipé d'encodeurs, d'un 
gyroscope, ainsi que des capteurs sonar pour la localisation et la perception de 
l'environnement. Les résultats des tests ont validé la performance des travaux réalisés. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

COMMANDE NONLINÉAIRE DES ROBOTS MOBILES 

Elie Maalouf 

RÉSUMÉ 

Lors des deux dernières décennies, de nombreuses recherches sur la navigation des 

robots mobiles à roues motrices ont été réalisées. L'avancement en technologie VLSI et 

la disponibilité de processeurs performants à des prix compétitifs a largement contribué 

au développement de systèmes des robots mobiles autonomes et semi autonomes. Les 

robots mobiles sont de plus en plus disponibles sur le marché pour des applications dans 

l'agriculture, l'industrie des mines, l'exploration spatiale, les domaines militaires, ainsi 

que dans de nombreuses autres applications où 1' environnement peut être hostile à des 

êtres humains. La navigation en est un aspect commun dans tous les systèmes de robots 

mobiles. En gros, la navigation consiste en plusieurs tâches tel que la perception de 

l'environnement, la localisation, la planification de trajectoire, l'évitement d'obstacles, 

ainsi que l'exécution d'une trajectoire. Le but de ce projet est de réaliser un système de 

navigation dont la localisation et la perception de 1 'environnement sont disponibles. Une 

nouvelle technique de planification de trajectoire a été développée en partant de la 

programmation dynamique classique. Deux approches d'exécution d'une trajectoire ont 

été réalisées, une fait appel à un contrôleur logique floue et 1' autre en utilisant un 

contrôleur dérivé à partir d'une fonction de Lyapunov. Pour ce qui est de l'évitement 

d'obstacles, la méthode de courbure-vitesse a été utilisée. Le tout sera intégré dans une 

stratégie de navigation sous la forme d'une machine à états finis. Dû à des contraintes de 

temps, cette dernière étape n'a pas été implantée en temps réel, mais a été expliquée en 

détail dans le Chapitre 7. Les trois éléments de navigation ont été implantés en temps 

réel sur le robot P3-AT disponible dans le laboratoire du GREPCI à l'ÉTS. Ce robot 

robuste et performant est équipé d'encodeurs, d'un gyroscope bidimensionnel pour la 

localisation et de capteurs sonars pour la perception de 1 'environnement et la détection 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

lV 

d'obstacles. La commande sur la dynamique n'est pas accessible, ce qui nous emmène à 

faire une commande sur le modèle cinématique du robot. Le robot est contrôlé par un 

microcontrôleur embarqué qui communique avec un PC ou un ordinateur embarqué par 

un port série. Une interface de haut niveau sous la forme d'une librairie C++ orientée 

objet dénommée ARIA s'occupe d'établir la communication avec le microcontrôleur 

alors que l'utilisateur peut mettre son effort sur la commande du robot à haut niveau. Le 

calcul à haut niveau est alors fait sur l'ordinateur, tandis que l'acquisition des données 

des capteurs et la commande à bas niveau des moteurs sont faites par le microcontrôleur. 

Le robot P3A T est un robot mobile à quatre roues qui est conduit par une traction 

différentielle, qu'on distingue des robots mobiles de type voiture et les autres classes 

mentionnées dans la première partie du Chapitre 3. Le modèle cinématique en 

coordonnées Cartésiennes ainsi que le modèle dynamique d'un robot à traction 

différentielle sont développés dans la deuxième partie du troisième chapitre. 

La planification de trajectoire est faite lorsqu'un modèle de l'environnement du robot est 

disponible d'avance, soit sous la forme d'une image ou d'autre. Le modèle de 

l'environnement est discrétisé et est mit sous la forme d'une matrice de coût. En 

supposant que le robot se déplace dans un environnement bidimensionnel, 

l'environnement peut être classifié par des régions accessibles et des régions 

inaccessibles (les obstacles). Les éléments de la matrice qui correspondent aux régions 

inaccessibles sont négligés, et le reste est modélisé par des nœuds liés par des liens avec 

un coût qui correspond à la distance entre les nœuds. Plusieurs techniques ont été 

développées dans la littérature pour trouver un chemin optimal entre le nœud qui 

correspond à la position initiale du robot et le nœud qui correspond à une nouvelle 

position désirée dans l'environnement. La plus célèbre de ces techniques est 

l'algorithme de recherche A* de graphes et ses différentes variantes. Cette technique fait 

appel à une fonction heuristique pour estimer le coût jusqu'au nœud final à partir du 

nœud initial et les nœuds intermédiaires. La fonction heuristique est choisie par le 

programmeur, et la performance en dépend par conséquent. Dans ce projet, une nouvelle 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

v 

technique pour déterminer une solution optimale a été développée en se basant sur la 

programmation dynamique classique qui ne peut pas être utilisée tel quel pour résoudre 

un graphe. Après un nombre d'itérations déterministe sur les différentes couches, une 

solution garantie optimale peut être trouvée. Cette nouvelle technique est capable 

d'exploiter le parallélisme dans un processeur multi-unités de traitement, tel qu'un DSP. 

Le Chapitre 4 contient les détails de cette approche, ainsi qu'une preuve formelle que la 

solution converge vers la solution optimale. Le seul défaut de cette approche par rapport 

à l'algorithme de recherche A* est le temps de calcul. Cependant, ce calcul est fait hors 

ligne lorsque le robot n'est pas entrain de se déplacer, et la performance, du temps réel 

du robot, ne sera pas altérée aucunement. Cette approche a été implémentée sur 

MATLAB dont l'interface facilite le développement rapide de programmes. La solution 

optimale est donnée sous la forme d'une liste de nœuds intermédiaires entre le premier 

nœud et la position finale désirée. Une trajectoire temporelle peut être définie à partir de 

cette liste de nœuds correspondants à des positions par rapport à un repère de référence 

globale. La programmation dynamique itérative trouve actuellement toutes les 

trajectoires optimales par rapport à tous les nœuds (le nœud initial bien-comprit) vers le 

nœud final. Cette information est stockée en termes de pointeurs entre les nœuds qui 

mènent à la position finale en passant sur la trajectoire optimale. Chaque nœud contient 

un seul pointeur vers un autre nœud. En suivant les pointeurs à partir d'un certain nœud, 

on arrive obligatoirement vers le nœud final sur une trajectoire optimale. Cette méthode 

a été testée sur de nombreux cas, et on obtient une trajectoire optimale dans tous les cas. 

En utilisant la solution obtenue par la trajectoire optimale, un contrôleur est nécessaire 

pour conduire le robot sur cette trajectoire. Une approche pour le cas où la solution 

optimale n'est pas limitée par des contraintes temporelles a été développée. Un 

contrôleur par logique floue inspiré de la conduite d'une voiture par un être humain a été 

réalisé. La trajectoire désirée consiste de la liste des nœuds positions qui forme la 

solution optimale et sont utilisées en tant que points de référence 'waypoints', et le robot 

traverse vers sa destination à proximité de ces points. Selon la vitesse actuelle et la 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Vl 

courbure du trajet, le conducteur d'une voiture modifie la vitesse et oriente la voiture 

selon sa perception visuelle. Si la courbure est faible, il garde la même vitesse en 

passant. Selon la courbure il agit sur la vitesse et la direction de façon à obtenir une 

trajectoire lisse et continue. Le 'waypoint' actuel est défini comme étant le nœud le plus 

proche du robot sur la trajectoire optimale. Les deux angles entre le nœud actuel et les 

deux prochains nœuds sont calculés pour déterminer un facteur qui correspond au degré 

de la courbure. Ce facteur est utilisé comme une entrée 'feed-forward' pour le contrôleur 

à logique floue. Les autres entrées du contrôleur sont les erreurs de position et 

d'orientation ainsi que la vitesse actuelle. L'état de chaque entrée est déterminé par des 

fonctions membres d'une manière continue selon le niveau d'appartenance à un certain 

état. Une certaine valeur d'une entrée peut appartenir à un ou plusieurs états. Les sortis 

du contrôleur de type Takagi-Sugeno utilisé dans ce projet ont des états discrets. Une 

base de règles d'inférence fait le lien entre les états des entrées et les états des sorties. 

Les sorties des contrôleurs sont les vitesses linéaire et angulaire, et sont calculées selon 

le poids de chaque règle par rapport aux entrées. Le contrôleur à logique floue est 

robuste et fiable, malgré la difficulté de prouver sa stabilité théoriquement pour quatre 

entrées. Pour implanter le contrôleur à logique floue, la librairie Free Fuzzy Logic 

Library (FFLL) qui respecte un standard industriel sous forme de fichier FCL a été 

utilisée. Les résultats de tests ont prouvé la fiabilité de cette approche. 

Une autre approche dont la trajectoire est en fonction du temps a été implémentée. Le 

contrôleur est dérivé par une fonction de Lyapunov, ce qui assure la stabilité du système. 

Les erreurs en position et en orientation sont développées pour obtenir les équations des 

erreurs sous forme d'un modèle dans l'espace d'états. La fonction d'énergie de 

Lyapunov est choisie de telle manière à stabiliser les variables d'erreur autour de zéro. 

La trajectoire de référence est obtenue en interpolant les positions de la trajectoire 

optimale et en les dérivant pour obtenir 1 'orientation de références en fonction du temps. 

Cette approche est moins robuste que l'approche précédente et a été utilisée pour faire 

une étude théorique, malgré sa performance adéquate. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

vii 

Une approche en temps réel pour l'évitement des obstacles en cas d'obstacles 

dynamiques ou de changements dans l'environnement lorsque le robot est en train 

d'exécuter une trajectoire est nécessaire pour éviter des collisions éventuelles avec 

d'autres objets. La méthode de courbure-vitesse pour l'évitement des obstacles qui est 

bien connue dans la littérature a été le choix dans ce projet. Cette approche est 

notamment connue pour sa fiabilité et son efficacité en temps de calcul. Cette méthode 

peut être utilisée également pour explorer un environnement inconnu. Les obstacles 

perçus par les capteurs sonar sont modélisés sous forme de cercles à rayon constant, ce 

qui est convenable pour cette méthode qui fait appel à l'espace de courbure. Les 

positions des centres des obstacles sont déterminées selon un calcul géométrique simple. 

Les obstacles sont élargis par le rayon du robot pour être capable de modéliser le robot 

comme étant un point dans l'espace cartésien, ce qui sert à simplifier les calculs. Les 

obstacles à plus de trois mètres de robot seront négligés. Cette méthode consiste 

essentiellement à optimiser une fonction linéaire dans 1' espace des vitesses par rapport à 

trois critères : la vitesse de navigation, la sécurité de navigation, et la recherche de la 

position cible désirée. Une ligne droite tracée passant par l'origine du robot correspond à 

une courbure dans l'espace cartésien du repaire de référence global (voir Chapitre 6 pour 

plus de détails). L'espace des vitesses est divisé sur des intervalles d'obstacles par des 

lignes droites passant par l'origine, et limité par les contraintes dynamiques du robot tel 

que les accélérations et les vitesses maximales. Il s'agit de trouver un point dans ces 

intervalles qui maximisent la fonction objective. Ce point correspond à un couple de 

vitesses linéaire et angulaire. Des approximations ont été faites pour respecter 

l'efficacité du calcul en temps réel. Chaque intervalle entre deux courbures correspond à 

une distance entre le robot et 1' obstacle. Les distances des intervalles qui ne contiennent 

pas d'obstacles sont fixées à trois mètres. Les intervalles créent des zones triangulaires 

dans l'espace des vitesses émanant de l'origine et sont limités par les contraintes sur les 

vitesses et accélérations. La fonction objective dépend linéairement de la vitesse linéaire, 

de la distance associée à l'intervalle et de l'erreur d'orientation par rapport à la position 

de destination. La fonction objective est alors maximale sur les extrémités extérieures, 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Vlll 

ce qui rend le temps de calcul assez raisonnable. Le calcul sera fait pour deux points 

additionnels, 1' origine et le point qui oriente le robot vers la position désirée. Ceci étant 

dit, une stratégie de navigation pour faire la coordination entre les trois aspects de 

navigation et pour éviter que le robot ne soit bloqué est nécessaire. La stratégie de 

navigation est implantée sous forme d'une machine à états finis similaire à une 

architecture hybride de commande. Sous cette architecture, les résultats de perception de 

l'environnement sont utilisés par le module de planification de la trajectoire qui est 

considéré à haut niveau ainsi que par les modules à plus bas niveau dans le sens 

hiérarchique tel que l'exécution d'une trajectoire et l'évitement d'obstacles qui sont des 

actions de type comportemental. La machine à états est toujours dans un de quatre 

modes : mode d'arrêt quand le robot est stationnaire, mode de planification de 

trajectoire, mode d'exécution de trajectoire, ou en mode d'évitement d'obstacle. Au 

début le robot est en mode d'arrêt, et si un modèle de l'environnement est disponible, le 

robot passe en mode de planification de trajectoire. Lorsque la trajectoire est planifiée, le 

robot sera mit en mode d'exécution de trajectoire. Si un obstacle est détecté sur le 

chemin du robot, le robot passera en mode d'évitement d'obstacles, avec un nœud cible 

qui correspond à un 'waypoint' sur la trajectoire après l'obstacle. Quand le nœud cible 

intermédiaire est atteint, si un obstacle est encore sur la trajectoire, le robot reste en 

mode d'évitement d'obstacles et une autre cible intermédiaire est fixée. Lorsqu'il n'y a 

plus d'obstacle sur la trajectoire, le robot passe en mode d'exécution de trajectoire. Dans 

le programme de la machine à états, on vérifie continuellement si le robot passe dans 

une certaine région plus qu'une fois. Si c'est le cas, le robot passe en mode d'arrêt et 

puis en mode d'exécution de trajectoire. Le modèle de l'environnement est toujours 

modifié selon les valeurs retournées par les capteurs sonar. 

Dans le cas où l'environnement n'est pas connu d'avance, le robot passe en mode 

d'évitement d'obstacles et construit l'environnement au fur et à mesure qu'il avance. Si 

le robot est bloqué, le robot passe en mode d'arrêt et puis en mode de planification de 

trajectoire en utilisation toute information disponible sur l'environnement jusqu'à 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

lX 

présent, et les régions inconnues seront considérées comme étant accessibles. Il y a 

toujours des limitations pratiques sur cette approche étant donné que les encodeurs de 

vitesse des moteurs ont une erreur de positionnement qui augmente tant que le robot se 

déplace. La même chose arrive avec le gyroscope, ce qui mène à une erreur d'orientation 

qui augmente avec le temps. 

En conclusion, ce travail a été une opportunité pour la réalisation d'un prototype pour un 

système de navigation. D'autres étudiants qui vont faire la recherche sur le même sujet 

pourraient ajouter d'autres fonctionnalités tel qu'il est mentionné dans la section des 

recommandations à la fin de ce document. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS 

1 would like to express my sincere thanks to Maarouf Saad, my project director for his 

help and encouragement, and for his precious advice and remarks all throughout the 

project. 

1 express my thanks also to Hamadou Saliah, my project codirector, for his help and 

encouragement. 1 equally thank Vahé Nerguizian, president ofthe jury. 

My sincere thanks go to Bruno De Kelper, member of the jury, for his valuable remarks 

and suggestions that helped enrich this document in terms of content and quality. 

Finally and very specially, 1 dedicate this project to my parents for their help and support 

all throughout my studies. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

TABLE OF CONTENTS 

Page 

ABSTRACT ....................................................................................................................... i 

SOMMAIRE ...................................................................................................................... ii 

RÉSUMÉ .......................................................................................................................... xi 

ACKNOWLEDGEMENTS ............................................................................................... x 

TABLE OF CONTENTS ................................................................................................. xi 

LIST OF FIGURES ........................................................................................................ xiv 

LIST OF ABBREVIATIONS AND SYMBOLS .......................................................... xvii 

INTRODUCTION ............................................................................................................. 1 

CHAPTER 1 LITERA TURE REVIEW ......................................................................... 4 

1.1 Introduction ........................................................................................................ 4 
1.2 Path Planning and Trajectory Generation .......................................................... 4 
1.3 Path Following and Trajectory Tracking ........................................................... 4 
1.4 Real Time Obstacle A voidance ......................................................................... 8 
1.5 Navigation Control Architectures ................................................................... 11 

CHAPTER 2 TECHNICAL DESCRIPTION OF THE P3-AT MOBILE ROBOT 
AND ITS CLIENT INTERFACE .......................................................... 15 

2.1 The Pioneer 3-AT Robot ................................................................................. 15 
2.1.1 Wireless Seriai Communications ..................................................................... 16 
2.1.2 Sonars .............................................................................................................. 20 
2.1.3 The Activmedia Robotics Operating System (AROS) .................................... 21 
2.2 The SRI Simulator ........................................................................................... 23 
2.3 The Activmedia Robot Interface for Applications (ARIA) ............................ 23 
2.4 Conclusion ....................................................................................................... 32 

CHAPTER 3 TYPES AND MODELING OF DIFFERENTIALL Y STEERED 
WHEELED MOBILE ROBOTS ............................................................ 34 

3.1 Introduction ...................................................................................................... 34 
3.2 Types of Mobile Robots .................................................................................. 34 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Xll 

3.2.1 Ackermann Steered WMR ............................................................................... 35 
3.2.2 Differentially Steered WMR ......................................................................... 36 
3.2.3 Single Wheel Drive WMR ............................................................................... 37 
3.2.4 Synchronous Drive WMR ............................................................................... 38 
3.2.5 Other Types ..................................................................................................... 38 
3.3 Modeling ofFour-Wheeled Skid-Steered Mobile Robots ............................... 39 
3.3.1 Kinematic Modeling ........................................................................................ 39 
3.3 .2 Dynamic Mode ling .......................................................................................... 43 
3.4 Conclusion ....................................................................................................... 47 

CHAPTER 4 PATH PLANNING ................................................................................ 48 

4.1 Introduction ...................................................................................................... 48 
4.2 Cost Map Generation ....................................................................................... 48 
4.3 Formulating the Problem ................................................................................. 49 
4.4 The A* algorithm ............................................................................................. 50 
4.5 Dynamic Programming .................................................................................... 53 
4.5.1 Classical Dynamic Programming .................................................................... 53 
4.5.2 Dynamic Programming: A Novel Approach ................................................... 53 
4.5.2.1 Convergence to the Optimal Solution .............................................................. 58 
4.5.2.2 Iterative Procedure ........................................................................................... 61 
4.6 Implementation on Parallel Processors ............................................................ 63 
4. 7 Implementation on MATLAB ......................................................................... 64 
4.8 A* and Dynamic Programming: A Comparison ............................................. 67 
4.9 Performance and Results ................................................................................. 68 
4.10 Conclusion ....................................................................................................... 72 

CHAPTER 5 HIGH LEVEL PATH TRACKING AND TRAJECTORY 
FOLLOWING ......................................................................................... 73 

5.1 Introduction ...................................................................................................... 73 
5.2 Fuzzy Logic Path Tracking Controller ............................................................ 73 
5.2.1 Path Tracker Parameters .................................................................................. 74 
5.2.2 Fuzzy Path Tracking Controller ....................................................................... 76 
5.2.3 Real Time Implementation .............................................................................. 83 
5.2.3.1 FFLL and FCL Files ........................................................................................ 83 
5.2.3.2 C++ Implementation ........................................................................................ 86 
5.2.4 Simulation and Experimental Results: ............................................................. 87 
5.3 Lyapunov Based Control Law Approach to the Problem ofPath Tracking .... 90 
5.3.1 The Control Technique .................................................................................... 90 
5.3.2 Generating the Reference Trajectory: .............................................................. 94 
5.3.3 Real Time Implementation .............................................................................. 97 
5.3.4 Simulation Results ........................................................................................... 97 
5.4 Conclusion ..................................................................................................... 102 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Xlll 

CHAPTER 6 REAL TIME OBSTACLE AVOIDANCE .......................................... 103 

6.1 Introduction .................................................................................................... 103 
6.2 Obstacle Representation in Real Time .......................................................... 103 
6.3 The Curvature-Velocity Method .................................................................... 105 
6.4 Modifications for Real Time Implementation ............................................... 108 
6.4.1 Modification of Curvature Intervals .............................................................. 109 
6.4.2 Optimization of the Objective Function ........................................................ 112 
6.5 Real Time Implementatiqn ............................................................................ 112 
6.6 Conclusion ..................................................................................................... 113 

CHAPTER 7 NAVIGATION STRA TEGY ............................................................... 114 

7.1 Introduction .................................................................................................... 114 
7.2 Navigation Strategy ....................................................................................... 114 
7.3 Conclusion ..................................................................................................... 119 

CONCLUSION .............................................................................................................. 120 

RECOMMENDATIONS ............................................................................................... 123 

APPENDICES 

1 : Client Driver Program .......................................................................................... 124 
2: Fuzzy Control Language Files (FCL) ................................................................... 130 
3 : SRI Simulator World Files ................................................................................... 130 

Table 1 Inference rules for LAC .................................................................................. 79 

BIBLIOGRAPHY .......................................................................................................... 140 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Figure 1 

Figure 2 

Figure 3 

Figure 4 

Figure 5 

Figure 6 

Figure 7 

Figure 8 

Figure 9 

LIST OF FIGURES 

Page 

Hierarchical architecture: exteroception sensor readings are fed to 
the top of the control hierarchy ..................................................................... 12 

Hybrid architecture: exteroception sensor readings are fed to the 
top and execution levels of the control hierarchy ......................................... 13 

The P3-AT robot in the lab ........................................................................... 15 

Power terminais on the P3-AT motor-power interface board ...................... 16 

Close view of the user control panel ............................................................ 17 

AIR cable Se rial DCE and DTE modules ..................................................... 18 

Wireless connection schematic .................................................................... 18 

DTE and DCE modules plugged on the laptop computer and the 
robot respective! y .......................................................................................... 19 

R TS and CTS pins shorted ........................................................................... 19 

Figure 10 DTE and DCE modules with DB9 plugged into the intermediate 
DB9 connectors ............................................................................................. 20 

Figure 11 Sonar array front and top views 
(Courtesy of ActivMedia Robotics, LLC) .................................................... 21 

Figure 12 Client-server control architecture ................................................................. 22 

Figure 13 SRI simulator with the P3-A T parameters loaded snapshot.. ....................... 23 

Figure 14 Robot commands ......................................................................................... 28 

Figure 15 Action declarations ....................................................................................... 30 

Figure 16 SetRobot member function ........................................................................... 31 

Figure 17 Ackermann steering mechanism .................................................................. 35 

Figure 18 Skid-steering motion around the center ........................................................ 37 

Figure 19 (a) Straight line motion (b) Curvilinear motion (c) Purely 
rotational motion around the center ............................................................. 3 8 

Figure 20 (a) Carnegie Mellon Nomad2000 (Courtesy of Carnegie Mellon) 
(b) NASA Mars Rover for space exploration (Courtesy ofNASA) ............. 39 

Figure 21 The two frames of reference used in the kinematic model.. ........................ .41 

Figure 22 Free body diagram of forces ......................................................................... 45 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

xv 

Figure 23 Eight passage directions through a node ...................................................... 49 

Figure 24 Graphical illustration of connections between nodes ................................... 50 

Figure 25 A* search algorithm pseudo code ................................................................ 52 

Figure 26 (a) Layers emanating from the goal node (b) Layers arranged from 
the goal node downwards ............................................................................ 54 

Figure 27 Graph with nodes .......................................................................................... 56 

Figure 28 Nodes aligned in stages ................................................................................ 57 

Figure 29 (a) Links going from nodes on layer i to layerj (b) are represented 
by a vector link from i to j ........................................................................... 58 

Figure 30 Inter layer connections ................................................................................. 59 

Figure 31 Connections to the final goal layer ............................................................... 59 

Figure 32 Layered solution graph ................................................................................. 60 

Figure 33 Layer-vector link representation of the graph .............................................. 62 

Figure 34 

Figure 35 

Pseudo code of the iterative procedure ........................................................ 63 

Hierarchy of functions ................................................................................. 67 

Figure 36 Two test cases in a 2-D environment ........................................................... 69 

Figure 37 Optimal solution in a 3-D environment.. ...................................................... 70 

Figure 38 3-D environment test case ............................................................................ 71 

Figure 39 Solution to a labyrinth .................................................................................. 71 

Figure 40 FLC parameters ............................................................................................ 75 

Figure 41 Control diagram ............................................................................................ 76 

Figure 42 FLC Schema tic ............................................................................................. 77 

Figure 43 LAC parameters and their corresponding membership functions ................ 79 

