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Electrical power has been the technological foundation of industrial societies for
many years. Although the systems designed to provide and apply electrical energy
have reached a high degree of maturity, unforeseen problems are constantly encoun-
tered, necessitating the design of more efficient and reliable systems based on novel
technologies. The book series Power Systems is aimed at providing detailed, accu-
rate and sound technical information about these new developments in electrical
power engineering. It includes topics on power generation, storage and transmission
as well as electrical machines. The monographs and advanced textbooks in this
series address researchers, lecturers, industrial engineers and senior students in
electrical engineering.
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Preface

Energy systems are in a global evolution phase to face the conflicting challenges of
energy trilemma including the security of supply, affordability, and sustainability
which is now a public demand. Solving the energy trilemma called for a holistic
approach to energy that addresses the interactions and inter-dependencies within the
energy landscape and its connections with other sectors and systems and integrating
social, economic, technical, and environmental issues. All the stakeholders and
active players of this area emphasize not seeing the energy sectors in isolation and
they all believe that the interaction of the energy sectors with each other, including
the electricity, renewables, heat and cool, gas, hydrogen, and transport, is of great
importance to successfully meet the trilemma with the least costs to the customers
and environment.

There are four challenges in the way toward the future whole energy systems
which are indeed driving pillars of this field. They are called “4D Energy Transition”
and refers to Decarbonization, Decentralization, Digitalization, and Democratiza-
tion. The 4D energy challenges call for a modern approach to energy systems
operation.

This book is an attempt to bring together the experts from the different disciplines
related to the energy systems as we strongly believe that there is a wealth of
knowledge available in each discipline that is not widely known in the other
disciplines and could be usefully employed to face with the challenges we are facing
at this time and provide a comprehensive and in-depth reference for the researchers.

Chapter 1, entitled “Energy Systems Decarbonization: Design Optimization of a
Commercial Building MG System Considering High Penetration of Renewable
Energies,” studies the optimum design and energy management of an MG system
considering reliability indices. The authors have used Particle Swarm Optimization
(PSO) to solve the problem with different goals, including maximizing RESs’
penetration, minimizing CO2 emissions, and total cost of the system. The penetration
impacts of renewable energy resources and the yearly load growth are considered.

v



vi Preface

Chapter 2, entitled “Data Analytics Applications in Digital Energy System Oper-
ation,” presents algorithms and tools in the area of data analysis as well as the
application of these tools to solve problems and challenges in modern electric power
systems. This chapter provides basic concepts in data analysis methods, technical
approaches and research opportunities for analyzing energy data, and its application
in digital electric energy systems operation. Data security challenges, data manage-
ment, and visualization are among the other topics covered in this chapter.

Chapter 3, entitled “A New Stable Solar System for Electricity, Cooling, Heating,
and Potable Water Production in Sunny Coastal Areas,” aims to investigate the
possibility of supplying cooling, power, heating, and freshwater in hot weather areas
using solar systems. The optimal system design is provided in this chapter. The
proposed system is composed of several subsystems to generate each product with
high efficiency and reliability. To have continuity in energy supply (during nights),
molten salt energy storage is used to establish the steady operation of the system.
Then, the system is evaluated from thermodynamic and exergoeconomic viewpoints,
and a parametric study is accomplished to study the effect on the system perfor-
mance of key variables. In the end, the system is optimized to determine its best
operating condition for different cases.

Chapter 4, entitled “Investigation of a New Methanol, Hydrogen, and Electricity
Production System Based on Carbon Capture and Utilization,” introduces a new
trigeneration system to decrease atmospheric carbon dioxide emission and produce
methanol, hydrogen, and power. A flue gas stream with a defined composition, solar
energy, and the atmospheric air are the system’s inlets. The organic Rankine cycle
(ORC) is used to convert the flue gas to electric power. The proton exchange
membrane electrolyzer using solar energy is used to generate hydrogen from
water. Then, mass, energy, and exergy balance equations are applied for each
subsystem to investigate the system’s thermodynamic performance. Also, the effect
of changing operating parameters on the performance of each subsystem is studied.

Chapter 5, entitled “Protection and Monitoring of Digital Energy Systems Oper-
ation,” provides an insight into the protection and monitoring needs of advanced
power grids. The key features of the protection systems and definitions of different
protection functions are provided and bottlenecks of microgrids protection are
presented. Fault responses of Inverter-Based Resources (IBRs) are studied in detail.
The challenges of the conventional protection systems in IBR-dominated grids are
studied and different solutions are proposed for such grids.

Chapter 6, entitled “Optimizing Wind Power Participation in Day-Ahead Elec-
tricity Market Using Meta-Heuristic Optimization Algorithms,” discusses the
decision-making process of wind power plants in the electricity markets. The
uncertainty of wind power is considered and a new procedure is presented to
quantify probability density function (PDF) of each uncertainty interval based on
wind power plant’s information. A probabilistic approach is presented for participa-
tion of wind power producers in day-ahead electricity markets.
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Chapter 7, entitled “Robust Energy Management of Virtual Energy Hub Consid-
ering Intelligent Parking Lots for the Plug-In Hybrid Electric Vehicles,” investigates
the modeling and optimal operation of electrical vehicles in the multi-energy virtual
energy hubs. The electrical and thermal energy markets are considered and the
virtual energy hub participates in both markets simultaneously. Different uncer-
tainties such as PHEVs behavior, the output power of renewable energy resources,
energy price, and energy demand are modeled using robust optimization approach.

Chapter 8, entitled “Hybrid Interval-Stochastic Optimal Operation Framework of
a Multi-carrier Microgrid in the Presence of Hybrid Electric and Hydrogen-Based
Vehicles Intelligent Parking Lot,” proposes a decision-making framework for multi-
carrier microgrids under uncertainty. Multi-energy demands such as electrical,
thermal, and cooling are supplied via various technologies besides exchanging
power and natural gas from the respective upstream grids. The uncertain behavior
of hybrid electric and hydrogen-based vehicles and uncertainty of generation of
renewable energy sources (RESs), and different consumptions are considered and
modeled using a hybrid interval/stochastic optimization.

To conclude, we would like to sincerely thank all of the authors who contributed
to this book and also all the reviewers for their insightful observations and helpful
comments.

Also, the editors would like to extend their deep gratitude to the following
reviewers (sorted alphabetically) for their thoughtful comments on all the submitted
book chapters including those that were accepted and published in this book:

Masoud Agabalaye-Rahvar
Ali Ahmadian
Farkhondeh Jabari
Arash Moradzadeh
Sajad Najafi-Ravadanegh
Younes Noorollahi
Ramin Nourollahi
Arman Oshnoei
Omid Sadeghian
Abbas Rabiee

The editors, authors, and reviewers of this book have dedicated their time and
enthusiasm to creating it in the hope that it will be useful to researchers, graduate
students, and practitioners interested in this field.

Nottingham, UK Vahid Vahidinasab
Lappeenranta, Finland Behnam Mohammadi-Ivatloo
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Chapter 1
Energy Systems Decarbonization: Design
Optimization of a Commercial Building MG
System Considering High Penetration
of Renewable Energies

Hamid HassanzadehFard, Vahid Dargahi , and Fatemeh Tooryan

Abstract Due to growing electricity requirements, increasing energy cost, environ-
mental emissions, and lack of access to electricity in many places, commercial
building microgrid (MG) system based on renewable energy sources (RESs) offers
an opportunity to overcome environmental problems and conserve fossil fuels. The
penetration of renewable energy—distributed generations (DGs), especially photo-
voltaic (PV) and wind turbine (WT)—in the hybrid system has been increased.
Energy storage systems (ESSs) are utilized to overcome the intermittent nature
of RESs and reduce dispatchability of generations from fossil fuels. The main
purpose is to determine the optimum design and energy management of an MG
system considering reliability indices. A particle swarm optimization (PSO) is
implemented to solve the problem with different goals, including maximizing
RES’s penetration, minimizing CO2 emissions, and total cost of the system. The
penetration impacts and the yearly load growth are considered. It is observed that
high penetration of RESs reduces CO2 emissions.

Keywords Energy systems decarbonization · Energy optimization · Renewable
energy resources · Loss of power supply probability · Microgrid systems
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1.1 Introduction

Nowadays, growing population, modernization across the world, the rising require-
ments for electrical energy, and limited availability of fossil fuel have led to more
attention toward renewable energy-based distributed generation (DG) units, photo-
voltaics (PVs), and wind turbines (WTs) [1, 2]. Therefore, in the last decade, these
types of DGs have been commonly applied to generate power among all energy
resources. However, because of the intermittent behavior of renewable energy
sources (RESs), flexibility is the main challenge for power system operators to
guarantee the demand and supply balance in power systems. To achieve that balance,
fossil fuels are still utilizing in a system as an important source to compensate the
intermittency of RESs. Energy storage systems (ESSs) have been recognized as
important technologies to overcome the deep decarbonization challenges with RESs
when the employment of fossil fuels is reduced [3]. In addition, utilization of the
ESSs is one of the prominent solutions to increase the RES penetration in isolated
systems while reducing the environmental emissions within the system [4].

Numerous studies previously evaluated the microgrid (MG) system design and
optimization considering different types of DGs. A multi-objective dynamic opti-
mization methodology is proposed in [5] to reduce the operation cost of hybrid RES,
implementation of nonrenewable DG, and environmental emissions. A new meth-
odology is presented in [6] for optimum design of a solar cooling system. Ref. [7]
applies a 24-hour-based economic/environmental scheduling of DGs with RESs in a
grid connected MG. Particle swarm optimization (PSO) methodology is
implemented for optimum scheduling of the MG to reduce the cost of generating
units and environmental emissions. A novel energy optimization approach is pro-
posed in [8] for optimization of the smart MG’s performance by minimizing the
operation cost and environmental emissions. Ref. [9] proposes a hybrid MG which
includes PVs, WTs, ESSs, and diesel generators for supplying the electrical demands
in a remote area located in Egypt. The primary aims of the proposed objective
function are optimizing the cost of electricity, loss of power supply probability
(LPSP), and renewable factor (RF). An integer-programming optimization method-
ology is implemented in [10] to determine different DGs’ optimal sizes in a hybrid
system, while the operational and initial costs of the system are minimized. A new
methodology for optimum design of a hybrid RES is proposed in [11] for the
residential buildings in rural areas, while the cost of energy is minimized, and the
reliability of the system and an RF is maximized. Hybrid gravitational search and
pattern search algorithm is proposed in [12] for optimum energy management and
operation strategy of MG including RESs and electric vehicles. A novel optimization
approach is presented in [13] to optimize the combination of RESs in existing
buildings, while the building upgrade costs are minimized. Ref. [14] implements a
game theory-based modeling technique to identify the optimum design and opera-
tion strategy of the multi-energy system with RESs. Ref. [15] presents an effective
day-ahead resource scheduling framework for an MG, including different types of
DGs, ESSs, and plug-in hybrid electric vehicles (PHEVs) for minimizing the total



operation cost during a 24-hour horizon. In [16], a multi-objective optimization
methodology is utilized for RES optimal planning for minimizing the electricity cost
and to maximize the electrical generation of RESs. An adaptive sparrow search
optimization methodology is implemented in [17] to determine different DGs’
optimum sizes in the hybrid system, while the investment cost is minimized.
A modified seagull optimization approach is presented in [18] to obtain the optimum
size of each DG in a hybrid system for minimizing the power generation cost.
A novel bi-level optimization methodology is proposed in [19] to find the optimum
carbon tax and renewable subsidy for multi-based energy systems.

1 Energy Systems Decarbonization: Design Optimization. . . 3

In addition, the utilization of ESSs in hybrid systems with RESs can significantly
improve the system’s performance. [20] evaluates the various combinations of RESs
and different types of ESSs for an isolated hybrid system. PSO algorithm is
employed for optimal design of the proposed hybrid system. A novel optimization
methodology is presented in [4] for optimization of an islanded MG including RESs
and ESSs. Different meta-heuristic algorithms are implemented in [21] for optimum
design of the hybrid system including RESs and different types of battery technol-
ogies for a village located in India. The proposed system is evaluated at a different
maximum allowable value of LPSP. An economic approach is proposed in [22] to
investigate the cost of investment and operation of a hybrid system with RESs and
hybrid battery/hydrogen storage. A non-dominated sorting genetic algorithm is
implemented in [23] for optimum design of the hybrid system which consists of
RESs and various ESSs including pumped-storage hydropower (PSH) and BESSs to
minimize the investment cost and CO2 emissions. A new efficient method is
presented in [24] to find the optimum size of a hybrid system with RESs and
different types of ESSs including hydrogen and battery storages. Minimizing the
life cycle cost of the system is the primary objective of the mentioned work. In [25],
the optimum design and energy management of an MG are accomplished, consid-
ering RESs and various types of ESSs including electrical/thermal energy storages.
PSO technique is applied to minimize the MG total cost, while all electrical/heating/
cooling demands are satisfied. In [26], a novel approach is developed to obtain the
optimum size of DGs in an MG including PVs, WTs, electrolyzer, hydrogen storage,
and fuel cells (FCs). The main aims of this work are to minimize environmental
emissions and fuel consumption with minimum total system cost.

[27] reviews the energy-saving options and their environmental effect on build-
ings and public lighting systems. Besides the direct energy-saving options such as
utilization of RESs, available indirect options such as applying ESSs and demand
response programs are reviewed. [28] investigates a clustering-based methodology
to simultaneously optimum allocation of shunt capacitor and wind farm in distribu-
tion networks. In [29], the economic effect of utilization of ESSs on the variable
RESs is evaluated. Table 1.1 shows the comparison of the proposed system and
methodology with some related literatures.

In the existing literature, various methodologies have been proposed for optimal
design of the hybrid systems including different types of demands. Considering the
abovementioned works, in the present chapter, the existing gap in knowledge,
namely, an optimum energy management and planning of the hybrid commercial
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building MG system based on RESs considering reliability indexes, is addressed. In
this chapter, the PSO algorithm is employed to determine the optimum size of DGs.
The primary objectives can be described as follows: (i) the fuel consumption
reduction in the proposed system, (ii) the total minimum costs of the applied DGs,
(iii) the environmental emissions reduction, and (v) the system reliability improve-
ment. Therefore, the contribution of the chapter can be summarized as follows:
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Table 1.1 Comparison of the proposed system and methodology with some related literatures

Energy
storage

Fixed
DG unit

Environmental
issues

Reliability
indexes

Load
growth

[2 – –

[7 *

[8 *

[10

[12

[14 *

[16] – *

[18 * –

[20 – * –

[22

[24

[30] – * – * – * –

Proposed
methodology

* *

• Developing a new reliability-based methodology for optimal design of a com-
mercial building MG system including RESs and ESSs

• Decarbonizing MG system by optimal implementing the ESSs and increasing the
penetration of RESs

• Considering the commercial MG system load growth

This chapter is organized as follows. Section 1.2 contains the detailed description
of different types of applied DGs in the commercial MG system, while the problem
formulation is then discussed in Sect. 1.3. The numerical results are discussed in
Sect. 1.4. Finally, the conclusions are presented in Sect. 1.5.

1.2 Description of the Proposed Commercial MG System

The proposed commercial MG system consists of PVs, WTs, FCs, and ESSs, which
are defined firstly to describe the optimization problem.
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1.2.1 PV

Recently, the utilization of PVs has been considered due to their environmental and
economic benefits. These types of RES are one of the main DGs applied in most
hybrid systems [30]. Various models are presented in the literature for evaluation of
the power generated by PVs. The present chapter applies a simplified model to
obtain the PV output electricity as follows [31]:

Pt
PV = ηPV ×NPV ×Pmpv ×

Gt

1000

� �
ð1:1Þ

in which Pt
PV is the power produced by PVs at each hour; Pmpv is the rated power of

each unit under the condition Gt = 1000; NPV is the optimum size of PVs; Gt is the
solar radiation at time period t; and ηPV is the relative efficiency of the PVs.

1.2.2 Wind Turbine

WTs are implemented to generate electrical power from the kinetic energy of the air.
In general, the amount of power generation by the WTs directly depends on the wind
velocity [32]. The generated electricity by WTs can be obtained from Eq. (1.2) [33]:

Pt
WT =NWT ×

0 Vt <V cut- in,Vt >Vcut- off

Prated
WT × Vt -V cut- in

V rated -Vcut- in

h i3
Vcut- in ≤Vt <V rated

Prated
WT V rated ≤Vt ≤V cut- off

8>><
>>: ð1:2Þ

in which Prated
WT is the maximum power of WT; NWT is the optimum size of WT; Vt is

the wind velocity; Vrated is the nominal wind velocity; Vcut - off is the cutout wind
velocity; and Vcut - in is the cut-in wind velocity.

In the proposed commercial MG system, the PVs andWTs are employed as RESs
to satisfy the required demand in the system. It should be mentioned that these types
of RESs’ produce power highly depend on weather conditions. Consequently,
having a backup source ensures the reliability of electric power supply.

1.2.3 Fuel Cell

In the proposed system, the FC is considered as a backup DG to have a reliable
system. In this chapter, the required hydrogen for FCs is generated from natural gas
using high-temperature steam,which is called steammethane reforming (SMR). SMR
is currently one of themost commonly used processes for H2 production [26]. The fuel
consumption of the FCs at each hour can be obtained using Eq. (1.3) [34]:
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FueltFC =Pt
FC ×ψ

Fuel ð1:3Þ

in which FueltFC is the fuel consumption at each hour; Pt
FC is the power generated by

FCs at each hour; and ψFuel is the amount of required fuel to produce 1 kWh energy
by FCs.

1.2.4 Electrical Energy Storage

Nowadays, the penetration of RESs such as PVs and WTs has been increased in the
power systems because these clean energies have low operational costs; hence,
environmental emissions are closed to zero by utilizing these technologies [35]. Fur-
thermore, the produced power of the RESs is not controllable and highly depends on
the weather conditions [22]. ESSs have been known as a key technology to over-
come deep decarbonization challenges with high penetration of RESs while reducing
the utilization of fossil fuels [3]. The surplus produced power of RESs is utilized to
store in battery energy storage system (BESS) in the proposed energy management
strategy for future uses [36]. The BESSs’ stored energy at time period t + 1 can be
expressed as (Eq. 1.4):

Etþ1
BESS =

Et
BESS þ Pt

PV þ Pt
WT -

Pt
load

ηDC=AC

� �
× ηchBESS charging state

Et
BESS -

Pt
load

ηDC=AC
- Pt

PV þ Pt
WT

� �
ηdischBESS

8>><
>>:

9>>=
>>; discharging state

8>>>>>>><
>>>>>>>:

ð1:4Þ

Equation (1.5) guarantees that the BESS charging/discharging states do not
coincide.

StBESS,ch þ StBESS,disch = 1 8t StBESS,ch, S
t
BESS,disch 2 0, 1f g ð1:5Þ

1.2.5 Loads

The proposed MG system consists of commercial demands. Therefore, the total
power generated in the MG system is applied to supply these types of demands. In
addition, when the commercial buildings are constructed, the growth in commercial
demands is considered as an important factor in planning. Consequently, it is



essential to consider the load growth factor at the beginning of the project
[37]. Accordingly, new DGs should be considered to provide the growth of com-
mercial demands. The load curve for different years can be obtained by multiplying
the initial load curve and the load growth factor for commercial demands in the
mentioned year as follows.

1 Energy Systems Decarbonization: Design Optimization. . . 7

Pi
Load =PBase

Load × χ ð1:6Þ

where χ is the load growth factor, Pi
Load is the load curve at ith year, and PBase

Load is the
commercial load curve at the first year.

1.3 Problem Formulation

The total commercial MG system demand is ensured to be fulfilled by the optimal
planning of the system, while the proposed objective function is minimized, and the
applied constraints are satisfied. A PSO algorithm is utilized on the proposed
optimization problem with different goals and various constraints. The developed
objective function and the considered constraints are introduced as follows.

1.3.1 Objective Function

The primary aim of this chapter is to determine the optimum energy management
and planning of hybrid commercial MG system based on RESs considering LPSP
index. The maximization of the penetration of RESs and the minimization of CO2

emissions, fuel consumption, and total cost of the system are considered as the
objectives of the present chapter. However, the net present cost (NPC) methodology
[38–40] is implemented to obtain the total cost of MG system in the project lifetime.
The proposed objective function is as follows:

OF= min
i2 DGs,BESSf g

(X
i

Ni ×C
C
i

� 	þX
i

Ni ×C
R
i ×Φ

i
� 	þ

1
CRFRir

×
X
i

Ni ×C
O&M
i

� 	þ λFuel
CRFRir

×
XTmax

t= 1

FueltFC

" #
þ

λE
CRFRir

×
XTmax

t= 1

Emissiont
" #

þ λENS
CRFRir

×
XTmax

t= 1

Pt
Interrupted

" #)
ð1:7Þ

where



� �8
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CRFRir =
ir × 1þ irð ÞR
1þ irð ÞR - 1

ð1:8Þ

Φi =
XYi

n= 1

1

1þ irð ÞLi�n ð1:9Þ

Yi =

R
Li

- 1 if R is dividable to Li

R
Li

� �
if R is not dividable to Li

>>><
>>>:

ð1:10Þ

in which CC
i , CR

i , and CO&M
i are the capital, replacement, and operation and

maintenance costs of each applied DG, respectively. λFuel,λE, and λENS are the fuel

cost m3Þ



, penalty for environmental emissions kgÞ



, and the penalty for interrupted

loads kWhÞ



, respectively. Li and Ni represent the lifetime and optimum number of

each DG. ir is the interest rate, and R is the project lifetime. FueltFC is the fuel
consumed by FCs at each hour. Pt

Interrupted is the interrupted loads at each hour, and
Emissiont is the amount of CO2 emissions at each hour.

