17 research outputs found

    A General Spatio-Temporal Clustering-Based Non-local Formulation for Multiscale Modeling of Compartmentalized Reservoirs

    Full text link
    Representing the reservoir as a network of discrete compartments with neighbor and non-neighbor connections is a fast, yet accurate method for analyzing oil and gas reservoirs. Automatic and rapid detection of coarse-scale compartments with distinct static and dynamic properties is an integral part of such high-level reservoir analysis. In this work, we present a hybrid framework specific to reservoir analysis for an automatic detection of clusters in space using spatial and temporal field data, coupled with a physics-based multiscale modeling approach. In this work a novel hybrid approach is presented in which we couple a physics-based non-local modeling framework with data-driven clustering techniques to provide a fast and accurate multiscale modeling of compartmentalized reservoirs. This research also adds to the literature by presenting a comprehensive work on spatio-temporal clustering for reservoir studies applications that well considers the clustering complexities, the intrinsic sparse and noisy nature of the data, and the interpretability of the outcome. Keywords: Artificial Intelligence; Machine Learning; Spatio-Temporal Clustering; Physics-Based Data-Driven Formulation; Multiscale Modelin

    A robust hierarchical clustering for georeferenced data

    Get PDF
    The detection of spatially contiguous clusters is a relevant task in geostatistics since near located observations might have similar features than distant ones. Spatially compact groups can also improve clustering results interpretation according to the different detected subregions. In this paper, we propose a robust metric approach to neutralize the effect of possible outliers, i.e. an exponential transformation of a dissimilarity measure between each pair of locations based on non-parametric kernel estimator of the direct and cross variograms (Fouedjio, 2016) and on a different bandwidth identification, suitable for agglomerative hierarchical clustering techniques applied to data indexed by geographical coordinates. Simulation results are very promising showing very good performances of our proposed metric with respect to the baseline ones. Finally, the new clustering approach is applied to two real-word data sets, both giving locations and top soil heavy metal concentrations

    Spatio-temporal clustering: Neighbourhoods based on median seasonal entropy

    Get PDF
    In this research, a new uncertainty clustering method has been developed and applied to the spatial time series with seasonality. The new unsupervised grouping method is based on Neighbourhoods and Median Seasonal Entropy. This classification method aims to discover similar behaviours for a time series group and find a dissimilarity measure concerning a reference series r. The Neighbourhood’s Internal Verification Coefficient criterion makes it possible to measure intra-group similarity. This clustering criterion is flexible for spatial information. Our empirical approach allows us to measure accommodation decisions for tourists who visit Spain and decide to stay either in hotels or in tourist apartments. The results show the existence of dynamic seasonal patterns of behaviour. These insights support the decisions of economic agents.This research is associated with the group of Faculty of Economic and Business Sciences at the University of Malaga: “Social Indicators-SEJ157”. The research group has funded the professional editing service in English. Research Funders: “Funding for open access charge: Universidad de Málaga/CBUA”

    Network and attribute‐based clustering of tennis players and tournaments

    Get PDF
    This paper aims at targeting some relevant issues for clustering tennis players and tournaments: (i) it considers players, tournaments and the relation between them; (ii) the relation is taken into account in the fuzzy clustering model based on the Partitioning Around Medoids (PAM) algorithm through spatial constraints; (iii) the attributes of the players and of the tournaments are of different nature, qualitative and quantitative. The proposal is novel for the methodology used, a spatial Fuzzy clustering model for players and for tournaments (based on related attributes), where the spatial penalty term in each clustering model depends on the relation between players and tournaments described in the adjacency matrix. The proposed model is compared with a bipartite players-tournament complex network model (the Degree- Corrected Stochastic Blockmodel) that considers only the relation between players and tournaments, described in the adjacency matrix, to obtain communities on each side of the bipartite network. An application on data taken from the ATP official website with regards to the draws of the tournaments, and from the sport statistics website Wheelo ratings for the performance data of players and tournaments, shows the performances of the proposed clustering model

    Distribution-based entropy weighting clustering of skewed and heavy tailed time series

    Get PDF
    The goal of clustering is to identify common structures in a data set by forming groups of homogeneous objects. The observed characteristics of many economic time series motivated the development of classes of distributions that can accommodate properties, such as heavy tails and skewness. Thanks to its flexibility, the skewed exponential power distribution (also called skewed generalized error distribution) ensures a unified and general framework for clustering possibly skewed and heavy tailed time series. This paper develops a clustering procedure of model-based type, assuming that the time series are generated by the same underlying probability distribution but with different parameters. Moreover, we propose to optimally combine the estimated parameters to form the clusters with an entropy weighing k-means approach. The usefulness of the proposal is shown by means of application to financial time series, demonstrating also how the obtained clusters can be used to form portfolio of stocks.Peer ReviewedPostprint (published version