Figure 44 Input-Output surface for LAC ...................................................................... 80 

Figure 45 Membership functions of path tracker parameters ....................................... 81 

Figure 46 V output wh en C and V c are zero ................................................................ 82 

Figure 4 7 Angular speed output for C and V c are zero ................................................ 83 

Figure 48 Straight line with the robot 1meter away ..................................................... 87 

Figure 49 Sine wave trajectory at 25 cm discretization ................................................ 88 

Figure 50 General trajectory ......................................................................................... 89 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

XVI 

Figure 51 Current and reference postures and posture errors ....................................... 91 

Figure 52 Position and position errors .......................................................................... 98 

Figure 53 Velocities and velocity errors ....................................................................... 99 

Figure 54 Position and position errors .......................................................................... 99 

Figure 55 Velocities and velocity errors ..................................................................... IOO 

Figure 56 Position and position errors ........................................................................ 101 

Figure 57 Velocities and velocity errors ..................................................................... lOl 

Figure 58 Robot local frame of reference and obstacles ............................................ 104 

Figure 59 Obstacle representation in real time ........................................................... 104 

Figure 60 A point in velocity space maps to a curvature in Carte sian space ............. 105 

Figure 61 Calculation oftravel distance before collision ........................................... 106 

Figure 62 Curvatures at the boundaries of an obstacle ............................................... 108 

Figure 63 Curvature intervals and piecewise constant approximation of Dumu .......... 111 

Figure 64 Matrix elements eclipsed by obstacles ....................................................... 115 

Figure 65 Obstacle on the path of the robot.. .............................................................. 117 

Figure 66 Navigation strategy state machine .............................................................. 118 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

AMR 

ARIA 

AROS 

CVM 

FCL 

FFLL 

FLC 

IEEE 

LAC 

P3-AT 

RV 

SIP 

WMR 

al, a2 

c 

c 

DP 

f 

LIST OF ABBREVIATIONS AND SYMBOLS 

Autonomous Mobile Robot 

Activmedia Robot Interface for Applications 

Activmedia Robotics Operating System 

Curvature-Velocity Method 

Fuzzy Control Language 

Free Fuzzy Logic Library 

Fuzzy Logic Control 

Institute of Electrical and Electronic Engineers 

Look-Ahead Curvature 

Pioneer 3- All Terrain 

Rotational Velocity, rds/sec 

Server Information Packets 

Wheeled Mobile Robot 

Curvature angles 

Curvature 

Curvature steepness 

Current optimal cost 

Optimal cost between nodes 

Dynamic programming operator 

Errors in positions in x and y respectively 

Objective function to be optimized 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

F Traction force 

G Cost to move from starting node to current node 

H Estimated cost to reach destination node 

2 Vector of eigenvalues of a matrix 

L Robot length in meters 

Lmax Maximum sonar distance in meters 

m Mass of robot in Kg 

R VVheelradius 

R(8) Rotation matrix with respect to. global frame of reference 

8 Orientation with respect to the global frame of reference in 
radians 

8g Goal heading 

T; Torque on wheel i 

t Time in seconds 

Tc Time constant in seconds 

TV Translational Velocity, rn/sec 

v Translational velocity 

Vo Lyapunov energy function 

V max Maximum translational velocity 

w Angular velocity in radians per second 

w Robot width in meters 

x, y Robot coordinates 

XVlll 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Xl X 

x, y Speeds in x and y directions respective} y 

x, y Accelerations in x and y directions respectively 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

INTRODUCTION 

Wheeled mobile robots (WMR) are widely used today in a variety of fields such as 

agriculture, industry, land mining, military applications, space exploration, and in many 

other applications where the environment is inaccessible or hazardous to humans such as 

in nuclear plants. Mobile robot navigation is a common aspect to all applications 

involving WMR, and is a common research topic in almost all engineering faculties. 

For stationary robots such as manipulators with a fixed base, a rather complex dynamic 

controller is used to precisely control the motion of the robot, while trajectory planning 

and tracking is more easily achieved since the environment of the robot can be easily 

modeled and perceived. In the case of wheeled mobile robots, the problems of path 

planning, trajectory following, and obstacle avoidance are the more challenging and 

interesting topics. 

The objective of this project is to develop an autonomous navigation system for the 

P3-AT robot available at the GREPCI research laboratory at ETS. Localization and 

sonar perception routines are already available with the robot through the ARIA 

application interface. The aim is to develop an optimal path planning technique to make 

good usage of any available information on the environment, and to develop a control 

technique to drive the robot along the planned path. 

If no information is available about the environment or if a dynamic obstacle suddenly 

emerges, an obstacle avoidance technique that can autonomously drive the robot safely 

to the destination position without colliding with objects on its way is desirable. Those 

three aspects along with the already available localization and perception of the 

environment are then integrated into a navigation strategy that can detect failures and 

local minima and coordinate actions. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

2 

The project has been carried out having in mind that the navigation system might be 

adapted later on for navigation on a rugged three dimensional terrain. 

The main objectives of the project are as follows: 

• Evaluation of several path tracking techniques and the development and 

implementation of two techniques, one for path following and the other for trajectory 

tracking; 

• Development of a path planning technique that can be used to plan a trajectory in a 

three-dimensional environment; 

• Study and implementation of a real time obstacle avoidance technique available in 

the literature; 

• Integration of all developed aspects in a reliable and robust navigation strategy that 

prevents the robot from getting blocked. 

At the beginning of the project, a literature review of the available methodologies and 

techniques for robot navigation and control related to path planning, path tracking, and 

obstacle avoidance was performed. Sorne of the most remarkable researches done in 

these fields were discussed and evaluated. In the second phase of the project, a path 

planning algorithm was developed, analyzed, and tested. When the robot shipment 

arrived, the main work was to get familiarized with the ARIA robot interface and the 

operation of the robot, as well as with the user interface. Then two control techniques for 

path following and trajectory tracking were developed and implemented in real time. 

The first technique is based on fuzzy logic control while the second one is derived from 

a Lyapunov function and is based on an article available in the literature. Afterwards, an 

obstacle avoidance technique widely referred to in the literature was developed and 

implemented. Finally, a navigation strategy in the form of astate machine to integrate 

the three aspects of navigation developed throughout this project. This navigation 

strate gy fits in the class of hybrid control architectures. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

3 

This step by step and modular structured approach to the project helped simplify the 

development, testing, and debugging. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTERl 

LITERATURE REVIEW 

1.1 Introduction 

During the past two decades, extensive research effort has been invested in all aspects of 

mobile robot navigation. The revolutionary advances that the VLSI industry has 

witnessed and the availability of high performance embedded systems at reasonable 

priees had a direct impact on the developments in mobile robotics. A literature review of 

what has been achieved in path planning, path tracking, and real time obstacle avoidance 

is presented. In the last section, mobile robot navigation architectures are briefly 

discussed and the ir use in the context of this project is explained. 

1.2 Path Planning and Trajectory Generation 

In many applications, a model of the environment in which the robot operates is often 

available. It would be quite advantageous to use this information to plan an optimal path 

even if sorne changes in the environment might occur in real time due to the appearance 

of sorne dynamic obstacles. In Chapter 3 of Pruski (1996), severa! of the techniques used 

in modeling static environments are described. In a commonly used approach, the 

environment is sampled at regular intervals and projected on a two dimensional space. 

The discrete samples are referred to as nodes, with each node Iinked to all adjacent 

nodes through links as in a graph. Each link is assigned a weight that would be 

calculated based on sorne optimization criteria, such as the safety of the robot, the time 

needed to traverse between two nodes, as well as other criteria that are task dependent. 

A path planning algorithm is used to determine an optimal path from the current (start) 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

5 

position of the robot to the desired destination position, also modeled as nodes. There 

are numerous optimization algorithms that can be used for path planning. The most 

widely used is the A* search algorithm (Pruski, 1996) and sorne of its variants 

(hierarchical, differentiai, D*, parallel A*). Other algorithms that can be used include 

Dijkstra and numerous tree searching techniques (Pruski, 1996). In this article, a new 

algorithm based on dynamic programming that was developed will be described. The 

creation and development of this algorithm was inspired by the work published in 

Gifford and Murphy (1996). The advantage of this approach is that an optimal path is 

guaranteed, and the optimal paths from all nodes (positions) in the environment towards 

the destination nodes are determined in the process, which is useful in the case of a 

multi-robot system. Another advantage is the ability to use parallelism when 

implemented on a parallel processor without any compromise in the optimality of the 

solution. 

1.3 Path Following and Trajectory Tracking 

In mobile robot navigation, the path tracking controller is usually implemented at a low 

level in the control hierarchy. Its function is to execute a path planned by the higher 

level path planner with the least possible error in position and with minimal control 

effort. The high lev el planner' s function is planning a path either offline or online and 

depending on environment changes. The path can also be generated in such a way as to 

simply follow another robot. The task of the lower level path tracker controller is to 

guarantee that the robot will track the path in a precise, reliable, and efficient manner. 

The path following problem is highly nonlinear, and several approaches have been 

developed to solve the problem of path tracking through direct control of the robot' s 

dynamics. In sorne of the se approaches (Xu and Yang, 2001; De Santis, Hurteau et al., 

2002; Zhang, Xu et al., 2002), nonlinear controllers are derived based on the Lyapunov 

approach. Other types of controllers were designed (Koh and Cho, 1995; Caracciolo, de 

Luca et al., 1999; Zhang, Xu et al., 200 1) using sliding mode control or other nonlinear 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

6 

techniques and were applied to the nonlinear dynamic and kinematical model of the 

robot. A behavioral approach (Yang, Li et al., 2003) for path tracking was implemented 

using fuzzy logic control for wheel steering. 

Irrespective of the performance of these approaches, they cannot be implemented if the 

robot dynamics are inaccessible. If no direct control on motor torques and traction forces 

can be done, such techniques cannot be used. A controller at a higher level can be used 

to solve this problem. Motion is controlled using the kinematic model of the robot as the 

system. The control law has to respect the kinematic constraints. The variables 

calculated by the control law are the translational and rotational velocities, based on the 

position, orientation, and the current values of the translational and rotational velocities. 

Here is a brief overview of sorne of the control techniques for control at the higher level 

on the kinematic model. 

Many control techniques have been developed and proposed to control the robot at the 

kinematic lev el. In Xu and Yang (200 1 ), a con troUer is implemented using a biologically · 

inspired shunting model integrated into a bang-bang controller. In another approach 

(Weiguo, Huitang et al., 1999), a controller is designed using a back-stepping technique. 

ln Ollero and Heredia (1995) the stability of a pure pursuit path tracking algorithm is 

analyzed for a kinematical model using a linearized kinematical model. The analysis is 

done for the case of a straight line and a circle, with the reasoning that most trajectories 

can be decomposed into pieces of constant curvature. 

A generalization of the quadrature curve approach (Yoshizawa, Hashimoto et al., 1996) 

has been implemented. The idea is to make the robot follow a quadratic curve to a 

reference point on a desired path. The reference point is moved in time until the goal 

destination reached. 

A path tracking algorithm that uses a scalar controller (Davidson and Bahl, 2001) based 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

7 

on static path geometry with position feedback has been implemented on three types of 

wheeled mobile robots, one of which is differentially steered. 

Despite the interesting features of ali these controllers, they are difficult to tune, in 

contrast to the flexibility that fuzzy logic control provides. Fuzzy logic control (FLC) is 

an interesting tool to be applied to the problem of path tracking since the output varies 

smoothly as the input changes. In this project, we will discuss a fuzzy path tracking 

controller designed based on expert experience and knowledge that was implemented on 

a four-wheel differentially steered mobile robot. The rules are based on reasoning 

similar to that of a human driving a car on a road that is free of obstacles and other cars. 

If the road is straight, the driver can displace at higher speeds. When faced with a 

curvature, he lowers the speed and makes a smooth turn. The behavior of the human 

driver is apparent in the fuzzy inference rules. The membership functions were derived 

based on the kinematical constraints of the robot. The built-in PID controllers were used 

to control the vehicle dynamics. Each wheel is controlled separately, and a user can only 

change the gains of the PID, which is virtually futile for the purpose ofpath tracking. 

If the built-in dynamic level controller doesn't perform properly in accordance with the 

controller at the kinematic level due to changes in the physical properties of the surface, 

an adjustment technique can be used to sidestep the problem. An intelligent predictive 

control approach that adapts the reference inputs (velocities) based on real-time leaming 

(Yang, He et al., 1998) is one good technique to be explored and added in cascade after 

the path tracking controller in the control loop in case the robot dynamics are 

inaccessible. 

Sorne of the path trac king control techniques mentioned above will be discussed in more 

detail in what follows. 

Direct Wheel Servo Control: Path tracking at the lowest level of the control hierarchy is 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

8 

done through direct servo control of the wheel motors. In (Koh and Cho, 1995), an 

adaptive feed-forward wheel controller was added to the wheel servo to obtain a higher 

level of accuracy. The wheel controller and the path tracking controller have been 

integrated to obtain smooth motion. Model parameters were estimated using the least 

squares method. 

Sliding Mode Control (Zhang, Xu et al., 2001): The nonlinear dynamic model of the 

robot with coupled inputs is obtained in state space representation using a nonlinear 

transformation to decouple the inputs, and astate space trajectory is used as a reference. 

The controller uses the state trajectory starting from any point of state space and 

converges asymptotically on sliding surfaces towards an equilibrium position. 

Backstepping Control (Weiguo, Huitang et al., 1999): A path tracking controller is 

derived by applying the backstepping technique to the kinematic model in polar 

coordinates. The translational velocity is assumed constant, and the model reference is 

avoided using polar angle as parameter. Backstepping design has the merit of 

simplifying the design of nonlinear control and rendering it simple. 

ln Laumond (200 1 ), three types of control problems are discussed: pa th following, 

trajectory stabilization, and stabilization of fixed configurations. ln path following, the 

robot traces a curve at a constant velocity. A control technique using state feedback is 

proposed. In trajectory stabilization, the robot follows the reference curvature with time 

constraints and the translation velocity is not a constant. Control stabilizes the error in 

position and orientation to zero. In fixed configurations, the robot position and 

orientation are controlled in time. 

1.4 Real Time Obstacle Avoidance 

Mobile robots often need to navigate and execute their tasks in environments cluttered 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

9 

with obstacles. The robot must successfully reach a goal position without colliding with 

the obstacles encountered on its path, so as to prevent the robot and the objects 

encountered on its way from damage. Since no camera and laser range finder are 

installed on the robot, it will be assumed that the environment is flat or very smoothly 

inclined. In the case of a well known environment in which ali obstacles are static, one 

of the algorithms mentioned in section 1.1 can be used to find an optimal trajectory that 

avoids all static obstacles. 

These techniques are too costly to be used in real time applications in a dynamic 

environment where objects can be displaced and new obstacles can come into the scene. 

Consequently, a real time approach is usually needed so that the robot can avoid 

obstacles in real time, and reach the destination. These techniques often drive the robot 

in non optimal paths; however it is necessary to compromise optimality to improve 

safety. 

The first research done on obstacle avoidance in real time was done by Khatib (1985). 

The concept of artificial potential fields is used to control the behavior of the robot, 

hence the term behavioral approach. This approach is efficient in calculation time and is 

independent of the geometrie and kinematical transformations. The destination point in 

the space or plane is considered as an attractive pole and is dotted with a positive weight, 

while the obstacles are considered as repulsive poles and are dotted with negative 

weights. In this approach, the robot is prone to get stuck in local minima. This approach 

is also unstable when the destination point is close to an obstacle. The author's main 

interest at the time was in applying the technique on fixed base manipulators, but the 

concept can be applied to mobile robots as well. 

An approach that makes use of artificial potential fields with simulated annealing (Lee, 

2001) is used to plan local and global trajectories. This approach has been designed to 

avoid local minima and seems to produce interesting results. However the drawback of 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

10 

this approach is the calculation time required, which makes it too costly to be used in 

real time. 

In another technique (Ju, 2002), obstacles are modeled as ellipses so as to reduce the 

complexity of calculation and detect collisions with moving obstacles. It has the 

advantage of generating an optimal trajectory while avoiding the obstacles as modeled. 

Still, the calculation time required renders it costly to be used in real time. The usage of 

a single ellipse to represent elongated obstacles may result in a suboptimal trajectory 

with respect to real obstacles. 

Sorne other techniques using the same concept with sorne improvements have been 

developed. The V ector Field Histogram (VFH) technique (Borenstein, 1990) has the 

capacity to maintain a static representation of an obstacle at the level of the world model 

and the intermediate data level. This approach has the advantage that the robot can 

navigate in narrow corridors without oscillating and at high speeds. Still, this approach 

can lead the robot into an obstacle in certain cases, and it does not take into account that 

the robot moves in arcs and not in straight lines. The same authors (Ulrich, 1998) 

improved this approach and enhanced its reliability. The VFH+ takes into account the 

radius of the robot and leads the robot in smoother trajectories. This approach can lead 

the robot to local minima and thus to a dead end. To eliminate this effect, the VFH+ 

technique was used along with the A* algorithm and upgraded it to become the VFH* 

(Ulrich, 2000). This technique projects the trajectory of the robot on a few steps ahead 

and evaluates the consequences. It is also capable of finding solutions for the case wh en 

the robot should slow down and even stop. Although this method has been proved to be 

effective, it is more costly in terms of the calculations involved. 

In the curvature velocity method (Simmons, 1996), an objective function in the 

curvature-velocity space is optimized in terms of speed of navigation, safety, and goal 

seeking. This technique can be used if the environment is unknown and no reference 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

11 

trajectory is available, and can be used for exploration purposes as well. This method 

will be used for this project. 

Approaches based on the artificial potential fields act mainly as reactive systems and can 

be integrated with a global path planner for planning long trajectories in case the 

environment is partially known. 

Supervised learning systems using neural networks, fuzzy logic, as well as neuro-fuzzy 

techniques (Fagg, Lotspeich et al., 1994; Beom and Cho, 1995; Mucientes, Iglesias et 

al., 2001; Macek, Petrovic et al., 2002; Xin, Vadakkepat et al., 2002) have been 

developed so that the robot can navigate autonomously while avoiding obstacles. Even if 

not all of the data corresponding to all possible single cases are supplied to the learning 

system, an intelligent system can adapt to individual cases of distribution of obstacles 

and perform adequately. Supervised leaming can be either done online or offline. 

1.5 Navigation Control Architectures 

According to Driankov and Saffiotti (200 1 ), navigation architectures that are used to 

control robot navigation can mainly be classified into two architectures: hierarchical and 

hybrid. 

Exteroceptive sensors onboard the robot are used for the perception of the environment. 

The most common exteroceptive sensors used on wheeled mobile robots (WMR) are 

cameras, sonar arrays, and laser range finders. In contrast, proprioceptive sensors are 

used for the perception of the internai state of the robot, such as acceleration, velocity, 

and heading. 

In hierarchical architectures (Figure 1) the data acquisitioned by exteroceptive sensors 

are used at the higher planning level, such as path planning. Consequently, planning is 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

12 

done in real time, and a more expensive processor would be required to perform the 

required computations since the who le model of the environment might be used. 

Mode ling Planning 

Execution 

Environment 

Figure 1 Hierarchical architecture: exteroception sensor readings are fed to the 
top of the control hierarchy 

In the case of a hybrid architecture (Figure 2), data acquisitioned by exteroceptive 

sensors are used both the higher level functions and the lower level execution layer. This 

would necessarily imply the need to separate the task into behaviors (actions) and the 

need to coordinate behaviors according to their priority. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

13 

Mode ling Planning 

Execution 

Environment 

Figure 2 Hybrid architecture: exteroception sensor readings are fed to the top and 
execution levels of the control hierarchy 

In this project, the proposed navigation architecture can be classified as hybrid and is 

implemented in the form of a state machine depending on sonar perception as input. In 

case no information about the environment is available, the robot would run in the 

curvature velocity mode, which is a combination of two different behaviors: goal 

seeking and obstacle avoidance. 

If information about the environment is available, then the higher level planner finds an 

optimal path towards the user specified position if accessible from the current posture of 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

14 

the robot. Then, a lower level path tracker executes the trajectory. In case the sonar 

arrays perceive obstacles in the path of the robot, the running routine switches to the 

curvature velocity mode until the obstacle is bypassed and the waypoint behind the 

obstacle on the path is reached, in which case the robot switches back to the initial mode 

and continues executing the initially planned trajectory. 

In Chapter 2, the technical specifications of the Pioneer 3AT robot as well as the client 

interface are detailed. The types of wheeled mobile robots and the modeling of four­

wheeled skid-steered robots are discussed in Chapter 3. In chapter 4, a brief discussion 

of the A* algorithm is presented and the dynamic programming approach is developed. 

In Chapter 5, a fuzzy path following controller and a path tracking controller based on a 

Lyapunov approach are examined. In Chapter 6, the implementation of the curvature 

velocity method for obstacle avoidance is discussed. Finally, a proposed method for the 

integration of the three aspects of navigation in a complete navigation strategy is 

discussed in Chapter 7. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER2 

TECHNICAL DESCRIPTION OF THE P3-AT MOBILE ROBOT AND ITS 
CLIENT INTERFACE 

2.1 The Pioneer 3-AT Robot 

The algorithms and control methodologies developed throughout this project have been 

tested on the Pioneer 3 AU Terrain (P3-AT) mobile robot fitted with two sonar belts and 

a heading correction gyroscope in addition to the built-in 100 tick motor encoders. 

Figure 3 The P3-A T robot in the lab 

The P3-A T is a four-wheel drive robot based on skid-steer motion (see Chapter 3 on 

robot types and modeling). Its high power to weight ratio and its rigid aluminum 

platform render it robust on rugged outdoor terrain. Its relatively small size (50cm x 

49cm x 26cm body and 21.5cm pneumatic wheels diameter and 9Kg with one battery) 

makes it suitable for indoor applications and navigation in narrow spaces. This also 

makes the P3-AT easy to handle, repair, and transport. The P3-AT robot can climb sills 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

16 

of 9cm or ramps having a slope of 45%. On flat floor, it can move at speeds of up to 

lm/sec and it can rotate in place or it can move in a circle at a radius of 40cm with 

wheels moving on only one side. At slow speeds and on flat terrain, the P3-AT can carry 

loads ofup to 20Kg. The robot is powered by up to three 12 Volts batteries that have an 

endurance of three to six hours, depending on charge and terrain. When only one battery 

is used, it is well recommended to put it in the middle slot of the battery compartment at 

the rear of the robot to maintain balance. When two batteries are used, one battery is 

placed in each of the left and right slots. 

The four reversible DC motors are powered by a 12 Volts terminal from the batteries 

and are controlled by a MOSFET H-bridge, while there is a 5 Volts terminal to power 

the onboard electronics. The robot's power system is protected with fuses to protect all 

electric and electronic onboard components from eventual current surges. Figure 4 is an 

upper view of the motor-power interface PC B. 

E-stop HS-Power 

Figure 4 Power terminais on the P3-AT motor-power interface board 

For more information on power connections, refer to Appendix B of the 'Operations 

Manual' (Robotics, 2001). 

2.1.1 Wireless Seriai Communications 

The user control panel on top of the robot (Figure 5) is the user's hardware interface to 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

17 

control the robot. The original plate of the panel has been drilled to branch a 5 Volts 

power terminal outlet to the power board. 

Since the robot used for this project has not been fitted with an onboard computer, a 

laptop computer fitted with a wireless seriai connection has been used to control the 

robot. 

Figure 5 Close view of the user control panel 

The wireless seriai connection is simply used to replace a seriai cable that is less 

convenient and restricts robot motion. Since the robot is used in a lab or at close 

proximity from the user, there is no need for an expensive industrial wireless seriai 

connection with ranges of 500 meters. Consequently, it was decided to use a relatively 

cheap AIRcable Seriai (Figure 6) which consists of two seriai to seriai wireless 

connecter modules: the Data Terminal Equipment (DTE) module and the Data 

Communications Equipment (DCE) module with a reliable range often meters. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

18 

Figure 6 AIRcable Seriai DCE and DTE modules 

Conned to OTE OTE DCE Conned to DCE 

Figure 7 Wireless connection schematic 

The DTE has a Sub-D 9 pin female connector that is connected to the laptop's COMl 

seriai port and the DCE has a Sub-D 9 pin male adapter that is connected to the robot 

(Figures 7 & 8). 