However, each term of the objective function can be provided as follows:

1.3.1.1 The NPC of Each Applied DG

The NPC of each applied DG consists of capital cost, replacement cost, and
operation and maintenance cost and can be determined as follows:

NPCDG =
X
i

Ni ×C
C
i

� 	þX
i

Ni ×C
R
i ×Φ

i
� 	þ 1

CRFRir
×
X
i

Ni ×C
O&M
i

� ð1:11Þ

1.3.1.2 Fuel Cost

The NPC of fuel consumed in the proposed MG can be obtained using Eq. (1.12):

NPCFuel =
λFuel
CRFRir

×
XTmax

t= 1

FueltFC

" #
ð1:12Þ



1 Energy Systems Decarbonization: Design Optimization. . . 9

1.3.1.3 Penalty for CO2 Emission

The NPC of CO2 emission can be calculated as follows:

NPCCO2 =
λE

CRFRir
×

XTmax

t= 1

Emissiont
" #

ð1:13Þ

1.3.1.4 Penalty for Interrupted Loads

If the total power produced by DGs cannot provide the required demand, the
remaining loads are interrupted. The NPC of the interrupted loads can be obtained
by (1.14):

NPCInterrupted =
λENS
CRFRir

×
XTmax

t= 1

Pt
Interrupted

" #
ð1:14Þ

1.3.2 Constraints

The multi-objective function is subjected to the following constraints.

1.3.2.1 Electrical Power Balance

The total power produced by DGs in the MG system should satisfy total commercial
demand:

Pt
PV þ Pt

WT þ Pt
FC ±Et

BESS =Pt
Load -Pt

Interrupted ð1:15Þ

Et
BESS

þ : Discharging mode

- : Charging mode

where Pt
PV and Pt

WT are the power produced by PVs and WTs; Pt
FC is the generated

electricity by FCs; Et
BESS is the energy stored in BESSs; Pt

Load is the commercial
demands of the MG system at time period t; and Pt

Interrupted is the interrupted loads at
time period t.
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1.3.2.2 Operational of Each Type of DG

The power produced by each type of DG should not exceed its rated power as
follows:

0≤Pt
FC ≤Pmax

FC ð1:16Þ
0≤Pt

PV ≤Pmax
PV ð1:17Þ

0≤Pt
WT ≤Pmax

WT ð1:18Þ

where Pmax
FC , Pmax

PV , and Pmax
WT are the maximum power generated by FCs, PVs, and

WTs, respectively.

1.3.2.3 Energy Storage Constraint

The stored energy in BESS should remain between its acceptable limits as follows:

Emin
BESS ≤Et

BESS ≤Emax
BESS ð1:19Þ

where Emax
BESS and Emin

BESS are the maximum and minimum capacity of BESS.

1.3.2.4 Energy System Decarbonization

As mentioned, decarbonization is achieved by increasing the penetration of RESs
such as PVs and WTs and a corresponding reduction in the consumption of fossil
fuels in the proposedMG system. Clearly, the higher penetration level of RESs led to
higher generation by these resources, higher amount of fuel savings, and, thereby,
higher reduction of environmental emissions. The renewable energy portion (REP)
(μre) is defined as follows:

μre =

PTmax

t= 1
Pt
PV þ Pt

WT

� �
PTmax

t= 1
Pt
Total

ð1:20Þ

where Pt
Total is the total power produced in the proposed MG system. The value of

REP should be more than a desired value as follows:

μre ≥ μdesired ð1:21Þ

where μdesired denotes the desired REP.
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1.3.2.5 Reliability Constraint

The reliability of the proposed commercial MG system is evaluated in terms of
LPSP, which is introduced as the long-term average loss of electrical demand
[41, 42]. At LPSP = 0, the load is fully supplied, whereas at LPSP = 1, no amount
of the load is supplied. The LPSP can be calculated as follows:

LPSP=

PTmax

t= 1
LPSt

PTmax

t= 1
Pt
Demand

ð1:22Þ

where the loss of power supply is LPSt at each hour. The reliability constraint is
considered as follows:

LPSP≤LPSPmax ð1:23Þ

where LPSPmax is a predefined desired LPSP value.

1.4 MG Strategy to Supply Electrical Demands

In the understudy MG system, the applied DGs are responsible for satisfying the
electrical demands. The PSO is implemented to find the optimum planning and
operation strategy of the proposed system. The proposed strategy to fulfill the
required demands in the commercial MG system is based on the optimum planning
and operation of the system.

The PSO starts by generating random particles, and it searches for optimum
parameters by updating generations. The sizes obtained by this algorithm must be
checked to provide the required demands in the commercial MG system. However, if
the given sizes and the total power produced by applied DGs cannot provide the
load, with respect to the reliability indexes, the given sizes are rejected, and the PSO
proposes other sizes. It should be mentioned that the proposed objective function is
calculated whenever the total power produced by MG is sufficient to serve the
required demand. The optimum size of each DG is obtained after reaching the
maximum iteration. The obtained optimum sizes realize the economic operation of
the MG under the condition of providing the total demands of the system with
respect to the reliability indexes. In the studied commercial building MG system, the
electricity produced by PVs, WTs, and FCs and energy stored in BESSs are
implemented for satisfying the MG demands, based on the following steps.

First, the electrical power generated by PVs and WTs is employed to fulfill the
required system demand. If the total energy generated by these RESs is more than the
demands, the excess energy is utilized to store in the BESSs. After reaching the



maximum capacity of the BESSs, the remaining surplus energy is considered to be
dumped. When the MG demand is more than the total generated electricity by the
PVs and WTs, the available energy in BESSs is employed at first, and then the FCs
start to produce power to supply the remaining demands. Finally, if the total MG
generated power cannot satisfy the required demands, the remaining loads are
interrupted with respect to the LPSP index.

12 H. HassanzadehFard et al.

1.5 Simulation Results and Discussion

In this chapter, the proposed optimization approach for optimum planning and
operation strategy of the commercial building MG system including different
types of DGs is numerically studied. The schematic of the commercial MG system
under study is presented in Fig. 1.1.

To solve the suggested optimization problem, the PSO technique is implemented
in MATLAB software. Interest rate is considered to be 8%, and the lifetime of the
project is chosen 20 years [25, 26]. In the present chapter, economic data, hourly
wind speed, solar irradiation, and commercial demands during a year are considered
as input data in the simulation process [26, 37, 43–45]. The hourly commercial
demands (p.u.) for 1 day is depicted in Fig. 1.2.

For more visualization, peak demand in different months during a year is illus-
trated in Table 1.2.

It should be mentioned that peak of commercial demand in the MG is considered
1000 kW. The yearly wind velocity and solar radiation are also considered in the
optimization procedure as depicted for 1 day in Figs. 1.3 and 1.4.

Fig. 1.1 Schematic of the proposed commercial MG system



1 Energy Systems Decarbonization: Design Optimization. . . 13

Fig. 1.2 Daily commercial demand

Table 1.2 Peak of commercial demands in different months

No. Month Peak of demand (p.u) No. Month Peak of demand (p.u)

1 January 0.9091 7 July 1.0000

2 February 0.9182 8 August 1.0000

3 March 0.9273 9 September 0.9364

4 April 0.9364 10 October 0.9364

5 May 1.0000 11 November 0.9273

6 June 1.0000 12 December 0.9182

Fig. 1.3 Wind speed variations during a day

To show more details about these data, the wind speed (m/s) and solar radiation
(W/m2) average amount of different seasons are depicted in Table 1.3.

1.5.1 Optimization of the Commercial MG

In the studied MG system, FC is used as a backup DG, to satisfy the required demand
when the electricity produced by RESs cannot meet the total demand. In addition,



BESSs are employed to store the excess power produced by RESs. Utilization of the
BESSs increase the RES penetration in the studied commercial MG system and
reduce the system environmental emissions. Considering the optimization goals
described in the chapter, the optimum sizes of each applied DG are depicted in
Table 1.4. The total power generated by RESs is applied to fulfill the total commer-
cial demand. The annual output power of the WTs and PVs is depicted in Figs. 1.5
and 1.6.
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Fig. 1.4 Solar radiation during a day

Table 1.3 The wind speed
and solar radiation average
amount of different seasons

Wind speed (m/s) Solar radiations (W/m2)

Season Average Maximum Average Maximum

Spring 5.73 12.41 482 1005

Summer 6.31 26.2 604 1015

Fall 8.41 25.95 314 883

Winter 5.33 19.73 290 872

Table 1.4 The optimum sizes
of each applied DG

PVs (kW) WTs (kW) BESSs (kWh) FCs (kW)

524 487 1380 775

Fig. 1.5 The power produced by WTs during a year
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Fig. 1.6 The power produced by PVs during a year

Fig. 1.7 The SOC level of BESSs during a year

If the total power produced by RESs is more than the MG demand, the surplus
energy is utilized to store in BESSs. In addition, if the total demand is more than the
total power generated by RESs, the remaining demands are satisfied by BESSs.
However, the State of Charge (SOC) of the BESSs during a year is shown in Fig. 1.7.

Figure 1.7 demonstrates that the value of SOC varies between 20% and 100%,
which represent the minimum level and a fully charged state, respectively. If the total
power produced by RESs with available energy in BESSs cannot fulfill the demands,
the produced power of FCs is applied to fulfill the required demand. Consequently,
the produced electricity of FCs highly depends on the total power generated by
RESs. Therefore, the produced power of FCs affected by the seasons according to
Fig. 1.8.

From Fig. 1.8, it can be concluded that the percentage amount of FCs produced
energy in summer and fall is lower than other seasons (23.25% and 21.47%,
respectively). The reason is that the produced energy by RESs is higher in the
mentioned seasons (PVs in summer and WTs in fall). In addition, the amount of
CO2 emissions, fuel consumption, interrupted demands, and LPSP is shown in
Table. 1.5.

It should be noted that if the total power generated by RESs, FCs, with stored
energy in BESSs cannot meet the required demand, the remaining demand is



LPSP (%)

interrupted with respect to the reliability indexes (LPSP ≤ 2%). It can be concluded
from Table 1.5 that the amount of interrupted demands is equal to 29.08 MWh, while
the LPSP is equal to 0.732%.
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Fig. 1.8 The FCs produced
energy in different seasons

Table 1.5 The amount of CO2 emissions, fuel consumption, interrupted demands, and LPSP

Fuel
(106-m3)

CO2 emissions
(1000-tons)

Interrupted demands
(MWh)

1.2364 0.9025 29.08 0.732

To evaluate the impact of the RES penetration on the system decarbonization
level, the CO2 emission amount in different seasons is illustrated in Fig. 1.9.

As it shown in Fig. 1.9, the CO2 emission amount in the summer and fall is lower
than other seasons, which are equal to 0.209 (1000 tons) and 0.193 (1000 tons),
respectively. The reason is that the highest RESs power generation occurs in the
mentioned seasons.

It should be emphasized that the achieved results applying PSO satisfy the
commercial demand for all hours during a given period. For more visualization,
the RES- and FC-produced power and available energy in BESSs over a 24-hour
day-ahead horizon are shown in Fig. 1.10.

According to Fig. 1.10, the PVs generate electricity from 8:00 to 18:00. It is
obvious from this figure that the WTs can generate electricity all hours during this
day. One can see that the total output power of WTs and PVs with the available
energy in the BESSs cannot satisfy the required demand in the MG at the time period
between 13:00 and 18:00. Accordingly, the remaining demand is fulfilled by FCs at
the mentioned time period. For better explanation, the SOC level of the BESS during
a day operation is illustrated in Fig. 1.11.

It can be seen that at the times between 20:00 and 24:00, the total power produced
by RESs is more than the total system demand. So the excess power is stored in
BESSs. In addition, the SOC of the BESSs is at its maximum level between 1:00 and
09:00.
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Fig. 1.9 CO2 emission in different seasons

Fig. 1.10 The electricity generation mix over a 24-hour day-ahead horizon

Fig. 1.11 The SOC level of the BESS during a day
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1.5.2 Impact of RES and BESS Utilization on System
Decarbonization

In this section, different scenarios are considered to evaluate the impact of the
utilization of RESs and BESSs on system decarbonization:

1. FC solely: As the first scenario, only the produced power of FCs is applied to
satisfy the demand.

2. RESs, FCs: In this scenario, the RES- and FC-generated power are employed to
fulfill the required demands in the MG.

3. RESs, BESSs, FCs: As the final scenario, the power produced by RESs, FCs, and
available energy in BESSs are applied to satisfy the required commercial
demands in the MG.

To depict the efficiency of the developed methodology, a comparison based upon
fuel consumption and renewable penetration level between different possible solu-
tions is depicted in Table 1.6.

According to Table 1.6, the amount of fuel consumption at the first scenario is the
highest, as it is equal to 2.1177 (106-m3). As a result, employing RESs in the
proposed MG system leads to a significant fuel consumption saving. In the second
scenario, there is about 0.783 (106-m3) reduction in the amount of fuel consumption
when the RESs were applied in the MG. From this table, it can be concluded that
there is a significant reduction (0.88 106-m3) in the amount of fuel consumption
when RESs and BESSs are employed in the MG system in comparison with the first
scenario. It should be emphasized that BESSs would play an important role in
increasing the RESs penetration. Table 1.6 indicates that there is a 5% increase in
the RESs penetration by utilizing BESS in the MG in comparison to the second
scenario.

In this section, the effect of utilization of RESs and BESSs on the system
decarbonization is evaluated. The amount CO2 emission for different scenarios is
shown in Fig. 1.12.

In Fig. 1.12, it is seen that utilizing the RESs in the MG reduces the amount of
CO2 emission from 1.546 (1000-tons) to 0.974 (1000-tons). It can be seen from this
figure that, after utilizing the BESSs, the amount of CO2 emission has fallen 643.5
tons during a year in comparison to the first scenario. Consequently, it can be
observed that by applying RESs and BESSs in the MG and reducing in the fuel
consumption in the MG, the CO2 emissions would be remarkably reduced.

Table 1.6 Impact of RES and BESS on the performance of MG system

No Scenario Renewable penetration Fuel (106-m3)

1 FC 0% 2.1177

2 FC + RES 37% 1.3353

3 FC + RES + BESS 42% 1.2364
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Fig. 1.12 Effect of RESs and BESSs on system decarbonization

Fig. 1.13 The fuel consumption amount for each year in different scenarios

1.5.3 Considering Load Growth in the MG

In this chapter, the load growth coefficient is considered in order to evaluate the
effect of the utilization of RESs and BESSs on system decarbonization during
different years. For this purpose, it is assumed that the total commercial demand in
the MG increased from 1000 kW in the first year to 1700 kW in 10th year, an average
growth rate of 6% [46] per year. In addition, the load growth will be saturated after
10 years. As mentioned before, new DGs should be added in the MG to supply the
growth of commercial demands, while the reliability of the system is satisfied. For
evaluation of the applying RESs and BESSs in the MG system for different years,
the fuel consumption amount for different scenarios is illustrated in Fig. 1.13.
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Fig. 1.14 The amount of CO2 emission at each year for different scenarios

It can be concluded that utilizing the optimum size for RESs and BESSs at each
year reduces the fuel consumption during the years. In addition, the amount of CO2

emission for different scenarios is depicted in Fig. 1.14.
It is clear that utilizing the optimal capacity of RESs and BESSs at each year

reduces the CO2 emission during the years. The results depict that installing the
optimal configuration during different years reduces the total amount of CO2

emission from 46.5 to 26.75 (1000-tons). As a result, applying RESs and BESSs
in the MG system implies a significant reduction of about 19.75 (1000-tons) of CO2

emission (for 20 years), when comparing to the first scenario. It is also worth
mentioning that the optimum utilization of RESs and BESSs in different years
plays a vital role in system decarbonization.

1.6 Conclusion

In this chapter, a novel methodology is proposed for optimum design and energy
management of an islanded hybrid system including PVs, WTs, FCs, and BESSs,
considering reliability index. The system is implemented for supplying electricity to
commercial building MG. The suggested model was solved applying the PSO
methodology and tested on a commercial building MG system to minimize the
CO2 emission, fuel consumption, and total cost of the MG. Due to high volatility
of power produced by RESs, which highly depends on the weather conditions,
BESSs are used in the proposed commercial MG. In this chapter, different scenarios
are considered in order to evaluate the efficiency of the proposed approach. The
results, achieved from simulation of the problem, have shown that utilizing the RESs



and BESSs has a positive effect on the system decarbonization. The results depict
that by utilizing RESs, there is about 37%, and by utilizing BESSs, there is about
42% reduction in the amount of CO2 emission. It can be concluded that applying the
RESs and BESSs in the MG reduces the amount of CO2 emission from 1.546 (1000-
tons) to 0.9025 (1000-tons). It means that the amount of CO2 emission has fallen
643.5 tons during a year in comparison to the first scenario. In addition, the load
growth coefficient is also considered in the simulation process. It is observed from
the results that optimum utilization of the RESSs and BESSs during different years
reduces the total amount of CO2 emission from 46.5 to 26.75 (1000-tons). For future
works, the proposed approach can be developed to evaluate the effect of demand
response programs on the system performance. In addition, the stochastic behavior
of RESs can be considered in the optimization process.
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Chapter 2
Data Analytics Applications in Digital
Energy System Operation

Ali Paeizi, Mohammad Taghi Ameli, and Sasan Azad

Abstract In today’s energy industry, the use of data analytics in modern digital
energy system operation is an important research and innovation area. Data analysis
has a key role in any modern industries and is a significant part of the optimal
modern operation and planning in different industries, especially in smart power
systems. This is a motivation for efficient data monitoring and processing methods to
operate the digital energy system. This chapter aims to present algorithms and tools
in the area of data analysis as well as the application of these tools to solve problems
and challenges in modern electric power systems. In addition, basic concepts in data
analysis methods, technical approaches, and research opportunities for analyzing
energy data and its application in digital electric energy systems operation are
discussed. Moreover, data security challenges, data management, and visualization
with analysis of system input data are introduced.

Keywords Data analytics · Data analytics application in power systems · Data
mining · Machine learning · Digital energy system operation

2.1 Introduction

Nowadays, there is a significant increase in data generation in various power system
resources and applications such as power market analysis, state estimation, stability,
and security assessment. Accurate energy production, load forecasts, and market
prices are essential inputs for a generating or operating company to make better
decisions. Data analysis can make many opportunities to improve the power system.
Extracting effective features from input data is essential to increase efficiency and
optimize power system operation.

Current grid control and monitoring systems are based on Supervisory Control
and Data Acquisition (SCADA) and Automatic Meter Reading (AMR). However,
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advanced measuring systems should be implemented to provide two-way real-time
communication, robustness, reliability, and security for future needs [1]. Phasor
measurement units (PMUs) estimate the phasor and magnitude of current and
voltage at selected locations in the power transmission system. High-precision
synchronization of time via Global Positioning System (GPS) allows to compare
measured values from different substations and shows a higher resolution of data
compared to SCADA. This method helps to immediately identify the state of the
network and dynamic events such as power fluctuations and transient phenomena.
PMU-measured values (voltage, current, frequency, and rate of change of frequency)
with time labels are transmitted for further analysis using the IEEE c37.118
standard [2].
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Advanced metering infrastructure (AMI) will play a key role in the future of smart
grids. AMIs integrate smart meters and data management to communicate between
customers and utilities. Existing large number of smart meters and using a massive
amount of data with different sampling rates is one of the main concerns. Analyzing
the huge data helps increase reliability, demand-side management and demand
response, real-time network awareness, outage management, and electricity theft
detection [3]. Advanced data analysis is performed using mathematical techniques,
data mining, artificial intelligence, and fuzzy theory [4].

The future of power systems should be integrated with AMI to support intelligent
applications. AMI system can collect data every 1–15 minutes, and this wide
intelligent distribution network generates large data volumes [5]. AMIs and PMUs
will work together to ensure reliability and maintain network robustness in intelli-
gent distribution networks. Therefore, measuring and analyzing massive data gen-
erated by the intelligent system is crucial to understand grid features better.
Intelligent electronic devices (IEDs) are microprocessor-based controllers that can
receive data from power devices in the grid and send control commands based on the
data received. IEDs’ common applications are in protection, control, monitoring, and
measurement. Different types of them include circuit breaker controllers, capacitor
bank switches, recloser controllers, and voltage regulators. The IEDs also can
provide current, voltage, frequency, active and reactive power, and harmonics
measurements [6].

Big data provides a vast amount of monitoring data with RTU, PMU, AMI, and
IED that have been potentially collected over days. RTUs transmit telemetry data
and collect system operation status data. Data processing with appropriate accuracy
and speed for power system operation and planning has become a critical need. Grid
operation using big data aims to improve customer service while increasing reliabil-
ity, stability, resilience, and productivity [7].

Data security and privacy are other challenges in protecting the vital infrastruc-
ture of the industry among the growing digital assets and consumers in power
systems. Data security techniques maintain reliability even under attack circum-
stances so that the system’s proper functions can be maintained at a certain accept-
able level. Cyberattacks can cause outages in parts of even the most advanced power
systems for several days [8].
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Fig. 2.1 General data analytic process in this chapter

Creating new models and methods for data mining in future will include demand
response analysis for customers, big data processing from network sensors and
devices, large-scale power market simulation, and predictive maintenance of elec-
trical equipment. Smart grids enable grid controller equipment to reactively reduce
loads during tension, maintain network stability to manage complex distributed
energy resources, and respond to unpredictable challenges to stability [9].

Recently, significant advancements have been made in energy supply and pri-
vacy. These new achievements cover big data mining cryptosystems and data
privacy, maintaining intelligent financial applications and data-driven anomaly
detection [10]. Figure 2.1 shows the general data analytic process in this chapter at
a glance.

The need for efficient, secure, dependable, and sustainable power energy is
increasing at an exponential rate, so it is needed to have more efficient data
monitoring and processing methods to operate the digital energy system to overcome
challenges in data analysis, processing, storage, and security.

