78 research outputs found

    Fuzzy Bi-level Decision-Making Techniques: A Survey

    Full text link
    © 2016 the authors. Bi-level decision-making techniques aim to deal with decentralized management problems that feature interactive decision entities distributed throughout a bi-level hierarchy. A challenge in handling bi-level decision problems is that various uncertainties naturally appear in decision-making process. Significant efforts have been devoted that fuzzy set techniques can be used to effectively deal with uncertain issues in bi-level decision-making, known as fuzzy bi-level decision-making techniques, and researchers have successfully gained experience in this area. It is thus vital that an instructive review of current trends in this area should be conducted, not only of the theoretical research but also the practical developments. This paper systematically reviews up-to-date fuzzy bi-level decisionmaking techniques, including models, approaches, algorithms and systems. It also clusters related technique developments into four main categories: basic fuzzy bi-level decision-making, fuzzy bi-level decision-making with multiple optima, fuzzy random bi-level decision-making, and the applications of bi-level decision-making techniques in different domains. By providing state-of-the-art knowledge, this survey paper will directly support researchers and practitioners in their understanding of developments in theoretical research results and applications in relation to fuzzy bi-level decision-making techniques

    Interval prediction algorithm and optimal scenario making model for wind power producers bidding strategy

    Get PDF
    Nowadays, renewable energies are important sources for supplying electric power demand and a key entity of future energy markets. Therefore, wind power producers (WPPs) in most of the power systems in the world have a key role. On the other hand, the wind speed uncertainty makes WPPs deferent power generators, which in turn causes adequate bidding strategies, that leads to market rules, and the functional abilities of the turbines to penetrate the market. In this paper, a new bidding strategy has been proposed based on optimal scenario making for WPPs in a competitive power market. As known, the WPP generation is uncertain, and different scenarios must be created for wind power production. Therefore, a prediction intervals method has been improved in making scenarios and increase the accuracy of the presence of WPPs in the balancing market. Besides, a new optimization algorithm has been proposed called the grasshopper optimization algorithm to simulate the optimal bidding problem of WPPs. A set of numerical examples, as well as a case-study based on real-world data, allows illustrating and discussing the properties of the proposed method

    Computational intelligence approaches for energy load forecasting in smart energy management grids: state of the art, future challenges, and research directions and Research Directions

    Get PDF
    Energy management systems are designed to monitor, optimize, and control the smart grid energy market. Demand-side management, considered as an essential part of the energy management system, can enable utility market operators to make better management decisions for energy trading between consumers and the operator. In this system, a priori knowledge about the energy load pattern can help reshape the load and cut the energy demand curve, thus allowing a better management and distribution of the energy in smart grid energy systems. Designing a computationally intelligent load forecasting (ILF) system is often a primary goal of energy demand management. This study explores the state of the art of computationally intelligent (i.e., machine learning) methods that are applied in load forecasting in terms of their classification and evaluation for sustainable operation of the overall energy management system. More than 50 research papers related to the subject identified in existing literature are classified into two categories: namely the single and the hybrid computational intelligence (CI)-based load forecasting technique. The advantages and disadvantages of each individual techniques also discussed to encapsulate them into the perspective into the energy management research. The identified methods have been further investigated by a qualitative analysis based on the accuracy of the prediction, which confirms the dominance of hybrid forecasting methods, which are often applied as metaheurstic algorithms considering the different optimization techniques over single model approaches. Based on extensive surveys, the review paper predicts a continuous future expansion of such literature on different CI approaches and their optimizations with both heuristic and metaheuristic methods used for energy load forecasting and their potential utilization in real-time smart energy management grids to address future challenges in energy demand managemen

    Multi-Objective Optimal Dispatching and Operation Control of a Grid Connected Microgrid Considering Power Loss of Conversion Devices