Since the robot does not support hardware handshake, the two modules cannot make a 

connection. To remedy this problem, pins 7 and 8 of each of the two modules should be 

shorted. The Request To Send (RTS) and Clear To Request (CTS) pins are shorted 

(Figure 9). If the R TS signais a request, it is immediately cleared by the CTS without 

requiring a handshake between the computer and the robot. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Figure 8 DTE and DCE modules plugged on the laptop computer and the robot 
respectively 

19 

Two DB9 connectors are used to short RTS and CTS for each module (Figure 10). The 

RTS and CTS of each of the two modules are shorted by intemally soldering a wire to 

the two pins of the DB9 connector that will be plugged to the robot or laptop computer. 

Figure 9 R TS and CTS pins shorted 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Figure 10 DTE and DCE modules with DB9 plugged into the intermediate DB9 
connectors 

2.1.2 Sonars 

20 

The P3-AT robot used in this project is fitted with two sonar arrays each having eight 

transducers mounted on the front and rear sections of the robot. Every sonar element 

returns a range to an object in a certain direction. Obstacles up to more than five meters 

from the robot can be detected. The sonars in our case are used to detect obstacles and 

navigate safely. The sonar arrangement in each array is shown in Figure 11. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

TOI 

Figure 11 Sonar array front and top views 
(Courtesy of ActivMedia Robotics, LLC) 

21 

Sonars can be used to detect obstacles of reasonable cross section with a sufficient 

accuracy for navigation purposes. For pinpoint accuracy, a laser range finder can be 

fitted onboard the robot. It scans in a horizontal plane and can accurately determine the 

position of the object with respect to the robot. Due to budget limitations, the robot used 

in this project was not fitted with a laser range finder. 

2.1.3 The Activmedia Robotics Operating System (AROS) 

The AROS is the operating system that acts as the interface between a client application 

and the robot. In our case, the client application is an executable program on the laptop 

computer. The server is the microcontroller and its peripherals that executes the client 

application commands and provides it with sensor and robot information. The control 

architecture of the robot is shown in Figure 12. The client application sends packets to 

the robot server, containing motion commands and information requests on position and 

velocity as weil as sonar readings and receives back the information from the robot 

server that executes the motion commands. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

22 

Client Application 

/ " Server Client 
Information Cornrnands ,_/ 

Server 
~~ ornmunic ation l Interface 
Packets J 

1 1 1 
Velo city& Position Sonar& 110 
Angle Inte gratien Schedules 
Controls 

5t 
""-/ 

~ ~ Encoder 
Counting 1 g 

Robot 110 
Functions Control 

Figure 12 Client-server control architecture 

The communication between the control client and the robot is done using special client­

server communication packet protocols. In general there are two packet protocols, client 

command protocol and the server information packet protocol. The client commands and 

data requests are encapsulated in a packet using the former protocol, while the server 

information data is encapsulated in the latter. The packets consist of a stream of bytes 

that are sent through the wireless seriai connection from one terminal and received and 

decoded at the other terminal to determine the type of information in the packet and its 

numerical arguments, if any. Fortunately, there is no need to deal with low level control 

and communications, since Activmedia has developed a reliable high level interface to 

control the robot. Th us the client pro gram would make use of the ARIA library that will 

be discussed in the next section. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

23 

2.2 The SRI Simulator 

Developed by the SRI Intemational's Artificial Intelligence Center, the SRisim is an 

excellent tool to test and debug client applications and specially those in the autonomous 

• SRisim: Simulator in (:\Documents and Setti... [~IQli'RJ 
Connect Files Grow Shrink Wake Recenter 

1 

0 

!Client open request 

f'N'orld: office.wld 101 

Figure 13 SRI simulator with the P3-AT parameters loaded snapshot 

mode before implementation and testing on the real robot. The SRisim simulates real 

robot behavior in regards to odometer and sonar readings. The robot parameters and the 

environment can be loaded through the Files menu of the simulator window. The client 

application is connected to the simulator through TCP port 8081 (by default). A custom 

environment can be easily created using world files that can be loaded through the 

simulator menu (see Appendix 3 for a sample myWorld.wld file). 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

24 

2.3 The Activmedia Robot Interface for Applications (ARIA) 

To provide developers and researchers with a relatively easy to use interface, the ARIA 

open source object-oriented user interface was developed in the C++ programming 

language and is distributed with ActivMedia products. This library is · used in the 

development of a client application as an interface to all the low-level tasks such as 

establishing communication with the robot. It is highly versatile and flexible and can be 

used to implement virtually any high level task without worrying about communication 

with the server and provides easy to use methods to access all sensor information and 

control the robot. The server on the robot is the AROS operating system that is 

originally installed on the robot's microcontroller. AROS manages all the low level tasks 

of motion and mo tor control and performs sensor information ( encoders, gyroscope, and 

sonar) acquisition. Intelligent tasks such as navigation and sensor data fusion and 

interpretation are done at the lev el of the client application. 

ARIA provides extensive methods and features for robot control and sensor data 

acquisition. The ARIA interface spares the user from developing all low level tasks such 

as packet encoding and decoding and supplies all needed interfaces to the robot. Only 

those methods and features used in this project will be discussed. 

In this discussion, the C++ driver program in Appendix 1 that is based on the 

"actionExample" distributed with the ARIA package is explained. This example 

contains all the needed functionalities to operate the robot. There are other ways to 

control the robot; however using actions is the most suitable way for this project. The 

communication with the robot is done through a seriai port as mentioned in the previous 

section. ARIA provides us with the methods necessary to establish the communication 

with the robot from the driver program without getting into the communications details. 

The most suitable method to communicate with the robot is done with the 

ArSimpleConnector method of the ARIA library. If the SRI simulator that is provided 

with the ARIA package is open, ArSimpleConnector will connect to the simulator, 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

25 

even ifthe robot is connected to the COM1 seriai port. If no SRisim window is open, it 

tries to connect to the robot through the COM1 seriai port on the client computer. By 

default, ArSimpleConnector connects to the robot on COM1, however if another COM 

port is used, this has to be done by parsing the arguments through a command window. 

The statements in the code of the main function that parses the arguments to 

ArSimpleConnector are as follows: 

ArSimpleConnector connecter( &argc, argv); 
Connector.parseargs( ); 

To change the settings as specified by the parsed arguments, the function 

ArSimpleConnector::logOptions is called: 

If ( argc > 1 ){ 
Connector.logOptions( ); 
exit(1 ); 

} 

If the number of arguments argc is not greater than 1, meaning no arguments are 

specified other than the name of the executable, the default settings will be automatically 

initialized. 

To connect to the robot ArSimpleConnector::connectRobot is used to establish the 

connection. This function takes as argument a pointer to an ArRobot object. ArRobot 

will be discussed shortly thereafter in what follows. If the robot was correctly associated 

with the pointer to the ArRobot object and a true was returned by 

ArSimpleConnector: :setupRobot, a blocking connection is established with the robot, 

or if not a fa/se is returned. The function ArSimpleConnector: :setupRobot is called 

from connectRobot. This function first tries to establish a TCP connection on port 8101 

with the simulator, if not it tries to connect to the deviee through the seriai port and 

returns true. If none was available, a fa/se is retumed meaning no connection could be 

established. The code in the main function in Appendix 1 is: 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

if ( !connector.connectRobot(&robot)) { 

} 

printf("Could not connect to robot ... exiting \n"); 
Aria::shutdown( ); 
return 1; 

26 

If a connection is established, execution of the main function proceeds, if not, a 1 1s 

returned and program execution ends here. 

After this brief discussion about establishing a connection with the robot, we turn now to 

discuss the ArRobot method that is the core of ARIA. As mentioned earlier, the AROS 

operating system software installed on the microcontroller manages low level tasks such 

as the execution of motion commands and the acquisition of sensor data. The robot 

microcontroller acts as a server to a client (user program such as the one in Appendixl), 

and thus ARIA is a high level interface between the client and the server. ArRobot acts 

as a gateway between client and server communications, is the central database for 

collection and distribution of state-reflection information coming from the robot, and is 

the systems synchronization manager (Robotics, 2003). 

The client-server communications adhere to packet-based protocols. ArRobot handles 

the low level communications details such as encapsulating and sending data in packets 

known as client command packets as well as receiving and decapsulating server 

information packets and information extraction (see section of for more information 

about packets and packet contents). Sorne more explanation about how the packets are 

handled by ArRobot are available in Robotics (2003). For even more details, check the 

header and source files ArRobot.h and ArRobot.cpp that are available with the ARIA 

package. The standard server information packets (SIP) containing odometry and sensor 

information are sent by the server every 100 msecs. The tasks that Ar Robot performs 

and are apparent in most client applications source codes are state-reflection as well as 

motion commands. State reflection consists of determining the state of the robot in what 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

27 

regards position, speed, heading, sensor readings, as well as other stuff related to the 

state of the robot. Motion commands are velocity and heading correction commands as 

well as limiting speeds. State-reflection functions such as Ar Robot: :getPose, 

ArRobot::getX, ArRobot::getY, ArRobot::getTh, ArRobo::getSonarRange, and a 

multitude of other functions are used by the client code to get needed information on the 

current state of the robot needed to issue motion commands or for other information 

requests. 

At every time interval, ArRobot executes a series of interdependent tasks in the 

following order: SIP handling, sensor interpretation, action handling, and user tasks. 

Almost all the other methods of ARIA act as peripherals for ArRobot of which 

ArSimpleConnector discussed above is an example. ArSimpleConnector uses 

ArRobot::blockingConnect to establish a blocking connection with the robot. This is 

why a pointer to the ArRobot object was needed in the ArSimpleConnector. 

In the client pro gram of Appendix 1, an Ar Robot object is first created in the main 

function. Then the sonar range deviee 1s added to the robot using 

ArRobot::addRangeDevice. All range deviees should be added before actions are 

added since sorne actions may require sonar readings to be executed, and thus will not 

be added to the Ar Robot object (robot in our case) if no sonar deviee is added to it. If 

there is a gyroscope on the robot, it is automatically added to robot. 

The motors are enabled by sending a special packet to the server through 

ArRobot::comlnt that makes use of an ArRobotPacketSender object in ArRobot, that 

in turn calls packet encoders and sends the packet. Note that the arguments of comlnt 

are ArCommand::ENABLE (string of type unsigned char) and 1 (of type int ). IfO was 

used instead of 1, the motors would be disabled. After sorne string decoding, EN ABLE 

will be interpreted as a command (of type enum in ArCommands ), and will be put in a 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

28 

client command pack et and sent to the robot. So in co ml nt, ArCommands: :Enable is 

passed to the ArRobotPacketSender object that takes care of sending the command to 

the robot, without the client programmer being concemed about any such details. 

Now that the motors are enabled, the robot can be run using the ArRobot::run function. 

If the argument passed to it is true, this function calls a synchronous loop that executes 

until the client program is disconnected from the robot, at which point the function 

retums and continue into the main function. And after that the client program execution 

is closed. 

The commands directly related to ArRobot in the main function are: 

ArRobot robot; 

robot.addRangeDevice ( &sonar); 

robot.comlnt ( ArCommands::ENABLE, 1 ); 

robot.addAction ( &recover, 1 00); 

robot.addAction ( &myAction,SO); 

robot. run ( true ) ; 

Figure 14 Robot commands 

This is what concems the usage of ArRobot in the client program of Appendix 1. 

ArRobot contains many other functions and utilities from which only the ones used in 

the action class are pointed out here. 

Before explaining the code in the action class, we will briefly mention one more detail in 

the main function, the ArSonarDevice method. This method is inherited from 

ArRangeDevice and keeps track of sonar history and cumulative readings. An 

ArSonarDevice object is created and added to the robot in the main function. Using 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

29 

ArRobot::getSonarRange, the distances to objects could be found without the user 

being concemed about any calculation details involving sonar readings. Other functions 

for sonar values interpretation are available in ArRobot. 

The client application controls robot motion using one or more of the following: direct 

commands, motion commands, and through actions. Through direct commands, the 

client can send commands directly to the robot server from ArRobot. The list of 

possible commands is specified as of type enum in the ArCommands method. These are 

one byte commands with zero or more argument bytes associated with each of them. An 

example of sending direct commands is the ArRobot::comlnt that we have used to 

enable the motors as indicated earlier. 

Motion commands on the other hand are one level higher than direct commands in 

ArRobot. Motion commands are built-in motion commands that handle direct motion 

procedures, such as moving a certain distance from the current position in a straight line 

using ArRobot::move, or setting velocities and headings, or simply to stop the robot. 

As stated in the ARIA user manual (Robotics, 2003), it is recommended to use actions 

instead of direct and motion commands to control robot motion. Actions are 

implemented in ARIA using the ArAction method. The user can define his actions by 

creating methods inherited from ArAction and overloading the ArAction::fire member 

function. 

ArAction is very useful to create autonomous tasks in client applications. Sorne built-in 

functions are available in ARIA, of which only ArActionStallRecover is used in this 

project. The fire function retums a pointer to an ArDesiredAction object. For more 

information about how ArAction objects are interpreted and called by ArRobot and on 

how the actions are resolved according to their priority, you are kindly requested to refer 

to the ARIA user manual. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

30 

We now go back to the code in Appendix 1 to point out how Ar Action was used. First, 

in the main function, the action objects are declared with the necessary parameters for 

the constructor in case needed. Then the actions are added to the robot using 

ArRobot::addAction that takes as argument a pointer to the action object to be added 

and a priority number. A higher priority number indicates a higher priority for the action 

to be added. This will be interpreted as such in the priority resolver. The recover action 

undertakes a series of actions to recover in case one of the wheels is. stalled. It is given a 

higher priority then the other action added to robot. The ActionGo method is the client 

application action that carries out the task specified by the user. When addAction is 

executed, a pointer to the ArRobot object is passed to the action through the 

ArAction::setRobot function in case it was not overloaded in ActionGo, or else 

ArActionStaiiRecover recover; 

ActionGo myAction; 

robot . addAction( &recover, 1 00); 

robot . addAction( &myAction, 50); 

Figure 15 Action declarations 

Action Go: :setRobot will be called. In Action Go: :tire, member functions of other user 

specified methods can be called to perform the necessary calculations needed to obtain 

the arguments for the motion command. W e will come back to this later on. 

Let's now take a look at the ActionGo definition at the beginning of the client program 

of Appendix1. ActionGo is inherited from ArAction and the tire and setRobot functions 

are overloaded. in ActionGo. The user's class that performs the calculations of the 

desired velocities at the highest level of control and is used in the client program of 

Appendix 1 is CurvVel. A pointer to a CurvVel object is declared as a member variable 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

31 

to ActionGo. Other important member variables are mySonar, myTime to keep track of 

time, and firstFire. 

An important member variable of the base method ArAction is myRobot which is a 

pointer to an ArRobot object. In the constructor, a CurvVel object is created, and 

firstFire is initialized to 1. To take into account the time delay between establishing the 

connection with the server and the first time ActionGo::fire is called and executed, 

myTime is set to 0 if firstFire is 1. Then firstFire is set to 0 and remains so ali 

throughout program execution. 

void ActionGo::setRobot (ArRobot* robot) 
{ 

} 

myRobot = robot; 
mySonar = myRobot -> findRangeDevice ( "sonar''); 

if (sonar== NULL) { 

} 

deactivate( ); Il function in base class 
return NULL; 

Figure 16 SetRobot member function 

In function ActionGo::setRobot that will be called by ArRobot::addAction, the 

variable ArAction::myRobot is initialized to robot, the pointer argument of 

ActionGo::setRobot. Then the ActionGo::mySonar variable is initialized to the sonar 

range deviee associated with robot using ArRobot::findRangeDevice. Remember that 

this association was done in the main function. If no sonar range deviee is found, 

Action Go: :mySonar will be associated with a NULL pointer, and the action must be 

disactivated. 

As mentioned previously, ArAction::fire returns the desired action to be sent to the 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

32 

server. The desired action must be reset each time fire is called. Then again we check 

for mySonar and if it is NULL the action must be deactivated and a NULL pointer 

would be returned and the function exits here. 

Then state-reflection functions are used to get the parameters needed to determine the 

desired action. The angles retumed are in degrees and distance parameters and sonar 

ranges in millimeters. The translational and rotational speeds are in millimeters per 

second and degrees per second. We can convert them to the units of our choice as we 

deem convenient. The values of the sixteen sonar ranges are obtained using 

Ar Robot: :getSonarRange and are stored in the range vector. All the needed 

information about the state of the robot is stored in a structure of type dVInputs, whose 

pointer will be passed to CurvVel::determineVels. The output of determineVels is a 

structure that consists of two variables, the translational and rotational speeds. The se are 

converted to right and left velocities so as to use one motion command, 

ArRobot::setVel2, and thus avoid delays that would otherwise occur between two 

motion commands. Then the pointer to the desired action is retumed. Function fire is 

called every time ArRobot performs the action handling task in the cycle. One more 

remark to add about the code in the main function is conceming the Aria::init and 

Aria::shutdown. These two functions should be added at the beginning of the driver 

function (the main) and just before the application ends. Aria::init initializes the thread 

layer and the signal handling method. Aria::shutdown shuts down all ARIA processes 

and/or threads. 

2.4 Conclusion 

In this chapter, the physical characteristics and the communication links to the P3-AT 

mobile robot as well as the ARIA application interface were described. An example 

application was discussed in detail to illustrate the operation of the ARIA interface. In 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

33 

the following chapter, the kinematic and dynamic models of a 4-wheel skid steer mobile 

robot are developed. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER3 

TYPES AND MODELING OF DIFFERENTIALL Y STEERED WHEELED 
MOBILE ROBOTS 

3.1 Introduction 

As mentioned in Chapter 2, the robot used in this project is the ActivMedia Pioneer 3AT 

mobile robot available at the GREPCI laboratary. In the first section of this chapter, a 

brief overview on the types of wheeled mobile robots (WMR) is presented, and is 

followed by a development of the kinematic and dynamic models of four-wheeled skid­

steer WMR in the second section. 

3.2 Types of Mobile Robots 

A wide range of vehicles used for a wide variety of tasks can be classified under the 

category of mobile robots. Unmanned aerial vehicles, ground vehicles with various 

mechanical steering techniques, watercraft, submarine robots, and other types of 

unmanned vehicles whether remotely controlled, semi-autonomous, or fully autonomous 

all fall under the category of mobile robots. In this section, the discussion will be limited 

to WMR and their characteristics. 

Holonomie or omni-directional mobile robots can move in any of the set of possible 

direction from its current posture without having to turn to that direction first. Non­

holonomie mobile robots on the other hand can only drive in one direction from their 

current posture. For example, in a two-dimensional plane, a wheeled mobile robot can 

only move in the direction of the current orientation of the wheels. Non-holonomie 

mobile robots are limited by the kinematic constraints that restrict their motion. These 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

35 

constraints are often modeled usmg equations involving derivatives of the posture 

variables. 

3.2.1 Ackermann Steered WMR 

Non-holonomie WMR such as cars adopt the Ackermann steering mechanism and are 

usually four-wheeled, of which the two front wheels are passive and are used only for 

steering while the active rear wheels that supply the traction force provide needed to 

displace the vehicle are fixed and have a common axle. Three wheeled models often 

referred to as tricycles use the same mechanism but are steered by only one front wheel. 

When the front wheels are fixed at a constant angle and the linear velocity is different 

from zero, the vehicle will follow a circle whose center is the intersection between the 

axles of the front and rear wheels (Figure 17). Thus, when a vehicle is steered, it will 

follow a path which is part of the circumference of its 

@if--------------
Centre o1 turnlng clrde 

Figure 17 Ackermann steering mechanism 

turning circle, that will have a center point somewhere along a line extending from the 

axis of the fixed axle. The steered wheels must be angled so that they are both at 90 

degrees to a line drawn from the circle centre through the centre of the wheel. Since the 

wheel at the outside of the turn will trace a larger circle than the wheel on the inside, the 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

36 

wheels need to be set at different angles. The Ackermann steering geometry arranges 

this automatically by moving the steering pivot points inward so as to lie on a line drawn 

between the steering kingpins and the center of the rear axle. The steering pivot points 

are joined by a rigid but in length adjustable bar, the tie rod, which is also part of the 

steering mechanism. This arrangement ensures that at any angle of steering, the centre 

point of all of the circles traced by all wheels will lie at a common point. 

3.2.2 Differentially Steered WMR 

Differentially driven WMR are non-holonomie whose active wheels on the left and the 

right sides of the vehicle are driven by independent motors. Most of these robots have 

two active front wheels and one passive caster wheel in the back for stabilization 

purposes. These types of robots have the property that they can turn at the spot by 

applying equal and opposite forces on the wheels on each side, which makes them 

suitable in narrow environments cluttered with many obstacles and are usually used for 

indoor applications. 

Another type used mainly in all terrain navigation has four fixed active wheels and is 

based on skid steering motion. Skid steering is accomplished by creating a differentiai 

velocity between the left and right wheels. Figure 18 is an upper view schematic of a 

four wheel drive robot skid-steering around the center. 

The front and rear wheels on each side are synchronized so as to avoid longitudinal 

slippage. Although this type is usually slower than robots with Ackermann steering, they 

are more robust and maneuverable on rough terrains. The disadvantage is the control 

needed to make the robot move in a straight line since the angular speeds of each of the 

active wheels must be exactly the same. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

• 1 

' 
1 
t 
1 
t 

Figure 18 Skid-steering motion around the center 

3.2.3 Single Wheel Drive WMR 

37 

This non-holonomie WMR is a tricycle but with the front wheel used for both steering 

and traction. The rear wheels are passive and fixed. This is considered to be the simplest 

design for a mobile robot. Linear and angular velocities of the robot are completely 

independent. For straight line motion (Figure 19 (a)), the front wheel axle is parallel to 

the rear wheel axle. To move in curvilinear motion (Figure 19 (b)), the front wheel is 

continuously angled depending on the curve to follow. 

The robot can also spin around the center midway between the two rear wheels if the 

angle of the axle of the front wheel is orthogonal to the axle of the two rear wheels 

(Figure 19 (c)). 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

D 

D 
(a) 

(c) 
D 

D 
(b) 

Figure 19 (a) Straight line motion (b) Curvilinear motion (c) Purely rotational 
motion around the center 

3.2.4 Synchronous Drive WMR 

38 

The synchronously driven WMR is almost holonomie in that it can move in any 

direction. All the wheels are active and used for steering. The axles of all the wheels are 

always parallel to each other and the wheels turn at the same speed and in the same 

sense. One possible design is to have one motor used for steering chained to all the 

wheels and one motor for traction geared to all three wheels. 

3.2.5 Other Types 

Sorne other types of robots used for delicate missions with extreme conditions that 

require high mobility, possess sorne of the features from the different types. The 

Nomad2000 and the JPL explorer shown in Figure 20 have their left and right wheel 

drives independent and the steering of each of the wheels is independent. This would 

ensure maximum displacement capability in rough terrain. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

39 

Figure 20 (a) Carnegie Mellon Nomad2000 (Courtesy of Carnegie Mellon) (b) NASA 
Mars Rover for space exploration (Courtesy ofNASA) 

3.3 Modeling of Four-Wheeled Skid-Steered Mobile Robots 

As mentioned in Chapter 2, the P3-A T mobile robot is a four wheeled skid-steered 

mobile robot. In this section, the kinematic and dynamic models on a two dimensional 

planar surface are derived. 

3.3.1 Kinematic Modeling 

The mode ling of the kinematics of differentially steered wheeled mobile robots in a two­

dimensional plane can be done in one of two ways: either by Cartesian or polar 

coordinates. The modeling in Cartesian coordinates is the most widely used and thus we 

willlimit our discussion to modeling in Cartesian coordinates. The robot has four wheels 

and is differentially driven by skid steer motion. The motors that power the wheels at 

each side are geared internally to ensure that the velocity of the two adjacent wheels at 

each side are synchronized (having the same angular velocity) and thus the same 

velocity at ground contact. 

The analysis of the motion of mobile robots is usually done for motion in a flat planar 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

40 

surface using two frames of reference, one local frame of reference fixed on the robot 

and the other one is a fixed reference from outside the robot as shown in Figure 21. Note 

that the x-axis of the local frame of reference is parallel to the direction of motion of the 

wheels and its origin is at the center of the rectangle formed by the centers of the four 

wheels. The transformation of the coordinates of a certain point P from the fixed frame 

of reference ofthe robot to the global frame of reference is given by: 

(3.1) 

(3.2) 

where 8 is the angle between the x-axis of the global frame of reference x0 and the x-axis 

of the robot frame of reference Xref· It is positive if it goes in the anti-clockwise sense. 

r px and r py are the x and y coordinates of p in the frame of the robot, 0 
x reJ and 0 y rej 

are the coordinates of the origin of the robot's frame of reference with respect to the 

global frame of reference. The term R(8) is the 2x2 rotation matrix. 