In this chapter, an overview of the prospects, principles, and challenges of data
analytics in smart grids is presented. In order to have effective data management, the
motivation of big data technologies and techniques in the energy system is intro-
duced as a solution for smart grid needs such as massive streaming data processing,
storage, and visualization. Data security in smart grids is demonstrated in terms of
privacy, integrity, authentication, and cyber threats as one of the key features of
energy big data. Moreover, future concerns, discussions, and obstacles associated
with big data in future power systems with a comparison of several existing surveys
are highlighted.

This chapter provides the following contributions:

1. A comprehensive overview of the big data characteristics, tools, technical fea-
tures, and architecture from the viewpoints of data generation, acquisition,
storage, and processing
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Table 2.1 Summary of smart grid data and knowledge

Data Knowledge

Power generation
process

Generator parameters (operating voltage, output power)
Connectivity(connected bus numbers)
Operational data
Status data

Distribution process Line data (connectivity, resistance, reactance, conductance, power)
Transformer data (connectivity, conditions of transformer voltage regula-
tion, transformer base MVA, resistance, and reactance)

Consumer process Load data (load type, voltage, active and reactive power)

Intelligence process System monitoring data (event notification, state estimation )
Device control (switch control signal, control signal of smart meter and
control signal of AMI)
Intelligence application (weather and geographical data, planning, pricing,
and market data, electricity consumption, data of users)

Manufacturing
companies

Operating data and data of power equipment

Energy suppliers Real-time power demand and power consumption characteristics

Grid operators Dynamics analysis of power grids at different time scales and equipment
parameters

2. A concentration on the applications of data analysis in the digital operation
3. A review of the future issues and challenges of big data, state-of-the-art data

technologies in IOT, and blockchain
4. An overview of existing challenges, research directions, and literature review
5. A summarization of the cyber-physical models, attack category identification

with a mathematical model, and data security in smart grids from the perspectives
of mechanism.

6. A brief overview of machine learning concepts, techniques, and different
algorithms

Table 2.1 shows the summary of smart grid data and knowledge.

2.2 Existing Challenges and Literature Review

Data analytics applications in digital electric energy system operation include state
estimation, line parameters calculation, identification and location of faults, stability
analysis, model validation, frequency stability monitoring, etc. In [11], some con-
cepts and approaches were reviewed to address general present and future power
system issues and challenges. A generic methodology for developing mathematical
and communication models of smart grid architecture components is described in
[12]. Ref. [13] aims to comprehensively study machine learning techniques and their
applications in IoT-integrated power systems. In [14], big data analytics applications
and their implementation issues with various data science trends are described. In



[15], smart meter data utilization potentials from a user-centric perspective are
reviewed. Ref. [16] presents a review of machine learning techniques in the context
of power systems and focuses on load forecasting, power flows, power quality, and
photovoltaic systems analysis. A novel deep-learning technique incorporating data
augmentation for power systems, short-term voltage stability assessment (STVSA),
is proposed in [17]. Ref. [18] reviews smart meter data analysis and introduces key
applications such as load analysis, forecasting, and management. Research trends are
also discussed in [18], such as big data analysis issues, new machine learning
algorithms, and data privacy and security. In [19], machine learning algorithms are
used for energy prediction in a hybrid energy system with wind, gasoline, and diesel
generators. A predictive approach for identifying vulnerable generating units for
transient stability using a machine learning algorithm is developed in [20]. Ref. [21]
provides a comprehensive literature review for smart grids’ secure data analysis
(SDA). The nature of SDA and its complexity on smart grids is proposed in [21], and
various research challenges such as secure data processing, secure data storage and
collection, load management, and data communications are also discussed.
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In [22], the interactive features of cyber-physics in power systems are discussed,
and different mechanisms of modelling are examined from the perspective of graphs,
probability, and simulation. Major issues related to architectures, key technologies,
and standardization of big data analysis in intelligent power systems are analyzed in
[10]. Ref. [23] comprehensively reviews big data issues in intelligent power systems.
In [24], big data and micro grid challenges are presented. Big data opportunities in
micro grids, such as stability improvement and renewable energy forecasting, are
also presented. In [25], with the aim of scalability and robustness, a distributed data
analysis platform for processing high volume data is proposed. Concerns about the
privacy and security of smart meters are one of the main obstacles for using them. In
[26], cyber-physical power systems in different attack scenarios are studied. In the
following, the main challenges and issues are presented:

• Real-time processing: Huge amount of data with variety is a challenge in data
processing; therefore, an intelligent and real-time operation is required. Design-
ing appropriate architecture and algorithms for analyzing real-time energy
demand as a big data problem is difficult [27]. A real-time monitoring framework
for anomaly detection from smart data in an intelligent power system has been
developed in [28]. Many applications in automation and operation require real-
time data collection, control, and monitoring. For some applications, such as
transient oscillation identification, time scale is in milliseconds. Although the
cloud system is able to provide fast computing services, large data volumes with
complex algorithms and network congestion can lead to delays.

• Reduce redundancy in the database: Data set contains many redundancies that
increase the overhead of the whole system. Data compression reduces the sys-
tem’s total cost [29]. An electricity price forecasting framework, including feature
processing and classification, has been proposed in [30] to reduce the feature
redundancy and data dimension.

• Data security and privacy: There are many online devices and traditional tools for
analyzing big data under security threats. A safety mechanism has been proposed
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in [31], using big data analysis and integrating fuzzy cluster analysis based on
game theory and machine learning. Data encryption and anomaly detection are
possible solutions for data security challenge.

• Data analysis and complex event processing: Big data system architecture can be
presented as a value chain consisting of data generation, acquisition, storage, and
processing. An overview of big data analysis issues for large heterogeneous data
structures in smart grids is presented in [32]. One of the notable future research
issues is integrating big data analysis in the Internet of things (IOT) using
blockchain technology [33]. In [34, 35], general concepts of big data, such as
data production and storage, are described, and in [34], data management and
collection concepts are discussed. In addition, in [36], machine learning tools
have been used for data security. A holistic method for evaluating smart grid
(SG) prediction models is introduced based on big data analysis for energy
consumption in [37]. In [38], data security in big data is examined. An overview
of the latest big data technology in smart grids with challenges and opportunities
is mentioned in [39]. After presenting the telecommunication concepts in SGs, a
comprehensive review of the main architecture issues, key technologies, and
smart grid communication infrastructure requirements are analyzed in [40]. The
role of cloud computing and IOT in smart grids has also been discussed in
[40, 41].

• Parallelization and scalability: Data dimension challenge affects many tradi-
tional analytical methods. Therefore, these methods require revision and
improvement in algorithms that process large dimensions. These methods should
be able to process increasing data dimensions without changing the system
architecture or adding any equipment. Big data analysis includes extracting new
amounts of data that were traditionally discarded as unused data. Dimensional
reduction, parallel computing, and cloud computing are possible solutions for the
data volume challenge [42].

• Integration of Operation and Planning: This ability refers to a program to meet
the future conditions of power systems with high probability and accuracy. In
operational planning, preparation for weather, load, and production conditions
may change in the next minutes, hours, and days [42].

• Data compression: Data compression techniques are essential in a wide-area
monitoring system. Dealing with large data volumes is a challenge that needs to
be addressed [23].

• Data collection and storage of secure data: Collected data may be inaccurate,
incomplete, and unreliable in some cases. Therefore, it should be estimated
securely and accurately. A cyberattack is considered one of the biggest threats
in a smart grid design with respect to network connections. Although many
security solutions are provided for smart grids, most of them are not based on
large data volumes [24].

• Historical data processing: Historical data should be integrated with data col-
lected for operation purposes. Effective processing algorithms and reliable data-
bases are needed for power data collected from various sources in the big data
processing challenge [24].
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Fig. 2.2 Data analytics research challenges in electric energy operation

Figure 2.2 summarizes data analytics research challenges in electric energy
operation, and Table 2.2 shows the general reference background and features in
this chapter.

2.3 Data Processing Tools and Techniques

In the modern world of information technology and smart devices, large data
volumes are generated daily. Our ability to generate data in this century is enormous
because large amounts of data are collected for different purposes, such as better
monitoring and control in different energy fields, including power systems. In order
to take advantage of the data available, we need to develop techniques and tools that
can be used to extract effective features, patterns, or knowledge from massive
streaming data. Significant patterns and features extracted from a large amount of
input data are used for prediction and decision-making, which is the core of data
analysis. Big data analysis aims to develop new algorithms and models to address
specific big data issues.

2.3.1 Preprocessing and Data Quality

Identifying the most important patterns and extracting features of measured data are
important parts of any data analysis method. With recent advances in measuring
technologies, power system operators and researchers now have access to real-time
systems, loads, and user data. Raw data sets usually require preprocessing to extract



32 A. Paeizi et al.

Table 2.2 General reference background and features in this chapter

References Background Features and method Advantages and results year

[35] Big data
storage

A big data architecture
energy scheduling
optimization

Consumers cost reduction 2017

[26] Data analysis
and security

Cluster to survive in cas-
cading failure

Studying the robustness of
the system with scenarios

2020

[38] Renewable
energies

Holistic article about IOT Big data security solutions 2017

[22] Data security Cyber-physical power sys-
tem solutions

The strategy of solving
problems

[41] Energy
management

Energy-saving methods in
networks

Energy reduction solu-
tions (max flow forecast)

2018

[24] Big data
management

Challenges in big data and
micro grids

Opportunities and open
challenges

2019

[23] Data quality
and security

Big data technology in
smart grid issues

Application, techniques,
and opportunities

2017

[21] Big data
analysis

A comprehensive review of
secure data analysis

A case study
Research challenges

2020

[33] Blockchain Blockchain in IOT secure
environment

Principles, characteristics,
and challenges

2018

[36] Machine
learning

Deep learning method in
FDI attack

Using optimization model 2017

[40] Big data
communication

Architecture and
technologies

Potentials and research
issues

2019

[42] Big data
storage

Energy big data analytics Potentials and problems
in energy data analytics

2018

[16] Machine
learning

Comprehensive review on
machine learning

Techniques and applica-
tion in power systems

2021

[14] Big data
analysis

Big data frameworks in
power systems

Challenges and strategies 2020

[27] Big data
analysis

Big data applications in
smart grids

Potentials and techniques 2019

[18] Data security
and analysis

Smart meter data analytics Methodologies and data
privacy review

2018

[63] Data security BRNN-LSTM Forecasting cyberattack
rates

2019

[62] Cybersecurity Discrete and continuous
ML models

Literature review on attack
prediction methods

2018

[64] Cybersecurity Hidden Markov model Studying systems under
network attacks

2020

[67] Cybersecurity Attacker behavior forecast-
ing
with HMM and fuzzy
inference

Techniques for forecasting
behavior of attacks

2020



experimental patterns and features for prediction applications. Combining unrelated
or additional features as input for machine learning methods is not helpful and may
decrease model performance. Thus, feature selection aims to identify the most useful
features of measured data. The general process of data analysis for machine learning
(ML) input is feature engineering in data mining. Feature engineering consists of
feature extraction and feature selection. Probabilistic analysis and data cleaning are
possible solutions for data quality challenge.
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Analysis of PMU data is related to low-rank matrix analysis, and the problem of
recovering lost PMU data is formulated as a special case of the general low-rank
matrix problem, which aims to recover a low-rank matrix from partial observations.
Then, completion methods can be used to recover lost data. Bad data may result from
device malfunctions, communication errors, and cyberattacks. Bad data detection
methods require system topology and impedance. However, without any system
topology information, bad data can now be located and corrected using measure-
ments and the low-rank feature [43]. Principal component analysis (PCA) is useful
for reducing the dimensionality of large datasets by mapping data from the original
space to a lower-dimensional subspace. Thus, the size of the data is to be
reduced [44].

2.3.2 Machine Learning Techniques

Machine learning (ML) aims to study methods to extract knowledge from data.
Using this perspective, traditional signal processing and statistical methods can be
considered a subset of this technology field. Artificial neural networks (ANNs) are
one of the algorithms in the field of machine learning. ANNs can be considered as
parallel signal processors which include neurons, which are a simple processing unit.
These units obtain information of a specific issue through integration with a learning
algorithm. This knowledge is stored in synaptic weights that connect different
neurons. Artificial intelligence (AI) includes the theory, methodology, and tech-
niques used to simulate and expand human intelligence. The extreme objective of AI
is to empower computers to think and act like humans and increase human intelli-
gence. AI is particularly great at predicting, sorting data, and finding patterns. ML is
a system that focuses on finding data patterns and using them for prediction. By
using ML to analyze data and computer predictions, operators can make better
decisions. Thus, the nature of ML is to find an objective function f that maps an
input variable X and an output variable Y, i.e., Y= f (X). ML’s goal is to find the best
map for more accurate predictions and outputs. ML can be classified into three
categories based on the differences between the input samples. In supervised learn-
ing, sample (i) with an input label (xi) and a corresponding output label (yi) can be
described. In unsupervised learning, there is no output label, and sample i only has
input label xi. The learner’s objective is to classify all the samples in the sample
space using clustering methods. Semi-supervised learning has partial features and
labels. Unlabeled data are used along with labeled data that includes classification,
regression, and clustering methods [45].
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In reinforcement learning (RL), the learner performs a particular action in an
environment that aims to maximize the cumulative reward via a trial‐and‐error
mechanism. RL emphasizes actions based on the expected maximum reward
mode, as shown in Fig. 2.3a. RL consists of four main elements: decision process
(Markov decision process), a value function, value iteration, and policy interaction.
Figure 2.3a shows the RL process that an agent factor chooses an action based on the
policy in state (st). The environment recognizes the action and changes to the
following state (st + 1), and then the agent receives reward rt from the environment
and selects the next action.

Despite traditional ML, transfer learning (TL) aims to reuse historical topics to
extract high-quality samples for guiding training data optimization tasks. TL, there-
fore, includes knowledge transfer between different domains, tasks, and distribu-
tions. TL can present fast solutions for optimization problems in a large-scale power
system [45].

Deep learning (DL) has many capabilities and advantages in extracting features.
Therefore, it is appropriate to use DL for problems with large data volumes and is
widely used in various research fields. DL is a neural network with multi-hidden
layers that can be considered a particular sort of ML. Deep learning algorithms are
represented by sequential layer structures. The purpose of the architecture is to learn
the complex knowledge of data by hierarchically passing through numerous layers.
Each layer uses a nonlinear transform to its input and selects features automatically
on its output. Input data are received in the first layer, and the output of each layer is
sequentially delivered as input to the following layer in this architecture. This helps
extract various features from raw input data. The main advantage is extracting
features automatically from complex and massive data. Figure 2.3 shows RL and
RNN and TL concepts, respectively [45].
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Key applications of machine learning methods in power systems are described as
follows:

• Analysis: The ability to analyze and process the collected data is the main
function of a power grid operation. Different data analysis methods and machine
learning are used to process data [46].

• Prediction: With more uncertainty of possible outcomes, we should understand
what could happen in the future. Prediction ability strongly depends on the
development of data analysis and machine learning techniques and our under-
standing of the physical models and underlying mechanisms of power
systems [46].

• Control: Compared to the control requirements in a traditional power grid, control
in a modern power system should be based on a combination of monitoring,
analysis, and prediction capabilities so that the short-term and long-term conse-
quences of control decisions can be fully considered [46]. Figure 2.4 shows a
classification of ML algorithms.

2.4 Big Data Analysis and Security

Big data has emerged as a novel technology hub in industry and engineering fields.
Big data analysis is a collection of methods and technologies for obtaining, storing,
and processing heterogeneous data while processing in parallel. However, designing
and developing a large data framework ecosystem for a particular application is a
challenging task. Many industries are considering smart grid solutions as long-term
planning to improve power supply reliability and grid stability, combining distrib-
uted generation resources, developing storage solutions, and enabling customers to
share control energy consumption. To do this, smart meter systems can be used in the



first stage, leading to the inclusion of other challenges. Smart meters can lead to
millions of readings per minute, making a huge amount of data annually. They can
be analyzed and exchanged between customers and utilities to provide real-time
control and reaction through dynamic demand response (DDR). As a result, cus-
tomers generate less power in addition to economic benefits. This big data problem
requires modern IT technology and Internet infrastructure techniques to deal with
and analyze these massive amounts of data.
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2.4.1 Big Data Characteristics

There have been debates about the meaning of big data; however, the most frequent
term is “Vs,” which includes several big data properties beginning with the letter
“V.” In this chapter, the definition of “4Vs” (volume, variety, velocity, and veracity)
is considered, which are discussed next [42]:

• Volume: The term “big data” refers to a large amount of data created by devices
and sensors. Therefore, the amount of data that needs to be analyzed is very large.

• Variety: A term that refers to different data sources and formats (structured, semi-
structured, and unstructured). Data can be presented in the form of images,
videos, diagrams, sensor measurements, etc. The storage, extraction, and analysis
of data in different formats can be challenging.

• Velocity: The rate at which data arrives is known as data velocity. It also includes
the time it takes to analyze and comprehend the data collected in order to make
decisions.

• Veracity: It indicates the correctness or quality of data. Tools that enhance the
veracity of big data eliminate noise and anomalies in the data and transform it into
reliable data.

Figure 2.5 shows the concepts of big data, machine learning, data analysis,
mathematical algorithms, and software tools and compares the concepts of volume,
variety, velocity, and veracity.

Figure 2.7 shows the hierarchical structure of the main components of the smart
grid big data frameworks. This framework includes software tools that can be used to
implement the big data platform, from data generation to data analytics. In this
section, concepts, software tools, and architectural components are introduced.

2.4.2 Data Generation and Acquisition

Smart meters generate streaming data that may belong to power plants and wind
farms, as well as residential buildings and factories. Furthermore, environmental
events such as weather conditions at stations can be beneficial for predicting power
generated by a specific wind farm. Considering information from various sources,



including electric vehicles (EVs), residential homes, industrial plants, and various
power plants, increases power system reliability. To address specific requirements
such as cost-effectiveness and improved accessibility and scalability, cloud comput-
ing can be employed as an infrastructure layer for big data systems [42].
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Data collection, transmission, and preprocessing are the three sub-tasks of data
acquisition for a smart grid system. Collected data is transferred to the main node in
the cluster, and depending on the variety of data sources, the collected data may take
many formats. In the data preprocessing stage, incomplete and incorrect data is
corrected or deleted to improve data quality. There are numerous data analysis tools
available, including Tableau that is used for big data visualization and Mahout and
Samoa for massive data mining. Flume is an Apache distributed system software tool
that effectively collects, integrates, and transfers massive volumes of data from
various resources to a centralized store. It can be utilized in Hadoop Distributed
File System (HDFS) to capture enormous amounts of sensor data as streaming data
in HDFS [47].

2.4.3 Data Storage

Hadoop is a software platform that allows massive amounts of data to be stored and
processed. Distributed processing, rather than relying on dedicated and expensive
hardware to store and analyze data, allows vast amounts of data to be processed on
server clusters (nodes). The Hadoop kernel is divided into two parts: a storage
component known as HDFS and a processing component known as map-reduce.
Hadoop is an important part of any big data architecture. In the HDFS ecosystem,
master nodes retrieve data from slave nodes when requested. The master node is



responsible for locating the data. A master (Job Tracker) and a slave (Task Tracker)
per cluster node create the map-reduce processing component. The master node is in
charge of scheduling slave tasks, controlling them, and re-executing failed ones.
Apache yarn is a Hadoop resource manager that enables other processing frame-
works’ applications to run on a distributed Hadoop cluster. Yarn’s main idea is to
split up Job Tracker/Task Trackers tasks into separate entities. The yarn consists of a
global resource manager and slave node manager to manage distributed applications.
Big data architectures have relied on Hadoop for a long time. Hadoop’s following
features make it ideal for managing and analyzing smart grid data [47]:
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• Scalability: Hadoop makes it possible to scale the hardware infrastructure without
changing data formats. Storage systems and additional nodes can be added to an
existing cluster without compromising the existing node’s functionality when
new neighborhoods are added to the grid.

• Efficient computing: Parallel computing with growing data volume makes smart
grids cost-effective. This allows utilities and customers to share data, allowing
DDRs to monitor and make decisions in real time. On smart grid stream data, it
also provides a low-latency prediction.

• Flexibility: Hadoop is designed without any schema and is capable of capturing
different types of data from multiple sources. Hence, many challenges of data in
smart grids may be handled.

• Fault tolerance: To address missing data and computational failures, which occur
frequently in smart grids, Hadoop has the capacity to restore data failures or
network congestion by distributing computational work and storing information
in many nodes.

It is important to have a scalable data storage system, such as Distributed File
System (DFS), which enables clients to share and store files. It also allows clients to
have a replica of the big data that has been stored. One of these frameworks is HDFS.
A second option for a data storage solution is a NoSQL database with column-
oriented solutions (HBase and Cassandra), key-value solutions (Voldemort and
Dynamo), and document databases solutions (CouchDB and MongoDB). They
can all be used for NoSQL databases to overcome the constraints of typical data-
bases. The authentication process confirms the user’s identity and ensures that the
user has legal access to the data server, which is a fundamental requirement to assure
the reliability of data sources. For a traditional database with static data storage, users
send queries, and the system returns the results after searching the database. For real-
time processing of large amounts of data, the traditional approach cannot meet the
need for a massive amount of streaming data. Visualization of Geographic Informa-
tion System (GIS) is widely used in electrical power systems, which plays a vital role
in improving the performance of the power grids [50].

Hive and Impala are high-level software tools for reading and writing data in
distributed storage, as well as query massive data management. Hive uses a
SQL-like interface to express massive data analytic tasks in Map-Reduce operations.
Impala, on the other hand, is a dynamic SQL search tool that runs in real time. Impala
does not have to convert a SQL query into a different processing framework, such as



Hive’s Map-Reduce operation. An SQL query is executed in the memory of every
node in the cluster, providing real-time results [47].
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Apache Zeppelin is an interactive data visualization and analysis web interface.
HBase and Hadoop clusters can be managed with a distributed configuration service
named Apache Zookeeper. Apache Sqoop (SQL to Hadoop) is a software tool for
transferring structured data to Hadoop. Smart meter data can be integrated with big
data processing using Apache Sqoop. In [49], a system model with features is
presented using open-source frameworks and tools such as Apache Hadoop and a
distributed database HBase. The aim is to develop an active event detection model
using the statistical analysis method in stored data sets. In addition, an efficient event
detection algorithm using map-reduce and Hadoop frameworks with PMU data is
also proposed.

