29,810 research outputs found

    Hardware/software codesign methodology for fuzzy controller implementation

    Get PDF
    This paper describes a HW/SW codesign methodology for the implementation of fuzzy controllers on a platform composed by a general-purpose microcontroller and specific processing elements implemented on FPGAs or ASICs. The different phases of the methodology, as well as the CAD tools used in each design stage, are presented, with emphasis on the fuzzy system development environment Xfuzzy. Also included is a practical application of the described methodology for the development of a fuzzy controller for a dosage system

    APPRAISAL OF TAKAGI–SUGENO TYPE NEURO-FUZZY NETWORK SYSTEM WITH A MODIFIED DIFFERENTIAL EVOLUTION METHOD TO PREDICT NONLINEAR WHEEL DYNAMICS CAUSED BY ROAD IRREGULARITIES

    Get PDF
    Wheel dynamics play a substantial role in traversing and controlling the vehicle, braking, ride comfort, steering, and maneuvering. The transient wheel dynamics are difficult to be ascertained in tire–obstacle contact condition. To this end, a single-wheel testing rig was utilized in a soil bin facility for provision of a controlled experimental medium. Differently manufactured obstacles (triangular and Gaussian shaped geometries) were employed at different obstacle heights, wheel loads, tire slippages and forward speeds to measure the forces induced at vertical and horizontal directions at tire–obstacle contact interface. A new Takagi–Sugeno type neuro-fuzzy network system with a modified Differential Evolution (DE) method was used to model wheel dynamics caused by road irregularities. DE is a robust optimization technique for complex and stochastic algorithms with ever expanding applications in real-world problems. It was revealed that the new proposed model can be served as a functional alternative to classical modeling tools for the prediction of nonlinear wheel dynamics

    Development of accident prediction model by using artificial neural network (ANN)

    Get PDF
    Statistical or crash prediction model have frequently been used in highway safety studies. They can be used in identify major contributing factors or establish relationship between crashes and explanatory accident variables. The measurements to prevent accident are from the speed reduction, widening the roads, speed enforcement, or construct the road divider, or other else. Therefore, the purpose of this study is to develop an accident prediction model at federal road FT 050 Batu Pahat to Kluang. The study process involves the identification of accident blackspot locations, establishment of general patterns of accident, analysis of the factors involved, site studies, and development of accident prediction model using Artificial Neural Network (ANN) applied software which named NeuroShell2. The significant of the variables that are selected from these accident factors are checked to ensure the developed model can give a good prediction results. The performance of neural network is evaluated by using the Mean Absolute Percentage Error (MAPE). The study result showed that the best neural network for accident prediction model at federal road FT 050 is 4-10-1 with 0.1 learning rate and 0.2 momentum rate. This network model contains the lowest value of MAPE and highest value of linear correlation, r which is 0.8986. This study has established the accident point weightage as the rank of the blackspot section by kilometer along the FT 050 road (km 1 – km 103). Several main accident factors also have been determined along this road, and after all the data gained, it has successfully analyzed by using artificial neural network

    Pembangunan dan penilaian modul berbantukan komputer bagi subjek pemasaran : Politeknik Port Dickson

    Get PDF
    Kajian ini bertujuan membangunkan Modul Berbantukan Komputer (MBK) bagi subjek Pemasaran. MBK ini dibangunkan dengan menggunakan pensian AutoPlay Media dan Flash MX. Sampel kajian ini terdiri daripada 30 orang pelajar Diploma Pemasaran di Politeknik Port Dickson. Data dikumpulkan melalui kaedah soal selidik dan dianalisis berdasarkan kekerpan, peratusan dan skor min dengan menggunakan perisian Statistical Package For Social Sciene (SPSS) versi 11.0. Dapatan kajian menunjukkan penilaian terhadap pembagunan MBK di dalam proses P&P adalah tinggi. Ini bermakna MBK ini sesuai digunakan di Politeknik Port Dickson di dalam proses P&P

    A Fuzzy-Logic Approach to Dynamic Bayesian Severity Level Classification of Driver Distraction Using Image Recognition

    Get PDF
    open access articleDetecting and classifying driver distractions is crucial in the prevention of road accidents. These distractions impact both driver behavior and vehicle dynamics. Knowing the degree of driver distraction can aid in accident prevention techniques, including transitioning of control to a level 4 semi- autonomous vehicle, when a high distraction severity level is reached. Thus, enhancement of Advanced Driving Assistance Systems (ADAS) is a critical component in the safety of vehicle drivers and other road users. In this paper, a new methodology is introduced, using an expert knowledge rule system to predict the severity of distraction in a contiguous set of video frames using the Naturalistic Driving American University of Cairo (AUC) Distraction Dataset. A multi-class distraction system comprises the face orientation, drivers’ activities, hands and previous driver distraction, a severity classification model is developed as a discrete dynamic Bayesian (DDB). Furthermore, a Mamdani-based fuzzy system was implemented to detect multi- class of distractions into a severity level of safe, careless or dangerous driving. Thus, if a high level of severity is reached the semi-autonomous vehicle will take control. The result further shows that some instances of driver’s distraction may quickly transition from a careless to dangerous driving in a multi-class distraction context