The change of position of the center of the robot (i.e. the origin of the local frame of 

reference) is characterized by x rej and y rej with respect to the local frame of reference 

and x0 and y0 with respect to the global frame of reference. The relationship between 

these four terms is as follows: 

[~o] =[~reJ c~s()- ~reJ sin()]= R(B{ ~reJ] 
Yo xref sm()+ Y rej cos() LYref 

(3.3) 

The coordinates of the local frame of reference and the angle 8 are sufficient to 

determine the posture of the robot with respect to the global frame of reference. The 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

41 

posture is defined by the ( 0 
X ref 

0 y ref 8 ] T vector and is used to denote the instantaneOUS 

position and direction. 

Yo 

• p 

Xo 

Figure 21 The two frames of reference used in the kinematic madel 

To get the accelerations, equation (3.3) is derived with respect to time: 

[~o] = R(8J ~ref- ~ref~] 
Yo Î_y ret + xrefe 

(3.4) 

The motion of the wheels one to four (wheels 1 and 4 being on the left side and wheels 2 

and 3 the wheels at the right side of the robot) is given by: 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

42 

. . . 1 iJ 
Y rl = Y r4 = Y reJ + 2 

(3.5) 

. . . 1 iJ 
Y r2 = Y r3 = Y reJ - 2 

If the rotational speed of each of the four wheels is constant, the robot would turn in a 

circle around a center whose coordinates with respect to the local frame are given by: 

[
Cx reJ] = [-? !_iJJ 
CyreJ x/0 

(3.6) 

If the speeds vary, as is usually the case, then these coordinates are referred to as the 

instantaneous center of rotation. In case there is no slippage, y r would be zero and 

equation (3.3) becomes: 

[~o J =[~reJ c~s(}] = R(O {X reJ] 
Yo xreJ sm(} 1 0 

(3.7) 

In this case, the center of the robot would be always moving in the direction of Xref and 

the velocity would be denoted by V. It can be proved geometrically that the rotational 

speed w around the origin is equal to the derivative of(} with respect to time. 

The velocities of each of the four wheels would be: 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

43 

. . . w è 
xr2 = xr3 = xref +2 

(3.8) 
. . 1 o· 

Yrl = Yr4 = 2 
. . 1 o· 

Yr2 = Yr3 = -2 

And the most useful equation for controlling the robot at the kinematic level would thus 

be given by: 

(3.9) 

from which the following motion constraint is imposed: 

y cos() - x sin() = 0 (3.10) 

Usually, mobile robots have a minimal radius of turn which would impose another 

constraint on motion. If the angular velocity is zero, the robot will be moving in a 

straight line and the radius is infinite. Finally the instantaneous radius of rotation would 

be given by: 

R = Cyref = xjè (3.11) 

3.3.2 Dynamic Modeling 

Through the use of the basic equations of mechanics, the dynamic model can be derived 

after drawing the free body diagram of forces. The dynamic model presented here is the 

same as in Caracciolo, de Luca et al. (1999), where the robot is askid-steer four wheeled 

mobile robot and is similar to the P3-AT. The free body diagram of forces is presented 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

44 

in Figure 22. Fx; are the traction forces applied by the torques T; on each of the four 

wheels. The relation between the torques and the resulting traction forces is: 

T; = 2rFxi(i = 1,2,3,4) (3.12) 

where r is the radius of the wheels. It is to be noted also that the traction forces 

developed by two wheels on the same side are equal due to the internai gearing of the 

robot. 

So the following relations would be valid: 

(3.13) 

The weight distributed on the four wheels is dependent on the position of the center of 

gravity G. For the analysis of the dynamic model, we take another frame on the robot 

with the origin at the center of gravity. 

Rx; are the resistive forces on the wheels in the xa longitudinal direction. The distribution 

of the weight on each of the four wheels is as follows: 

(3.14) 

where a and b are the distances shown in Figure 22. 

The ratios of the weight of the robot carried by each of the two front wheels on the front 

are equal. The same applies to the rear wheels. If the coefficient of friction between the 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

45 

wheels and the ground is f,., then each of the longitudinal resistive force would be given 

by: 

(3.15) 

And the total resistive force in the XG direction would be: 

(3.16) 

Y a 

Yo 

Figure 22 Free body diagram of forces 

If the coefficient of friction in the lateral direction is À, then the lateral friction forces on 

each of the four wheels is: 

(3.17) 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

46 

Then the total lateral friction forces would be: 

(3.18) 

By applying Newton's second law to the forces acting in the xo and y0 directions of the 

local frame, we get: 

max= 2Fx, + 2Fx2 - Rx 

maY= -FY 

J{j = w(Fx1 - Fx2 )- M, 

(3.19) 

where the resistive moment M, around the center of gravity of the robot is calculated 

around the center of gravity of the robot: 

(3.20) 

The centrifugai forces acting on the robot are negligible since the robot roUs at relatively 

low speeds. Writing the dynamic model with respect to the global frame of reference, 

the following formula would be obtained: 

Mij+C(q,q)= E(q)r (3.21) 

where q =[x Y oy, 

M~[~ 
0 0] [R,cosli-F,sinli] 
m ~ , C(q,q)~ R,sinli::Ycosli , 
0 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

47 

[

cosB/r cosB/rl 
E(q)= sinB/r sinB/r and 'f; =2rFx;(i=right,left) 

w/2r w/2r 

Given that the wheels are synchronized, only the complete force supplied by two wheels 

on the right or on the left needs to be considered. 

3.4 Conclusion 

In this chapter, a brief overview of the different types of mobile robots has been 

presented, and the kinematic and dynamic models have been derived. In this project, 

only the kinematic model will be used for path tracking control in Chapter 5. In the 

following chapter, an optimization technique for path planning based on dynamic 

programming will be discussed at length. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER4 

PATH PLANNING 

4.1 Introduction 

Robots often navigate in pre-known environments modeled using different tools such as 

maps. Making use of such information on the environment is advantageous. A path that 

is optimal in terms of factors such as time, distance, and safety can be planned to reach a 

desired goal position from the initial position of the robot. The available information can 

be mapped to a graph whose nodes represent sorne discrete positions in the environment 

and are linked by directional arcs with a cost value that is dependent on optimization 

parameter(s). In this chapter, the A* search algorithm is briefly presented and the 

iterative dynamic programming technique is described in full detail. 

4.2 Cost Map Generation 

As mentioned earlier, the path planning algorithm has been developed for outdoor and 

rough terrain navigation. To be able to find an optimal or near optimal path offline in 

this case, an aerial image of the terrain or previously stored information on the terrain on 

which the robot will be operating is needed. The approach mostly used in the literature is 

to sample the area into nodes at equal intervals in the form of a 2-D image. Given the 

scale of the image, a regional traversability map is obtained through sorne calculation 

procedure and is consequently converted to a cost map. The nodes are assigned a cost in 

a manner similar to a 2-D black and white image where each pixel corresponds to a 

certain gray level intensity value. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

49 

One simple and efficient method for path planning on natural terrains (Howard and 

Seraji 2001) makes use of fuzzy logic terrain-based path planning to find traversability, 

and a traversai cost function was applied to get the cost matrix. 

Due to the unavailability of a camera or a laser range finder and a 3-D gyroscope, the 

cost matrix generation was applied on indoor flat surfaces where obstacles are given a 

very high cost while traversable regions are given a uniform cost. 

4.3 Formulating the Problem 

In the previous section the cost map that was obtained by analyzing an aerial image or a 

certain database of terrain information was obtained. Now the available cost map should 

be put in a form that can be solved by the optimization techniques that will be discussed 

later in this chapter. Given a certain position element of a certain node, it will be 

assumed that the robot can traverse from eight different directions as shown in Figure23. 

It will also be assumed that the cost to travel in a straight line between two opposite 

position elements adjacent to the position element in question by passing through it in 

any of the eight directions is the cost of the node itself. Nevertheless, optimization 

techniques can still be applied in the general case where the cost to go from a certain 

node A to an adjacent node Bis different from the cost togo from B to A. 

NE N NW 

E~W 
SE S SW 

/ 
< 

"' / ' 

• 
1 ' 
1 •• 

• 
• __ ... 
• 

' ._ 
• -- h 

' 1 
• 1 

' il 
l"-

• v 
' / v 

Figure 23 Eight passage directions through a node 

The position elements will now be represented by nodes linked in two ways to all 

adjacent nodes (Figure 24(b )). 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

50 

Each node will have eight links, one towards each of the adjacent nodes (Figure 24(a)). 

The nodes now are put in the form of a general graph. 

(a) (b) 

Figure 24 Graphical illustration of connections between nodes 

4.4 The A* algorithm 

The most commonly used algorithm for path finding in mobile robot applications is the 

A* algorithm. This algorithm has the advantage that it is highly efficient in calculation 

time compared to the other methods. The convergence to the optimal path has been 

proven in Hart, Nilsson, et al (1971); and its extensive use has proved it to be reliable if 

the proper estimation function referred to as the heuristic is used to approximate the cost 

to reach the goal. In the following discussion, N; refers to the node i and the term LiJ 

refers to linkj of node i. The terms and variables that will be used will be defined and 

the pseudo-code of the algorithm will be presented. 

G: The cost to move from the starting point S to a certain given node by following 

the path generated to reach this node. 

H: The estimated cost to move from that given node to the destination node. The 

actual cost from the given node to the destination node is not yet known. This 

heuristic is calculated by a function that can be dependent on the distance to the node 

point or sorne other parameter. The only difficulty in applying the A* algorithm is in 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

51 

the choice of a suitable heuristic function to determine H. A heuristic function is an 

estimate and generally cannot estimate the exact value of the variable in question 

(the cost H in this case). The choice of the heuristic function affects the speed of 

convergence and the probability of having an optimal solution. The choice of the 

heuristic function is application dependent. 

C: Total cost to reach the destination from the starting node by passing through the 

current node. Since the actual cost from the current node in question is unknown, the 

estimate H will be used. So: 

C=G+H 

Open list: Current list of open nodes. This is the list of the nodes that have been 

opened but not yet processed. 

Closed list: Current list of closed nodes. The nodes in C/osed cannot be put in the 

Open list again. These nodes are the candidates to be on the final optimal path to 

reach the final destination node. 

A pointer to the parent node is associated with each processed node. Initially the Closed 

and Open lists are both empty. The steps below are iterated over and over again until the 

destination node is put in the Open list (Pruski, 1996): 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

1. Put No in Open and associate with it the cost F (No) = H (No) and a NULL 
pointer, since No is at the top of the hierarchy 

2. If Open is empty, no solution and exit 
3. Choose the node N; in Open that has the lowest cost F 
4. Put N; in Closed 
5. For all nodes Nk that can be reached directly from Ni 

if Nk is in Closed 

in Open 

if C (Nk) is lower than the cast of Nk in Closed 

Put Nk in Open and associate it with a pointer to Ni 

else if Nk is in Open 

if C (Nk) is lower than the cast of node Nk 

Associate Nk with the new cast and dot it 
with a pointer to N; 

else Put Nk in Open without modification 

if Nk is the destination node N, 

Exit 

el se 

Go to step 2 

Figure 25 A* search algorithm pseudo code 

52 

The optimal path back from Nf is the inverse of the chained list going from the 

destination node to the start node No. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

53 

4.5 Dynamic Programming 

4.5.1 Classical Dynamic Programming 

The notation that will be used here is the same as in Hillier (1990). Given N+1layers, 

including a layer for the final node, and node N is a node on the last layer before the 

final node. The decision variables Xn (n=l ,2, .. . ,N) are the immediate destination on the 

nth layer. The total cost of the best solution of the remaining layers (n, n+, ... ,N) towards 

the goal node is given by ln ( s , xn ). For an arbitrary node s on layer n+ 1 the optimal 

solution from s to the goal by taking a decision Xn• that minimizes ln ( s , Xn) will be 

determined. The total cost is given by: 

ln *(s) =min ln( s, Xn) =ln ( s, Xn *) 

and 

ln( s , Xn) = Csxn +ln+ 1 *( Xn) 

(4.1) 

(4.2) 

where Csxn is the cost between sand Xn andln+J*( Xn) is the minimum future cost (layer 

n+1 through N+1). We start first at layer N and continue through layers N-1, N-2, ... ,1. 

The optimal costs for the nodes of layer N is ln( s , Xn) = Csxn which is the cost of the 

single links between the nodes on layer N and the goal node. 

The classical dynamic programming approach proceeds to find the optimal paths for all 

the nodes of alllayers, including the node representing the actual state. 

4.5.2 Dynamic Programming: A Novel Approach 

When the cost matrix that corresponds to the map obtained by the aerial image is 

available, all inaccessible zones will be disregarded so as to minimize the number of 

nodes, and thus the number of calculations. This is done through a recursive procedure 

starting from the current position of the robot. Once the cost matrix of the terrain nodes 

is available, and given the initial or current position and the final or desired position, a 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

54 

modified version of dynamic programming is used to find the optimal path that leads to 

the node that corresponds to the desired destination position. Given that the node that 

corresponds to the final destination is G, ali nodes will be put in layers starting from 

node Gas follows: The first layer contains nodes that have a direct link to node G, the 

second layer contains the nodes that can reach G through a minimum of two links, the 

third layer contains the nodes that can reach G through a minimum of three links, and 

the kth layer contains the nodes that can be linked to G through a minimum of k links. 

By applying conventional dynamic programming on this graph, the optimality of the 

path cannot be guaranteed since it does not account for the links between nodes that 

belong to the same layer and for links going from lower to higher layers. 

Layer1 

Layer 2 

Layer K-1 

Layer K 

(a) (b) 

Figure 26 (a) Layers emanating from the goal node (b) Layers arranged from the 
goal node downwards 

Nodes belonging to the same layer can only have links to nodes on the same layer, to 

nodes in the layer that immediately precedes it, and to nodes in the layer just after it 

(Figure 26). 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

55 

In other words, if the node that corresponds to the initial position of the robot be longs to 

layer /, and the optimal path to the node that corresponds to the desired goal position 

passes from the initial position to another node on the same layer /, or goes through the 

higher layer /+ 1 and back to 1 and towards the goal, then the classical dynamic 

programming approach cannot be used to find an optimal path that can go back and forth 

until it reaches the goal position. 

The proposed approach is a generalization of the classical approach in that it makes it 

possible to have links between nod.es belonging to the same layer, as weil as links 

directed from an inferior to a superior layer. The classical approach will be used at the 

beginning to find a suboptimal solution and then iterations similar to the classical 

approach are applied to nodes on the same layer and superior layers to find a globally 

optimal solution. 

In Figure 27, node S represents the initial position of the robot and node G represents the 

final goal position. In classical dynamic programming, the analysis starts from the goal 

node and upwards towards the higher layers, until the optimal path is found for ali nodes 

including the node that corresponds to the initial position. The first layer contains nodes 

that have a direct link with node G. 

There are five different layers in Figure 27. The start node S is on the first layer, 

however the optimal solution passes through the nodes 1 to 24 pointed to by the arrows. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

56 

Figure 27 Graph with nodes 

By applying classical dynamic programming, the optimal solution would be to go from 

S to G directly since it is the only solution available. The direct path from S to G might 

be very costly, and it might be more interesting togo backwards and then go towards G. 

As mentioned previously, the nodes on the same layer cannot have links between each 

other. In Figure 28, the problem is reshaped to be solved using dynamic programming. 

Clearly, the optimal path goes from S to node 1 on the second layer and then to node 2 

on the second layer also, then to node 3 on the third layer, then to nodes 4 through 9 on 

the fourth layer, then goes forth to node 10 on layer 3, and so on. In this case, the fifth 

layer was discarded for clarity since the optimal path does not pass through it. However 

when the optimal path was calculated, it was tested and taken into account. The 

approach must guarantee a globally optimal solution. 

A global optimal solution is required in the case of a labyrinth where only the globally 

optimal solution is acceptable, since ail the other solutions pass through walls. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

57 

4 3 2 

Figure 28 Nodes aligned in stages 

Compared to classical dynamic programming in which the links between nodes are 

unidirectional and go from a superior layer to an inferior layer, and the nodes that belong 

to the same layer have no links between them, the new approach can take ali the links 

and their sense into account. Moreover, the cost between adjacent nodes can depend on 

the direction of the link. That is, given two adjacent nodes i andj, the cost Cij togo from 

node i to nodej canin general be different from the cost Cji fromj toi. This flexibility is 

useful in the case of 3D terrain navigation. The cost to go up a slope is always different 

from the cost of descending it. The approach that is used to find a globally optimal 

solution starts by applying classical dynamic programming on the links allowable by this 

approach, that is from superior towards inferior layers only and to the goal position 

finally. Then links between nodes belonging to the same layer are tested to determine if 

a more optimal solution can be found. At the end of the process, links towards the 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

58 

superior layer are tested to determine if an even more optimal solution can be found. 

This process is repeated (N+ l)xM times where N is the number of layers and M the 

number of nodes belonging to the layer that con tains the maximum number of nodes. 

4.5.2.1 Convergence to the Optimal Solution 

In general, if there are N nodes other than the goal node, the maximum number of nodes 

that a path can pass through before reaching the goal node is N, or all the nodes other 

than the goal node, thus passing only once at each node. The goal is to find the 

absolutely optimal procedure to reach the goal node among all possibilities. To this end, 

the layered solution graph will be introduced. To simplify the graph, the connections of 

the nodes from a certain layer i to a layer j are represented by a vector link. 

The vector link in Figure 29(b) represents only links going from nodes on layer i to layer 

jin one direction from i to }. Nodes on a certain layer can be either connected to other 

nodes in the same layer, to nodes in the next higher layer and to nodes at an immediately 

inferior layer. So the difference between i and} can only be 1, 0, or -1. To represent the 

links between nodes on the same layer, the nodes are duplicated as in Figure 30 (a) and 

represented by a vector link from i toi (Figure 30(b)). 

r----------------, 
1 

Layer i 1 
L_ 

-, 
L 

,1 1 
ayer 1 1 1 L ________________ J 

(a) 

Figure 29 (a) Links going from nodes on layer i to layer} (b) are represented by a 
vector link from i to j 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

59 

Figure 30 Inter layer connections 

At layer 1, ali the nodes are connected to the goal node, and these links are represented 

by a vector link from layer 1 to the goal node G as in Figure 31 below. 

® ;-- --- ______ o ___ i 
Layer 1 1 • • • •• 1 L ________________ J ~ 

(a) (b) 

Figure 31 Connections to the final goal layer 

Now that sorne simplifications are made, the layered solution graph can be presented 

(Figure 32). On top is the goal node with layer 1 directly below it and connected to it 

with a vector link. The links from the goal node to nodes of layer 1 will not be used 

since the objective is only to reach the goal node. In the next step, layers 1 and 2 are 

inserted below layer 1 and also linked to layer 1. This should not cause any confusion. 

One can imagine layer 1 on level 2 as having different nodes from layer 1 on level 1 but 

having the same connections and costs. At the Kth level, ali the layers would be 

contained. Levels K + 1 to N-1 contain ali the layers in order with each layer having 

vector links with maximum three layers (layers 2 to K-1 and two vector links for layers 1 

and K) at the level above it as in Figure 32. More specificaliy, a certain layer kat level n 

is connected to its duplicate at level n-1 and also to layers k-1 and k+ 1 at level n-1 if 

they exist. The layered solution graph contains ali the possible solutions (paths) to reach 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

60 

the goal node from any other node. Classical dynamic programming can now be applied 

to those virtuallayers stuffed in levels to find an optimal solution. 

Leve!! 

Leve12 

Leve13 

Leve!K 

Leve!K+I 

Leve! N-I 

Leve!N 

Figure 32 Layered solution graph 

Let the operation of DP (i, j) denote the operation on all nodes of layer i of equations 

( 4.1) and ( 4.2) with layer j being the layer that contains the next destination nodes. The 

first operation would be DP (1, G) at level 1 to the goal node G. The next step would be 

DP (1, 1) from level 2 to lev el 1, followed by DP (2, 1) also on level 2, and so forth un til 

the who le graph has been analyzed. The number of DP operations is equal to the number 

ofvector links Von a layered solution graph and is given by: 

K-I 

V= (N -K -1)(3K -2)+ ~)2+3k)+1 
k=O 

= (N -K -1)(3K -2)+2K +3K(K -1)/2+1 

= 3NK -2N -3K 2 +K +3K(K -1)/2+3 

(4.3) 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

61 

The optimal solution from a certain starting node to the goal node would be the 

minimum of the cost between all its virtual duplicates at the levels 1 through N. It is 

guaranteed that at the optimal solution, the path cannot pass twice by the same node 

since all the costs of going from one node to another are positive and the minimum will 

not pass through the same node twice. In other words, if Ly is used to denote level i and 

layerj, and sorne node n belongs to layerj, then the cost c• ofthe optimal solution togo 

from n to G would be given by: 

c· = min(n; E Lij)ji=l, ... ,k (4.4) 

where n; is the duplicate of node n at level i. 

4.5.2.2 Iterative Procedure 

Putting all these layers in a layered solution graph is very costly in terms of memory 

space. But since the layers at the different levels are all duplicates, if each node was 

associated with a current optimal cost c+ to reach G and a pointer p to the next node to 

follow that lie on the current optimal path towards G, with DP (i,j) being executed in the 

same order as in the layered solution graph. After every DP (i, j) operation, only the 

costs needs to be determined 

So only the graph of Figure 26 (b) rearranged in layer-vector link representation in 

Figure 33 is needed and an iterative procedure would be followed to determine the 

optimal solution. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

62 

@ 

LayerK 

Q 
Figure 33 Layer-vector link representation of the graph 

The pseudo code to perform ali the V operations needed to reach the optimal solution is 

presented in Figure 34. 

DP(1,G) 

for i = 1 to K 

for j = 1 toi 

end 

end 

for i =1 to N-K 

if j == 1 

DP (j ,j) 

if i ~ 1 

DP(j ,j+1) 

end 

el se if j == i- 1 && j ~ 1 

DP(j,j-1) 

DP (j ,j) 

else if j== i 

el se 

end 

DP (j ,j-1) 

DP(j,j-1) 

DP (j ,j) 

DP (j ,j+1) 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

end 

for j = 1 to K 

end 

OP (j ,j) 

ifj~ 1 

end 

ifj~ K 

end 

DP (j ,j-1) 

DP (j, j+1 ) 

Figure 34 Pseudo code of the iterative procedure 

4.6 Implementation on Parallel Processors 

63 

Going back to the solution graph (Figure 32) and supposing that the DP operations have 

reached a certain level L; and the DP operations (DP (j, j-1), DP (j, j), DP (j, j+ 1)) are to 

be done on a certain layer j at L;. For these three DP operations on layer j corresponding 

to L; to be executed, all the DP operations for alllevels Lk (k e [1, i - 2 D and for alllayers 

between [max{l,j- (i- k )),min{j + (i- k),K)] must have been executed. 

Conversely, if at a certain level L;, all the DP operations have been done till a certain 

layerj, then all the DP operations for alllevels Lk from L;+J up to L;+J-1 for layers [l,j-k] 

in these levels can be executed independently of the rest of the DP operations 

corresponding to the rest of the solution graph. 

Furthermore, if all the DP operations till a certain level L; have been executed, then all 

the DP operations for all the layers in level L;+J can be executed independently from 

each other. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

64 

These properties of dynamic programming make its implementation on parallel 

processors attractive. The parallel processor can be exploited to the maximum with this 

algorithm. 

4. 7 Implementation on MATLAB 

Since the new dynamic programming algorithm was developed before the robot was 

available, the MA TLAB technical computing software was used to implement and test 

the algorithm. Although less flexible and powerful than the C++ programming language 

in terms of speed and performance, the ease of implementation of the algorithm in 

MA TLAB made it the right choice. Since most MATLAB operations and data are 

represented as matrices, ali the data structures have been represented as matrices. 

The program (script) where the cost maps in matrix forms are defined and the plotting is 

done is the 'main.m' file. The user is prompted to select one of six maps, and to select 

the start and goal positions. The function 'getOptimal' takes 'startPosition', 

'goalPosition', the 'MAPCOSTS' matrix, and 'scale' as input arguments and returns 

'WayPoints' as weil as 'OPTIMAL'. Let's start first by the input arguments: 

'startPosition' : lx2 input vector containing the x andy coordinates ofthe initial 

position of the robot in meters. The origin is at the lower le ft corner of the map. 

'goalPosition' : same as 'startPosition' but with the goal coordinates. 