    Fuzzy clustering with spatial-temporal information

    Get PDF
    Clustering geographical units based on a set of quantitative features observed at several time occasions requires to deal with the complexity of both space and time information. In particular, one should consider (1) the spatial nature of the units to be clustered, (2) the characteristics of the space of multivariate time trajectories, and (3) the uncertainty related to the assignment of a geographical unit to a given cluster on the basis of the above com- plex features. This paper discusses a novel spatially constrained multivariate time series clustering for units characterised by different levels of spatial proximity. In particular, the Fuzzy Partitioning Around Medoids algorithm with Dynamic Time Warping dissimilarity measure and spatial penalization terms is applied to classify multivariate Spatial-Temporal series. The clustering method has been theoretically presented and discussed using both simulated and real data, highlighting its main features. In particular, the capability of embedding different levels of proximity among units, and the ability of considering time series with different length

    Cross Sectional and Longitudinal Fuzzy Clustering of the NUTS and Positioning of the Italian Regions with Respect to the Regional Competitiveness Index (RCI) Indicators with Contiguity Constraints

    Get PDF
    In socio-economical clustering often the empirical information is represented by time-varying data generated by indicators observed over time on a set of subnational (regional) units. Usually among these units may exist contiguity relations, spatial but not only.In this paper we propose a fuzzy clustering model of multivariate time-varying data, the longitudinal fuzzy C-Medoids clustering with contiguity constraints. The temporal aspect is dealt with by using appropriate measures of dissimilarity between time trajectories. The contiguity among units is dealt with adding a contiguity matrix as a penalization term in the clustering model.The cross sectional fuzzy C-Medoids clustering with contiguity constraints is obtained considering one instant of time. The model is applied to the classification of the European NUTS on the basis of the observed dynamics of the Basic, Efficiency and Innovation subindexes of the Regional Competitiveness Index (RCI) 2013 and 2016. The positioning of the Italian regions is analyzed through the values of the medoids of the clusters and shows the peculiarities of the regions with respect to the subindexes either in single times or in the dynamic. Two contiguity constraints, one based on the European Western, Southern, Central and Northern geographic areas and one on the level of GDP—taken into account in the computation of the RCI—are also introduced in the models

    Fuzzy clustering of spatial interval-valued data

    Get PDF
    In this paper, two fuzzy clustering methods for spatial intervalvalued data are proposed, i.e. the fuzzy C-Medoids clustering of spatial interval-valued data with and without entropy regularization. Both methods are based on the Partitioning Around Medoids (PAM) algorithm, inheriting the great advantage of obtaining non-fictitious representative units for each cluster. In both methods, the units are endowed with a relation of contiguity, represented by a symmetric binary matrix. This can be intended both as contiguity in a physical space and as a more abstract notion of contiguity. The performances of the methods are proved by simulation, testing the methods with different contiguity matrices associated to natural clusters of units. In order to show the effectiveness of the methods in empirical studies, three applications are presented: the clustering of municipalities based on interval-valued pollutants levels, the clustering of European fact-checkers based on interval-valued data on the average number of impressions received by their tweets and the clustering of the residential zones of the city of Rome based on the interval of price values

    Fuzzy clustering of spatial interval-valued data

    Get PDF
    In this paper, two fuzzy clustering methods for spatial interval-valued data are proposed, i.e. the fuzzy C-Medoids clustering of spatial interval-valued data with and without entropy regularization. Both methods are based on the Partitioning Around Medoids (PAM) algorithm, inheriting the great advantage of obtaining non-fictitious representative units for each cluster. In both methods, the units are endowed with a relation of contiguity, represented by a symmetric binary matrix. This can be intended both as contiguity in a physical space and as a more abstract notion of contiguity. The performances of the methods are proved by simulation, testing the methods with different contiguity matrices associated to natural clusters of units. In order to show the effectiveness of the methods in empirical studies, three applications are presented: the clustering of municipalities based on interval-valued pollutants levels, the clustering of European fact-checkers based on interval-valued data on the average number of impressions received by their tweets and the clustering of the residential zones of the city of Rome based on the interval of price values
    corecore