2.4.4 Data Processing

Map-reduce is a distributed programming approach that allows a cluster to process
massive volumes of data in parallel. It has turned into an important software
technology in supporting data-intensive applications due to its remarkable features,
such as fault tolerance and scalability. Map-reduce is a highly scalable model that
can be used to run parallel and distributed computing on thousands of computers. As
depicted in Fig. 2.6, computational tasks are divided into map and reduce steps in the
map-reduce model. Computations are separated into multiple tasks throughout the
mapping process. To run on cluster nodes or virtual machines concurrently, every
map task processes an input data block and transforms it into an intermediate result
in the form of a key/value pair, which is then saved in local storage. Each reduced
task collects the intermediate result and combines the values corresponding to a
separate key to generate the result in the reduction step. Job Tracker is a service that
runs on the Name Node that divides user jobs into numerous tasks. Task Tracker
runs on Data Nodes, receives maps, decreases tasks from Job Trackers, and com-
municates with Job Tracker on a frequent basis to report progress and complete new
tasks [51]. Figure 2.6 shows the map-reduce model architecture.

Mahout is a data-mining software that provides batch machine learning
processing and can be used in machine learning applications that are extensible
and highly functional. Samoa is a distributed streaming machine learning framework
that is used for common data mining and machine learning tasks. Tableau is a data
visualization tool with dashboards used for analysis and visualization. Another open-
source software tool for processing is Spark, which has the same processing benefits
as before. In addition, it can store intermediate results instead of writing in HDFS.
Therefore, Spark can be more suitable for data mining and machine learning
applications, and Spark is often used as a complement to Hadoop [47].

Apache Spark includes a Spark streaming module for managing data in memory,
which speeds up data processing significantly compared to Hadoop, which relies on
drives. MLib is a library that contains machine learning algorithms such as



regression and clustering, while GraphX is a visualization software tool. In order to
deal with big data statistical and post-event analysis, Apache Spark is used. Spark is
built to run 100 times faster because of its capabilities for in-memory processing.
SQL queries, streaming data, and advanced analyses such as graph algorithms and
machine learning are also supported [25].
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Fig. 2.6 Map-reduce model architecture

Apache Flink can be used for both real-time and batch data processing. Flink is a
scalable, fault-tolerant, and rapid messaging system. Because of its FlinkML
machine learning library, Flink is utilized for machine learning applications. Apache
Storm is a software tool that allows analyzing enormous volumes of data in real time.
Apache Storm is a fault-tolerant, parallel processing system that is open source and
simple to implement. Apache Kafka is a fault-tolerant software tool that can keep
data even if it encounters an error. For data integration, Kafka and Storm can be
simply combined [24]. Figure 2.7 shows a big data framework’s main components.

A blockchain technology is a chain of interconnected blocks that contains data.
The key aspect of blockchain technology is that it keeps track of all changes in each
new block, making all blocks immutable. This makes it a secure method for trans-
actions like money transfers and property contracts. A Genesis Block is the first
block in every blockchain, and it acts as a header for connecting additional blocks
appropriately. A hash is used to uniquely identify each block and its contents. In the
event of a malicious attack, modifying block information will also change its hash,
while the next adjacent block’s hash will remain unchanged. This makes all subse-
quent blocks in the chain invalidated [48]. Game theory is a mathematical tool that
can analyze user behavior in various fields. It is suitable to be widely used in the
analysis of big data. Game theory can be used in optimization problems and security
awareness data analysis [23].

Unusual data patterns or missing data values generated by event failures during
data collection, data entry, or communication are considered as anomalies examples.
To diagnose an anomaly, time-series-based, time-window-based, and low-rank
matrix approaches are used [21]. The transient behavior of a large power system
can be represented by equations as follows [52]:
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where x(t) denotes power state variables, u(t) represents system input parameters, h(t)

denotes algebraic variables such as the magnitude of the bus voltage, and w indicates
the parameters of the system with constant time. The sample time is t, the number of
system variables is m, and bus numbers are represented by p. The linearization of
nonlinear equations is the focus of model-based state indicators in (2.1) and (2.2),
which indicates (2.3).
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where fx and fu are the Jacobian matrices of f with respect to x and u and =fx - fugu
-

1gx . In (2.3), E represents a diagonal matrix with diagonal entries equal to tcor
-1, and

tcor denotes the load fluctuation correction time. The diagonal entries of a diagonal
matrix C are of the respective active (P) or reactive (Q) nominal load values, and ξ is
considered to be a vector of independent Gaussian random variables. Estimating the
state of the system by solving Eq. (2.3) becomes increasingly challenging, and the
assumption that ξ follows a Gaussian distribution would limit the practical applica-
tion. For practical usage, it is necessary to convert large high-dimensional PMU data
streams into tiny PMU data segments. To represent the acquired voltage magnitude
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data, a sequence of random matrices (2.4) is generated based on individual window
truncated PMU data analysis without knowledge of the power network parameters or
topology [52].
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Z11, Z12, . . . , Z1q, . . . ,Zn1, Zn2, . . . , Znq ð2:4Þ

2.5 Data Security in Smart Grids

By utilizing large-scale sensor metering systems and more sophisticated information
communication networks, power grids can improve their operations on a constant
basis to maintain a safe, stable, and reliable power supply. Modern power grids are
not the same as energy infrastructure networks in the traditional sense, thanks to the
continual growth of power systems. Instead, they have evolved into complex and
heterogeneous multidimensional physical power systems (CPPS) and interactions
with cyber networks. Physical cyber interactions can lead to unpredictable inter-
system failures. Therefore, cyber system failure can spread to physical systems and
inversely, resulting in cascade failures. Determining the dynamic behavior of CPPS
in a systematic and accurate manner is essential to increase the overall system’s
controllability and stability. The most likely consequences of cyberattacks on smart
grids could be operational failures, synchronization failures, power outages, finan-
cial losses, data theft, and complete blackouts [22]. The SSH protocol version 2 has
been presented in order to construct a smart grid architecture in a safe cluster. This
encryption network option enables network systems to communicate securely over
an insecure network. In the server-user method, SSH ensures a safe encrypted
connection that connects a client to a server. For secure network connections, SSH
also enables authentication, encryption, and data integration. It provides a robust
connection and explains how one node can be safely connected to another node in a
distributed cluster [22].

A common strong public key authentication mechanism is used to authenticate
cluster nodes in SSH; therefore, a public key and a private key are created to
accomplish this. A public key is distributed to all cluster nodes that need authenti-
cation. The private key is used to decrypt all data encrypted with the public key. As a
result, each cluster node has a file containing a full list of the other node’s keys. Since
authentication is dependent on a private key, the key is not sent over the network
throughout the authentication process. Cyberattack threats are described in the
following.

Under a customer profiling attack, smart meter data provides personal informa-
tion of users that can be utilized to detect whether or not a customer is at home. It
would be harmful if thieves utilize such information. IP spoofing is an attack that can
be used to redirect information from a smart network to an enemy computer for more
assessment. It also can make the communication nodes of the smart grid appear
unreliable and nonresponsive, which reduces its associated trust value.
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Man-in-the-middle attack can monitor or change data between two smart grid
connection nodes covertly, and denial-of-service attacks can prevent providing smart
grid services. A system hijacking attack can get an unauthorized remote connection
to a smart grid node. In a data-driven system such as the smart grid, injecting
incorrect data can have devastating effects, which is the motivation behind the
false data injection attack (FDIA). The purpose of such attacks is to change the
original data. Time synchronization attack (TSA) contains the delay of time syn-
chronization pulses being sent from one node to another in a network [10].

When it comes to information transfer, there are three types of CPPS structures:
component layer, communication layer, and function layer. As indicated in Fig. 2.8,
the above levels are abstracted into layer1, layer 2, and layer 3. Primary equipment
includes a generator, transformer, transmission line, and circuit breaker, while
secondary equipment includes protection relay, sensor, actuator, etc. Electric devices
that all are integrated in a specified architecture make up layer 1. The information
gathered in layer 1 would be sent to the control center in layer 2 via the communi-
cation network. In CPPSs, communication design has generally played a critical role
in ensuring coordination of power grid elements. In the end, the control center in
layer 3 would store and process all operational data. Layer 3 is capable of performing
a variety of advanced functions as well as operational decision-making. The orga-
nization of cyber-physical power systems is shown in Fig. 2.8 [22].

To study the grid behavior under attacks, common attack models in power
systems can be described in [22]. When a time synchronization attack (TSA) occurs,
transmission line fault location can be described in (2.5).

ΔD=
1

2γL

� �
ln

Aþ Bð Þ C þ DejΔθ
� 	

C þ Dð Þ Aþ BejΔθð Þ
� �

ð2:5Þ

where A, B, C, andD are formulas formed by voltage and current at the receiving and
transmitting ends and ΔD is line fault location error related to TSA. Δθ denotes the
phase angle difference between the transmitting and receiving ends, L is the power

Layer 1

Layer 2

Layer 3

Generation Transmission Transformation Distribution Consumption

AGC and 

Governor

VAR 

compensation

Substation 

automation

Feeder 

automation

AMI and 

market

Communication

Fig. 2.8 Structure of cyber-physical power systems
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transmission length, and γ is the attenuation constant [22]. Voltage stability moni-
toring under TSA can be represented in (2.6) and (2.7).
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When it comes to load impedance and the active power delivered to the load, IZ
and IP are voltage stability margins. TSA may impact on Zth, ZL, and Eth, which are
complex impedances and voltages of the T-equivalent of the transmission line. Event
location under TSA can be represented in (2.8).

xi - xeð Þ2 þ yi - yeð Þ2 -Ve
2 ti - teð Þ2 = 0 ð2:8Þ

The coordinates of the i-th PMU and the disturbance event are (xi, yi) and (xe, ye),
respectively, and Ve is event propagation speed; ti is the disturbance arrival time of
the i-th PMU, and te is initial transmission time of the signal [22]. AMI under FDI
attack can be described in (2.9).

VSI=VS
4 - 4 PrX-QrRð Þ2 - 4 PrR-QrXð ÞVS

2 ð2:9Þ

where VS is voltage magnitude at the transmitting end and Pr and Qr are total
injection real and reactive powers at node r, respectively. R and X represent resis-
tance and reactance, respectively, and VSI stands for voltage stability index
[22]. AGC under FDI attack can be represented in (2.10).

ACE= Ptie-Pschð Þ þ β f- 60ð Þ ð2:10Þ

where ACE is area control error; f is system frequency; Ptie is tie-line power flow that
may be generated by the attack; Psch is scheduled tie-line power exchange; and βi is
frequency bias [22]. Real-time pricing under FDI attack can be described in (2.11,
2.12, and 2.13).
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where λ1 and λ2 represent renewable energy prices and traditional power sources,
respectively. For demand-user i, wi1 and wi2 are corresponding preference factors
that may be compromised; M and N are number of supply-users and demand-users.
m, n, aj, and bj are coefficients of cost function [22]. AC state estimation under FDI
attack can be represented in (2.14).

rk k= z1
z2

� �
-

h1 x1ð Þ
h2 x2ð Þ

� ���� ��� ð2:14Þ

where krk denotes AC state estimates residuals; z2 is measurement, and h2(x2) is a
state variable that is maliciously changed, while z1 and h1(x1) keep intact [22]. Topol-
ogy attack in the smart grid can be described in (2.15).

s= sþ b ð2:15Þ

In (2.15), s 2 {0, 1} is correlated with system topology, b 2 {0, 1} represents the
modifications, and s is modified network data.

2.5.1 Forecasting Techniques in Data Security

Discrete approaches such as graphs, Markov models, game theory, and Bayesian
networks are introduced to address forecasting techniques in cybersecurity. Contin-
uous models, such as gray models and time series, are also studied. Other techniques
for cybersecurity prediction, which have recently gained interest, are machine
learning and data mining. Many new data mining and machine learning-based
approaches have evolved, drastically changing the status of cybersecurity prediction
studies. Despite the different solutions that have been provided, there seems to be no
clear approach for predicting cyberattacks efficiently and accurately [62].

For predicting cyberattack rates, bidirectional recurrent neural networks with long
short-term memory (BRNN-LSTM) are suggested in [63]. Long-range dependence
and high nonlinearity are good instances of complex data set issues that the frame-
work could be able to handle.

Hidden Markov mechanisms have been frequently used in the context of a
multilevel network attack, but determining the appropriate parameters for training
remains a challenge. Algorithms such as expectation-maximization, spectral, and
K-means are investigated in [64].

The impact of a type of false data injection attack on wind power forecasting is
investigated in [65]. It seems to be possible that malicious data might be inserted into
historical data before being detected. In [66], prediction errors of different load



forecasting models such as support vector regression (SVR), multiple linear regres-
sion, artificial neural networks (ANN), and fuzzy interaction regression are com-
pared. The goal of [67] is to evaluate existing methods for forecasting attacker
behavior and attacker profile needs. It focuses on issues including attacker profile
and attribution, as well as how their prediction attack affects. In [67], attack graph-
based methods, Hidden Markov (HMM), fuzzy inference, and advanced processing
methodologies are all examined as strategies for forecasting attacker behavior. The
method includes the following steps:
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• Creating primary data sources
• Extracting attributes from the events database
• Categorizing metrics for a profile of attackers
• Evaluating links between data sources and attacker behavior and predicting topic

metrics to train algorithms for attacker behavior prediction

2.6 Applications of Data Analysis in the Digital Operation

Applications of data analysis in power systems include support for online analysis,
improving stability and reliability, accurate state estimation, event detection, load
forecasting, etc. These applications can be described as follows:

• Power outage management: Power outages may be due to short circuits, station
failures, and distribution line failures. Outage management is considered as one of
the highest priorities of smart meter data analysis after billing. This system
includes outage awareness and outage localization [18].

• Eliminating technical and non-technical electrical loss: Technical loss and
detecting non-technical losses due to theft is one of the main concerns of power
systems [53]. Smart meter data and power system data with machine learning
methods can be used to detect electrical energy theft [54].

• Increasing power system stability and reliability: Stability and reliability are top
priorities in power systems, which can address several issues such as event
detection, voltage stability, and post-event analysis. Big data methods help
improve reliability, stability, and power grid safety using computational analysis
provided by real-time data mining [55].

• Short-term load forecasting: Load forecasting can be performed using machine
learning methods based on intelligent data measurements, historical load data,
and environmental data such as temperature and humidity. Load forecasting data
related to consumers can be used to improve urban planning, reduce operating
costs, increase quality, and decrease power losses [54].

• Voltage stability analysis: Voltage stability is the power system’s ability to
maintain the voltage of each bus in an acceptable range at any time, even after
a fault. Voltage instability, on the other hand, occurs when a system fails due to
increased demand or unexpected events. It results in a voltage decrease in the
power grid that leads to an outage.
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• Massive streaming PMU data make it possible to monitor dynamic behavior and
stability characteristics of power systems. It provides the possibility of analyzing
online voltage stability before reaching the point of voltage breakdown or
blackout [55].

• State estimation: State estimation module receives various measurements (volt-
age, current, and power of phases) from grid substations and calculates the power
system state using nonlinear estimations. Processing synchro-phasor measure-
ments of buses is a powerful tool for performing state estimation using real-time
measurement [55]. State estimation is used for applications such as operational
resource planning, real-time system monitoring, and control.

• Power system observability and advanced visualization: Visualization tools
combined with machine learning and big data analysis methods help operators
make better decisions. Observability is possible when state variables are deter-
mined; therefore, when it is impossible to estimate the state of the grid, the power
grid will not be observable.

• Customer satisfaction: With significant advances in smart meters installation,
better fraud detection, power outage detection, smart real-time pricing schemes,
and demand response, customer satisfaction is possible.

• Line parameter calculation: Accurate transmission line impedance parameters
help improve the accuracy of relay settings and fault detection and location.
These accurate parameters improve the rapid repair of systems. They also help
improve transmission line modelling for system simulations, such as state esti-
mation calculations. Measurements should be determined according to different
loading conditions and ambient temperature to consider impedance changes,
especially resistance to temperature [55].

• Post-event analysis: Post-event analysis is necessary to find the cause of events
and helps us prevent these events again by taking corrective actions. Wide-area
measurements are also among the necessities of post-event analysis. The data are
crucial for reconstructing the sequence of events, leading to blackouts and
shortening the analysis time. These analyses can help understand the cause of
events and refine response strategies [55].

• Frequency stability monitoring: The essential indicator that may reflect the
balance of system generation and load is frequency deviation, which also can
illustrate system stability and equipment safety. PMUs measure the grid’s fre-
quency, which is the main indicator of the balance between generation and load in
the power system [55].

• DG integration: Improving distributed generation integration in the power
grid [56].

• Analysis of power quality: Data flow at high sample rates of electrical signals can
be supported by big data. Therefore, it improves the power quality analysis [57].

• Model validation: New data-driven methods can be used to validate power plant
models. Operators use PMU data to improve system transient and steady-state
models. High-speed observations of power system status help model designers to
tune accurate models for online and offline applications.
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• Renewable energy forecasting: With respect to renewable wind power generation
uncertainty, some obstacles are provided during electricity generation and distri-
bution. Variation in wind speed causes fluctuations in the wind farm’s output
power, which leads to instability in the grid. Therefore, accurate wind power
forecasting based on wind energy is needed to create operational strategies
[54]. In [58], a method for short-term wind power forecasting using the deep
learning method is proposed with unlabeled wind speed data.

• Preventive maintenance and electrical device condition assessment: Preventive
maintenance requires accurate equipment condition data. This can be achieved
using data analysis methods, device monitoring, and failure detection [59].

• Faults and event identification: The phasor measurement units can identify
various events in the power system, such as faults and generation trips, load
trips, and load changes. High-speed PMU sampling can identify the cause of
fluctuations and help operators control the system at fault time [60].

• Improving demand response management and dynamic pricing algorithms: Data
analysis can be in the consumption patterns of users and quickly determines
customers’ participation in a program. Consumer pattern analysis of millions of
users makes it possible to visualize prices and maximize profits [61]. Figure 2.9
shows applications of data analysis in digital operation.
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Fig. 2.9 Applications of data analysis in the digital operation
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2.7 Conclusion

There is a significant increase in data generation in various power system resources.
Massive streaming data analysis has motivated the use of near-real-time data
processing systems. This chapter presents a comprehensive review of data analysis
of power system digital operation, concepts, and literature. In addition, existing and
previous research challenges and future research potential to solve existing chal-
lenges are also introduced. Big data analytics is described as a large-scale data
analysis technique, and the hierarchical architecture of big data, including genera-
tion, acquisition, storage, and analysis of data, is introduced along with effective
tools in each section. Concepts and algorithms of machine learning, data privacy,
and security processing are also described. Finally, several applications such as
improving network stability and reliability, more accurate system state estimation,
data usage for fault detection, equipment monitoring, and asset maintenance were
presented. Since data analysis technology is still in progress, there are challenges that
need to be addressed, such as data optimization, data security, and privacy.

In this chapter, main achievements can be summarized as follows:

• Big data tools and architecture from the perspectives of data generation, storage,
and processing are introduced.

• Applications of data analysis in the digital operation are provided.
• Research directions, literature review, and future challenges of big data are

discussed.
• Cyber-physical models, attack identification, and data security in smart grids are

summarized.
• Machine learning concepts, techniques, and different algorithms are introduced.
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Chapter 3
A New Stable Solar System for Electricity,
Cooling, Heating, and Potable Water
Production in Sunny Coastal Areas

Leyla Khani and Mousa Mohammadpourfard

Abstract Nowadays, more attention is paid to provide clean energy products with
low environmental pollution in a decentralized way. Many coastal rural areas suffer
from freshwater and electricity scarcity, especially in hot weather condition. Mean-
while, these regions have a great access to intense solar radiation and seawater.
Hence, it seems logical to use the available solar energy in those places to provide to
necessities like power, heating, and cooling. A new solar cooling, power, heating,
and freshwater production system is designed, evaluated, and optimized in this
research. The proposed system is composed of several subsystems to generate
each product with high efficiency and reliability. Solar energy is unavailable at
night, so molten salt energy storage is used to establish the steady operation of the
system. Then, the system is evaluated from thermodynamic and exergoeconomic
viewpoints, and a parametric study is accomplished to study the effect on the system
performance of key variables. In the end, the system is optimized to determine its
best operating condition for different cases.

Keywords Goswami cycle · Solar energy · Optimization · Heat storage ·
Desalination · Multigeneration

3.1 Introduction

Nowadays, energy is an essential part of life and a primary requirement for economic
and technical developments. Hence, energy consumption rate is rising rapidly, and it
is predicted that the total energy necessity will grow by 25% until 2040 [1]. Fossil
fuels are the main providers (nearly 80%) of present energy request [2]. However, it
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should be considered that fossil fuel resources are limited, nonrenewable, and
geographically unevenly distributed. This has led to some problems such as a
decrease in available fossil fuel sources, the need to explore more reservoirs, an
increase in fossil fuel prices, and political challenges. Yet, the utilization of fossil
fuels leads to important problems: environmental pollution like greenhouse gas
emissions, climate change, deforestation, polar ice melting, desertification, and
associated health issues. Besides, current energy systems are not appropriately
efficient, and almost 65–70% of fuel’s chemical energy is lost in these systems.
Thus, scientists are trying to find clean, efficient, and sustainable energy resources
and conversion methods [3]. Among various suggestions, multigeneration systems
and renewable energy sources seem significant [4].
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Multigeneration systems are such systems which generate two or more types of
energy products, e.g., electrical power, heating, hot water, cooling, freshwater, or
material, from one fuel input [5]. These systems are usually designed by integrating
separate thermodynamic systems through upper subsystem’s waste recovery in the
bottom ones [6]. Therefore, less fuel is needed in this case, and higher efficiency can
be achieved [7]. Cost reduction [8], higher quality [9], less pollution [10], enhanced
transmission [11], easier distribution [12], and reliability [13] are other benefits of
the multigeneration systems, especially when renewable energy sources are selected
as their fuel input.