'MAPCOSTS': MxN matrix of costs as explained in section 4.1. 

'scale': Is the horizontal or vertical distance in meters between two adjacent 

nodes in 'MAPCOSTS'. In all the tests, the scale was assumed to be 1 meter. 

And the output arguments: 

WayPoints: Wx2 matrix containing the coordinates of the nodes that lie on the 

optimal path from 'startPosition' to 'goalPosition' inclusive, and in order. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

65 

OPTIMAL: Nx3 matrix whose first column contains the number of all accessible 

nodes on the map from 1 to N and whose second column contains the next node 

towards the target goal for all nodes of the first column respectively. The third 

column contains the cost of going from the node in the first column towards the 

goal node. The goal node is the only node having a cost of zero in the third 

column. 

The rest of the code in 'main.m' is for plotting the graph of the map with the obstacles 

and the optimal path from the start position to the goal position. 

The function 'getOptimal' is the interface to use the dynamic programming technique 

that has been developed to obtain the optimal solution. This function and its sub 

functions will be now briefly discussed. The first step in 'getOptimal' is to get the 

MAPCOSTS matrix indices corresponding to the start and goal positions. Then the 

function 'determineNodes' finds all accessible positions from the start position, assigns 

to them a node number, and determines the connections between nodes. The goal 

position should be chosen in an accessible region. The OPTIMAL matrix is calculated 

using the function 'dynamicProg'. At the end, the WayPoints matrix is calculated from 

OPTIMAL. 

The function 'determineNodes' takes as arguments MAPCOSTS and 

startPositionlndices determined in 'getOptimal'. In this function, two matrices are 

calculated: NODES and MAPINDEXROW. NODES is the matrix that contains the 

nodes and the nodes they are connected to along with the costs. MAPINDEXROW is 

the Nx3 matrix containing the node number as weil as their corresponding index in 

MAPCOSTS. The recursive function findAccessibleRegions is used to calculate these 

two matrices. Inaccessible nodes are disregarded. 

In the function 'getOptimal', the function 'dynamicProg' calculates the matrix 

OPTIMAL and is the bulk of the program. This function takes as input arguments the 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

66 

following variables that have already been calculated: NODES, startNode, targetNode, 

MAPCOSTS, and MAPINDEXROW. Let's take a look inside the function 

'dynamicProg'. 

Starting from targetNode, all the nodes are classified and ordered into layers as 

explained. The function 'findStages' uses a sorting routine to return the matrix stages 

who se rows contain the nodes of each of the layers. The number of columns in stages is 

determined by the number of nodes in the layer that contains the maximum number of 

nodes. The rows are filled starting from the beginning, and the remaining unused slots 

are filled by zeros. Although this is not efficient in terms of memory usage, no better 

performance can be achieved using MATLAB, since MATLAB offers no pointer usage 

as in Cor C++. 

The three dimensional matrix NODESLowMedUp is calculated using NODES and 

stages. NODESLowMedUp orders the connections to nodes in NODES into 

connections to the next lower, the same, and the next upper layer for all nodes. The 

pseudo code in Figure 34 is then implemented using the function 'DP'. Finally the 

matrix OPTIMAL is returned to 'getOptimal', where the matrix WayPoints is 

calculated and returned to 'main' along with OPTIMAL. Figure 35 is a hierarchical 

diagram of the functions used to implement the dynamic programming algorithm. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

67 

Figure 35 Hierarchy of functions 

4.8 A* and Dynamic Programming: A Comparison 

Both the A* algorithm and the dynamic programmmg technique presented in this 

chapter yield optimal solutions to a graph. The advantages and disadvantages of the 

dynamic programming technique relative to the A* algorithm can be summarized as 

follows: 

Advantages: 

- The dynamic programming algorithm determines the optimal solutions for ali the 
nodes of the graph towards the goal node, which is advantageous in a multi-robot 
environment or in case the robot deviates from its original path due to a real time 
dynamic obstacle. 

- The dynamic programming algorithm can be executed on several computational 
resources in parallel while the A* algorithm can only be executed sequentially. 

- The dynamic programming algorithm is generic and its performance is not dependent 
on the choice of any heuristic function as is the case with the A* algorithm. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

68 

Disadvantages: 

- The only disadvantage of the dynamic programming algorithm with respect to the A* 
is in the calculation time which is significantly much higher if implemented sequentially 
on a single computational unit. 

4.9 Performance and Results 

The dynamic programming algorithm has been tested on numerous cases which were 

compared to the solutions obtained using the A* algorithm. The solutions were exactly 

identical using both techniques and the graphie results presented here were obtained 

using both techniques. In Figure 36, the environment is a 2-D environment where 

obstacles are represented by grey cases and free space by the white cases. The cases are 

essentially the nodes of the graph. It was assumed that the cost of displacement in free 

space from one case to another adjacent case horizontally or vertically is 1 and that the 

cost of moving in diagonals is 1.41. It is important to note that displacement is limited to 

eight directions: it can be either horizontal, vertical or along diagonals at slopes of 45 

degrees. This implies that displacement is valid only between adjacent cases. The cost is 

thus proportional to the distance traveled. The start position and the desired destination 

are represented by an 'x'. The optimal path was obtained in both cases. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

69 

0 

2 

4 

6 

B 

10 

12 

14 

16 

180 

0 

2 

4 

6 

B 

10 

12 

14 

16 

18 
0 2 4 6 8 10 12 14 16 18 

Figure 36 Two test cases in a 2-D environment 

In Figure 37, the cost between the nodes is variable and not only dependent on distance, 

as is the case in a 3-D terrain. AU nodes in this environment are accessible. The cost of 

the displacement from one node to an adjacent node was chosen to be the value assigned 

to the adjacent node. This allows for testing the dynamic programming algorithm in a 

general graph where the costs of displacement between two nodes in the opposite senses 

are not necessarily the same. The white cases were given a cost value of 1. The other 

cases were given values of 3, 10, 15, and 40 from lightest to darkest. To better visualize 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

70 

the solution, the environment was created such that the optimal solution is purely on the 

white cases. The concentric rectangles emanating from the goal node join nodes that 

be long to the same layer. The node that represents the initial position of the robot lies on 

the fourth layer. It is clear that the optimal solution passes through nodes on layers 

higher than the initial node and by nodes that lie on the same layer. 

Figure 37 Optimal solution in a 3-D environment 

Figure 38 is the result of another case in a general 3-D environment. Ali the nodes are 

accessible and the cost ranges from 1 to 40 from lightest to darkest cases. With sorne 

inspection, it is obvious that the solution is optimal. In Figure 39, the dynamic 

programming technique was used to find the solution to a labyrinth. The graphical 

results displayed in this section demonstrate the effectiveness of the dynamic 

programming algorithm in finding an optimal solution to a graph. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

71 

Figure 38 3-D environment test case 

Figure 39 Solution to a labyrinth 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

72 

4.10 Conclusion 

The dynamic programmmg algorithm that was developed in this chapter has sorne 

interesting advantages over the widely used A* algorithm. Nevertheless, the calculation 

time of the A* algorithm remains a big advantage. A lot of algorithms and techniques 

that determine an optimal solution in a graph have been developed by many researchers, 

yet the A* algorithm remains the most efficient since its inception. The purpose of 

developing the dynamic programming algorithm was to create a new technique that has 

sorne advantages and to implement it. A more exhaustive study can be done to assess the 

execution of the dynamic programming algorithm on parallel computational resources. 

The optimal path is obtained in the form of waypoints corresponding to the positions of 

the nodes. ln the following chapter, two path tracking techniques for controlling the 

robot motion along the waypoints of the optimal path are described and analyzed. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER5 

HIGH LEVEL PATH TRACKING AND TRAJECTORY FOLLOWING 

5.1 Introduction 

In the literature review in Chapter 1, a variety of approaches for path tracking control of 

wheeled mobile robots have been presented. As discussed there, most of path tracking 

approaches controlling the robot at the dynamics level, and thus cannot be implemented 

if the robot dynamics are inaccessible. In this project, two types of controllers for path 

tracking and trajectory following were developed and tested in real time. In both 

approaches, control is done at the kinematic level. The controller in the first approach is 

based on fuzzy logic control (FLC). In the second approach, a classical control law was 

derived from a Lyapunov function. The control variables in this case are the desired 

translational and rotational speeds. The speeds are varied depending on the variations in 

the path and on the posture of the robot. The implementation on the P3-AT proves the 

performance ofboth approaches. 

5.2 Fuzzy Logic Path Tracking Controller 

In this section, a fuzzy logic controller (FLC) for the path tracking of a wheeled mobile 

robot based on controlling the robot at a higher level is presented. Motion is controlled 

by the translational and rotational velocities. The speeds are varied depending on the 

variations in the path and posture of the robot. The heuristic rules of the FLC are based 

on an analogy with a human driver and the optimization of the controller is based on 

experimentation. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

74 

5.2.1 Path Tracker Parameters 

The path tracking controller that was implemented here is based on the controller in 

Driankov and Saffiotti (200 1) but with sorne major changes in the inputs and outputs of 

the Fuzzy Logic Controller (FLC) and the rules, as well as in the path representation. 

The controller equation is as follows: 

[V]= [Jl(C,dR,dB,VJl 
m f2(C,dR,dO,VJj 

(5.1) 

where V and OJ are the translational and rotational velocities of the robot, C is the look 

ahead curvature (LAC) which is a feed forward input, dR the distance from the actual 

position of the robot to the next desired position, dB the difference between the angles of 

the line joining the current position to the next desired position and the actual heading of 

the robot, Vc the current linear velocity (see Figure 40). 

The functions fi and j2 are the control laws of a Sugeno type fuzzy controller. Sugeno 

controllers take in fuzzy inputs and discrete outputs. The outputs are calculated 

separately. At first let's describe the parameters used for the controller. C is obtained 

using another fuzzy logic module whose inputs are al and a2. In Figure 40, the input 

parameters of the controller are illustrated for a certain posture of the robot. The 

trajectory is described by a set of discrete node positions N 1 to NFinai linked to each other 

starting from the initial position to the final desired position. 

The task of the robot is to pass at the proximity of these points in the required order in a 

continuous and smooth manner. A continuous trajectory can be discretized as needed. 

The behavior of the controller is such that if the discrete points are close to each other, 

high precision but lower speeds will result. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

75 

If less precision is needed, the discrete points are selected further a part and the robot will 

move at higher speeds. The current node Ni is defined as the node whose position is 

nearest to the robot's current position. The next node N+I is the next node in the list of 

nodes on the trajectory and Ni+2 is the one next to Ni+I· The angles al and a2 are the 

angles between the lines NiNi+I and Ni+INi+2, and between the lines Ni+INi+2 and 

Ni+2Ni+3, respectively. If al and a2 are large, then the robot must speed down to be able 

to make a smooth turn. C is a parameter that is function of angles al and a2 used to 

indicate the steepness of the curvature. The path is represented by a linked list of nodes 

starting with the start node and ending with the destination node. A pointer to the current 

node N points initially to the first node of the list. Whenever the robot gets nearer to the 

next node position Ni+I. the pointer would point to it, and it becomes the new current 

node. Consequently, the robot always heads in the direction of the node next to the 

current node. The pointer to the current node can only change incrementally starting 

from the beginning of the list. 

, , , 

Figure 40 FLC parameters 

0 .. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

76 

If a robot has a high current velocity Vc, and needs to make a sharp turn d(), then it must 

first slow down while tuming smoothly. When it has slowed down sufficiently, the robot 

can start making tum in response to the curvature. All the parameters to the input of the 

controller can be calculated knowing the current node and the robot' s current position 

and heading, as well as its current velocity. The block diagram of Figure 41 is the 

general structure of the controlloop. 

Trajectory 

ali a2 

~ dR 

[ ~] d() 

Calculation Vc .... Fuzzy Logic .... 
Robot Module .... 

Controller .... 

[!l 
.. 

Figure 41 Control diagram 

The calculation module takes in the position, heading, and current velocity of the robot, 

determines the current node state of the robot with respect to the trajectory, and 

calculates the controller parameters. The fuzzy logic controller then determines V and m 

so that the robot follows the trajectory in a smooth and efficient manner. 

5.2.2 Fuzzy Path Tracking Controller 

The task of the path tracking fuzzy controller is to direct the robot to follow the 

trajectory in a smooth and continuous manner as precisely as possible. lt might not be 

necessary that the robot passes exactly through the points on the trajectory, but at least 

pass at their proximity and arrive to the final destination. The closer the discrete points 

are to each other, the more precise the robot will be in executing the trajectory but at a 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

77 

lower speed. Figure 42 shows the schematic of the FLC. The first module determines the 

look-ahead curvature (LAC) value and the path tracker module determines the linear 

velocity and angular speed to be output to the robot. Both modules are Sugeno type 

fuzzy inference systems of order zero. The document International Technical 

Commission (IEC) (1997) contains a brief and practical introduction to fuzzy control. 

For a more detailed analysis on fuzzy control, Farinwata (2000) provides a more in­

depth theoretical study. The LAC uses the angles al and a2 to determine the value of C. 

The membership functions of each of the parameters are shown in Figure 43. The 

membership functions of al are Straightl, Highl, and VeryHighl and those of a2 are 

Straight2, High2, and VeryHigh2. The membership functions of C are singletons that 

take values between zero and five. The zero value indicates that there is no curvature 

meaning that al and a2 are small and the robot will follow a straight line at the current 

state. If the curvature is high then the robot must speed down to make the sharp tum. 

The inference rules map the membership functions of the input parameters to the 

membership functions of the output. 

a2 
LAC 

c al 

v 
dR 

Fuzzy Path 
Tracking 
Controller (ù. 

d(} 

Vc 

Figure 42 FLC Schematic 

For example the rule: 

IF al is Straightl AND a2 is VeryHigh2 THEN C is cHigh 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

78 

Maps meinbership functions Straightl and VeryHigh2 of the inputs to membership 

function cHigh of the output. If the two conditions of the inputs are satisfied for this 

rule, then the value four corresponding to cHigh is returned for this rule. The truth value 

for the rule is obtained by using the product of the truth values of Straight 1 and 

VeryHigh2: 

Ai = J1(Straight1(a1))J.l(VeryHigh2(a2)) (5.2) 

Where f1 is a value between zero and one that indicates the truth value that an input 

value belongs to sorne membership function. The values of all rules are returned and the 

output returned by the LAC module is defuzzified using the center of gravity method for 

singleton (COGS) (International Technical Commission (IEC), 1997). The formula of 

this method is: 

p 

:LuiAi(tk) 
U(tk)=-=-=i=:!...'--­

P 

LAi(tk) 
i=l 

(5.3) 

Where A; are the singleton values (i.e. truth values) of the individual rules, and U; their 

corresponding outputs. Figure 44 shows the input-output characteristics of the LAC. It is 

clear that the output rises faster as al increases. The rule base is shown in Table 1. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

p (al) 

Strai htl Highl 
1 

A 

Il (C) 

NoCur ature cModerate cHif(h c VeryHiRh 
14. 4 4 -~ 

0 f.5 5 

al 

c 

Stra 
1 

Il (a.2) 

VeryHigh2 

Figure 43 LAC parameters and their corresponding membership functions 

Table I 

Inference rules for LAC 

~ 
Straightl Highl VeryHighl 

Straight2 NoCurvature cHigh cVeryHigh 

High2 cModerate cHigh cVeryHigh 

VeryHigh2 cHigh cHigh cVeryHigh 

79 

a2 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

6 

5 

4 
~ 
::::1 - 3 (\l 

2: 
::::1 
() 2 

1 

0 
200 

---- ~ .. -,. 