    Characterizing urban landscapes using fuzzy sets

    Get PDF
    Characterizing urban landscapes is important given the present and future projections of global population that favor urban growth. The definition of “urban” on a thematic map has proven to be problematic since urban areas are heterogeneous in terms of land use and land cover. Further, certain urban classes are inherently imprecise due to the difficulty in integrating various social and environmental inputs into a precise definition. Social components often include demographic patterns, transportation, building type and density while ecological components include soils, elevation, hydrology, climate, vegetation and tree cover. In this paper, we adopt a coupled human and natural system (CHANS) integrated scientific framework for characterizing urban landscapes. We implement the framework by adopting a fuzzy sets concept of “urban characterization” since fuzzy sets relate to classes of object with imprecise boundaries in which membership is a matter of degree. For dynamic mapping applications, user-defined classification schemes involving rules combining different social and ecological inputs can lead to a degree of quantification in class labeling varying from “highly urban” to “least urban”. A socio-economic perspective of urban may include threshold values for population and road network density while a more ecological perspective of urban may utilize the ratio of natural versus built area and percent forest cover. Threshold values are defined to derive the fuzzy rules of membership, in each case, and various combinations of rules offer a greater flexibility to characterize the many facets of the urban landscape. We illustrate the flexibility and utility of this fuzzy inference approach called the Fuzzy Urban Index for the Boston Metro region with five inputs and eighteen rules. The resulting classification map shows levels of fuzzy membership ranging from highly urban to least urban or rural in the Boston study region. We validate our approach using two experts assessing accuracy of the resulting fuzzy urban map. We discuss how our approach can be applied in other urban contexts with newly emerging descriptors of urban sustainability, urban ecology and urban metabolism.This research was partially supported by "Boston University Initiative on Cities Early Stage Urban Research Awards 2015-16" (Gopal & Phillips) and the Frederick S. Pardee Center for the Study of the Longer-Range Future at Boston University. We thank the anonymous reviewers for their careful reading of our manuscript and their many insightful comments and suggestions. (Boston University Initiative on Cities Early Stage Urban Research Awards; Frederick S. Pardee Center for the Study of the Longer-Range Future at Boston University)https://doi.org/10.1016/j.compenvurbsys.2016.02.002Published versio

    Caregiver Assessment Using Smart Gaming Technology: A Preliminary Approach

    Get PDF
    As pre-diagnostic technologies are becoming increasingly accessible, using them to improve the quality of care available to dementia patients and their caregivers is of increasing interest. Specifically, we aim to develop a tool for non-invasively assessing task performance in a simple gaming application. To address this, we have developed Caregiver Assessment using Smart Gaming Technology (CAST), a mobile application that personalizes a traditional word scramble game. Its core functionality uses a Fuzzy Inference System (FIS) optimized via a Genetic Algorithm (GA) to provide customized performance measures for each user of the system. With CAST, we match the relative level of difficulty of play using the individual's ability to solve the word scramble tasks. We provide an analysis of the preliminary results for determining task difficulty, with respect to our current participant cohort.Comment: 7 pages, 1 figures, 6 table

    Resilience Assignment Framework using System Dynamics and Fuzzy Logic.

    Get PDF
    This paper is concerned with the development of a conceptual framework that measures the resilience of the transport network under climate change related events. However, the conceptual framework could be adapted and quantified to suit each disruption’s unique impacts. The proposed resilience framework evaluates the changes in transport network performance in multi-stage processes; pre, during and after the disruption. The framework will be of use to decision makers in understanding the dynamic nature of resilience under various events. Furthermore, it could be used as an evaluation tool to gauge transport network performance and highlight weaknesses in the network. In this paper, the system dynamics approach and fuzzy logic theory are integrated and employed to study three characteristics of network resilience. The proposed methodology has been selected to overcome two dominant problems in transport modelling, namely complexity and uncertainty. The system dynamics approach is intended to overcome the double counting effect of extreme events on various resilience characteristics because of its ability to model the feedback process and time delay. On the other hand, fuzzy logic is used to model the relationships among different variables that are difficult to express in numerical form such as redundancy and mobility

    Hierarchical fuzzy logic based approach for object tracking

    Get PDF
    In this paper a novel tracking approach based on fuzzy concepts is introduced. A methodology for both single and multiple object tracking is presented. The aim of this methodology is to use these concepts as a tool to, while maintaining the needed accuracy, reduce the complexity usually involved in object tracking problems. Several dynamic fuzzy sets are constructed according to both kinematic and non-kinematic properties that distinguish the object to be tracked. Meanwhile kinematic related fuzzy sets model the object's motion pattern, the non-kinematic fuzzy sets model the object's appearance. The tracking task is performed through the fusion of these fuzzy models by means of an inference engine. This way, object detection and matching steps are performed exclusively using inference rules on fuzzy sets. In the multiple object methodology, each object is associated with a confidence degree and a hierarchical implementation is performed based on that confidence degree.info:eu-repo/semantics/publishedVersio
    corecore