As the main alternative of fossil fuels, renewable energy sources are going to
provide more and more part of global energy demand, nearly 22% in 2035 [14]. The
reduction in renewable energy costs, rule facilitation, and increase in their stability
and durability are the main goals of researchers in this field. Among various types of
renewable energies, solar energy has gained a lot of attention since it is the key
source of available energy and its energy intensity is very significant. The utilization
of solar energy is a good way to provide electrical power to remote areas in terms of
cost, transportation, and maintenance. There are several applications for solar
energy: power production, drying, cooking, hot water, and cooling [15]. Many
areas benefit from high solar radiation and can convert it to their necessary products
continuously, which decreases their dependency on fossil fuel resource utilization
and transmission [16]. One of the important utilizations of solar energy is seawater
desalination, as the reservoirs of freshwater are diminishing due to population
growth, enhanced life standards, overconsumption, water pollution, and climate
change [17]. Although 75% of the earth’s surface is covered with water, less than
3% of it is freshwater [18]. Desalination is, in fact, the process of reducing salts in
seawater to an acceptable range, making it suitable for drinking and human con-
sumption [19]. This process requires a great amount of energy and is fortunately able
to work with various energy sources such as solar energy. In this case, designed
desalination system is a right solution for water shortage in remote areas with
adequate solar radiation. Moreover, it can be integrated with other subsystems to
generate other beneficial products that are necessary for those areas, as they are far
from power and heating networks.

Renewable energy-based electrical power, freshwater, and refrigeration produc-
tion systems have been studied in various papers, as summarized in Table 3.1.



References Energy source Proposed system

* * *

�

* * *

� * *

* * *

* * *

* * *

(continued)
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Table 3.1 Literature review on electrical power, cooling, and potable water systems

Products

Cooling Power Water

Sahoo et al. [20]
Sahoo et al. [21]

Solar energy
and biomass

Biomass-fired vapor com-
pression cycle for power
generation
Preheating of working fluid
by solar energy
Heat recovery from the
steam turbine for the desali-
nation process

Ali et al. [22]
Alsaman et al. [23]
Elattar et al. [24]
Fouda et al. [25]
Ibrahim et al. [26]
Su et al. [27]

Solar energy Solar-based absorption
refrigeration cycle and
humidification-
dehumidification process

* *

Azhar et al. [28] Solar energy,
geothermal,
and ocean heat

Power generation based on
the ocean heat transfer cycle
Three-stage flash based on
geothermal and solar energy
Absorption refrigeration
cycle for cooling demand

Sadeghi et al. [29] Hot environ-
mental air and
natural gas

Generation of superheated
steam by hot air in the gen-
erator as the input to the
steam turbine
Humidification-dehumidifi-
cation desalination process
for freshwater production

Hogerwaard et al.
[30]

Solar energy Combined Brayton and
Rankine cycle
Multistage flash desalina-
tion cycle
Absorption refrigeration
cycle

Giwa et al. [31]
Kabeel et al. [32]

Solar energy Electricity production with
photovoltaic cells
Solar energy-based humidi-
fication-dehumidification
cycle
Heat transfer from the
indoor air to refrigerant to
cool the air
Humidification-dehumidifi-
cation cycle

Jabari et al. [33]
Jabari et al. [34]
Jabari et al. [35]
Jabari et al. [36]

Solar energy
and environ-
mental air

Stirling cycle to generate
electricity
Air-to-air heat pump cycle
to generate cooling and
heating



References Energy source Proposed system

� * *

� * *

According to this table, a solar power, cooling, heating, and potable water generation
system with energy storage has not been designed yet. This research addresses this
important issue. Hence, a case study with real solar radiation data and power,
cooling, heating, and freshwater demands is considered. A new system for generat-
ing electrical power, potable water, heating, and cooling based on solar energy is
designed, analyzed, and optimized. The required equations for energy and
exergoeconomic simulation of the system are applied together with an optimization
algorithm. Then, the operation of the system under different conditions is assessed.
Finally, the optimal conditions for the system performance in four optimization cases
are determined.
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Table 3.1 (continued)

Products

Cooling Power Water

Almutairi et al.
[37]
Catrini et al. [38]
Gadhamshetty
et al. [39]

Hot environ-
mental air and
natural gas

Brayton-Rankine combined
cycle
Distillation seawater desali-
nation system
Absorption refrigeration
cycle
Mechanical vapor
compression

Antipova et al. [40]
Delgado-Torres
et al. [41]
Gökçek [42]
Nafey et al. [43]
Rashidi et al. [44]
Salcedo et al. [45]

Solar energy Solar-based Rankine cycle
and photovoltaic cells
Reverse osmosis seawater
desalination system

3.2 System Description

The novel multigeneration system for electricity, cooling, heating, and freshwater is
shown in Fig. 3.1. As can be seen from this figure, the proposed system consists of a
solar energy collector, hot molten salt energy storage, cold molten salt energy
storage, Goswami cycle, and a multistage flash seawater desalination process.
Solar radiation energy is collected and transferred to the hot molten salt storage
tank to make its temperature suitable for the other cycles. The excess solar energy is
stored in the hot tank and used whenever the sun is not available, such as when it is
cloudy or at night. This confirms the consistency of the system. The hot molten salt
enters the superheater and boiler of the Goswami cycle [47]. In this cycle, the
ammonia-water solution leaving the absorber is pumped and divided into streams
8A and 8B. 8A is sent directly to the rectifier, and 8B is heated in the recovery heat
exchanger and mixed with streams 11, 19, and 20. The resulting mixture is sent to



the boiler, receives heat from the hot molten salt, and is separated into stream
10 (high ammonia concentration) and stream 16 (low ammonia concentration).
Stream 16 flows back to the absorber through the recovery heat exchanger and
expansion valve. Stream 10 is purified in the rectifier and heated in the superheater. It
then generates electricity in the turbine and refrigeration in the evaporator. After the
superheater and the boiler, the molten salt stream is used in the desalination
subsystem to heat the pressurized seawater. The produced freshwater is separated
from brine and cooled in the auxiliary conditioner and sent for storage/consumption.
The brine is discharged after generating heat in the heat recovery unit.

3 A New Stable Solar System for Electricity, Cooling, Heating. . . 57

Fig. 3.1 Solar-based power, cooling, and freshwater trigeneration system. (Reprinted from Khani
et al. [46], copyright (2022), with permission from Elsevier)
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3.3 Modeling Equations

In this section, mass, ammonia concentration (for Goswami cycle), and energy
conservation equations are considered for each equipment. Also, the exergy and
exergoeconomic relationships are applied. The obtained set of equations is solved
with proper inputs in Engineering Equations Solver (EES) software, and thermody-
namic and exergoeconomic properties of all existing streams are calculated. The
following assumptions are considered:

• All components operate as steady-state control volumes, except the solar collector
and the molten salt energy storage tanks.

• Potential and kinetic energy and exergy changes are neglected.
• Only the heat losses from the solar collector and molten salt storage tanks to the

environment are of importance.

3.3.1 Thermodynamic Analysis

The mass and energy conservation laws for a component in steady state are as
follows:

X
_mi ¼

X
_me ð3:1ÞX X

_Qk � _Wk ¼ _mehe � _mihi ð3:2Þ

in which:

_m: mass flow rate (kg/s)
e: outlet
i: inlet
_Q: heat transfer rate (kW)
_W : power (kW)
k: Kth component
h: specific enthalpy (kJ/kg)

Ammonia concentration for Goswami cycle is written as:

X
_mixi ¼

X
_mexe ð3:3Þ

in which x is ammonia concentration.
Exergy is the maximum useful work that can be obtained when varying

the system from its initial state to the dead state, if the system interacts just with
the ambient. Also, exergy is the minimum essential work to take the system from the
dead state to a desired state. Exergy analysis is useful in defining the place, cause,



and magnitude of energy loss and optimizing systems to better utilize finite energy
sources. If electrical, magnetic, nuclear, and surface tension effects are neglected, the
exergy of any material stream is computed as follows [48]:
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_E ¼ _Eph þ _Ech ð3:4Þ

where:

_E: exergy rate (kW)
ch: chemical
ph: physical

Physical exergy is the maximum useful work gained when stream reaches thermal
and mechanical equilibrium with the environment:

_Eph ¼
X

_mi hi� h0i
� �� T0 si� s0i

� �� � ð3:5Þ

where:

s: specific entropy (kJ/kg.K)
T: temperature (K)
0: environmental condition

Chemical exergy is the maximum work done by material while reaching chemical
equilibrium with the environment. It can be calculated for an ideal gas mixture:

_Ech ¼
X

_mie
ch
i þ RT0

X
_mi ln yi ð3:6Þ

in which:

ech: standard chemical exergy of species (kJ/kmol)
R: universal gas constant (kJ/kgK)
y: mole fraction

For ammonia-water solution, chemical exergy is computed as follows:

_Ech ¼ _mwatere
ch
water þ _mammoniae

ch
ammonia ð3:7Þ

The exergy destruction rate of a steady-state control volume is defined as [48]:

_ED ¼
X

1� T0

Tj

� �
_Qj � _Wcv þ

X
_Ei �

X
_Ee ð3:8Þ

where D is destruction.
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Equation (3.8) shows that the exergy is a destructible property due to the
irreversible processes [48]. Thus, exergy analysis is an efficient tool for design,
evaluation, and optimization of thermodynamic systems.

3.3.2 Exergoeconomic Analysis

There are several methods of economic evaluation of thermodynamic systems, of
which exergoeconomics is considered. It combines exergy and economic principles.
In other words, exergoeconomic analysis evaluates the cost of the exergy rate of each
stream instead of the mass or energy flow. Consequently, the cost of the exergy
destruction and products in the system equipment is calculated. The exergoeconomic
balance for a steady-state control volume is defined as follows [49]:

X
_Ce þ _Cw ¼

X
_Ci þ _Cq þ _Z ð3:9Þ

_C c _E 3:10

where:

c: cost per exergy unit ($/GJ)
_C: cost rate ($/hr)
_Z: capital cost rate ($/hr)
q: heat

The exergoeconomic balance explains that the sum of the costs associated with
exergy flows at the output equals the sum of the costs of the exergy streams at the
input and the expenditure costs, as given in Eqs. (3.9) and (3.10). The expenditure
cost is the cost of investment, operation, and maintenance of a control volume [50]:

_Z ¼ Z � CRF� φ
N

ð3:11Þ

CRF ¼ ir 1þ irð Þn
1 ir

n 1
ð3:12Þ

where:

Z: component capital cost ($)
CRF: capital recovery factor
N: system operating hours in a year
φ: maintenance factor
ir: interest rate (%)
n: system lifetime (year)

The exergoeconomic equation, auxiliary relations, and purchase cost for each
component are listed in Table 3.2.
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3.3.3 Solar Energy Collector (SEC)

The SEC consists of a parabolic reflector and a metal tube with a glass cover to
decrease the thermal loss. Sunlight hits this parabolic reflector and gets reflected onto
the receiver tube. The molten salt stream absorbs the solar energy. The thermal
resistance method (TRM) [58] is used to model the thermal performance (TP) of the
SEC. A cross-sectional view of the collector is shown in Fig. 3.2a. The thermal
resistance model is also shown in Fig. 3.2b. The necessary equations for each
resistance term are summarized in Table 3.3.

Finally, the energy balance is written for the receiver to calculate the energy
transfer rate to the molten salt stream [58]:

HTF
pi
po

gigo

Receiver Pipe

Glass Cover

Sky (s)

Air (a)

(a) Cross-sectional view of receiver tube

HTF pi po gi go

s

a

Rf-pi,conv Rpi-po,cond

Rpo-gi,rad

Rgi-go,cond

Rgo-s,rad

Rgo-a,conv

Rpo-gi,conv

(b) TRM [57]

Fig. 3.2 Schematic of SEC: (a) cross-sectional view of receiver tube, (b) TRM [58]. (Reprinted
from Khani et al. [46], copyright (2022), with permission from Elsevier)
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Table 3.3 Thermal resistance terms for the SEC [58, 59]

Heat transfer term Equation

_qHTF pi,conv
�2

1:82 log� 	Re 1dpi
� :64

8Pr pRef ffiffiffid � 	 � 	
piffi �1000 0:11Prf kf

� �
f

πd
þ 3 Pr

1 12 1 pi d pi Tpi Tf
7 pi Pr2= pi
: 8 ð Þf

�
�

_qpi po,cond 2πkpipe� 	ð ÞTpi�Tpo

d
ln po

dpi

_qpo gi,rad σπdpo

d

ð ÞT4
po�T4

gi

po 1
1

�εgi
εpo ε

ð Þ
dgi gi

_qpo gi,conv πd kstd
po � 	 Tpo� 	dpo d

dgi

þb poλ dgi
þ1

� Tgi

2 ln
dpo

_qgi go,cond 2πkgð Þ� 	Tgi�Tgo

d
ln go

dgi

_qgo s,rad

_qgo a,conv

In which:
d: diameter (m)
f: friction factor
gi: glass cover inner surface
go: glass cover outer surface
HTF: heat transfer fluid
K: thermal conductivity (W/mK)
pi: receiver pipe inner surface
po: receiver pipe outer surface
Pr: Prandtl number
Re: Reynolds number
σ: Stefan-Boltzmann constant (W/m2K)
λ: mean free path between collisions of a molecule (cm)
a: air
cond: conduction
conv: convection
f: fluid
rad: radiation
s: sky

_Qu ¼ _qpo,SolAbs þ _qgo,SolAbs � _qheatloss Lcol ð3:13Þ

_qheatloss ¼ _qgo�a,conv þ _qgo�s,rad ð3:14Þ

where:

L: length (m)
col: collector
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_Qu ¼ _mfcp,f T fo� T fið Þ 3:15Þ

where cp is specific heat capacity (kJ/kgK).

3.3.4 Molten Salt Heat Storage Tanks (MSHST)

The hot and cold MSHST are fully mixed [60]. As a result, each tank’s temperature
is uniformly time dependent and is defined by the following equations [51, 61]:

ρVcp
� �

l þ ρVcp
� �

ST

h i dT
dt

¼ _Qin � _Qloss ð3:16Þ
_Qloss UA ST TST T0 3:17

UAð ÞST ¼ ki
rST1

1

ln rST2
rST1

� 	 2πrST1LSTð Þ þ ki
δi

2πr2ST1
� � ð3:18Þ

TST,new ¼ TST þ Δt
ρVcp
� �

l þ ρVcp
� �

ST

_Qin � _Qloss

� � ð3:19Þ

in which:

r: radius (m)
t: time (s)
U: overall heat transfer coefficient (W/m2K)
V: volume (m3)
ρ: density (kg/m3)
ST: storage tank

The time interval is set as 1 hour, i.e., the properties of the molten salt and the
tanks do not change in this period.

3.3.5 Performance Criteria

The electricity, cooling, heating, and potable water production rates are calculated as
follows:

_Wnet ¼ _WTurbine � _WSolutionPump � _WWaterPump ð3:20Þ
_Qcooling ¼ _m15h15 � _m14h14 ð3:21Þ
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_Qheating ¼ _m34h34 � _m33h33 ð3:22Þ
_Qfreshwater _m26h26 _m21h21 3:23

As is well-known, solar-based systems have time-dependent performance, but
molten salt energy storage tanks enable the system constancy. Therefore, the energy
and exergy efficiencies are defined as average daily values:

η ¼
P24
t¼1

_Wnet þ _Qcooling þ _Qheating þ _Qfreshwater

P24
t¼1

_Qsolar,t

ð3:24Þ

ε ¼
P24
t¼1

_Wnet þ _Ecooling þ _Eheating þ _Efreshwater

P24
t¼1

_Esolar,t

ð3:25Þ

_Qsolar and _Esolar are the total absorbed energy from the sun in the collector and its
related exergy, respectively:

_Esolar ¼ GbAa 1þ 1
3

T0

Tsun

� �4

� 4
3

T0

T sun

� � 
ð3:26Þ

where Gb is solar radiation (W/m2).
The total exergy destruction rate is the sum of the exergy destruction rates of all

components.

_ED,tot ¼
X
k

_ED,k ð3:27Þ

The cost of producing drinking water, cooling, heating, and electrical energy
together make up the total cost of the product:

ctot ¼
_C _Wnet

_Wnet
þ

_C _Qcooling

_Qcooling

þ
_C _Qheating

_Qheating

þ
_C _Qfreshwater

_Qfreshwater

ð3:28Þ
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3.3.6 Optimization

Optimization of energy systems has attracted much attention recently, and its main
objective is usually to minimize price or maximize efficiency. There are two types of
optimization problems: single-objective optimization and multi-objective optimiza-
tion. Single-objective optimization involves optimizing only one performance objec-
tive. In multi-objective optimization, on the other hand, more than one objective
function is defined and optimized simultaneously. In this case, there are more than
one answer to the problem that are equally good and acceptable. The genetic
algorithm is widely used for engineering optimization problems. It is based on the
theory of the evolution of generations: only the most tolerant members of a group
live for generations. A comprehensive and parallel search is done in the problem
space, and then the answers are compared to select the best one. So, it is more likely
to get the globally optimal point [62].

Engineering Equations Solver (EES) is used to solve the resulting system of
equations for mass, energy, exergy, and exergoeconomics. Then, four examples of
the system’s optimization are defined. The three single-objective optimization situ-
ations of maximizing energy efficiency, maximizing exergy efficiency, and mini-
mizing total product cost are all solved by the general algebraic modeling system
(GAMS). Finally, the EES and MATLAB software are coupled to undertake a multi-
objective optimization process. The competing objective functions for this process
are exergy efficiency and total product cost.

3.3.7 Verification

The simulation results for the Goswami cycle in this study are compared in Table 3.4
with the available data in [47], demonstrating respectable concordance between the
results of the current work and earlier ones.

Moreover, When the output heat transfer fluid temperatures for various solar
radiations in the current work are compared with those in reference [59] in Table 3.5,
it is clear that the current study is highly accurate.

Table 3.4 Validation of
Goswami cycle

Performance criteria Ref. [47] Present work

Turbine power (kW) 47.96 44.18

Pump power (kW) 3 2.771

Cooling load (kW) 3.85 3.361

Superheater duty (kW) 0 0

Energy efficiency (%) 14 16.18
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Table 3.5 Validation of the solar energy collector

Outlet
temperature of
heat transfer fluid
(�C)
Present
work

Ref.
[59]

933.7 21.2 102.2 123.7 121.65 1.68

968.2 22.4 151 170 170.15 0.088

982.3 24.3 197.5 218.5 216.51 0.92

909.5 26.2 250.7 267.1 265.84 0.47

937.9 28.8 297.8 315.3 312.97 0.74

Fig. 3.3 The variation in ambient temperature during the day. (Reprinted from Khani et al. [46],
copyright (2022), with permission from Elsevier)

3.4 Results and Discussion

To evaluate the performance of the designed system, a case study with realistic
power and cooling requirements and hourly ambient temperature variations is
considered, as shown in Figs. 3.3, 3.4, and 3.5, respectively. The required inputs
are also listed in Table 3.6.
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Fig. 3.4 The variation in cooling demand during the sample day. (Reprinted from Khani et al. [46],
copyright (2022), with permission from Elsevier)

Fig. 3.5 The variation in electricity demand of the case study during the sample day. (Reprinted
from Khani et al. [46], copyright (2022), with permission from Elsevier)

3.4.1 Base Case Study

The variations over time of the SEC outlet fluid temperature and the MSHST
temperature are depicted in Fig. 3.6. As can be seen, the use of thermal energy
storage tank has a positive effect on the reliability and stability of the system and
compensates for the large hourly fluctuations in the ambient temperature and solar
radiation.
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Table 3.6 Used data for modeling of the system [47, 48, 58, 59, 63]

Parameter Value

Ambient pressure (bar) 1

Ambient temperature (�C) 25

Pressure ratio for pump and turbine 10

Pressure loss in boiler (bar) 0.4

Pressure loss in superheater (bar) 0.2

Ammonia concentration at the rectifier exit 0.98

Boiler pressure (bar) 1.5

Absorber temperature 9.72

Pump and turbine adiabatic efficiency (%) 85

Superheating degree (�C) 0

Minimum approach temperature in heat exchangers (�C) 5

Interest rate (%) 12

Annual operating hours (hr/year) 8760

Year life 20

Operating and maintenance factor 1.06

Collector apparatus width (m) 5

Collector length (m) 7.8

Receiver outer diameter (m) 0.07

Receiver inner diameter (m) 0.066

Glass cover outer diameter (m) 0.0115

Glass cover inner diameter (m) 0.109

Receiver pipe thermal conductivity (W/mK) 54

Glass cover thermal conductivity (W/mK) 0.78

Glass cover emittance 0.86

Number of collectors 4

Figure 3.7 illustrates the variations of the input solar exergy rate and the exergy
destruction of the solar collector during 24 hours. Both exergy rates reach their
highest values around noon and become zero in the night hours, corresponding to the
form of the radiation intensity.