-----1-----

_ .. ------ .. ;··"'--
__ ;< __ _ 

150 

100 

50 

Alpha1 (degrees) 0 0 

~~~~-·r,~~-~ ...... 
'•, 

> ...... 
-----;·.... . : ..... _ 

- .... 1 · ... f .... · ........ 

·--- .... t :· ..... _ 
:···- ....... _ : ......... 

...... -.. ~ .... 
: ....... 

Alpha2 (degrees) 

-- ' ··: 

........ : -- ...... ; 

........ : 
---{ 

....... __ : 
-, 

·--- .... : 

Figure 44 Input-Output surface for LAC 

80 

200 

The value C is then fed to the path tracking controller along with dR, dO, and Vc. The 

membership functions of each of the input and output parameters are shown in Figure 

45. As expected, C ranges from zero to five. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

81 

fl (C) fl (dR) 

c dR (cm) 

0 

p (dO) 

-180 

fl (VJ fl (V) 

fo o 30 ~t> ~o ~o o ào 
0 

fl (w) V(cm/sec) 

-35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 

Figure 45 Membership functions of path trac ker parameters 

Input dR ranges between zero and 7000 mm, dB ranges from -180 to + 180 degrees, and 

V c from zero to 1000 mm/sec. The linear velocity output ranges from zero to 800 

mm/sec and the angular speed from -30 to +30 degrees/sec. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

82 

The inference rules maps the input membership functions to the output membership 

functions. The behavior of the controller is such that it changes linear velocity and 

angular speed in a smooth and almost continuous manner. When the curvature is sharp, 

the controller decreases the speed and outputs the needed rotational speed in the right 

direction to make the turn smoothly. When the curvature is smooth, the robot will speed 

up and the rotational speed is small so asto stay on track. For example the rule: 

IF C is High THEN Vis 8300 

sets the speed to 300mm/sec when the curvature value is high no matter what the other 

values at the inputs are if it is the only inference rule that is activated by the inputs. If 

not, the COGS defuzzification method mentioned above is used again to calculate the 

outputs. The value of rotational speed is not affected by this rule. Another example is 

when the current velocity Vc is high and either d() or C is high, the robot should slow 

down first before making the turn. Figures 46 and 47 show the input-output 

characteristics at C and Vc both set to zero. Note the symmetry with respect to the plane 

that satisfies d(}=O. 

. .. -;~ ...... 
----;- : ...... ., .. 

" r ~~d· :t·r , 
so . -.-r:~:F3)~ . . -- . . --, 

~ 
~ 40 
.!:!. 
> 

20 <3~:;:: 

0 
2000 

1500 

1000 

500 

dR(cm) 0 -20 
dlheta (degrees) 

Figure 46 V output when C and V c are zero 

20 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

83 

40 

20 
Ô' 
Q) 

.!!! 
rn 
Q) 0 
~ 
~ 
E. 
~ -20 --

~ ~t ~, 

-40 
2000 

20 

dR(cm) 0 -20 
dlheta (degrees) 

Figure 4 7 Angular speed output for C and V c are zero 

5.2.3 Real Time Implementation 

The path tracking FLC shown above is implemented using the C++ Free Fuzzy Logic 

Library (FFLL) along with the Activmedia Robotic Interface for Application (ARIA) 

library that provides extensive methods to control the Pioneer robot, communicate with 

it, and obtain its sensor information. The fuzzy controllers are specified in a Fuzzy 

Control Language (FCL) files using the IEC 61131-7 industrial standard (International 

Technical Commission (IEC), 1997). The FFLL contains methods to read FCL files that 

contain the input and output information and membership functions, the defuzzification 

method(s), and the inference rules. The FFLL also contains the methods needed to 

calculate the outputs once the FCL files are read. A new interface with the robot that 

provides 3D views was used. The real time implementation was tested on the Pioneer 

3A T four-wheel differentially driven mobile robot used for ali terrain navigation. The 

lower leve! controllers of the motors are separate with a PID controller for each motor 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

84 

alone. Only the values of the gains of the PID controllers can be modified to cope with 

the weight of the robot, but only reference speeds or positions can be controlled. 

5.2.3.1 FFLL and FCL Files 

To implement the fuzzy logic path tracker and the look-ahead curvature (LAC) 

approximation, the free fuzzy logic library (FFLL) developed for artificial intelligence 

(Al) applications implemented in C++ was used. FFLL is easy to use and is compliant 

on the "basic level" with the fuzzy control language (FCL) as stated in table 6.1_1 of 

IEC 61131-7 [ret]. It is distributed for free and is open source. As specified by its 

developers, FFLL was designed to be fast in performing fuzzy calculations. FFLL makes 

use of look-up tables thus trading memory for sorne significant gain in speed. All details 

on FFLL are available on Site (2002). Only the application programmer interface (API) 

functions used in this project will be described as well as the FCL files. The API header 

file FFLLAP 1 . h contains the prototypes of all the functions that are used by a user 

application. To compile, build, and execute an application that makes use of FFLL, the 

API header file along with the FFLLAPI. LIB and FFLLAPI. DLL are the only files 

needed from the FFLL package that can be downloaded from Site (2002). 

We will now discuss how the API functions are used in a program. First a model is 

created using ffll_new _model and an int value that refers to the created model is 

returned. Then the FCL file (file that contains all the description of the fuzzy logic 

module, such as input and output membership functions as well as the defuzzification 

technique and the fuzzy inference functions) is loaded into the model using 

ffll_load_fcl_file. Then a child object of the model is created using ffll_new_child. 

More than one child can be created for the same model, in the case that two or more 

exactly identical fuzzy inference systems are used for the same application. The child 

object will be used to implement the fuzzy module, and thus takes the inputs and returns 

the outputs of the fuzzy outputs. All these functions are for initialization and are used 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

85 

only once for each fuzzy logic module. Function ffll_set_value takes as arguments the 

feedback inputs as well as the child object number returned when ffll_new_child was 

used. After setting the inputs, ffll_get_output is used to return the outputs. These two 

functions will be used in a sequence of two all throughout program execution as 

specified by the user. The usage of these functions to implement the fuzzy logic path 

tracker will be presented in the next subsection. 

The three FCL files corresponding to the three fuzzy modules are available in Appendix 

2. An FCL file is a standard used for fuzzy logic industrial applications, each with its 

own application interface. FFLL is actually an interface for two FCL files for a certain 

control applications. The first keyword in an FCL file is FUNCTION_BLOCK, and a 

name of the FUNCT/ON _ BLOCK can be specified. Its delimiter is the end 

FUNCTION BLOCK at the end of the file. The VAR INPUT and VAR OUTPUT are 

used to indicate the list of inputs and outputs respectively. Both must end with the 

END _VAR indicator. FUZZYFY followed by the name of the variable specified in 

VAR _INPUT or VAR_ OUTPUT is used to specify the membership functions for each of 

the inputs and outputs. 

The member functions are specified as a set of discrete points corresponding to points on 

the actual continuous curve using the TERM keyword. The defuzzification method and 

the interpretation of the AND of membership functions are indicated after DEFUZZIFY 

followed by AND and METHOD. And finally the fuzzy inference rules are listed after 

RULEBLOCK. Special attention to the format of the FCL file should be made for all 

terms to be put correctly. Comments are inserted between (* and *) characters and are 

disregarded by the FCL interface. The three FCL files corresponding to each of the 

fuzzy logic modules used in the path tracker application are available in Appendix 2. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

86 

5.2.3.2 C++ Implementation 

For the purpose of modularity, all the inner functionalities of the path tracking 

controllers have been implemented outside the ArAction method of Appendix 1. The 

inner functionalities have been implemented in the PathTracker. All what needs to be 

done ArAction is to create a PathTracker object and call the PathTracker :: 

FLPathTrackerC function along with all inputs required to calculate the feed back 

inputs to the fuzzy models, as well as PathTracker :: setTrajectory in order to load the 

waypoints into the PathTracker object. The initialization and creation of the FFLL 

models and their corresponding childs, as well as the input and output setting and 

recuperation on each of the child objects are implemented in the PathTracker method. 

The PathTracker :: currentState variable is a pointer to the current nearest next 

waypoint. In the constructor, it is initialized to the first waypoint of the trajectory. 

PathTracker :: PathNodesList is the list of waypoints of the trajectory. The fuzzy 

models and child objects are also created in the constructor using PathTracker :: 

initializeFuzzyControllers. The type int variables corresponding to the models and 

childs are member variables of PathTracker, and are used in PathTracker :: 

initializeFuzzyControllers as well as in input and output extraction to refer to each of 

the fuzzy child objects. PathTracker :: findCurrentState is used to find the 

instantaneous next waypoint. PathTracker :: FLPathTrackerC is the function used as 

the interface to obtain the output from a set of inputs. This function calculates all inputs 

to the fuzzy modules and returns a pointer to the VelParameters structure containing 

the translational and rotational velocities. The functions PathTracker::findCurvature, 

PathTracker::velocityOutput, and PathTracker::omegaOutput make use of the 

FFLL-API functions ffll_set_value and ffll_get_output to send input and get the output 

from the FFLL child objects. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

87 

5.2.4 Simulation and Experimental Results: 

The path tracking controller has been simulated on the SRI simulator with the 

parameters of the P3-AT robot as well as on the robot itself. The controller corrects the 

path of the robot relying on the position returned to it by the encoders and therefore 

sorne error due to localization will be unavoidable. To evaluate the performance of the 

controller, tests were conducted on trajectories having sorne sharp turns and sorne others 

that are smoother. The first such one is shown in Figure 48, a straight line path 

discretized at 25cm intervals with the robot initially at a distance of lm from the path. 

The robot joins the path and traverses at the proximity of the node points with an error 

inferior to 1 cm when it reaches the straight line. This very small error is due to the 

dynamics ofthe system. 

1.5~------~--------~--------~--------~------~ 

-,S 
>-

0.5 

0 
0 5 10 15 20 25 

X(m) 

100 

80 -E 60 
~ .... 
g 40 
w 

20 

0 
0 5 10 15 20 25 30 35 40 

T (sec) 

Figure 48 Straight line with the robot lmeter away 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

88 

Figure 49 shows the performance on a sine wave trajectory with a period of two meters 

discretized at about 25cm. The initial error of about 15cm is due to the initial orientation 

of the robot. When the robot is on track the error was less than 2cm. The desired and 

actual trajectories almost coïncide with each other. 

g 
>-

-0.5 

E 
~ 

g 

-1 

15 

10 

UJ 5 

0 

~ 
() (J 

l (; 1\ (, 

'·' 

2 4 6 8 10 12 14 
X(m) 

5 10 15 20 25 30 35 40 45 50 
T (sec) 

Figure 49 Sine wave trajectory at 25 cm discretization 

Figure 50 shows the results of simulations performed on a general trajectory with sorne 

very sharp turns in an area of lOmxlOm. The way points are interspaced at more than 

one meter apart. The error was mostly inferior to 30cm. The sharp discontinuities in the 

errors are due to the fact that the errors are measured by the distance fron the line joining 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

89 

two waypoints to the actual position. This is due to the fact that there is no continuous 

reference trajectory. The results are acceptable for most mobile robots applications. 

10 

8 
r' 

---0-

6 ()cc:_-------

-S. 
···-.... 

~-_:.B 
>- 4 

~~ 
2 

. 
... 

,--'· 

0 2 3 4 5 6 7 8 
X(m) 

40 

30 

E 
.!:!. 20 g 
w 

10 

~ 
0 

0 5 10 15 20 25 30 35 
T (sec) 

Figure 50 General trajectory 

The behavioral fuzzy logic path tracking controller that we have implemented proved to 

be very reliable and robust in terms of precision and speed. Despite the fact that fuzzy 

logic control is not based on a precise mathematical model, it is robust and flexible. A 

lower level controller can be implemented independent from the path tracking problem 

or other behaviors that can be independently integrated. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

90 

5.3 Lyapunov Based Control Law Approach to the Problem of Path Tracking 

In this section, a more theoretical approach based on a Lyapunov function was used to 

implementa path tracking controller. The approach used is the same as in Kanayama, 

Kimura et al. (1990) and is based on the error model of the kinematic model. 

5.3.1 The Control Technique 

Knowing that the kinematical model of a differentially steered wheeled mobile robot in 

Cartesian coordinates is given by the following equation: 

r

xl rcosB Ol ~ ~ si~O ~ [:] 
(5.4) 

The objective is to track a reference robot. The relation between the velocities of the 

reference robot V, and w,, and its posture by x,, Yr. and (), is as follows: 

r~, l- rc~sB, Ol[v, l Yr - smB, 0 
. lU 

B 0 1 r 
r 

(5.5) 

Then, three error variables ex, ey, and eo that correspond to the instantaneous errors in 

posture variables are chosen as: 

r
exl r co.sB sinB Olrx, -xl 
e Y = -sm B cos B 0 y r -y 

e0 0 0 1 B, -B 

(5.6) 

These errors would be the errors in posture with respect to the local frame of reference 

of the robot. The transformation matrix couverts global coordinates to local coordinates. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

91 

Calculation of the derivatives of the errors using the constraint x, sin B, = y, cos B, and 

with Be = e8 = B,- B gives (Kanayama, Kimura et al., 1990): 

y 

[
x,(t)] 

pre[ (1) = Y r (1) 

B, (t) 
ex 

[
x(t)] 

P(t) = y(t) 

B(t) 

---

x 

Figure 51 Current and reference postures and posture errors 

ëx =(x,- x)cosB +(y,- y )sin()- (x,- x)éc sinB +(y,- y)écosB 

=eyco-v+x,cosB+ y, sin() 

= eyco -v+ x, cos(B,- BJ+ y, sin(B,- eJ 

= eyco- v+ x,(cosB, cos Be +sine, sinBJ+ Yr (sine, cos Be - cosB, sinBJ 

= eyco- v+ (x, cosB, +y, sinB, )cos Be+ (x, sinB, +y, cosB, )sin Be 

= eyco -v+ v, cos()e 

and 

(5.7) 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

éy = (xr- x)sinB + (.Yr- y)cosB- (xr- x }'je cosB + (Yr- y)'}sinB 

= -exm +x sine+ ycose- xr sine+ Yr cose 

= -exm + xr sin(er- eJ+ .Yr cos( er - eJ 

= -exm + xr (sin Br cosee- cos er sinBJ+ Yr(coser cosee +sin er sineJ 

= -exm + (.xr cos er + Yr sineJsinBe + (.xr sin Br + Yr cos er )cosee 

= -exm + vr sin Be 

Which we put in matrix format: 

92 

(5.8) 

(5.9) 

From equation (5.9) above, the aim of a control law is to make the errors converge to 

zero. The proposed velocity inputs VJ and m1 of the control law (Kanayama, Kimura et 

al,. 1990) are: 

v1 = vr cose8 + Kxex 

m1 = mr + V,Kyey + K8 sine8 

(5.10) 

By substituting v/and m1 in the errors of equation (5.9), we get: 

(5.11) 

The Lyapunov energy function V0 is chosen as such: 

(5.12) 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

93 

If the proposed control law was used, there will be a stable equilibrium at e = 0 ifvr>O, 

where e{;] 
By deriving Vo with respect to time, we get: 

(5.13) 

Given that Kx, Ky, and Ko are all positive constants, the above inequality would be 

satisfied and the system with the control law would be stable. 

Furthermore, if Vr and mr are continuous and bounded, then e = 0 is uniformly 

asymptotically stable. The error system is linearized around e = 0 , to get a linearized 

system ofthe form e = Ae. 

The nonlinear system is of the form: 

(5.14) 

To linearize the system using the Taylor equation for derivatives, the matrix A would be 

calculated as follows: 

Bfx Bfx Bfx 

Bex BeY Bee 

r-K, OJr 
0 ] A= Bfl = 

Bfy Bfy Bfy 
= -OJr 0 vr (5.15) 

Be e=O Bex BeY Bee 
0 -vrKy -vrKe 

Bfe Bfe Bfe 

Bex BeY Bee 
e=O 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

94 

The eigenvalues of A can be obtained by the following equation: 

det(A- À1) = 0 (5.16) 

which gives an equation of the form: 

(5.17) 

where 

a3 = 1 

a2 = Kx +vrKo 
2 2 

a1 = KxKovr +vr KY +mr 
(5.18) 

2 2 
Go= KxKyvr +mr vrK(J 

Since all terms are positive, the Routh-Hurwitz criterion can be used to determine that 

all the eigenvalues Â. are negative, and thus the system is asymptotically stable at e = 0 . 

5.3.2 Generating the Reference Trajectory: 

Given the Cartesian coordinates of the waypoints of a trajectory planned offline, it is 

required to find the linear and angular velocity, and the posture (position and 

orientation) as a function of time so that the robot can pass through the waypoints in a 

certain predefined time fJ starting from to at the first waypoint. 

Given N waypoints, the time to pass from a waypoint i to the next waypoint i+ 1, is 

calculated by the following: 

(5.19) 

where d; is the distance between waypoints i and i+ 1, 118;+1 is the change in direction at 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

95 

waypoint i+ 1, K is a constant factor, and V max the maximum linear velocity the robot 

can attain. 

The higher the 118;+1, the more time will be allotted to make a tum and change the 

direction. If 118;+1=0, then minimum time is allowed so that the robot roUs at Vmax· All 

l::it; are th en rounded to the nearest 100 milliseconds, knowing that the robot sample time 

is 100 milliseconds. To obtain the time from to till waypoint i, we sum all the /::it before i, 

i 

t;=IM; 
J=l 

(5.20) 

We use a cubic spline to interpolate the coordinate x(t) with respect tot, and y(t) with 

respect tot, using the two sets { t0, .•. fj; xo, ... Xf} and {ta, ... fj; xo, ... xj}respectively. What 

we get is a matrix of coefficients for each of the two sets: 

ato au 

A= 
a2o a21 

a NO aNI 

and thus we have: 

x(t) = 

and 

al2 al3 biO bll 

a22 a23 
and B= 

b20 b21 

aN2 aN3 Nx4 bNO bNI 

a 10 + a 11t + a 12 t 2 + a 13t
3 ,tE ~0 ,t1 [ 

a 20 + a 21 t + a 22 t 2 + a 23 t3 ,tE [t1 ,t2 [ 

bl2 b13 

b22 b23 

bN2 bN3 Nx4 

(5.21) 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

y(t) = 

b10 + b11t + b12t
2 + b13t

3, t E [t0 ,t1 [ 

b20 + b21 t + b22t 2 + b23t3 ,tE [t1 ,t2 [ 

96 

(5.22) 

Therefore x(t) and y(t) are independent, and it is simple to calculate their derivatives 

x(t) and y(t) respectively. 

x(t) = 

and 

y(t) = 

a11 + 2a12t + 3a13t
2 ,te ~0 ,t1 [ 

a21 + 2a22t + 3a23t 2 ,te [tpt2 [ 

b11 +b12 t+b13t
2 ,tE [t0,t1[ 

b21 + b22t + b23t 2 
,tE ~ptJ 

(5.23) 

(5.24) 

The linear velocity V(t) and the orientation angle B(t) can then be calculated as follows: 

V(t) = ~(x 2 (t) + y 2 (t)) (5.25) 

and 

B(t) = ATAN2(y(t),x(t)) (5.26) 

where atan2 refers to the inverse tangent that takes into account the signs of the sin and 

cos so as to determine a unique angle. And finally the angular velocity w(t) is calculated 

simply by deriving B(t) with respect to t, and we get: 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

97 

1 y(t)x(t)- x(t)y(t) m(t) - ---____,-.:......:...:.....~-~___:__;__ 

-1+(y(t)/x(t)f x 2 (t) 
(5.27) 

There is a kinematics constraint on the radius of curvature. The robot can turn around 

itself with a zero radius of curvature; otherwise its radius of curvature must be greater 

than a certain Rmin· The instantaneous radius of curvature is: 

R(t) = V(t) 
m(t) 

(5.28) 

If R is smaller than Rm;n, we can limit m(t) to V(t)!Rmin so as to respect this kinematics 

constraint. Given x(t), y(t), 8(t), V(t), and m(t), the reference trajectory is fully defined. 

5.3.3 Real Time Implementation 

To implement the controller described in this section, the same logic for implementing 

the fuzzy controller in the previous section was used, but without using FFLL. Instead, a 

vector containing the coefficients of the trajectory intervals returned by the cSpline 

function as weil as the controller gains are initialized. In this technique, the time factor is 

used since the robot has to follow a reference trajectory. The reference position, 

velocities, and accelerations are calculated using the coefficients stored and the 

reference time. The function cSpline is defined in Spline.h. The member function that 

returns the desired velocities is PathTracker::PathTrackerC. The header files and 

their corresponding source files are available in Appendix 2. 

5.3.4 Simulation Results 

The approach has been implemented and tested on the P3-AT in real time. The gains of 

the control law were chosen according to the recommendations of Kanayama, Kimura et 

al. (1990), Kx=2.5, Ky=O. 75, and Ko=l.41. The robot successfully followed its path and 

reached its target destination. The testing results for three different cases are displayed in 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

98 

Figures 52 to 57. In Figure 52 the reference trajectory is a unit step function with the 

initial position of the robot at the origin and the initial heading is horizontal at zero 

degrees. The response to a sharp discontinuous change in reference position is slower 

than the response of the fuzzy logic controller. The steady state errors in distance are 

inferior to 20 cm. ln Figure 53 the reference and actual velocities are displayed. To note 

is the large errors in velocities at the beginning when the robot is converging to the 

trajectory. 

In the case of a sine wave trajectory with the robot initially at the origin and heading 

horizontally at zero degrees (Figure 54), the error is also inferior to 20 cm compared to 3 

cm of error for the fuzzy logic controller. We note however the fast response to the 

discontinuous change in heading at the beginning when compared to the fuzzy logic 

controller. The velocities errors (Figure 55) are comparable to those of the step response. 

Finally Figures 56 and 57 display the results for a general trajectory with sorne sharp 

turns. The error in distance is always inferior to 20 cm. 

Reference Trajectory 

1 r------r---r- : : 
0.8 ------:------:------:------: 

' 1 ' ' 

Ê 0.6 -----+----+-----~------~ 
- 1 1 1 1 

>- 0.4 ------f------ f------ f------ f 
' ' ' t 
1 ' 1 1 

0.2 ------ ~------ ~-- ---- ~------ ~ 

0'----~-~~--'-' 

0 5 10 15 20 
X(m) 

Error in Y (m) 

.:L.l i·i· 
0--~--: :----

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

-0.5 '----~-~~-__J 
0 10 20 30 40 

time (secs) 

Actual Trajectory 

1' '->'.30€'fEl(k-: ,... : : 

0.8 ---- :------~------~------~ 

Ê 0.6 -- --+-----+-----+-----~ 
- f ' ' 1 

>- 0.4 - ----:-------:-------f------f 
' ' 1 ' 

o.2 -----r------r------r------r 
0'-----~-~~--..J 

0 5 10 15 20 
X(m) 

Error in distance (m) 
1.5 .---.---.-----.---, 

1 -----i-------:-------f------
0 0 0 
0 0 0 

0.5 - ----~------+------~------
0 0 0 
0 0 0 
0 0 0 

time (secs) 

Error in X (m) 
0.6.--.----.-----.----, 

0 0 0 -----J-------·-------l------0 0 0 

0 0 0 

0::-:::;::::::s::::: 
0 0 0 
0 0 
0 0 
0 0 

10 20 30 40 
time (secs) 

Figure 52 Position and position errors 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

:§: 0 
>-

.0.5 

-1 
0 

Reference Linear Velocily (m/sec) Reference Angutar Vetocily (rd/sec) 
1.5 

0.8 

0.6 

~ 
0.5 

0.4 0 

0.2 .0.5 

0 -1 
0 10 20 30 40 0 10 20 30 40 

lime (secs) lime (secs) 

1.5 
Aclual Linear Velocily (m/sec) 

0.6 
Acluat Angutar Vetocily (rd/sec) 

1/~ 
0.4 

1 

0.2 

0.5 

0 
0 10 20 30 40 10 30 40 

lime (secs) 

1.5 
Linear Vetocily Error (m/sec) 

0.6 

1 

V\r~ 
0.4 

0.5 0.2 

0 

.0.5 
0 10 20 30 40 10 20 30 40 

lime (secs) time (secs) 

Figure 53 Velocities and velocity errors 

Reference Trajeclory Aclual Trajeclory Error in X (m) 

5 
X(m) 

Error in Y (m) 

5 10 
X(m) 

Errer in distance (rn) 
0.4 rt-:-;---;::===:::;"] 

' ' ' --,------.------,------0.3 
' ' ' ' ' ' ' ' ' ' ' ' __ ,_ _____ _, ______ .. ____ -
' ' 

0.2 
' ' ' ' ' ' 0.1 

lime (secs) lime (secs) 

0.1 

0 

.0.1 

.0. 2o'---1~0--20~-30~---'40 

lime (secs) 

Figure 54 Position and position errors 

99 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

0.8 

Reference Lineer Velocily (rn/sec) 

10 20 
lime (secs) 

30 40 

-0.5 OL..._-~10:-----:2~0--3~0:----'40 
lime (secs) 

Linear Velocity Error (rn/sec) 

0.5 

10 20 30 40 
lime (secs) 

Reference Angular Velocity (rd/sec) 

10 20 30 
lime (secs) 

40 

Aclual Angular Velocity (rd/sec) 

-1 

-2oL..._-~1~0--~20~--30~-~40 
lime (secs) 

Angular Velocity Error (rd/sec) 
2r-----------. 

1.5 

0.5 

Figure 55 Velocities and velocity errors 

100 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Reference TrajeclofY Actual TrajectOI'f Error in X (rn) 
8 0.15,---~-~--., 

6 -------t---rj------- 4 -------f------ ; ______ _ 0.1 

I 
4 -------f-------·------- 0.05 -------f------ ~-------

>- 2 ------ : 
§: 2 ------: 
>- 0 -------+------- '-------

0 --- ---~-------:-------
0 ~--- ~ ----- --+------- -0.05 -------~------- ------

-0.1 -2 
0 2 4 6 

-2 
0 2 4 6 0 

X(m) X(m) 
Error in Y (rn) Error in distance (rn) 

0.3 0.2 

0.2 -------•-------·------- 0.15 -------f-------:-------

0.1 -------·---- -.-------

0'---~-~---' 
10 20 30 0 10 20 30 
time (secs) time (secs) 

10 20 
time (secs) 

Figure 56 Position and position errors 

30 

Reference Linear Velocity (misee) Reference Angular Velocity (rd/sec) 
1.5 

,:I,J-~ 
0 

0 5 10 15 20 25 5 20 25 
Actual Linear Velocity (misee) Aclual Angular Velocily (rd/sec) 

1.5 2 

0 

0.5 

0 
-2 

-0.5 -4 
0 5 10 15 20 25 0 5 10 15 20 25 

Linear Velocity Errer (misee) Angular Velocily Error (rd/sec) 
0.2 

0.1 

0 

-1 
-0.1 

-0.2 -2 
0 5 10 15 20 25 0 5 10 15 20 25 

lime (secs) lime (secs) 

Figure 57 Velocities and velocity errors 

101 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

102 

5.4 Conclusion 

The fuzzy logic controller for path following described in this chapter proved to be 

highly reliable and robust. It has several advantages over the classical Lyapunov based 

approach for trajectory following. The fuzzy controller controls robot motion along the 