    Get PDF
    This paper proposes a novel daily energy management system for optimization dispatch and operation control of a typical microgrid power system. The multi-objective optimization dispatch problem is formulated to simultaneously minimize the operating cost, pollutant emission level as well as the power loss of conversion devices. While satisfying the system load and technical constraints, ensure high penetration of renewable energy and optimal scheduling of charging/discharging of battery storage system based on a fuzzy logic approach. The weighted sum method is adopted to obtain Pareto optimal solutions, then a fuzzy set theory is employed to find the best compromise solution. Ant lion optimizer method is considered to solve the formulated problem. To prove the efficacy and robustness of the proposed algorithm, a comparison of the performance of ant lion optimizer algorithm with other known heuristic optimization techniques has been investigated. The results obtained show that the proposed algorithm outperforms the other heuristic techniques in solving the multi-objective optimization dispatch problem. They also reveal that a better compromise between the considered contradictory objective functions is achieved when priority is given to the generation of the internal microgrid’s sources with an equivalent contribution rate of 68.45% of generated power from both fuel cell and micro-turbine, whereas the contribution rate of external grid is limited to 11.72%

    Day-Ahead Scheduling for Economic Dispatch of Combined Heat and Power with Uncertain Demand Response

    Get PDF
    This paper presents an energy management method for the interconnected operation of power, heat, Combined Heat and Power (CHP) units to settle the Day-Ahead market in the presence of a demand response program (DRP). A major challenge in this regard is the price uncertainty for DRP participants. First, the definitive model of the problem is introduced from the perspective of the Regional Market Manager (RMM) in order to minimize the total supply cost in the presence of TOU program, which is a type of DRP. Furthermore, a market-oriented tensile model is presented in the form of a combination of over-lapping generations (OLG) and price elasticity (PE) formulations to determine the amount of electricity demand in the TOU program. Then, a price uncertainty model of the proposed problem is introduced according to the IGDT risk aversion and risk-taking strategies considering information gap decision theory (IGDT). The above problem is solved through the use of the co-evolutionary particle swarm optimization (C-PSO) algorithm and the proposed model is implemented on a standard seven-unit system for a period of 24 hours.© 2022 authors. Published by IEEE. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/fi=vertaisarvioitu|en=peerReviewed

    A Review on Artificial Intelligence Applications for Grid-Connected Solar Photovoltaic Systems

    Get PDF
    The use of artificial intelligence (AI) is increasing in various sectors of photovoltaic (PV) systems, due to the increasing computational power, tools and data generation. The currently employed methods for various functions of the solar PV industry related to design, forecasting, control, and maintenance have been found to deliver relatively inaccurate results. Further, the use of AI to perform these tasks achieved a higher degree of accuracy and precision and is now a highly interesting topic. In this context, this paper aims to investigate how AI techniques impact the PV value chain. The investigation consists of mapping the currently available AI technologies, identifying possible future uses of AI, and also quantifying their advantages and disadvantages in regard to the conventional mechanisms

    Optimal Dispatch Strategy of Virtual Power Plant for Day-Ahead Market Framework

    Get PDF
    Renewable energy sources prevail as a clean energy source and their penetration in the power sector is increasing day by day due to the growing concern for climate action. However, the intermittent nature of the renewable energy based-power generation questions the grid security, especially when the utilized source is solar radiation or wind flow. The intermittency of the renewable generation can be met by the integration of distributed energy resources. The virtual power plant (VPP) is a new concept which aggregates the capacities of various distributed energy resources, handles controllable and uncontrollable loads, integrates storage devices and empowers participation as an individual power plant in the electricity market. The VPP as an energy management system (EMS) should optimally dispatch the power to its consumers. This research work is proposed to analyze the optimal scheduling of generation in VPP for the day-ahead market framework using the beetle antenna search (BAS) algorithm under various scenarios. A case study is considered for this analysis in which the constituting energy resources include a photovoltaic solar panel (PV), micro-turbine (MT), wind turbine (WT), fuel cell (FC), battery energy storage system (BESS) and controllable loads. The real-time hourly load curves are considered in this work. Three different scenarios are considered for the optimal dispatch of generation in the VPP to analyze the performance of the proposed technique. The uncertainties of the solar irradiation and the wind speed are modeled using the beta distribution method and Weibull distribution method, respectively. The performance of the proposed method is compared with other evolutionary algorithms such as particle swarm optimization (PSO) and the genetic algorithm (GA). Among these above-mentioned algorithms, the proposed BAS algorithm shows the best scheduling with the minimum operating cost of generation
    corecore