3.4.2 Parametric Study

Figure 3.8 shows the influence of changing the pressure ratio in the Goswami cycle
on the system performance. The system power output rate improves from 6.9 to
12.8 MW when the Goswami pressure ratio is increased from 5 to 14.5 as shown in
Fig. 3.8a. This is because a larger production capacity in the Goswami cycle turbine
is made possible by a higher pressure. However, when the pressure ratio is increased
above 14.5, this trend reverses as the power consumption of the Goswami cycle
exceeds the output of the turbine and reduces the net power generation of the system.
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Fig. 3.6 The variation of temperatures of the MSHST and solar system outlet fluid during the day.
(Reprinted from Khani et al. [46], copyright (2022), with permission from Elsevier)
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Fig. 3.7 Received solar exergy and its exergy destruction rates. (Reprinted from Khani et al. [46],
copyright (2022), with permission from Elsevier)
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Fig. 3.8 Performance of the system as a result of adjusting the turbine pressure ratio: (a) net power
and cooling, (b) freshwater and heating, (c) energy and exergy efficiencies, (d) total exergy
destruction, (e) total product cost. (Reprinted from Khani et al. [46], copyright (2022), with
permission from Elsevier)



Also, the cooling of the evaporator incoming stream is directly affected by the
pressure ratio and causes the amount of cooling produced to rise from 16 kW to
38 kW. Because there is more heat available to the desalination plant with a higher
turbine pressure ratio, Fig. 3.8b shows that the mass flow of potable water and
heating also increase. The variations in system energy and exergy efficiencies with
turbine pressure ratio are shown in Fig. 3.8c. Both efficiencies improve by around
3.3% as the system pressure ratio rises. It is evident that the positive effects of
freshwater production, cooling, and heating outweigh the negative effects of net
electricity generation. The impact of the system pressure ratio on the rate of total
exergy degradation is seen in Fig. 3.8d. At a pressure ratio of 15.7, the total exergy
destruction has a minimum value of 81.74 MW. The rising system outputs are
mostly responsible for the declining trend in energy destruction. As shown in
Fig. 3.8a, the net power of the system drops over a particular pressure ratio;
therefore, it is expected that the exergy destruction would also rise. The pressure
ratio has a considerable influence on the price of the final product, as illustrated in
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Fig. 3.8 (continued)



Fig. 3.8e; thus, the value of this parameter must be carefully chosen. The cost of the
final product is reduced by 10.38 percent when the pressure ratio is raised from 6 to
12.6. This is because the system’s beneficial products increase, which lowers their
costs. The price of manufacturing the system products rises when the pressure ratio
surpasses 12.6.
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The effects of various ammonia concentrations at the rectifier’s output on the
system’s operation are depicted in Fig. 3.9. According to Fig. 3.9a, the cooling
capacity is closely correlated with this parameter because when x12 rises, the
refrigerant flow rate in the evaporator also rises, increasing the cooling generation
of the system. The net power generation, however, is on the decline and falls by
3.3 MW. A rise in x12 results in a drop in the turbine’s output power and intake
temperature, which has an adverse impact on system power. As seen in Fig. 3.9b, an
adjustment to x12 has a favorable impact on the flow of freshwater and the generation
of heat, mostly as a result of an increase in the saltwater input to the desalination
system, owing to the rise in the heat it can get. The effect of x12 on the system’s
energy and exergy efficiencies is not the same, as shown in Fig. 3.9c. The system’s
energy efficiency rises as x12 rises, but its exergy efficiency falls. If Fig. 3.9a, b are
additionally taken into account, the following may be explained: Energy efficiency
rises because the rising trends in cooling, heating, and freshwater generation offset
the falling trend in net power production. However, it should be emphasized that in
terms of exergy efficiency, the rise in exergy value for cooling, heating, and drinking
water cannot make up for the net power reduction; as a result, the system’s exergy
efficiency decreases. Figure 3.9d demonstrates that the x12 has a direct impact on the
overall exergy destruction since it causes the system’s useable exergy to decline. The
total product cost with an increase in x12 initially achieves its lowest value of 131.2$/
GJ before rising to 150$/GJ, as shown in Fig. 3.9e.

The impact of the system’s superheating degree is depicted in Figs. 3.10a–e. As
the superheating degree rises, Fig. 3.10a demonstrates that the system’s net output
power and refrigeration production both peak at particular superheating degree
values. In reality, larger superheating degrees imply higher turbine intake tempera-
tures, higher turbine production capacities, and higher evaporating capacities. A
larger superheating degree than its peak values, however, has a negative impact on
the system and lowers its cooling and power capability. Figure 3.10b illustrates the
impact of the superheating degree on the flow of potable water and the production of
heat, and in contrast to the previous figure, it shows a decreasing and growing trend.
Solar energy is used to fuel the superheater in order to achieve higher superheating
degrees. As a result, the desalination system’s heat input declines, resulting in less
water and less heating. This pattern flips over a certain point, increasing the quantity
of heating and freshwater. Energy efficiency declines but the exergy efficiency
increases when the superheating degree rises, as seen in Fig. 3.10c. By taking into
account the explanations in Fig. 3.10a, b, these tendencies are easily comprehended.
Figure 3.10d shows that the total energy destruction decreases by 0.3 MW as the
superheating degree rises from 0 to 10 K. It should be noted that the reason for this
decrease is the increase in product exergy rates leaving the system. Figure 3.10e
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Fig. 3.9 The system performance variation in versus ammonia concentration in the rectifier outlet:
(a) net power and cooling, (b) freshwater and heating, (c) energy and exergy efficiencies, (d) total
exergy destruction, (e) total product cost. (Reprinted from Khani et al. [46], copyright (2022), with
permission from Elsevier)



shows the effect of the superheating degree on the total product cost. By increasing
the superheating degree from 0 to 8.3 K, this cost is reduced by 5.5 $/GJ.
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Fig. 3.9 (continued)

The differences in system functioning brought on by the change in the minimum
approach temperature in the heat exchangers are shown in Fig. 3.11. According to
Fig. 3.11a, the output power first rises to 11.7 MW when the minimum approach
temperature rises before falling as a result of changes in turbine power. On the other
side, 84.62 percent less system cooling is provided. As revealed in Fig. 3.11b, the
freshwater flow rate decreases to its minimum and then increases to 4.9 kg/s.
However, the heat production rate shows an opposite trend. Additionally,
Fig. 3.11c shows that the energy efficiency trend is the reverse of the exergy
efficiencies. Energy efficiency first declines and subsequently increases as the
minimum approach temperature rises. On the other side, exergy efficiency shows a
counterintuitive tendency. Furthermore, Fig. 3.11d shows that the total exergy
destruction hanges in an increasing process from 83.02 to 83.04 MW when the
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Fig. 3.10 Variation of performance of the proposed system in versus superheating degree: (a) net
power and cooling, (b) freshwater and heating, (c) energy and exergy efficiencies, (d) total exergy
destruction, (e) total product cost. (Reprinted from Khani et al. [46], copyright (2022), with
permission from Elsevier)



minimum approach temperature rises from 3 to 15 K. The overall cost of the products
increases from 129 to 167 $/GJ, as shown by Fig. 3.11e.
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Fig. 3.10 (continued)

3.4.3 Optimization Results

The aforementioned parametric study demonstrates that four variables have an
impact on how the system operates: the pressure ratio in the Goswami cycle, the
ammonia concentration at the rectifier’s outlet, the degree of superheating, and the
minimum approach temperature in the heat exchangers. The decision variables’
upper and lower bounds are as follows:
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Fig. 3.11 The effect of variation in the minimum approach temperature of the heat exchangers on
the system performance: (a) net power and cooling, (b) freshwater and heating, (c) energy and
exergy efficiencies, (d) total exergy destruction, (e) total product cost. (Reprinted from Khani et al.
[46], copyright (2022), with permission from Elsevier)
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Fig. 3.11 (continued)

6 � rp � 18 ð3:29Þ
0:965 x12 0:995 3:30

0 ΔT supheat 10 3:31

3 ΔTpinch 15 3:32

Table 3.7 provides a summary of the findings for the base case, the three single-
objective optimization instances, and the two-objective optimization case. The
exergy efficiency in the exergy optimization instance, as shown in the table, is
27.28 percent, which is 3.29 percent and 6.28 percent greater than the values for
the other single-objective optimization modes, energy efficiency and total product
cost, respectively. For energy efficiency optimization, the maximum value of 82.9
percent is reached. By optimizing the cost function, the lowest cost of all items is



reached, which is 120.1 $/GJ. The single-objective optimization of exergy efficiency
yields the greatest overall product cost, which is 158.3 $/GJ. On the other side, when
the cost of the entire product is optimized, the exergy efficiency is at its lowest. It can
be concluded that in order to get the highest exergy efficiency, one must select more
costly, consequently more expensive, equipment and operating conditions. This
raises the cost of the system. Additionally, selecting less expensive tools and
circumstances lowers exergy efficiency.
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Table 3.7 The results of the optimization scenarios

Goswami turbine
pressure ratio

10 6.98 14.53 17.06 15.8

Minimum
approach tempera-
ture in heat
exchangers (K)

5 3.596 14.71 3 10

Superheating
degree (K)

0 6.261 6.437 0.2495 4.5

Ammonia concen-
tration in the recti-
fier exit

0.98 0.992 0.9723 0.965 0.971

Net output power
(MW)

11.52 7.027 11.56 13.74 12

Total exergy
destruction (MW)

83.07 84.52 82.32 80.73 81.05

Cooling capacity
(kW)

26.8 25.19 10.1 23.81 15.74

Heating produc-
tion (kW)

9.31 10.11 9.35 9.4 10.05

Freshwater mass
flow rate (kg/s)

4.67 5.03 4.75 4.71 4.72

If we compare the outcomes of single-objective optimization to those of multi-
objective optimization, we find that the values achieved in multi-objective optimi-
zation fall within the realm of single-objective optimization outcomes. Exergy
efficiency and total product cost, as was previously said, are incompatible, and
improving one results in a decline in the other. It is therefore difficult to establish



an operating situation where the exergy efficiency and the overall cost of the items
are at their highest levels. The degree to which both objective functions are met
therefore defines the working condition for multi-objective optimization.
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3.5 Conclusions

In this study, a multistage seawater desalination system is coupled with a Goswami
power and cooling cycle to provide a solar-assisted power, cooling, and freshwater
trigeneration process. To maintain consistent system performance despite changing
solar radiation, a molten salt heat storage mechanism is also installed. The system
components are subjected to the laws of thermodynamics and exergoeconomics.
Analysis is done on the sensitivity of the system performance to the primary key
parameters. The optimal operating scenarios are then ascertained by simulating three
single-objective optimization cases (i.e., maximizing energy efficiency, maximizing
exergy efficiency, and minimizing total products cost) and a multi-objective
optimization case:

• For certain values of turbine pressure ratio, the net power generation of the system
is maximized, but the total exergy destruction rate and the total products cost are
minimized. In addition, the cooling capacity, heating capacity, freshwater flow
rate, and energy and exergy efficiency increase as the turbine pressure ratio
increases.

• As the ammonia concentration at the rectifier’s outlet rises, so do the cooling
capacity, heat production, freshwater flow rate, energy efficiency, and total
exergy destruction. However, under these operating circumstances, the net
power and exergy efficiency decline. Finally, for a given x12, the overall cost of
the items is low.

• Both the net output power and the cooling generation reach their maximum levels
as the superheating degree rises, but the potable water flow rate, heating, and the
total products cost are minimal for certain values of the superheating degree. In
addition, system energy efficiency and the total exergy destruction decrease,
while exergy efficiency increases.

• The net power, heating rate, and energy efficiency finally achieve their maximum
values as the minimum approach temperature rises. In contrast, there is a lowering
to growing trend in freshwater rate and energy efficiency. Additionally, although
the amount of energy destroyed and the overall cost of all items rise, cooling
capacity declines.

• The multi-objective optimization scenario’s outcomes are in between the single-
objective optimizations’ operational circumstances. This is because exergy effi-
ciency and total product cost are in opposition to one another, and improving one
causes the other to degrade.
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Chapter 4
Investigation of a NewMethanol, Hydrogen,
and Electricity Production System Based
on Carbon Capture and Utilization

Leyla Khani and Mousa Mohammadpourfard

Abstract It is well-known that clean energy transition requires low carbon emis-
sion. The increase in population, economic development, and human welfare
demands has led to a rise in energy consumption, mainly supplied by fossil fuels.
However, burning fossil fuels produces carbon dioxide, which is a greenhouse gas
and a contributor to environmental problems. Therefore, carbon capture and con-
version to different products have gained attention. On the other hand, combining
two or more different thermodynamic systems for simultaneous production of
various demands from one energy source looks reasonable. In this regard, a new
trigeneration system is proposed to decrease atmospheric carbon dioxide emission
and produce methanol, hydrogen, and power. A flue gas stream with a defined
composition, solar energy, and atmospheric air are the system’s inlets. Then, mass,
energy, and exergy balance equations are applied for each subsystem to investigate
the system’s thermodynamic performance. Also, the effect of changing operating
parameters on the performance of each subsystem is studied.

Keywords Carbon dioxide capture · Methanol · Direct methanol fuel cell ·
Multigeneration system · Exergy · Waste utilization

4.1 Introduction

Global energy consumption has increased in recent years due to population growth,
rapid economic development, and improved living conditions. About 85% of energy
demand is met by burning fossil fuels [1]. Although fossil fuel-based power plants
have advanced technologies and are widely used worldwide, burning fossil fuels
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releases large amounts of greenhouse gas emissions including carbon dioxide, which
leads to environmental problems such as global warming, climate change, defores-
tation, and flooding. It is estimated that 7 Gt of carbon dioxide is released into the
atmosphere [2], which is really worrying. Therefore, it seems essential to reduce the
production and emission of carbon dioxide. Various solutions have been proposed,
of which carbon capture and storage (CCS) has gained attention, especially when the
captured carbon is converted into valuable products such as methanol, dimethyl
ether, and methane [3].
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The reaction of carbon dioxide and hydrogen in a catalytic regenerative converter
produces methanol. Methanol has high energy density, is easy to store and transport,
and has low toxicity and little impact on the environment [4]. In addition, other
valuable substances can be obtained from methanol, such as acetic acid, formalde-
hyde, methyl tertiary-butyl ether, and dimethyl ether [5]. Methanol can also be
blended with gasoline to increase its octane number or used as fuel for fuel cells
[6]. Therefore, conversion of emitted carbon dioxide to methanol has been studied
under various conditions [7]. The hydrogen required for conversion of carbon
dioxide to methanol can be provided in several ways, and one of them is solar
water splitting. In this case, no pollution is produced, and excess hydrogen can be
stored for further use or sale or even as a storage medium for solar energy.

Another disadvantage of fossil fuels is their finite nature, which leads to price
instability and energy insecurity. Moreover, conventional thermodynamic systems
have an efficiency of about 35–40%, which means that two-thirds of the chemical
energy of the fuel is lost. Researchers are therefore trying to develop more efficient
systems to convert most of the fuel’s energy into useful products. Multigeneration
systems are one of the proposed solutions that combine two or more systems to
simultaneously generate products such as electricity, heating, cooling, and freshwa-
ter from one fuel source. As a result, they have many advantages such as high
efficiency, reliability, low cost, and less pollution [8].

The effects of employing various waste heat sources on a system for creating
methanol from collected carbon dioxide were investigated by Migrand et al.
[9]. They showed that the efficiency of energy production from renewable sources
is up to 59%. Nevertheless, fossil fuels should be used to meet almost 3.6% of the
energy demand of the system. Boretti [10] examined a system that uses hydrogen as
a feedstock and flue gas from an oxyfuel combustion plant to create methanol. He
arrived at the conclusion that methanol has a higher conversion efficiency than
gasoline and can be a good choice for high power concentration. A technique for
producing hydrogen and methanol from wind energy was developed by Sayah et al.
[11]. According to their findings, the implementation of their method in Iran might
result in a rise in the use of renewable energy sources, natural gas consumption, and
CO2 emissions. Esmaili et al. [12] conducted a research on a solar-powered system
for producing methanol and hydrogen. By studying the effects of different operating
parameters, they demonstrated that the intensity of sunlight affects system effi-
ciency. Under equilibrium settings, Leonzio et al. [13] examined three distinct
methanol reactor designs: a once-through reactor, a reactor that recycles unconverted
gases, and a reactor with a water-permeable membrane. The feed streams were only



pure carbon dioxide and hydrogen. They demonstrated that the highest carbon
conversion of 69% could be reached when a reactor with recycling of unconverted
gases was employed to produce methanol. A carbon to methanol conversion system
was subjected to an evaluation by Atsonios et al. [14] of the effects of various design
and operational factors. They came to the conclusion that the most crucial factor is
the cost of producing hydrogen. When various renewable energy sources are
employed, Rivarolo et al. [15] investigated the thermoeconomic performance of
high-pressure reactors for the manufacture of methanol. According to their findings,
the plant based on biogas has the best economic performance, and buying carbon
dioxide results in reduced investment expenses. The performance of a plant that
generates electricity, methanol, and hydrogen was examined from a thermodynamic,
thermoeconomic, and environmental perspective by Nami et al. [16]. A geother-
mally driven organic Rankine cycle, a proton exchange membrane electrolyzer
(PEME), an S-Graz cycle with oxyfuel combustion, and a methanol synthesis unit
were the components of their planned facility. They pointed out that the S-Graz cycle
is the most investment-intensive part of the system, and the cost per unit product was
estimated to be about 24.88 $/GJ. In order to manufacture methanol from carbon
dioxide hydrogenation, Kiatphuengporn et al. [17] investigated the impact of an
external magnetic field on the performance of a packed bed reactor. Catalysts
supported on copper-iron were placed throughout the reactor. Their findings dem-
onstrated that the use of a magnetic field enhanced methanol synthesis, carbon
dioxide conversion, and reactor efficiency. A post-combustion carbon capture sys-
tem was examined by Luu et al. [18] for better gas recovery and methanol production
from a coal-fired power plant’s flue gas. They asserted that their suggested method,
which relied on natural gas with a high carbon dioxide concentration, might function
effectively. The use of hydrogen from the formation of sodium methoxide
(NaOCH3) in the carbon dioxide hydrogenation reaction was looked into by
Charoensuppanimit et al. [19]. They claimed that the optimum choice was an
adiabatic packed bed reactor. Ghosh et al. [20] assessed three process designs for
producing methanol from carbon dioxide produced in a biogas plant. They showed
that all these designs can satisfy the need for energy, but the two-reactor concept
with the fiber catalyst has the maximum efficiency and methanol production. In order
to change the syngas concentration in the process of producing methanol from
landfill gas, Gao et al. [21] suggested either adding more hydrogen or absorbing
more carbon dioxide. They came to the conclusion that the first alternative is more
inexpensive and more energy-efficient. In a novel methanol manufacturing method,
Alsayegh et al. [22] investigated how safely collected carbon dioxide diluted the
hydrogen generated by photovoltaic water splitting and aided the hydrogenation
reaction. The methanol produced in this situation is more expensive than the usual
one, according to their economic analysis. In their simulation of a plant, Matzen et al.
[23] used electrolytic hydrogen produced by wind energy to produce methanol and
dimethyl ether while capturing carbon dioxide produced by the fermentation of
ethanol (C2H5OH). They said that although the manufacturing of methanol has a
lesser environmental effect than the production of dimethyl ether, the advantages are
negated by the burning of methanol.
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In this work, a novel system for the production of methanol, hydrogen, and
electric power is designed and evaluated from a thermodynamic point of view.
First, flue gas from a refinery furnace is fed into an organic Rankine cycle (ORC)
to generate electricity and control the temperature for carbon capture and methanol
production. Hydrogen is produced from water in the proton exchange membrane
electrolyzer using solar energy and divided into two parts: one for the conversion
reaction of carbon to methanol and the other for storage, sale, and use during cloudy
or nighttime periods. Then, a direct methanol fuel cell is integrated to generate
electricity from a certain amount of the methanol produced. Heat integration is
implemented into the system, with special attention to reducing external energy
requirement. In the next step, mass and energy conversion laws are established for
each component, as well as exergy relations at steady state. Aspen HYSYS and
Engineering Equation Solver (EES) software tools are used to model the energy and
exergy performance of the system. Finally, the operation of the system under various
conditions is studied.

4.2 System Description

The schematic diagram of the proposed system for the production of electricity,
hydrogen, and methanol can be seen in Fig. 4.1. According to this figure, the system
consists of the following subsystems: an ORC, a carbon dioxide capture unit (CC), a

Fig. 4.1 An overview of the whole system. (Reprinted from Nazerifard et al. [24], copyright
(2022), with permission from Elsevier)



PEME, a methanol synthesis unit (MSU), and a DMFC. The complete arrangement
of the system in the Aspen HYSYS simulation environment is shown in Fig. 4.2. The
input materials are flue gas from a refinery furnace, water, solar energy, and air.
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Fig. 4.2 Configuration of the system in Aspen HYSYS. (Reprinted from Nazerifard et al. [24],
copyright (2022), with permission from Elsevier)

The ORC is used to generate electricity from high-temperature flue gasses and to
adjust the temperature for the carbon capture system. Then the flue gas is fed into the
carbon dioxide capture plant; 91% of the carbon dioxide content is captured and fed
into the methanol synthesis plant. The hydrogen required for methanol synthesis is
generated in the solar-based proton exchange membrane electrolyzer by the water
splitting reaction. Part of the hydrogen is sent to the MSU, and the other part is stored
for use or sale. In the MSU, carbon dioxide reacts with hydrogen to produce
methanol and water. The water is sent to the electrolyzer, while the methanol is
divided into two parts: Part of the methanol is used in a DMFC stack to generate
electricity, and the rest is stored as liquid fuel. The gas released from the MSU is
combusted to provide heat for pressurized steam generation.

The system is modeled using the following assumptions:

• The system operates in a steady state.
• The pipeline pressure fluctuations are disregarded.
• Heat transfer from the piping and apparatus is neglected.
• The system uses cooling water at a temperature and pressure of 25 °C and 3 bar.
• The efficiency of all pumps, compressors, and turbines is assumed to be 85%.
• The changes in potential and kinetic energy and exergy are negligible.
• 25 °C and 1 atm are the ambient temperature and pressure, respectively.