discrete waypoints of an optimal path planned by the dynamic programming algorithm 

of Chapter 4. Position control is performed successively along the waypoints till the 

desired position that corresponds to the last waypoint on the path is reached. 

In the Lyapunov derived approach, a continuous reference trajectory that connects the 

waypoints ofthe optimal path is calculated. The reference trajectory is a time dependent 

variable, and reference position, heading, and velocities are calculated at every time 

instant of the trajectory. The Lyapunov based controller is thus used to regulate three 

variables in addition to position. This imposes several constraints that result in a lower 

performance in position control relative to the fuzzy controller. 

If the purpose of the navigation is to reach a desired destination along the optimal path 

without imposing any time constraints, the fuzzy controller is way more efficient and 

robust. The fuzzy inference rules are set to allow maximum speed while respecting 

navigation safety. If the robot is required to follow an exact trajectory that is function of 

time, the Lyapunov derived controller can be satisfactorily used. The performance of the 

Lyapunov based approach in real time is not as outstanding as the fuzzy position control 

approach due to the high friction of the wheels of the P3A T designed for rough terrain 

navigation being used in an indoor test environment. This becomes more evident in real­

time implementation when controlling several variables. Furthermore, it is more 

recommended to control .robot motion at the dynamic level if higher accuracy and 

exactitude are desired. The P3AT dynamics controls are not directly accessible. In the 

following chapter, the curvature velocity method for obstacle avoidance will be 

described. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER6 

REAL TIME OBSTACLE AVOIDANCE 

6.1 Introduction 

Obstacle avoidance in real time is one of the crucial aspects in mobile robot navigation. 

The technique implemented in this project is the curvature velocity method (CVM) 

(Simmons, 1996). This technique is widely mentioned in the literature and is said to be 

reliable and computationally efficient. In this chapter, the CVM is described, and the 

modifications done to adapt it so that it can be implemented using sonar perception 

instead of a laser range finder are pointed out. 

6.2 Obstacle Representation in Real Time 

Since the curvature velocity method for obstacle avoidance (Simmons, 1996) deals 

mainly with curvatures, it is convenient that obstacles be modeled as circles represented 

by the coordinates oftheir center with respect to the local frame of reference (with the X 

and Y axes of the local frame introduced in Chapter 3 interchanged to stay in line with 

the article notation) and their radius (Figure 58). 

The positions of the centers of obstacles are determined using a simple geometrie 

interpretation of the readings of the two sonar arrays. The obstacles are enlarged by 

adding the radius r of the robot to the radius of the obstacles so as to accommodate for 

the width of the robot, since the motion of the robot is represented only by the center of 

the robot. The sonar array elements are fixed to the robot and their readings can only be 

interpreted to be in their corresponding discrete directions, unlike the laser range finder 

that scans in a plane and can achieve highly accurate models of obstacles surrounding 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

104 

the robot. Since the obstacles cannot be accurately determined, ali obstacles will be 

assumed to have a radius of half a meter. ln the case of a wall, when the robot gets close 

enough, the obstacles would be overlapping and the modifications to the original 

curvature velocity method would take this effect into account (more on this later). 

0 
0 y 

§ 0 

x 

0 0 
Figure 58 Robot local frame of reference and obstacles 

,' 

y 

Figure 59 Obstacle representation in real time 

If a sonar element retums a reading that is inferior to three meters, the obstacle would be 

assumed to be centered on the line in the direction of the sonar reading at a distance R 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

105 

away from the presumed point of impact of the sonar wave with the obstacle 

(Figure 59). 

If a reading superior to three meters is returned by a sonar element, no obstacle will be 

associated with the reading. The significance of representing obstacles will be clearer as 

the curvature-velocity method is discussed in detail. 

6.3 The Curvature-Velo city Method 

The curvature-velocity method is an obstacle avoidance technique that optimizes a linear 

objective function in the velocity space of the robot with respect to the requirements and 

specifications mentioned in Simmons, (1996). The velocity space for a wheeled mobile 

robot (WMR) such as the P3-AT operating on a flat planar surface consists of the 

translational and rotational velocities. As indicated in the kinematic modeling in Chapter 

3, a differentially driven WMR moves along a circle whose radius is the ratio of the 

translational velocity (TV) and the rotational velocity (RV) (Radius= TV 1 RV) in case 

TV and RV are constant. The curvature is defined to be the inverse of the radius. Each 

point in the velocity space maps to a curvature in the Cartesian space (Figure 60). 

RV y 

-- ---------------~ 

T.V. x 

Figure 60 A point in velocity space maps to a curvature in Cartesian space 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

106 

A positive curvature corresponds to clockwise motion of the robot relative to the global 

frame of reference. Furthermore, the set of TV and RV forming a line emanating from 

the origin ( origin excluded) of the velocity space corresponds to the same curvature in 

Carte sian space due to the fact that the curvature is the ratio of TV to RV. 

The distance de that the robot would travel before hitting an obstacle along a curvature c 

can be calculated using simple geometrical formulas. First it is to be noted from the 

geometry of the motion (Figure 61) that the center of the arc de lies on the abscissa of the 

local frame of reference. The angle () of the arc is obtained and de can be calculated 

usmg: 

() = { tan-
1
(yj(x; -1/c)),c < 0 

Jr-tan-1(Y;/(x; -1/c)),c > 0 

( ) 
{ 

yi'c=O 
de c,obs = l / If) 1 c ,c:;tO 

y 

Figure 61 Calculation of travel distance before collision 

The distance function for an obstacle obs in velocity space is defined as: 

(6.1) 

(6.2) 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

107 

_ {dc(rv/tv,obs),tv 7:-0 
d.(tv,rv,obs)- . 

oo, otherw1se 
(6.3) 

And the cumulative distance for a set of obstacles OBS affected by a (tv, rv) pair is given 

by: 

DL (tv,rv,OBS) = min(L,minohseoss d. (tv,rv,obs)) (6.4) 

where L is a limiting distance (three meters as in Simmons (1996)). The distances DL 

constitute a set of constraints in the velocity space. Another set of constraints ts 

introduced by the translational and rotational velocity and acceleration limits: 

tv 5 tv max 

tv?::tvmin 

rv 5 rvmax 

rv 5 rvmax 

rv ?:: rv curv -(ra max x Taccet) 

rv 5 rv curv + (ra max x Taccet) 

tv 5 tv curv +(ta max X Tacce/) 

(6.5) 

where tvmax, tvm;n, rvmax, and rvmin correspond to the minimum and maximum attainable 

translational and rotational velocities, rvcurv and tvcurv are the instantaneous rotational and 

translational velocities respectively, ra max and ta max are the maximum rotational and 

translational accelerations respectively, and Taccel is the sampling time which 

corresponds to the cycle time of the robot (see Chapter 2 on actions). An objective 

function f(tv, rv) that takes into consideration the different performance criteria is 

optimized while taking the constraints into consideration. 

f(tv,rv) = a 1speed(tv) + a 2dist(tv, rv) + a 3head(rv) 

speed(tv) = tv!tvmax 

dist(tv,rv) =DL (tv,rv,OBS)/ L 

head(rv) = 1-IBg- rvx Tell ;r 

(6.6) 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

108 

The speed variable favors higher translational speeds, the dist variable favors longer 

travel along the curvature defined by tv and rv without colliding with obstacles and is 

thus dependent on Dr, and finally the head variable which favors moving towards the 

goal position, with Sg being the angle of the goal heading measured in the local frame of 

reference and Tc being a time constant (taken as one second) and is used to determine the 

heading of the robot if it spins at rv for Tc seconds. Note that ail the terms of the 

objective function are normalized to be between zero and one. The constant coefficients 

(a,, a2, and a3) are chosen to have a sum of one. The optimal (tv, rv) pair is the pair that 

maximizes fin the allowable space. To find the optimal pair of (tv, rv) in the space 

limited by the constraints, sorne approximation technique such as simulated annealing 

can be used to determine the maximum off 

6.4 Modifications for Real Time Implementation 

The problem with the above explained approach is that it is not computationally efficient 

in real time. This problem is addressed by approximating Dr with a finite set of intervals 

with each interval being assigned a constant distance to an obstacle. The distance dv(c, 

obs) will be assumed constant between emin and Cmax, the minimum and maximum 

curvatures at the boundaries of the obstacle interval (Figure 62). 

Figure 62 Curvatures at the boundaries of an obstacle 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

109 

Given the Xobs and Yobs, the coordinates of the center of an obstacle, emin and emax can be 

determined by: 

1 2 2 2 
emin = 2 ( xobs -robs ) ( xobs +y obs -robs ) 

2 2 2 
cmax = 2 ( xobs +robs ) 1 ( xobs +y obs -robs ) 

(6.7) 

The circles formed by Cmin and emax are tangent to the circle representing the obstacle and 

intersect with it at (xm;n, Ymin) and (Xmax, Ymax) respectively, which are determined as 

follows: 

x min = 1/cmin + abs(llcmin ).( xobs -1/cmin ) 1 (-robs + abs(l/cmin )) 

y min = abs(l/cmin) .y obs 1 (-robs + abs(l/cmin )) 

x max = 1/cmax + abs(l/cmax ).( xobs -1/cmax ) 1 (robs + abs(llcmax )) 

y max = abs(l/cmax) .y obs 1 (robs + abs(l/cmax )) 

The distance decan be calculated using equation (6.8) above and dv is given by: 

{
min( de (emin ,obs), de (emax, obs)), 

d = 
v oo, , otherwise 

(6.8) 

(6.9) 

Dlimu can be determined through the use of the min-union of the intersection between 

obstacle intervals as will be explained in the next subsection. 

6.4.1 Modification of Curvature Intervals 

The curvature intervals are described by a curvature interval data structure (<e1,e2> , 

du) with c1 ~ e2 based on sorne rules. The distance du is the distance associated with 

the interval <ei. e2>. After the first curvature interval corresponding to the first obstacle 

is determined, every new interval that will be added will result in the modification of 

already available intervals or in the new interval being modified or in both 

consequences. Suppose a new curvature interval (<em;n, emax>, d;) is to be added and 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

110 

(<c1, c2>, du ) is an already existing interval. In the case of overlapping intervals, the 

intervals are divided such that there is no intersection between any two intervals. The 

modifications are applied according the foliowing set of rules: 

• If the intervals <c 1, c2> and <emin, Cmax> are disjoint then no 
modifications to neither intervals is done. 

• /f <emin• Cmax> contains <c1, C2>, Cmin ~ C1 and C2 ~ Cmax, then dJ,2 is 
replaced by the minimum between du and di. 

• If <emin, Cmax> is contained by <c 1, c2> ( c1 ~ emin and cmax ~ c2) and 

di<d1,2, , then <c1,c2> is divided into three intervals: (<c1, Cmin>, du), 
(<cmin,Cmax>, dJ, and (<cmax,c2>, du). If di>du then <emin, Cmax> will be 
eliminated and not compared to the other existing intervals. 

• If <c1, c2> and <emin• Cmax> overlap with c1 ~emin, then the two intervals 
are modified as follows: 

o If di < du, then <c1,c2> is replaced by (<c1, emin>, du) and 
<emin,emax> is not changed. 

o If du < di, then <cmin,emax> is replaced by (<e2, Cmax>, du) and 
<e1,e2> is not ehanged. 

• If <c 1, c2> and <emin• emax> overlap with emax ~ c2 , then the two intervals 
are modified as follows: 

o If di < du, then <e1, e2> is replaeed by (<emax. c2>, du) and 
<emin,emax> is not ehanged. 

o If du < di, then <emin• emax> is replaeed by (<c2, emax>, dJ and 
<c1,c2> is not changed. 

The interval <emin, emax> is compared to ali the existing intervals, and this is done to ali 

obstacles. At the end, the distances of each of the intervals would correspond to the Dumit 

distance. The initial curvature is always taken to be (<-oo,oo>,L), and other intervals are 

added afterwards. The significance of this approach and its efficiency in calculating the 

optimal (tv, rv) pair will be clearer later on. 

In the example of Figure 63, the use of these rules is illustrated. The initial curvature is 

(<-oo,oo>,L). Starting with the first obstacle interval <c2,e1>, dv2, 1 corresponds to the 

minimum between d1 and d2 corresponding to c1 and e2 respectively, which is d1 in this 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

111 

case. The second rule applies in this case when companng (<c2,c1>, d1) with (<­

oo,oo>,L). So we will now have three intervals: (<-oo,c2>,L), (<c2,c1>, d1), and (<c1,oo>,L). 

The interval <c4,c3> is added with d3 taken as dv4,3 (using min(d3,d4)). The intervals 

<c2,c1> and <c4,c3> overlap, having dv4,3<dv2.1 along with c3<c1. thus the conditions of 

the first criterion of the last rule is satisfied. Hence (<c4,c3> ,d3) will not be modified 

while interval (<c2,c1>, d1) would be replaced by (<c3,c1>, d1). 

The interval <c6,c5> is to be added. Compared to <c3,c1> and to <c4,c3>, it is found to be 

disjoint. The final set of intervals would be (<-oo,c6>,L), (<c6,c5>, d6), (<c5,c4>, L), 

(<c5,c4>, d3), (<c3,c1>, d1) and (<c1,oo>,L). 

y 

x 

RV 

Figure 63 Curvature intervals and piecewise constant approximation of Dlimit 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

112 

6.4.2 Optimization of the Objective Fonction 

After ail the curvature intervals are obtained, the optimal pair (tv,rv) lies in the region of 

the intervals bounded by the velocity and acceleration constraints. Since the objective 

function increases linearly with tv, the optimal (tv,rv) of the objective function lies on 

the boundaries drawn by the constraints. So the objective function will only be 

calculated at the vertices on the upper boundaries (Figure 63) of each of the curvature 

intervals. The objective function is also calculated at the vertex that corresponds to 

moving directly towards the goal position, which lies at rv=8/Tc. Then the (tv,rv) pair 

that yields the maximum value of the objective function would be the optimal set of 

commands to control the robot motion. 

The objective and its variables are as shown below: 

f(tv,rv) = a 1speed(tv) + a 2dist(tv,rv) + a 3head(rv) 

speed(tv) = tv/tvmax 

dist(tv,rv) =DL (tv,rv,OBS)/ L 

head(rv) = 1-Jeg - rv x Tcjl 7l' 

6.5 Real Time Implementation 

(6.10) 

The implementation in real time was done using modular blocks so as to facilitate 

debugging and testing. Sonar range acquisition was done by using the member function 

ArRobot::getSonarRange ( ) in ActionGo::fire( ) in the 'main.cpp' file. The 

calculation of obstacle positions and the establishment of a list of obstacles are 

implemented in 'SonarCalc.h '.The list of obstacles is passed to a CurvVel object. The 

CurvVel class contains member functions to calculate the curvature velocity intervals 

and determine the optimal solution. There was a problem using the standard libraries in 

respecting the 1 OOms cycle time of the robot control system; however the calculation 

time has been reduced to an acceptable lev el through a special use of pointers. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

113 

6.6 Conclusion 

In this chapter, the curvature velocity method (CVM) for obstacle avoidance was 

described and adapted for implementation in real time. This method optimizes an 

objective function in the curvature velocity space with velocity and acceleration 

constraints. The CVM was coded and tested in real time. The approach however was not 

fully tested and debugged due to time limitations. The code is functional with a 

probability close to 60% of the cases when the robot passes next to an obstacle. In the 

rest of the cases the robot hits the obstacle due to unidentified bugs. In the next chapter a 

navigation strategy is proposed to combine ali three navigation aspects developed 

throughout this project. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CHAPTER 7 

PROPOSED NAVIGATION STRA TEGY 

7.1 Introduction 

To obtain a fully autonomous navigation system, path planning, path tracking, and 

obstacle avoidance need to be integrated into a navigation strategy that coordinates and 

synchronizes them. In this chapter, a hybrid control architecture in the form of a state 

machine is proposed. 

7.2 Navigation Strategy 

The purpose of a navigation strategy is to coordinate the different behaviors that execute 

the desired task. The desired task in this project is to displace the robot from its current 

position to another position specified by the user, while avoiding obstacles that might 

get in its way and at the least possible calculation cost. For this end, the navigation 

controller constantly monitors the environment and the robot posture and activates the 

action that best leads to the execution of the desired task. At first, if the environment is 

known then the dynamic programming algorithm discussed in Chapter 4 can be used to 

find an optimal trajectory. Otherwise, the robot must be capable of finding its way to the 

goal position while avoiding obstacles and making a model of the environment for future 

use. 

As long as the robot is connected to its client, the sonar signais (exteroceptive sensors) 

will continuously be read and used to update the model of the environment in the 

proximity of the robot. The position and velocities (proprioceptive sensors) are also 

continuously checked. In case the robot was in navigation mode, the information coming 

from the proprioceptive and exteroceptive sensors is used to switch command to the 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

115 

appropriate mode of action. The four states of the finite state machine are used to 

represent four modes of action. The modes are: 

Stop mode: The robot is stopped (both translational and rotational velocities are 

set to zero). 

Path Planning mode: Command switches to this mode only after being at stop 

mode, since it might take a few seconds to plan a new trajectory, and it is safer if 

the robot is stationary when a new trajectory is being planned. In this project the 

dynamic programming algorithm of Chapter 4 is used in the path planning mode. 

Path Tracking Mode: In this mode, the robot tracks the trajectory that was 

planned when the robot was in the path planning mode. 

Obstacle Avoidance mode: In this mode, the curvature velocity method discussed 

in Chapter 6 is activated. This method integrates both the seek goal and avoid 

obstacle behaviors. 

The model ofthe environment is represented by the cost matrix (see Chapter 4), and will 

be updated based on sonar readings and robot position and posture with respect to the 

environment. Since the robot will be traveling in a two dimensional environment, the 

obstacles would be modeled as in Chapter 6, and the matrix elements included in the 

circle used to represent the obstacle would be assigned very high values. (Figure 64). 

Figure 64 Matrix elements eclipsed by obstacles 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

116 

The robot at the beginning is usually in the stop mode waiting for commands. When the 

user specifies a destination, the application program checks if a model of the 

environment is available and if the position of the robot with respect to the model is 

known. Both conditions are satisfied, command switches to the path planning mode. The 

optimal path is determined, and command switches to the path tracking mode, and 

remains so until an obstacle lying on one of the next three waypoints on the path is 

detected or the destination was reached. 

If an obstacle is detected, command switches to the obstacle avoidance mode, and the 

intermediate goal would be set to the waypoint where no obstacle is present. When the 

intermediate goal position is reached and no obstacle stands in the way, command is 

switched back to trajectory tracking mode. Throughout the navigation process, multiple 

switches can occur between trajectory tracking mode and obstacle avoidance. 

The application program keeps track of the trajectory and constant! y checks if the robot 

passes through the same region twice to check if the robot is stuck in a local minimum. 

ln such a case, the robot would be put in the stop mode, and then in trajectory planning 

mode to plan a new optimal path and then switches to trajectory tracking mode. This 

process will continue until the robot reaches goal position. In case the goal position 

cannot be reached, the robot is put in stop mode and will wait for user commands. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

117 

Figure 65 Obstacle on the path of the robot 

The state machine diagram in Figure 66 summarizes the who le process of the navigation 

strategy. The implementation of the navigation strate gy as a state machine simplifies the 

navigation procedure and is very efficient and practical. 

If no model of the environment was available at the beginning, the robot is initially in 

the stop mode and would then switch to the obstacle avoidance mode. As the robot starts 

navigating, a model of the environment would be established. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

No goal designated 

c: 
.Q 

~ ëii 
"8 8. E 

(ij~ "E &-n Cl) 

om E 
c: 

15~ e 
0 ·;;; 
'6 c: ., Cl) 

Cl) 0 
c z 

Environment madel available 

<? 
0~ 

è:l' 
~ o'Q 

G'o 

ii>~~~-
o_, 
~ 
ii>~ 
~ 

No obstacle on path 

Obstacle on path 

118 

Path not planned 

PATH 
PLANNING 

z 
0 
0 .,. 
"' or 
Q. 
CD 
0 
:::1 
"0 
ii) 
:::1 
:::1 
CD 
c. 
"0 
Cl) 

9' 

PATH 
TRACKING 

Obstacle on path or no No obstacle and goal 
path planned position not reached 

Figure 66 Navigation strategy state machine 

The application program constantly keeps checking for a local minimum, and in case 

one is detected, the robot is put in stop mode and a trajectory is planned using the 

partially available model of the environment. Ali the regions not yet modeled will be 

assumed obstacle free. The robot would then switch to the trajectory tracking mode, and 

the process continues. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

119 

7.3 Conclusion 

The navigation strategy proposed in this chapter works supposedly well, but has sorne 

limitations due to localization and positioning errors due to slippage. This error increases 

as the robot moves and the model of the environment would become increasingly 

erroneous. A global positioning system (GPS) deviee and a compass would solve the 

problem of localization. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

CONCLUSION 

The work presented in this research project is a solid foundation for a fully autonomous 

navigation system for a wheeled mobile robot. The navigation system that was proposed 

is flexible and can be further expanded to include more functionalities and to integrate 

the usage of additional sensors and instruments as well as additional computational 

resources. The technical details have been fully documented taking into consideration 

the possibility of further development and research. Three functionalities crucial to an 

autonomous navigation system for a wheeled mobile robot have been developed and 

implemented in real time on the P3-AT mobile robot. The localization and sonar 

perception routines available with the ARIA interface have been used without any 

modifications. The main focus of this project was on path planning, path tracking, and 

obstacle avoidance implemented using an application program that controls the robot 

and is run on a laptop computer that is connected to the robot through a wireless seriai 

communication link. 

The iterative dynamic programming algorithm for path planning is a sound contribution 

in the field of optimization algorithmics. It has sorne interesting advantages over the 

widely used A* search algorithm. The dynamic programming algorithm determines the 

optimal solutions for all the nodes of the graph towards the goal node, which is 

advantageous in a multi-robot environment. This is also advantageous if the robot 

deviates from its original path due to a real time dynamic obstacle, since there would be 

no need to plan a new optimal path from the current position in real time. The dynamic 

programming algorithm can be executed on several computational resources in parallel 

while the A* algorithm can only be executed sequentially. The dynamic programming 

algorithm is generic and its performance is not dependent on the choice of any heuristic 

function as is the case with the A* algorithm. Its only disadvantage with respect to the 

A* is in the computation time which is significantly much higher if implemented 

sequentially on a single computational unit. A more exhaustive study can be done to 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

121 

assess the execution of the dynamic programming a1gorithm on parallel computational 

re sources. 

The environment is represented by a graph whose nodes represent sorne discrete 

positions sampled at regular intervals. The nodes are linked by directional arrows 

associated with a cost of traversability. If the robot operates in a 2-D indoor 

environment, the cost would be a function of the distance between the positions 

represented by two nodes. If the environment is a rugged 3D terrain, a methodology is 

needed to assess the traversability of the terrain and calculate the cost accordingly. The 

cost would depend on terrain characteristics such as slopes and terrain roughness in 

addition to distance. The cost of traveling between two nodes needs not be the same in 

both directions. To minimize calculations, nodes pertaining to positions inside obstacles 

or unsafe regions are given a very high cost of traversability and are eliminated using a 

recursive function similar to the branch and bound technique. 

The fuzzy logic controller for path following was designed based on an analogy with a 

human driver. The path is a discrete set of waypoints in the form of a linked list whose 

first and last elements are the initial and destination positions respectively. As is usually 

the case, it is the optimal path obtained by using the iterative dynamic programming 

technique. The controller drives the robot at the proximity of those discrete waypoints 

without requiring a continuous reference trajectory. This characteristic enhances the 

reliability and the robustness when used for real life situations. The results of real time 

implementation proved this controller to have a high performance. 

A classical controller for trajectory following derived from a Lyapunov function of 

errors in position and heading and their derivatives was implemented and tested in real 

time. The reference trajectory is continuous and is determined by interpolating the 

discrete set of waypoints by a cubic spline. The reference trajectory is a function of time. 

Reference velocities and heading are derived from the reference trajectory. The 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

122 

controiler is used to regulate the robot position as weil as velocities and heading. With 

this approach, the robot would be actuaily foilowing a virtual reference robot. 

Although there is no solid basis to compare the two approaches analyticaily, the fuzzy 

controiler has proved to be more reliable and robust. It can be made to foilow a 

trajectory that is more precise by inserting intermediate waypoints between the 

waypoints. The performance of the classical controiler varies if different reference 

trajectories are used. The gains that yield optimal performance with a reference 

trajectory that is a straight line are not necessarily the same to have an optimal 

performance of a sinus reference trajectory. If the reference path changes in real time, 

the fuzzy controiler would not require cubic splines to interpolate the waypoints to 

obtain a continuous reference trajectory as is the case with the classical controiler. The 

classical controiler can be effectively used if an application requires that the robot tracks 

a trajectory with a predetermined timing. 

The curvature velocity method (CVM) for obstacle avoidance is valid theoreticaily and 

has been implemented in real time. This approach has the advantage that the robot can 

be used to explore an unknown environment. Due to time limitations, the program could 

not be fuily tested and debugged, but it works in almost 60% of the cases. Simpler 

methods for obstacle avoidance can be more easily implemented nevertheless. 

Several architectures have been developed in the literature to coordinate ail aspects and 

behaviors of navigation systems. For this project, a state machine with four modes 

comparable to the hybrid architecture has been proposed to control the robot. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

RECOMMENDATIONS 

In this project, an autonomous navigation system was developed, partiaily implemented, 

and tested on a flat surface indoor environment. While scanning through the mobile 

robot navigation, a lot of inspiring ideas and suggestions for the development of 

interesting applications and take maximum advantage of the P3-AT capabilities come to 

mind. The P3-AT has the capability of being equipped with a multitude of sensors and 

can be used in rough and unstructured terrain navigation outdoors. 

For navigation on a rough terrain, the trajectory planning algorithm needs not to be 

changed. However a technique is required to assess terrain and generate a cost matrix for 

a 3D terrain. Re fer to section 2 of Chapter 4 for more detail. 

For trajectory foilowing, it is recommended to adda terrain smoothness factor as input 

to the fuzzy controiler to take account of terrain irregularities. For this purpose a camera 

and a 3D gyroscope can be used to make an assessment of the terrain while making use 

of an image processing technique. 

Furthermore, the navigation aspects developed throughout this project can be adapted 

for sorne specifie applications and tasks. For example a manipulator can be added on top 

the robot to perform certain tasks, and this might require sorne modifications in path 

planning, path tracking, and obstacle avoidance, as weil as in the overail navigation 

strate gy. 

The usage of a camera and a laser range finder can be useful for a precise modeling of 

the environment as weil as to track a certain object, and this is important for applications 

in a multi-robot environment such as a soccer team or robot convoys. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX 1 

Client Driver Program 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

125 

This is the driver program based on actionExample that is provided with the ARIA 

package examples. This program is the driver and the interface between the robot 

control techniques and the robot or simulator. The code of this program is often referred 

to in the explanation of the ARIA interface in Chapter 2. 

#include "Aria.h" 
#include "CurvVel.h" 
#include <fstream> 
#include <iostream> 
#include <list> 
#include <vector> 

using namespace std; 

1* 
This demonstrates how to make actions and how to use them ... 

*1 

class ActionGo 
{ 

public ArAction 

public: 
Il constructor, sets myMaxSpeed and myStopDistance 
ActionGo(double maxSpeed, double stopDistance); 
Il destructor, its just empty, we don't need to do anything 
virtual -ActionGo(void) {delete CurvVelPtr;}; 
Il fire, this is what the resolver calls to figure out what this 

action wants 
virtual ArActionDesired *fire(ArActionDesired currentDesired); 
Il sets the robot pointer, also gets the sonar deviee 
virtual void setRobot(ArRobot *robot); 

protected: 

} i 

Il this is to hold the sonar deviee form the robot 
ArRangeDevice *mySonar; 
Il what the action wants to do 
ArActionDesired myDesired; 

Il initialize PathTracker; 
IIPathTracker* PathTrackerPtr; 
CurvVel* CurvVelPtr; 
Il maximum speed 
double myMaxSpeed; 
Il distance to stop at 
double myStopDistance; 
ArTime myTime; 
short firstFire; 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

126 

1* 
This is the constructor, note the use of constructor chaining with the 
ArAction ... also note how it uses setNextArgument, which makes it so 
that 
other things can see what parameters this action has, and set them. 
It also initializes the classes variables. 
*1 
ActionGo::ActionGo(double maxSpeed, double stopDistance) 
ArAction("Go") 
{ 

mySonar = NULL; 
myMaxSpeed = maxSpeed; 
myStopDistance = stopDistance; 
setNextArgument(ArArg("maximum speed", &myMaxSpeed, "Maximum 

speed togo.")); 
setNextArgument(ArArg("stop distance", &myStopDistance, "Distance 

at which to stop.")); 

1* 

CurvVelPtr =new CurvVel(); 
firstFire=l; 

Sets the myRobot pointer (all setRobot overloaded functions must do 
this), 
finds the sonar deviee from the robot, and if the sonar isn't there, 
then it deactivates itself. 
*1 
void ActionGo::setRobot(ArRobot *robot) 
{ 

1* 

myRobot = robot; 
mySonar = myRobot->findRangeDevice("sonar"); 
if (mySonar == NULL) 

deactivate(); 

This fire is the whole point of the action. 
*1 
ArActionDesired *ActionGo::fire(ArActionDesired currentDesired) 
{ 

double timeD; 

if (firstFire==l) { 
myTime.setToNow( ); 
firstFire=O; 

timeD=(myTime.mSecSince( )); 

Il reset the actionDesired (must be done) 
myDesired.reset( ); 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Il if the sonar is null we can't do anything, so deactivate 
if (rnySonar == NULL) 
{ 

deactivate(); 
return NULL; 

double rnyCurrentHeading rnyRobot -> getTh( )*pi/180 

VelPararneters* rnyCurrentVel=new VelPararneters; 

rnyCurrentVel->velocity = ( rnyRobot -> getVel( 
rnyCurrentVel->ornega = ( rnyRobot -> getRotVel( 

1 1000 ; 
* pi/180 

127 

Position rnyCurrentPosition ( (rnyRobot -> getX( ))/1000, (rnyRobot­
>getY())/1000); 

Position* rnyCurrentPositionPtr &rnyCurrentPosition 

Position goa1Position(100,0); 

if rnyCurrentPosition.findDistance(goalPosition) < .5) 
{ 

rnyRobot->setVel2 (0,0); 
return &rnyDesired; 

cout<<"rnyCurrentPosition: \t"<<rnyCurrentPosition; 
cout<<"rnyCurrentHeading: \t"<<rnyCurrentHeading<<"\t 

rnyCurrentVelocity 
\t"<<rnyCurrentVel->velocity<<endl; 

static VelPararneters* rnyDesiredVel; 
static VelPararneters rnyDesiredV; 

static vector<double> range(16); 

Il get the range of all sonars 0 through 15 

//double rnyRobotRadius=rnyRobot->getRobotRadius( )/2; 

//cout<<endl<<rnyRobotRadius<<endl; 

for(int i=O;i<16;i++) 
{ 

range[i) = ( rnyRobot->getSonarRange(i) ) * .001 + 
rnyRobotRadius 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

cout<<"Range["<<i<<"] "<<range[i]*lOOO<<endl; 

static dVInputs mydVInputs; 

mydVInputs.currentHeading = myCurrentHeading; 
mydVInputs.currentPosition = myCurrentPosition; 
mydVInputs.currentVel=(*myCurrentVel); 
mydVInputs.sonarReadings = range; 

static dVInputs* mydVInputsPtr = & mydVInputs; 

Il set goal position 
CurvVelPtr->setGoalPosition(goalPosition); 

myDesiredV = CurvVelPtr->determineVels(mydVInputsPtr); 

myDesiredVel = &myDesiredV; 

static double leftVelocity, rightVelocity; 

leftVelocity = myDesiredV.velocity- (myDesiredV.omega)*490I2; 
rightVelocity = myDesiredV.velocity +(myDesiredV.omega)*490I2; 

cout<<"velocity \t"<<myDesiredVel->velocity<<"omega \t"<< 
myDesiredVel->omega<<endl; 

cout<<"leftVelocity \t"<<leftVelocity<<"\t rightvelocity 
\t"<<rightVelocity<<endl; 

myRobot->setVel2 ( leftVelocity, rightVelocity );1**1 

delete myCurrentVel; 

128 

Il return a pointer to the actionDesired, so resolver knows what 
to do 

return &myDesired; 

int main(int argc,char** argv) 

ofstream trajectory ("Trajectory.txt",ios::trunc); 
ofstream RefTrajectory ("RefPosition.txt",ios::trunc); 
ofstream RefVels ("RefVels.txt",ios::trunc); 
ofstream RobotVels ("RobotVels.txt",ios::trunc); 

Il the robot 
ArRobot robot; 
Il the sonar deviee 
ArSonarDevice sonar; 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

Il sorne stuff for return values 
std::string str; 

Il the behaviors from above, and a stallRecover behavior that 
uses defaults 

range 

ActionGo go(SOO, 350); 
ArActionStallRecover recover; 

Il this needs to be done 
Aria::init( ); 
ArSimpleConnector connector(&argc, argv); 
connector.parseArgs ( ); 

if (argc > 1) 
{ 

connector.logOptions( ); 
exit(l); 

Il add the range deviee to the robot, you should add all the 

Il deviees and such before you add actions 
robot.addRangeDevice(&sonar); 

Il do a blocking connect, if it fails exit 
if (!connector.connectRobot(&robot)) 
{ 

printf("Could not connect to robot ... exiting\n"); 
Aria::shutdown(); 
return 1; 

Il enable the motors, disable amigobot sounds 
robot.comint(ArCommands::ENABLE, 1); 
robot.comint(ArCommands::SOUNDTOG, 0); 

Il add our actions in a good order, the integer here is the 
priority, 

Il with higher priority actions going first 
robot.addAction ( &recover, 100); 
robot.addAction ( &go, 50); 

129 

Il run the robot, the true here is to exit if it loses connection 
robot.run(true); 

Il now just shutdown and go away 
Aria::shutdown( ); 
return 0; 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX2 

Fuzzy Control Language Files (FCL) 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

131 

2.1 Fuzzy Control Language (FCL) 

This appendix contains the three FCL files for each of the three fuzzy modules described 

in Chapter 5. Comments are included between '(* *)' characters. The VAR_INPUT and 

VAR_OUTPUT statements are indicators to locate the inputs and outputs respectively. 

The statement FUZZIFY followed by an input name is an indicator to the definition of 

the member functions of this input. The statement DEFUZZIFY followed by an output 

name is an indicator to the defuzzification method used to defuzzify the weights 

obtained from the inference rules. And finally the rules are added after the statement 

RULEBLOCK. 

2.2 Look Ahead Curvature (LAC) FCL 

FUNCTION BLOCK 

VAR INPUT 
alpha1 
alpha2 

END VAR 

VAR OUTPUT 

REAL; (* RANGE (0 
REAL; (* RANGE (0 

Curv REAL; ( * RANGE ( 0 . • 6) *) 
END VAR 

FUZZIFY alpha1 

180) *) 

180) *) 

TERM Straightl :=(0,0) (0, 1) (20, 0); 
TERM High1 := (1, 0) (20, 1) (95, 0) ; 
TERM VeryHigh1 ·= (85, 0) (140, 1) (180, 0) 

END FUZZIFY 

FUZZIFY alpha2 
TERM Straight2 :=(0,0) (0, 1) (30, 0); 
TERM High2 := (10, 0) (20, 1) (95, 0) ; 
TERM VeryHigh2 ·= (80, 0) (140, 1) (180, 0) 

END FUZZIFY 

FUZZIFY Curv 
TERM NoCurvature := 0 ; 
TERM Moderate := 1.5 ; 
TERM cHigh := 4 ; 
TERM cVeryHigh ·= 5 ; 

END FUZZIFY 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

DEFUZZIFY Curv 
AND:PROD; 
METHOD: COGS; 

END DEFUZZIFY 

RULEBLOCK first 
AND:PROD; 
ACCUM:MAX; 
RULE 0: IF Straight1 
RULE 1: IF Straightl 
RULE 2: IF Straightl 
RULE 3: IF High1 AND 
RULE 4: IF High1 AND 
RULE 5: IF High1 AND 
RULE 6: IF VeryHigh1 
RULE 7: IF VeryHigh1 
RULE 8: IF VeryHigh1 

END RULEBLOCK 

END FONCTION BLOCK 

2.3 V -Controller FCL 

FONCTION BLOCK 

VAR INPUT 

AND Straight2 THEN NoCurvature; 
AND High2 THEN Moderate; 
AND VeryHigh2 THEN cHigh; 
Straight2 THEN cHigh; 
High2 THEN cHigh; 
VeryHigh2 THEN cHigh; 
AND Straight2 THEN cVeryHigh; 
AND High2 THEN cVeryHigh; 
AND VeryHigh2 THEN cVeryHigh; 

Curvature REAL; (* RANGE(O .. 5.5) *) 

dR REAL; (* RANGE (0 .. 4000) *) 

dPhi REAL; (* RANGE (-180 .. 180) *) 

CurrentVelocity REAL; (* RANGE(O .. 1000) *) 

END VAR 

VAR OUTPUT 
Velocity 

END VAR 

FUZZIFY Curvature 

REAL; (* RANGE (0 .. 1000) *) 

TERM Low := (-0 .1, 0) (0, 1) (1. 5, 0); 
TERM High := (1, 0) (2, 1) (5.5, 0) ; 
TERM VeryHigh := (3, 0) (4, 1) (5.5, 1) (5.5, 0) ; 
TERM NoMatterWhat .- (-0.1,0) (0,1) (5.5,1) (5.5,0.) 

END FUZZIFY 

FUZZIFY dR 
TERM Near :=(0, 0) (0, 1) (100, 0); 
TERM Close := (20, 0) (200, 1) (1400, 0) ; 
TERM Far := (150, 0) (500, 1) (7000, 1) (7000, 0) ; 
TERM NoMatterWhat := (0,0) (0,1) (7000,1) (7000,0) ; 

132 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

END FUZZIFY 

FUZZIFY dPhi 
TERM nVeryHigh :=(-181,0) (-181,1) (-100, 1) (-50, 0); 
TERM nHigh := (-100, 0) (-10, 1) (-1, 0) 
TERM Small := (-10, 0) (0, 1) (10, 0) ; 
TERM VeryHigh :=(50,0) (100, 1) (180, 1) (180, 0) ; 
TERM High := (1, 0) (10, 1) (100, 0) ; 
TERM NoMatterWhat := (-181,0) (-181,1) (181,1) (181,0) 

END FUZZIFY 

FUZZIFY CurrentVe1ocity 
TERM Low : = ( 0, 0) ( 0, 1) ( 2 0 0, 0) ; 
TERM VeryHigh :=(400,0) (500, 1) (1000, 0); 
TERM High := (100, 0) (250, 1) (1000, 0) ; 
TERM NoMatterWhat := (0,0) (0,1) (1000,1) (1000,0) 

END FUZZIFY 

FUZZIFY Velocity 
TERM Stop ·= 
TERM S100 ·= 
TERM S200 ·= 
TERM S300 ·= 
TERM S400 := 
TERM S500 ·= 
TERM S600 ·= 
TERM S700 ·= 
TERM S800 := 
TERM No Value 

END FUZZIFY 

DEFUZZIFY Velocity 
AND:PROD; 
METHOD: COGS; 

END DEFUZZIFY 

RULEBLOCK first 
AND:PROD; 
ACCUM:MAX; 

0 ; 
100 
200 
300 
400 
500 
600 
700 
800 
:= ( 900, 0) (901,0) (902,0); 

RULE 0: IF High AND NoMatterWhat AND NoMatterWhat AND 
NoMatterWhat THEN S300; 

RULE 1: IF VeryHigh AND NoMatterWhat AND NoMatterWhat AND 
NoMatterWhat THEN S200; 

133 

RULE 2: IF NoMatterWhat AND Far AND Small AND NoMatterWhat THEN 
S700; 

RULE 3: IF High AND Far AND Small AND NoMatterWhat THEN S300; 
RULE 4: IF VeryHigh AND Far AND Small AND NoMatterWhat THEN S300; 
RULE 5: IF NoMatterWhat AND NoMatterWhat AND High AND VeryHigh 

THEN S300; 
RULE 6: IF NoMatterWhat AND NoMatterWhat AND nHigh AND VeryHigh 

THEN S300; 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

RULE 7: IF NoMatterWhat AND NoMatterWhat AND VeryHigh AND 
VeryHigh THEN 8200; 

RULE 8: IF NoMatterWhat AND NoMatterWhat AND nVeryHigh 
VeryHigh THEN 8200; 

RULE 9: IF NoMatterWhat AND NoMatterWhat AND High AND 
NOT(VeryHigh) THEN 8300; 

RULE 10: IF NoMatterWhat AND NoMatterWhat AND nHigh AND 
NOT(VeryHigh) THEN 8300; 

RULE 11: IF NoMatterWhat AND NoMatterWhat AND VeryHigh 
NOT(VeryHigh) THEN 8200; 

RULE 12: IF NoMatterWhat AND NoMatterWhat AND VeryHigh 
NOT(VeryHigh) THEN 8200; 
END RULEBLOCK 

END FUNCTION BLOCK 

2.4 ro-Controller FCL 

FUNCTION BLOCK 

VAR INPUT 
Curvature REAL; (* RANGE(O .. 5.5) *) 
dR REAL; (* RANGE (0 .. 4000) *) 
dPhi REAL; (* RANGE (-180 .. 180) *) 

CurrentVelocity REAL; (* RANGE(O .. 1000) *) 
END VAR 

VAR OUTPUT 
Omega REAL; (* RANGE(-35 .. 35) *) 

END VAR 

FUZZIFY Curvature 
TERM Low : = ( -0 .1, 0) ( 0, 1) ( 1. 5, 0) ; 
TERM High := (1, 0) (2, 1) (5.5, 0) ; 
TERM VeryHigh := (3, 0) (4, 1) (5.5, 1) (5.5, 0) 
TERM NoMatterWhat ·= (0,0) (0,1) (5.5,1) (5.5,0) 

END FUZZIFY 

FUZZIFY dR 
TERM Near :={0, 0) (0, 1) (100, 0); 
TERM Close := (20, 0) (700, 1) (1400, 0) ; 
TERM Far := (1000, 0) (1500, 1) (7000, 1) (7000, 0) ; 
TERM NoMatterWhat := (0, 0) (0, 1) (7000, 1) (7000, 0) ; 

END FUZZIFY 

FUZZIFY dPhi 
TERM nVeryHigh :={-181,0) (-181,1) (-100, 1) (-50, 0); 
TERM nHigh := (-100, 0) (-10, 1) (-1, 0) 
TERM 8mall := (-10, 0) (0, 1) (10, 0) ; 
TERM VeryHigh :={50,0) (100, 1) (181, 1) (181, 0); 
TERM High := (1, 0) (10, 1) (100, 0) ; 

AND 

AND 

AND 

134 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

TERM NoMatterWhat .- (-181 1 0) (-181 1 1) (181 1 1) (181 1 0) 
END FUZZIFY 

FUZZIFY CurrentVelocity 
TERM Law : = ( 0 1 0) ( 0 1 1) ( 2 0 0 1 0) ; 
TERM VeryHigh :=(300 1 0) (400 1 1) (1000 1 0); 
TERM High := (100 1 0) (250 1 1) (1000 1 0) ; 
TERM NoMatterWhat := (0 1 0) (0 1 1) (1000 1 1) (1000 1 0) 

END FUZZIFY 

FUZZIFY Omega 
TERM n35 -35 
TERM n30 ·= -30 
TERM n25 := -25 
TERM n20 .- -20 
TERM nl5 ·= -15 
TERM nlO := -10 
TERM n5 .- -5 ; 
TERM Stop ·= 0 
TERM p5 5 ; 
TERM plO .- 10 
TERM pl5 := 15 
TERM p20 := 20 
TERM p25 := 25 
TERM p30 30 
TERM p35 := 35 
TERM NoValue := (-10 1 0) (0 1 0) (0 1 0); 

END FUZZIFY 

DEFUZZIFY Omega 
AND: PROD; 
METHOD: COGS; 

END DEFUZZIFY 

RULEBLOCK first 
AND:PROD; 
ACCUM:MAX; 
RULE 0: IF NoMatterWhat AND Near AND NoMatterWhat AND 

NoMatterWhat THEN Stop; 
RULE 1: IF NoMatterWhat AND NoMatterWhat AND Small AND 

NoMatterWhat THEN Stop; 

THEN 

RULE 2: IF Law AND Far AND Small AND NoMatterWhat THEN Stop; 
RULE 3: IF NoMatterWhat AND NoMatterWhat AND High AND VeryHigh 

plO; 

135 

RULE 4: IF NoMatterWhat AND NoMatterWhat AND nHigh AND VeryHigh 
THEN nlO; 

RULE 5: IF NoMatterWhat AND NoMatterWhat AND VeryHigh AND 
VeryHigh THEN plO; 

RULE 6: IF NoMatterWhat AND NoMatterWhat AND nVeryHigh AND 
VeryHigh THEN nlO; 

RULE 7: IF NoMatterWhat AND NoMatterWhat AND nHigh AND 
NoMatterWhat THEN n30; 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

RULE 8: IF NoMatterWhat AND NoMatterWhat AND High AND 
NoMatterWhat THEN p30; 

RULE 9: IF NoMatterWhat AND NoMatterWhat AND VeryHigh AND 
NoMatterWhat THEN p35; 

RULE 10: IF NoMatterWhat AND NoMatterWhat AND nVeryHigh AND 
NoMatterWhat THEN n35; 
END RULEBLOCK 

END FONCTION BLOCK 

136 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

APPENDIX3 

SRI Simulator World Files 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

138 

This appendix contains a sample world file that cornes with the ARIA library. The width 

and height of the environment as well as all measures are defined in millimeters. 

width 12640 
height 5759 
OriginPad 12630 5757 

Start Goal 11390 4334 "Chris" 
End 

Start Goal 1035 3002 "Webpion" 
End 

Start Line 1820 1239 1820 3719 
AttachiD 2 

1820 1239 1820 3719 
End 

Start Goal 9110 4394 "Matt" 
End 

Start Line 6410 5619 6980 5619 
AttachiD 4 

6410 5619 6980 5619 
End 

Start Line 7930 4369 7930 4919 
AttachiD 5 

7930 4369 7930 4919 
End 

Start Line 11710 1749 11710 859 
AttachiD 6 

11710 1749 11710 859 
End 

Start Goal 6650 4154 "Servers" 
End 

Start Line 0 3489 0 2599 
AttachiD 8 

0 3489 0 2599 
End 

Start Line 10 2599 250 2599 
AttachiD 9 

10 2599 250 2599 
End 

Start Line 10180 10 10180 360 
AttachiD 10 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

10180 10 10180 360 
End 

Start Line 12070 5759 12090 5759 
AttachiD 11 

12070 5759 12090 5759 
End 

Start Line 10130 360 10170 360 
AttachiD 12 

10130 360 10170 360 
End 

Start Line 560 1869 790 1869 
AttachiD 13 

560 1869 790 1869 
End 

Start Line 7940 4369 8100 4369 
AttachiD 14 

7940 4369 8100 4369 
End 

Start Line 12090 4969 12090 5759 
AttachiD 15 

12090 4969 12090 5759 
End 

position 7760 675 0 

Start Chair 8310 1862 400 520 260 200 -0.915101 
8510 2122 8510 1602 
8510 1602 8110 1602 
8110 1602 8110 2122 
8110 2122 8510 2122 

End 

139 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

BIBLIOGRAPHY 

Beom, H. R. and H. S. Cho (1995). A Sensor-Based Navigation for a Mobile Robot 
Using Fuzzy Logic and Reinforcement Learning. IEEE Transactions on Systems, Man 
and Cybernetics, 25(3): 464-477. 

Borenstein, J. K., Y. (1990). Real-Time Obstacle Avoidance for Fast Mobile Robots in 
Cluttered Environments. International Conference on Robotics and Automation, 1990. 
Proceedings, 1990 IEEE. 

Caracciolo, L., A. de Luca, et al. (1999). Trajectory Tracking Control of a Four-wheel 
Differentially Driven Mobile Robot. 1999 IEEE International Conference on Robotics 
and Automation. Proceedings, 1999. 

Davidson, M. and V. Bahl (2001). The Scalar /spi epsiv/-Controller: A Spatial Path 
Tracking Approach for ODV, Ackerman, and Differentially-steered Autonomous 
Wheeled Mobile Robots. IEEE International Conference on Robotics and Automation, 
2001. Proceedings 2001 ICRA. 

DeSantis, R. M., R. Hurteau, et al. (2002). Experimental Stabilization of Tractor and 
Tractor-trailer Like Vehicles. Proceedings of the 2002 IEEE International Symposium 
on intelligent Control, 2002. 

Driankov, D. and A. Saffiotti (2001). Fuzzy Logic Techniques for Autonomous Vehicle 
Navigation. 

Fagg, A. H., D. Lotspeich, et al. (1994). A Reinforcement-Learning Approach to 
Reactive Control Policy Design for Autonomous Robots. IEEE International Conference 
on Robotics and Automation, 1994. Proceedings., 1994. 

Farinwata, S. S. F., Dimitar P., Langari R. ed (2000). Fuzzy Control: Synthesis and 
Analysis. New York. 

Free Fuzzy Logic Library (2002). Site ofSourceForge, [Online]. 
http://ffll.sourceforge.net/ (Page consulted on June 2, 2005) 

Gifford, K. K. and R. R. Murphy (1996). Incorporating Terrain Uncertainties in 
Autonomous Vehicle Path Planning. International Conference on Intelligent Robots and 
Systems '96, IROS 96, Proceedings ofthe 1996 IEEE/RSJ. 

Hillier, F. S. L., Gerald J. (1990). Introduction to Stochastic Models in Operations 
Research. New York, N.Y. : McGraw-Hill, c1990. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

141 

Hart, P., Nilsson, J. (1971). A Forma/ Basisfor the Heuristic Determination of Minimum 
Cost Paths. (Unedited text). 

Howard A., Seraji H., An Intelligent Terrain-Based Navigation System for Planetary 
Rovers, IEEE Robotics and Automation Magazine, December 2001. 

International Technical Commission (IEC), T. C. n. (1997). Deviees, IECI131 -
Programmable Control/ers, Part 7 - Fuzzy Control Programming. [Online] 
http://www.fuzzytech.com/binaries/ieccdl.pdf(Consulted on 20 June 2005). 

Ju, K.-S. H. M.-Y. (2002). A Propagating Interface Mode/ Strate gy for Global 
Trajectory Planning Among Moving Obstacles. IEEE Transactions on Industrial 
Electronics, (6): 1313-1322. 

Kanayama, Y., Y. Kimura, et al. (1990). A Stable Tracking Control Method for an 
Autonomous Mobile Robot. IEEE International Conference on Robotics and Automation. 

Khatib, O. (1985). Real-Time Obstacle Avoidancefor Manipulators and Mobile Robots. 
IEEE International Conference on Robotics and Automation. Proceedings 1985. 

Koh, K. C. and H. S. Cho (1995). Wheel Servo Control Based on Feedforward 
Compensation for an Autonomous Mobile Robot. 1995 IEEE/RSJ International 
Conference on Intelligent Robots and Systems 95. 'Human Robot Interaction and 
Cooperative Robots', Proceedings. 

Laumond, J. P. (2001). La Robotique Mobile. Hermès Science Publications, c2001. 

Lee, M. G. P. J. H. J. M. C. (2001). Obstacle Avoidance for Mobile Robots Using 
Artificial Potential Field Approach With Simulated Annealing. IEEE International 
Symposium on Industrial Electronics, 2001. Proceedings. ISlE 2001. 

Macek, K., I. Petrovic, et al. (2002). A Reinforcement Learning Approach to Obstacle 
Avoidance of Mobile Robots. 7th International Workshop on Advanced Motion Control, 
2002. 

Mucientes, M., R. Iglesias, et al. (2001). Fuzzy Temporal Ru/es for Mobile Robot 
Guidance in Dynamic Environments. Transactions on Systems, Man and Cybernetics, 
Part C, IEEE 31(3): 391-398. 

Ollero, A. and G. Heredia (1995). Stability Analysis of Mobile Robot Path Tracking. 
1995 IEEE/RSJ International Conference on Intelligent Robots and Systems 95. 'Human 
Robot Interaction and Cooperative Robots', Proceedings. 

Pruski, A. (1996). Robotique Mobile. Paris : Hermès , c 1996. 



Reproduced with permission of the copyright owner.  Further reproduction prohibited without permission.

142 

Robotics, A. (2001). Pioneer 21 People Bot Operations Manual. ActivMedia. 

Robotics, A. (2003). ARIA Reference Manual1.3.2. ActivMedia. 

Simmons, R. (1996). The Curvature-Velocity Method for Local Obstacle Avoidance. 
Proceedings. IEEE International Conference on Robotics and Automation, 1996. 

Ulrich, I. B., J. (1998). VFH+: Reliable Obstacle Avoidance for Fast Mobile Robots. 
Proceedings. IEEE International Conference on.Robotics and Automation, 1998. 

Ulrich, I. B., J. (2000). VFH: Local Obstacle Avoidance With Look-Ahead Verification. 
Proceedings.IEEE International Conference on Robotics and Automation, 2000. ICRA 

Weiguo, W., C. Huitang, et al. (1999). Backstepping Design for Path Tracking of Mobile 
Robots. 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. 
Proceedings, 1999. IROS '99. 

Xin, L., P. Vadakkepat, et al. (2002). Comparison of Khepera Robot Navigation by 
Evolutionary Neural Networks and Pain-Based Algorithm. Proceedings of the 2002 
Congress on Evolutionary Computation, 2002. CEC '02. 

Xu, H. and S. X. Yang (2001). Tracking Control of a Mobile Robot with Kinematic and 
Dynamic Constraints. Proceedings 2001 IEEE International Symposium on 
Computational Intelligence in Robotics and Automation, 2001. 

Yang, S. X., H. Li, et al. (2003). Fuzzy Control of a Behavior-Based Mobile Robot. The 
12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03. 

Yang, X., K. He, et al. (1998). An Intelligent Predictive Control Approach to Path 
Tracking Problem of Autonomous Mobile Robot. IEEE International Conference on 
Systems, Man, and Cybernetics, 1998. 

Yoshizawa, K., H. Hashimoto, et al. (1996). Path Tracking Control of Mobile Robots 
Using a Quadratic Curve. Intelligent Vehicles Symposium, 1996., Proceedings of the 
1996 IEEE. 

Zhang, J. R., S. J. Xu, et al. (2001). Sliding Mode Controller for Automatic Steering of 
Vehicles. The 27th Annual Conference of the IEEE Industrial Electronics Society, 2001. 
IECON '01. 

Zhang, J. R., S. J. Xu, et al. (2002). Path Tracking Control of Vehicles Based on 
Lyapunov Approach. Proceedings of the 2002 American Control Conference, 2002. 