To design and simulate the system, Aspen HYSYS v8.8 with three separate fluid
packages is employed. For carbon capture and methanol synthesis, the Acid Gas and
Extended NRTL fluid packages are employed, respectively. The Peng-Robinson
fluid package is used for the other units.
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Table 4.1 Molar composi-
tion of the system’s input
flue gas

Composition Molar fraction

N2 0.782

O2 0.021

H2O 0.074

CO2 0.123

Table 4.2 Some of Refrig-
600’s physical characteristics

Parameter Value Unit

Molecular weight 58.12 g/mol

Critical temperature 151.98 °C

Critical pressure 3.80 MPa

Latent heat of vaporization at b.p. 366.35 J/g

Flammable limits in air 1.8–8.4 %vol

The flue gas from traditional refinery furnaces, which have a temperature of 220 °
C and a flow rate of 250,194 m3/h with the composition shown in Table 4.1, is taken
into consideration for carbon capture.

4.2.1 Organic Rankine Cycle

As mentioned earlier, the flue gas emitted from a refinery is fed into the organic
Rankine cycle so that its temperature and energy content decrease and electric power
is generated. Rankine cycles are less efficient, less complicated, and less suited for
waste heat recovery than organic Rankine cycles [25, 26]. Due to its high critical
temperature, improved performance, increased efficiency, and other thermal, eco-
nomic, safety, and environmental benefits, Refrig-600 was chosen as the working
fluid for ORC. Table 4.2 [27] is a list of Refrig-600’s physical characteristics.

The schematic diagram of ORC in Aspen HYSYS is shown in Fig. 4.3. Flue gas
from the purge stream boiler and the refinery furnace stack are combined and routed
to the shell side of the ORC evaporator (HX1). The flue gas heats Refrig-600,
causing it to become overheated. At 110 °C, it next passes through the expander
(T1) and produces power. After that, it is liquefied in the cooler (HX2), and the cycle
is completed. The net power and the thermal efficiency of ORC can be defined as
follows:

Wnet,ORC =WT1 -WP1 ð4:1Þ

ηORC =
Wnet,ORC

QHX1
ð4:2Þ

where:

W: power (kW)
P: pump



T: turbine

þ ð Þ
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Fig. 4.3 Schematic of ORC in Aspen HYSYS. (Reprinted from Nazerifard et al. [24], copyright
(2022), with permission from Elsevier)

ORC: organic Rankine cycle
η: efficiency
Q: heat (kW)
HX: heat exchanger

4.2.2 Carbon Capture Unit

In this plant, an amine solution absorbs carbon dioxide from the flue gas. The carbon
capture system in Aspen HYSYS is shown in Fig. 4.4 based on Ref. [28]. The rate of
carbon dioxide capture is 90.74%, and it is anticipated that at a temperature of 35 °C
and a pressure of 1.7 bar, roughly 29.97 t/h of CO2 will be generated.

As can be seen in Fig. 4.4, the flue gas exiting the ORC evaporator enters the
compressor C1. It is then cooled to a temperature of 45 °C. As a result, 445.50 kg/h
of the water vapor contained in the flue gas is condensed, separated in separator V1,
and pumped through P2 to the electrolysis unit for hydrogen production. Stream
12 is introduced at the absorber column’s bottom, and a lean aqueous solvent
containing 30 weight percent MEA (HOCH2CH2NH2) is introduced at the top. In
the absorber column, the MEA moves to the bottom, while the flue gas rises to the
top. The reactions taking place in the absorber column are as follows [28]:

2H2O $ H3O
þ þ OH- ð4:3Þ

CO2 OH- →HCO-
3 4:4

H2O HCO-
3 H3O

þ CO2-
3 4:5



þ ð Þ
þ þ þ ð Þ

þ þ þ ð Þ
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Fig. 4.4 Simulated carbon capture unit in Aspen HYSYS. (Reprinted from Nazerifard et al. [24],
copyright (2022), with permission from Elsevier)

HCO-
3 →CO2 OH- 4:6

MEA H2O CO2 →MEACOO- H3O
þ 4:7

MEACOO- H3O
þ →MEA H2O CO2 4:8

MEAHþ H2O→MEA H3O
þ 4:9

Thus, MEA chemically absorbs the carbon dioxide and separates it from the
exhaust gas. Low carbon dioxide content flue gas is produced and discharged into
the atmosphere. Rich solvent (stream 17) exits the column at the bottom and enters
the internal lean/rich heat exchanger after being pumped to a pressure of 2.5 bar
(HX4). The pressured rich solvent is heated using the hot regenerated lean MEA that
comes from the bottom of the regeneration column. The hot, rich solvent then moves
into the regenerator where it is heated by the vapor from the reboiler to desorb its
CO2. Lean MEA, which is the final result of the regeneration column at the bottom,
moves through the following units and returns to the absorber column after being
cooled in the lean/rich exchanger (HX4), mixing with water and MEA make-ups,
and cooling to 45 °C in the air cooler (AC1). This compensates for the MEA loss
brought on by evaporation and heat degradation [29]. In contrast, a combination of
CO2 and H2O from the regeneration column’s overhead product is cooled to 35 °C in
the condenser. A portion of the water vapor condenses during this process and, with
a reflux ratio of 1.23, returns to the regeneration column. The primary design data for
absorber and regenerator columns are shown in Table 4.3.

4.2.3 Water Electrolyzer Subsystem

The electrolysis method is the most popular way to create hydrogen from water. The
three types of electrolyzers—alkaline water electrolyzer (AE), proton exchange
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membrane water electrolyzer (PEME), and solid oxide water electrolyzer (SOE)—
can each divide water using the same fundamental concept. Not yet in commercial
usage, the SOE is still in the research and development phase [30]. Despite the
alkaline electrolyzer’s established technology, the PEME’s benefits, including its
small size [31], greater gas purity [32], and higher current density and efficiency
[33], make it a desirable and reasonably priced option for producing hydrogen. For
water splitting in this work, a low-pressure PEME is taken into consideration. The
following are the overall and half-cell reactions that take place in the PEME:
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Table 4.3 Absorber and regenerator column design features

Parameter Absorber Regenerator Unit

Column diameter 6 3 m

Column height 12.19 12.19 m

Packing type IMTP – metal (50 mm) IMTP – metal (50 mm) –

Reflux ratio – 1.23 –

Anode : H2O→ 2Hþ þ 2e- þ 1
2
O2 ð4:10Þ

Cathode : 2Hþ 2e- →H2 4:11

Overall : H2O→H2 þ 1
2
O2 ð4:12Þ

The Aspen HYSYS program does not include a built-in module for PEME; thus,
some process equipment is put together to mimic PEME. The PEME subsystem’s
process flow diagram in the Aspen HYSYS environment is shown in Fig. 4.5. It has a
component splitter for separating the anode and cathode flows, a conversion reactor
for the electrolysis reaction, three SET logical operations (Set1, Set2, and Set3) for
stream temperature control, and a component splitter for separating H2O and O2 on
the anode side.

According to Fig. 4.5, the inlet water of the PEME is a mixture of three streams:
fresh water (stream 28), water separated from the flue gas by partial dehumidification
(stream 14), and water produced in the methanol synthesis unit (stream 96). It is
worth noting that the operating temperature of the PEME is constant at 80 °C. The
incoming water stream is warmed with the hydrogen and oxygen streams, leaving
the electrolyzer for heat integration and to boost system efficiency, and is subse-
quently heated to the PEME temperature in HX7. It is blended with the unconverted
water in the PEME outflow before entering the PEME (stream 41). The electro-
chemical water splitting process occurs in the PEME reactor. The electrolyzer
splitter is then supplied with hydrogen, oxygen, and unconverted water to separate
the cathode stream from the anode stream. At a temperature of 80 °C, the cathode
stream (stream 36) contains pure hydrogen. This hydrogen is cooled to 35 °C in HX5
before entering the compression stage of the methanol synthesis unit. A different
splitter is used to purify the oxygen (stream 38) and recycle the unreacted water from



the anode-side stream. The pure oxygen is cooled in HX6 and stored as a valuable
by-product that can be sold. After a pump increases pressure, the unconverted water
is returned to the electrolyzer.
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Fig. 4.5 Process flow diagram of simulated PEME subsystem in Aspen HYSYS. (Reprinted from
Nazerifard et al. [24], copyright (2022), with permission from Elsevier)

The molar flow rates of water consumed, hydrogen created, and oxygen pro-
duced, according to Faraday’s law, are as follows:

_N
cons
PEME,H2O =

I
2F

ð4:13Þ

_N
prod
PEME,H2

=
I
2F

ð4:14Þ

_N
prod
PEME,O2

=
I
4F

ð4:15Þ

where:

_N: molar flow rate (mol/s)
I: current (A)
F: faraday number (A.s/mol)
PEME: proton exchange membrane electrolyzer
prod: production
cons: consumption

Stoichiometric calculations may be used to determine how much hydrogen is
needed for the production of methanol (using Adj2). The PEME subsystem in this
plant is built to generate 25 t/h of hydrogen. The unit that produces hydrogen uses
around 17.5% of it to create methanol. The remaining hydrogen is either saved for



ð Þ ð Þ

use in overcast or dark conditions or for other pressing demands or it can be sold for
a profit.
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Electrolysis of water requires a lot of energy. Therefore, it is important to
calculate the PEME’s voltage and the necessary power. PEME’s essential power is
determined using the equation shown below:

WPEME,stack =V stack:I=V cell:N:i:Acell ð4:16Þ

in which:

V: voltage (V)
Acell: cell area (m

2)
I: current density (A/m2)
N: number of cells in the stack

The cell voltage for PEME can be expressed as:

V cell =Urev þ vact,a þ vact,c þ vohm þ vconc ð4:17Þ

where:

Urev: cell reversible potential (V)
V: overpotential (V)
Act: activation
a: anode
c: cathode
ohm: ohmic
conc: concentration

The concentration overpotential can be disregarded at low current densities
[33]. The Nernst equation [34] may be used to calculate the reversible or open
circuit potential:

Urev =U0
rev þ

RT
nF

ln
pH2

:
ffiffiffiffiffiffiffi
pO2

p
aH2O

� �
ð4:18Þ

U0
rev = 1:229- 0:9× 10- 3 T- 298:15 4:19

in which:

0: standard condition
R: universal gas constant (J/mol.K)
T: temperature (K)
n: number of transferred electrons
p: pressure (Pa)

aH2O is 1 for the liquid state, while n is 2 for the water splitting process.
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By condensing the Butler-Volmer equation, it is possible to compute the anode
and cathode’s activation overpotential [35]:

vact,i =
RT
αiF

sinh - 1 i
2i0,i

� �
, i= a, c ð4:20Þ

� �
i0,i = irefi exp

-Eact,i

RT
, i= a, c ð4:21Þ

where:

α: charge transfer coefficient
i0: exchange current density (A/m2)
iref: pre-exponential factor (A/m2)
Eact: activation energy (J/mol)

where the charge transfer coefficient is equal to 1 for both the anode and cathode
(αa = αc = 1).

Ohm’s law may be used to determine the ohmic overpotential, which is mostly
caused by the membrane’s resistance to proton flow [36]:

vohm =Rmem:i=
δmem

σmem
:i ð4:22Þ

σmem = 0:5139λ- 0:326ð Þ exp 1268
1

303:15
-

1
T

ð4:23Þ

λ=
- 2:89556þ 0:016Tð Þ þ 1:625

0:1875
ð4:24Þ

in which:

Rmem: Membrane resistance (Ω/m2)
δ: Thickness (m)
mem: Membrane
σ: Protonic conductivity (S/m)
λ: Water content (molH2O=molSO- 1

3
)

Table 4.4 lists the values of the constant parameters that were employed in the
PEME modeling.

Calculate the electrolyzer subsystem’s efficiency, or the ratio of hydrogen energy
generated to total power used in the PEME stack, in order to assess its performance:

ηPEME =
_MH2 :HHVH2

Wnet
ð4:25Þ
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Table 4.4 Parameters used
for PEME modeling

Parameter Value Unit Ref.

T 80 °C –

pH2
= pO2

1.5 bar –

irefa 1744271.56 A/m2 [35]

irefc 4597.14 A/m2 [35]

Eact, a 76 kJ/mol [35]

Eact, c 18 kJ/mol [35]

δmem 50 μ 35]

Wnet =WPEME,stack QHX7 WP5 4:26

where:

_M: Mass flow rate (kg/s)
HHV: Higher heating value (J/kg)
The higher heating value of hydrogen and equals 141.88 MJ/kg.

4.2.4 Methanol Synthesis Unit

In general, there are two ways to create methanol from carbon dioxide: (1) direct or
one-step synthesis, in which CO2 and H2 react directly to create methanol, and
(2) indirect or two-step synthesis, in which CO2 is first changed into CO by the
reverse water gas shift (RWGS), and then methanol is created. The direct technique
has been demonstrated to be more economical and energy-efficient [37]. As a result,
this study takes into account the direct way of producing methanol from carbon
dioxide. The exothermic synthesis of methanol involves the simultaneous occur-
rence of the following events in the reactor [7]:

CO2 þ 3H2 $ CH3OHþ H2O, ΔH298:15 = - 49:25 kJ=molð Þ 4:27Þ
CO 2H2 CH3OH, ΔH298:15 = - 90:7 kJ=mol 4:28

CO2 H2 CO H2O, ΔH298:15 = 41:16 kJ=mol 4:29

The desired hydrogenation of CO2 and CO into methanol occurs in the first two
processes, and the unwanted reverse water gas shift occurs in the third (undesirable).
Le Chatelier’s principle states that rising pressure and dropping temperature benefit
the methanol synthesis process.

This work’s suggested methanol synthesis unit is based on Van-Dal and Bouallou
[38]. Their research suggests that the three basic steps of methanol synthesis are
compression, reaction, and separation. Figure 4.6 displays the Aspen HYSYS-
simulated methanol synthesis subsystem.



100 L. Khani and M. Mohammadpourfard

Fig. 4.6 Simulated methanol synthesis subsystem in Aspen HYSYS. (Reprinted from Nazerifard
et al. [24], copyright (2022), with permission from Elsevier)

The intended output of this operation is 518.88 t/day of methanol. CO2 and H2 are
first compressed to 78 bar. The CO2 stream (stream 44) contains a combination of
CO2 that was created in the DMFC subsystem and CO2 that was collected from the
flue gas. It is delivered at 34.8 °C and 1.013 bar. The pressure of the carbon dioxide
is increased using a set of four compressors that are intercooled to 35 °C by cooling
water. With a pressure ratio of around 3.16 and an adiabatic efficiency of 85%, these
compressors (C2, C3, C4, and C5) are categorized as reciprocating compressors.
Since there is water vapor in the CO2 stream, some of it is condensed after each
intercooling and separated using knockout drums (KO1, KO2, and KO3). In the
DMFC subsystem, these condensed streams are combined and used. A similar
process is used to compress H2 (stream 42), which is compressed by four recipro-
cating compressors (C6, C7, C8, and C9) with intercooling to 35 °C from 1 pressure
and 35 °C to 78 bar. These compressors have an adiabatic efficiency of 85% and a
pressure ratio of roughly 3.17. After cooling in HX12, the second compressor’s
output is split into two streams. While one of these streams, stream 64, is utilized to
create methanol, stream 63 is sent to storage tanks.

These compressors’ outputs are combined, and after mixing with the recycled
stream (stream 81), they are heated to 210 °C before a part of the reactor’s exit
(stream 72), which is in HX14, enters the reactor. The gases react over 15,975 kg of
commercial Cu/ZnO/Al2O3 catalysts in a fixed bed adiabatic plug flow reac-
tor (MSR) using the reaction kinetics given in [38] for reactions (4.27) to (4.29).
The pressure decrease in the reactor was calculated using the Ergun equation.
Because of the exothermic nature of the reaction, the reactor’s output (stream 71),
which includes hydrogen, carbon dioxide, methanol, water, and carbon monoxide,
reaches a temperature of 287.9 °C. This stream is divided into two streams: Stream
73 serves as the hot stream in the distillation column reboiler and in HX16, while
Stream 72 is utilized to pre-heat the reactor feed in HX14. These two streams are



heated together until their combined temperature is 83 °C, at which point they are
once more blended.

4 Investigation of a New Methanol, Hydrogen, and Electricity. . . 101

Additionally, utilizing the cooling water, stream 75 in HX15 cools to 35 °C.
Methanol and water are liquefied in this manner. The flash drum (V2) is where this
two-phase stream goes to be separated from the unreacted gas and turn into liquid
methanol and water. One percent of the unreacted gases are expelled to prevent the
buildup of inert gases and reaction by-products in the reaction loop, while the other
99% are repressurized by the centrifugal compressor (C10) and cycled to mix with
new input from the reactor intake. Two valves reduce the effluent flow from the flash
drum’s bottom to 1.6 bar before it enters another flash drum (V3). Drum V3’s liquid
phase, which is a combination of methanol and water, is supplied to the distillation
column after the gas phase of the drum is purged and heated to 80 °C in HX16. There
are 40 trays in the distillation column (feeding starts at tray 25 from the top), along
with a partial condenser and a reboiler. The column’s reflux ratio is 1.42, resulting in
75 ppmwt of water in the overhead product and 50 ppbwt of methanol in the bottom
stream. Methanol is 99.86 wt% pure in the vapor state and is present in the overhead
product stream. Its temperature is 64.1 °C; however, it must be lowered to 35 °C in
order to turn into liquid. As a result, it is compressed to 1.2 bar using a centrifugal
compressor (C11) and then cooled in HX17 using cooling water. After that, the
residual inert and unreacted gases are separated in the flash drum (V4). Pure water,
the final by-product of the distillation process, is pumped through P6 to the pressure
required by the water electrolyzer subsystem.

In order to improve the performance of the methanol synthesis subsystem, it is
preferable to reuse the purge streams that include valuable H2, methanol, and CO. In
order to produce steam, the purge streams from V2, V3, and V4 are combined and
burnt in the boiler with air. The upstream carbon capture system or other applications
may utilize this steam. A conversion reactor with combustion is how the boiler is
modeled. For heat transmission between combustion gases and boiler feed
water (BFW), two heat exchangers are taken into consideration. To make the flame’s
temperature 1250 °C, adjust the air inlet to the boiler using Adj3. A high-pressure
stream of steam at 380 °C and 42 bar is produced by the combustor’s exhaust as it
enters the HX18 at a rate of 8547 kg per hour. With Set4, the boiler’s efficiency is set
at 85%. In order for the CO2 content of the boiler flue gas (stream 2) to be captured in
the carbon capture system, it is combined with the system feed (stream 1). The
following is how the combustion processes in the boiler happen:

H2 þ 1
2
O2 →H2O ð4:30Þ

COþ 1
2
O2 →CO2 ð4:31Þ

CH3OHþ 3
2
O2 →CO2 þ 2H2O ð4:32Þ
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Kinetics of reactions. In this work, methanol synthesis and RWGS rate estimates
are performed using the modified kinetic model from [38]. Temperatures are in K,
and pressures are in Pa. These are the equations.

rCH3OH =
k1pCO2

pH2
- k6

pH2OpCH3OH
p2H2

1þ k2
pH2O
pH2

þ k3
ffiffiffiffiffiffiffi
pH2

p þ k4pH2O

� 3
kmol
kgcats

� �
ð4:33Þ

rRWGS =
k5pCO2

- k7
pH2OpCO

pH2

1þ k2
pH2O
pH2

þ k3
ffiffiffiffiffiffiffi
pH2

p þ k4pH2O

kmol
kgcats

� �
ð4:34Þ

ln ki =Ai þ Bi

T
, i= 1, 7 ð4:35Þ

where:

r: reaction rate (kmol/kgcat.s)
k: reaction rate constant
A: kinetic constant
B: kinetic constant

Tables 4.5 and 4.6, respectively, include the constants for these equations and
information on the characteristics of the catalyst particles [38].

Multiple parameters may be used to assess the methanol synthesis subsystem’s
thermodynamic performance. The conversion of carbon dioxide is one of these
factors, and it may be computed in two different ways: for the reactor and the entire
MSU.

Table 4.5 Constants of the
kinetic model

Index (i)

1 -29.87 4811.2

2 8.147 0

3 -6.452 2068.4

4 -34.95 14928.9

5 4.804 -11797.5

6 17.55 -2249.8

7 0.131 -7023.5

Table 4.6 Characteristics of
catalyst particles

Parameter Value Unit

Density 1775 kg/m3

Diameter 5.5 mm

Fixed bed porosity 0.5 –
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XCO2,i %ð Þ=
_N
in
CO2

- _N
out
CO2

_N
in
CO2 i

× 100, i= reactor, unit ð4:36Þ

in which:

X: conversion (%)
in: inlet
out: outlet

The two additional thermodynamic measurements for MSU are methanol selec-
tivity and methanol yield. The portion of ingested carbon dioxide that is converted to
methanol and not to other byproducts is known as methanol selectivity. The amount
of methanol generated in the MSR to the amount of CO2 used as feedstock is known
as the “methanol yield.”

SelectivityCO2
%ð Þ=

_N
out
MeOH - _N

in
MeOH

_N
in
CO2

- _N
out
CO2

 !
× 100 ð4:37Þ

 !
YieldCO2 %ð Þ=

_N
out
MeOH - _N

in
MeOH

_N
in
CO2

× 100 ð4:38Þ

4.2.5 Direct Methanol Fuel Cell Subsystem

Stable power may be created using a portion of the methanol produced. Using a
DMFC, in which a liquid methanol solution is delivered directly into the stack as
fuel, is the simplest method. The crossing of the methanol from the membrane in this
situation is the most critical issue and cannot be prevented. The methanol can
dissolve even in the most typical electrolyte employed in this kind of fuel cell.
This phenomenon reduces the DMFC’s effectiveness and efficiency [39, 40]. The
DMFC’s anode and cathode electrode electrochemical reactions, as well as the total
reaction, are as follows:

Anode : CH3OHþ H2O→ 6Hþ þ 6e- þ CO2 ð4:39Þ

Cathode :
3
2
O2 þ 6Hþ þ 6e- → 3H2O ð4:40Þ

Overall : CH3OHþ 3
2
O2 → 2H2Oþ CO2 ð4:41Þ

Species in the DMFC can be classified according to their consumption and
production rates using Faraday’s law:
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_N
cons
DMFC,MeOH,a = _N

cons
DMFC,H2O,a =

_N
prod
DMFC,CO2,a =

I
6F

ð4:42Þ

_N
cons
DMFC,O2,c =

I þ Ixover
4F

ð4:43Þ

_N
prod
DMFC,H2O,c

=
3I þ 2Ixover

6F
ð4:44Þ

_N
cons
DMFC,MeOH,c =

Ixover
6F

ð4:45Þ

where:

cons: consumption
DMFC: direct methanol fuel cell
Ixover: crossover current (A)

It is important to note that the methanol that crosses the membrane from the anode
to the cathode is entirely burned there. Electro-osmotic drag (EOD) and diffusion are
the causes of this methanol transport across the membrane. The following may be
inferred from this:

_N
cons
DMFC,MeOH,c = _N

cross
MeoH,mem ð4:46Þ

_N
cross
MeOH,mem = _N

eod
MeOH,mem þ _N

diff
MeOH,mem = nd,MeOH

I
F

þ Deff
MeOH,mem

CMeOHjacl
δmem

:N:Acell ð4:47Þ

where:

D: diffusivity (m2/s)
C: molar concentration (mol/m3)
nd: drag coefficient
acl: anode catalyst layer
eff: effective
diff: diffusion
cross: crossover
EOD: electro-osmotic drag

The relationship between the EOD coefficient of water, the concentration of water
and methanol in the anode catalyst layer, and the EOD coefficient of methanol is
described in [41]:

nd,MeOH = nd,H2O
CMeOH

CH2O
jacl ð4:48Þ
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nd,H2O = 1:6767þ 0:0155× T- 273:15ð Þ þ 8:9074× 10- 5

× T - 273:15 2 4:49

Moreover, the Bruggeman correlation is used to calculate the effective diffusion
coefficient [41]:

Deff
MeOH,mem = ε1:5DMeOH,mem ð4:50Þ

DMeOH,mem = 4:9× 10- 10 exp 2436
1

333:15
-

1
T

ð4:51Þ

where ε is porosity.
The electrical power generated by the DMFC stack can be expressed as follows:

WDMFC,stack =V stack:I=V cell:N:i:Acell ð4:52Þ

When all overpotentials are removed from the thermodynamic equilibrium volt-
age, the resulting voltage, Vcell, is obtained:

V cell =Urev - vkin,a - vkin,c - vohm - vcont ð4:53Þ

where:

kin: kinetic loss
cont: contact

The electrochemical reaction rate on the anode side is determined using the
kinetics of the methanol oxidation reaction (MOR) by Meyers and Newman
[42]. On the other hand, the oxygen reduction process (ORR) on the cathode side
is modeled using first-order Tafel-based kinetics [43]. For both the anode and the
cathode, the charge transfer coefficient is equal to 0.5 (αa = αc = 0.5):

Anode MOR : i= i0,a
CMeOHjacl exp αaF

RT vkin,a
	 


CMeOHjacl þ K reac exp
αaF
RT vkin,a
	 
 ð4:54Þ

 !
Cathode ORR : iþ ixover = i0,c

CO2 jccl
Cref
O2

exp
αcF
RT

vkin,c
� �

ð4:55Þ

where:

ixover: crossover current density (A/m2)
Kreac: reaction rate constant (mol/m3)
ccl: cathode catalyst layer

According to [44], the anode and cathode sides’ exchange current densities are as
follows:
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i0,i = irefi exp
Eact,i

R
1

353:15
-

1
T

, i= a, c ð4:56Þ

The quantities of the kinetic losses caused by the MOR and the ORR are derived
by rearranging Eqs. (4.54) and (4.55):

vkin,a =
RT
αaF

ln
iCMeOHjacl

i0,aCMeOHjacl - iKreac

� �
ð4:57Þ

 !" #
vkin,c =

RT
αcF

ln
iþ ixover

i0,c

Cref
O2

CO2 jccl
ð4:58Þ

According to the electrolyzer subsystem’s description, Eq. (4.22), which can be
found here, may be used to compute the membrane’s ohmic overpotential.

σmem = 0:5139λ- 0:326ð Þ exp 1268
1

333:15
-

1
T

� �h
ð4:59Þ

Finally, the following equation may be used to get the contact resistance
overpotential:

vcont = iRcont ð4:60Þ

where Rcont is contact resistance (Ωm2).
The cell efficiency of the DMFC is the product of three types of efficiencies—the

theoretical efficiency (ηth), the voltage efficiency (ηvolt), and the fuel efficiency
(ηfuel):

ηcell = ηthηvoltηfuel ð4:61Þ

ηth =
ΔG
ΔH ð4:62Þ

ηvolt =
V cell

Urev
ð4:63Þ

ηfuel =
i

i ixover
ð4:64Þ

where:

th: theoretical
ΔG: gibbs free energy change (J)
ΔH: enthalpy change (J)

The following equation should be used to calculate the overall stack efficiency:
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ηDMFC =
WDMFC,stack

Wnet
ð4:65Þ

Wnet = _MMeOH:HHVMeOH QHX20 QHX21 WP8 WB2 4:66

For methanol, the HHV value is 22.7 MJ/kg. The values of the constant param-
eters used to simulate the DMFC in Aspen HYSYS are listed in Table 4.7.

The fuel cell is not an Aspen HYSYS standard specified component, similar to the
PEME. As a result, the DMFC is being created with a set of integrated process tools
that can produce a comparable process. The DMFC-specific flowsheet is depicted in
Fig. 4.7. Two conversion reactors make up the developed model: the first is for the
overall reaction, and the second is for the reaction that takes place on the cathode
side as a result of the methanol crossover. The DMFC stack also includes a
component splitter to divide the anode and cathode sides, three SET logical opera-
tions (Set5, Set6, and Set7) to modify the temperature of the streams, and two adjust

Table 4.7 Parameters used
for DMFC simulation

Parameter value Unit Ref.

T 50 °C –

p 1 Atm –

ε 0.5 – [39]

irefa 94.25 A/m2 [44]

irefc 0.0422 A/m2 [44]

Eact, a 35,570 J/Mol [44]

Eact, c 73,200 J/Mol [44]

Kreac 0.2 1/s [45]

Cref
O2

0.472 mol/m3 [41]

δmem 50 μ 39]

Rcont 0.45 × 10-4 Ωm2 [46]

Fig. 4.7 Process flow diagram of simulated DMFC subsystem in Aspen HYSYS. (Reprinted from
Nazerifard et al. [24], copyright (2022), with permission from Elsevier)



logical operations (Adj5 and Adj6) to modify the split percentage between the anode
and cathode streams.
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As displayed, the methanol stream is delivered to the DMFC subsystem at a rate
of 3277.71 kg/h, or nearly 15% of the total methanol generated in the MSU. The
DMFC stack’s methanol inflow concentration is thought to be 2 M. Thus, five
streams—Stream 94, the main methanol from the MSU; Stream 58, the liquid outlet
from the CO2 compression knockout drums; Streams 126 and 127, the liquid outlets
from the flash drums of the DMFC cathode and anode sides, respectively; and
Stream 107, pure water—are combined in a fuel tank to dilute pure methanol.
Adj4 is used to change the pure water inlet’s flow rate so that the fuel tank outflow
stream’s concentration achieves the appropriate level.

In order to make up for the pressure decrease in the following heat exchanger, the
treated fuel is injected into the pump (P8). The necessary air is extracted from the
environment on the cathode side using the blower. These two streams are heated in
HX20 and HX21 to 50 °C (the working temperature of the DMFC), at which point
they enter the fuel cell stack. The DMFC splitter receives the reactor output streams
and separates them into anode and cathode streams. The splitter’s splitter fractions
are adjusted by Adj4 and Adj5 to balance the species’ consumption and output rates.
The unreacted methanol, water, and generated CO2 from the anode stream (stream
118) are sent into the flash drum (V6) where the liquid and gaseous phases are
separated. The gaseous phase, which mostly consists of carbon dioxide (stream 128),
is returned to the intake of the CO2 compressors in the MSU, while the liquid phase
is returned to the fuel tank. The cathode stream (stream 117) is made up of crossed
methanol, production water, and air. Equation (41) states that this methanol reacts
fully on the cathode side. The flash drum (V5) receives the output stream from the
cathode side (stream 121), which is then routed to the fuel tank in its liquid phase
(stream 126) and vented to the atmosphere in its gaseous phase.

4.3 System Analysis

All equations from the preceding section are applied using the laws of mass and
energy conservation after placing the subsystems in the overall multigenerational
system with the best possible heat and mass interaction. Additionally, each
subsystem is subjected to the exergy analysis that is derived from the second law
of thermodynamics. The assessment of the energy and exergy efficiencies also
guarantees a thorough examination of the suggested system.

Exergy is a term that is first introduced by the second law of thermodynamics.
When a system changes from its starting condition to a dead state and participates
exclusively in heat and work exchanges with its environment, it can perform as much
work as possible, or exergy. Exergy, then, is the minimal effort necessary to change a
system from a dead state to a selected state. The amount and source of energy losses
are thus determined using exergy analysis, which is not achievable with energy
analysis. Exergy analysis has gotten a lot of interest since energy resources are few



i

and need to be used as efficiently as possible. In order to minimize energy waste, it
may be used to design new systems and optimize ones that already exist. The exergy
of a stream is the total of its physical and chemical exergies if electrical, magnetic,
nuclear, and surface tension effects, as well as kinetic and potential exergy varia-
tions, are ignored:
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_E= _Eph þ _Ech ð4:67Þ

where:

_E: exergy flow rate (J/mol)
ph: physical
ch: chemical

The amount of effort that can be done by a stream to reversibly change from its
starting condition to its finite dead state or ambient state is called its physical exergy:

_Eph =
X

_Ni hi - h
amb
i

� �
- Tamb si - samb

i

	 
h
ð4:68Þ

where:

h: specific molar enthalpy (J/mol)
amb: ambient
s: specific molar entropy (J/mol)

The maximal work accomplished by a stream as it transitions from a restricted
dead state to the genuine dead state is known as chemical exergy. The chemical
exergy is computed as follows for an ideal gas mixture:

_Ech =
X

_Nie
ch
i þ RTamb

X
_Ni ln yi ð4:69Þ

where:

e: standard molar exergy (J/mol)
y: molar fraction

The exergy balance of a component under steady-state conditions can be
described as follows:

_Edes,k =
X
j

1-
Tamb

Tj

� �
Qj -Wcv þ

X
in

_Ein -
X
out

_Eout ð4:70Þ

in which:

des: destruction
cv: control volume
k: kth component

The above equation states that the input exergy of the system is greater than its
output exergy because the irreversibilities cause some exergy destruction.
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All of the subsystems cooperate, as seen in Fig. 4.1, to generate the desired
products with the greatest amount of heat and material recovery. The entire system
may be viewed as a control volume that is in a steady state of operation. In this
instance, the ratio of all valuable outputs to all helpful inputs may be used to
determine the energy efficiency of the entire system. The power of the ORC turbine,
the DMFC’s generated electricity, the stored hydrogen in stream 63, the produced
methanol in stream 93, and the created steam are the system’s outputs. The inputs to
the entire system include the power used by all pumps and compressors, the power
needed for the water electrolyzer, and the steam used for heating. As a result, the
suggested multigeneration system’s energy efficiency may be described as follows:

ηoverall =
WT1 þWDMFC,stack þ _MH2 :HHVH2 þ _MMeOH:HHVMeOH þ Qprod

steam

W tot
C þW tot

P þWPEME,stack þ Qcons
steam

ð4:71Þ

Likewise, exergy efficiency is defined as:

ηexergy

=
WT1 þWDMFC,stack þ _NH2 :e

ch
H2

þ _NMeOH:echMeOH þ Qprod
steam 1- Tamb

Tprod
b,steam

�

W tot
C þW tot

P þWPEME,stack þ Qcons
steam 1- Tamb

Tcons
b,steam

� � ð4:72Þ

4.4 Results and Discussion

The trigeneration system suggested in this study is first contrasted with other systems
using various fuels or prime movers and exhibits comparatively superior perfor-
mance in Table 4.8.

4.4.1 Base Case

The system’s mass and energy balances are presented in Tables 4.9 and 4.10,
respectively. Table 4.9 shows that the electrolyzer produces a significant amount
of oxygen by water splitting. The electrolyzer also accounts for the majority of the
system power’s electricity usage, as shown in Table 4.10. The ORC power usage, on
the other hand, is the least. In addition, Table 4.11 displays the stream conditions.

The primary performance indicators for the subsystems and the entire system are
listed in Table 4.12. Under base case circumstances, the system has energy and
exergy efficiencies of 66.84% and 55.10%, respectively.
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Table 4.9 Mass balance Component In (t/h) Out (t/h)

CO2 31.38 5.66

H2 0 20.61

MeOH 0 18.34

H2O 249.5 44.4

CO 0 0.0004

O2 28.41 219.86

Table 4.10 Energy balance

Input energy (MW) Output energy (MW)

Electrical Thermal Chemical Electrical Thermal Chemical

ORC 0.047 1.132

CC 3.926 31.56

PEME 1320 7.945 985.28

MSU 37.28 – 173.015 – 6.329 136.33

DMFC 0.56 0.202 20.668 1.819

The contribution of each subsystem to the overall exergy destruction rate is
shown in Fig. 4.8. As can be observed, the PEME subsystem, mostly because of
its enormous power consumption, has the biggest effect on the system’s exergy
destruction. Since there is no reaction in this subsystem, the ORC share is minimal.

4.4.2 Parametric Study

For various values of the turbine inlet temperature, Fig. 4.9 illustrates the impact of
adjusting the turbine intake pressure on the ORC efficiency. It is important to note
that the exhaust gas from the evaporator has a consistent temperature at its exit. As
observed in this graph, an increase in turbine intake pressure results in an increase in
ORC efficiency at a fixed turbine inlet temperature. The input energy to ORC,
QHX1, is constant since the temperature of the flue gas doesn’t fluctuate. Greater
pump power usage and turbine power output result from higher turbine inlet
pressure. The end result is an improvement in the ORC’s net power output and, as
a result, in ORC efficiency. Additionally, at a given turbine intake pressure, ORC
efficiency falls as the turbine inlet temperature rises. Because the energy supplied by
the ORC cycle is constant, the flow rate of the cycle drops as the temperature of the
turbine inlet increases. As a result, choosing a greater turbine inlet temperature
reduces the power produced by the turbine, the ORC net power, and the cycle
efficiency.

Figure 4.10 displays the temperature and molar CO2 flow rate curves for the gas
phase within the absorber column. As anticipated, the carbon capture process causes
the CO2 flow rate to decrease as the height of the absorber column increases. As
carbon capture reaches its maximum value and equilibrium state in the upper stages,



St. no. 1 2 3 4 5 6 7 8 9

(continued)
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Table 4.11 Stream’s conditions

m (t/h) 170 20.45 190.45 190.45 72.85 72.85 72.85 72.85 72.85

T (°C) 220 220 220 50 110 67.67 30 30 30.73

P (bar) 0.95 0.95 0.95 0.75 14 3.2 3 3 14.2

St. no. 10 11 12 13 14 15 16 17 18

m (t/h) 190.45 190.45 190 0.45 0.45 472.5 179.3 483.2 483.2

T (°C) 119.2 45 45 45 45.01 45 65.46 49.93 49.96

P (bar) 1.4 1.2 1.2 1.2 3 1.4 1 1.1 2.5

St. no. 19 20 21 22 23 24 25 26 27

m (t/h) 483.2 30.41 452.8 452.8 452.8 19.67 0.03 472.5 472.5

T (°C) 105 35.17 120.5 120.6 57.65 57.65 57.65 60.01 45

P (bar) 2 1.7 1.9 2.4 1.9 1.9 1.9 1.9 1.4

St. no. 28 29 30 31 32 33 34 35 36

m (t/h) 210.4 223.4 223.4 223.4 223.4 279.2 279.2 0 25

T (°C) 25 29.37 45.88 50.46 80 80 80 80 80

P (bar) 3 3 2.5 2 1.5 1.5 1.5 1.5 1.5

St. no. 37 38 39 40 41 42 43 44 45

m (t/h) 254.2 198.4 55.8 55.8 55.8 25 198.4 32.53 32.53

T (°C) 80 80 80 80 80.01 35 55.88 34.79 133.7

P (bar) 1.5 1.5 1.5 1.5 1.55 1 1 1.013 3.2

St. no. 46 47 48 49 50 51 52 53 54

m (t/h) 32.53 32.26 0.27 32.26 32.26 32.07 0.19 32.07 32.07

T (°C) 35 35 35 134.4 35 35 35 136.3 35

P (bar) 2.7 2.7 2.7 8.54 8.04 8.04 8.04 25.4 24.9

St. no. 55 56 57 58 59 60 61 62 63

m (t/h) 32.01 0.06 32.01 0.52 25 25 25 25 20.61

T (°C) 35 35 140.5 35 179.4 35 179.5 35 35

P (bar) 24.9 24.9 78 2.7 3.17 2.67 8.46 7.96 7.96

St. no. 64 65 66 67 68 69 70 71 72

m (t/h) 4.39 4.39 4.39 4.39 36.4 170.4 170.4 170.4 93.71

T (°C) 35 179.6 35 179.2 156.5 61.03 210 287.9 287.9

P (bar) 7.96 25.25 24.75 78 78 78 77.5 76.47 76.47

St. no. 73 74 75 76 77 78 79 80 81

m (t/h) 76.69 93.71 170.4 170.4 135.9 34.5 134.5 134.5 134.5

T (°C) 287.9 82.62 83.25 35 35 35 35 39.7 39.7

P (bar) 76.47 74.97 74.97 74.47 74.47 74.47 74.47 78 78

St. no. 82 83 84 85 86 87 88 89 90

m (t/h) 34.5 34.5 34.18 34.18 21.66 12.52 76.69 76.69 21.66

T (°C) 35.26 34.66 34.66 80 64.13 101.8 151.5 84.08 77.2

P (bar) 12 1.6 1.6 1.1 1 1.08 75.97 75.47 1.2

St. no. 91 92 93 94 95 96 97 98 99

m (t/h) 21.66 21.64 18.36 3.28 12.52 12.52 1.74 18.71 18.71

T (°C) 35 35 35 35 101.8 101.8 30.51 25 33.31



1 1 1 1 3 3 1

the absorption rate slows from being rapid in the lower stages. In the interim, the
temperature initially rises, reaches its peak in stage 4 (73.97 °C), and then starts to
fall. The liquid to gas ratio, solvent characteristics, heat of absorption, column
height, and carbon content in the flue gas are only a few of the factors that affect
the form of the temperature profile and its peak value [47].
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Table 4.11 (continued)

P (bar) 1.013 1.1

St. no. 100 101 102 103 104 105 106 107 108

m (t/h) 20.45 0 20.45 20.45 8.55 8.55 8.55 3.18 53.94

T (°C) 1250 1250 1250 220 120 120.5 380 25 47.57

P (bar) 1 1 1 0.95 2 43 42 2 1

St. no. 109 110 111 112 113 114 115 116 117

m (t/h) 53.94 53.94 86.55 86.55 86.55 95.33 45.16 140.5 101.8

T (°C) 47.58 50 25 48.01 50 50 50 50 50

P (bar) 1.313 1.013 1.013 1.267 1.013 1.013 1.013 1.013 1.013

St. no. 118 119 120 121 122 123 124 125 126

m (t/h) 38.74 91.46 10.29 101.8 91.46 10.29 2.13 36.61 10.29

T (°C) 50 50 50 50 50 50 50 50 50

P (bar) 1.013 1.013 1.013 1.013 1.013 1.013 1.013 1.013 1.013

St. no. 127 128 Purge1 Purge2 Purge3 Purge4 Purge5

m (t/h) 36.61 2.13 0 1.4 0.32 0.02 0

T (°C) 50 50 60.01 35 34.66 35 47.57

P (bar) 1.013 1.013 1.9 74.47 1.6 1 1

The V-i curve of PEME in this study is compared with the information presented
in [48] and is displayed in Fig. 4.11 to guarantee that the simulation of PEME in the
Aspen HYSYS program is carried out accurately. The highest relative error is 1.4%,
and this result shows that the two are in good agreement with one another. So, this
work’s PEME simulation block can successfully forecast the electrolyzer’s
performance.

Figure 4.12 shows the PEME’s heat demand, or TΔS, and the heat it produces as
a result of irreversibilities, or overpotentials. Since the activation and ohmic
overpotential terms are directly connected to the current density of the electrolyzer
in this figure, it can be seen that the heat created rises with current density (Eqs. 4.20
and 4.22). It should be observed that the PEME’s heat consumption is lower than its
heat production for all levels of current density. As a result, it is not necessary to
introduce more heat from an outside source, and any extra heat should be released to
keep the PEME at a constant temperature.

The electrolyzer’s electrical power consumption and hydrogen energy output are
affected by current density, as shown in Fig. 4.13. It is evident that as the current
density of the electrolyzer rises, so do the energy input and output. The pace of rise in
energy consumption, however, is substantially greater than the rate of hydrogen
production. As seen in Fig. 4.14, this results in a decline in PEME energy efficiency.
When i> 1000 A/m2, the energy efficiency falls off more quickly. There is thereafter



a linear drop. The electrolysis voltage rises as current density rises, as seen in
Fig. 4.14. According to Eqs. (4.20) and (4.22), this tendency results from the
overpotentials’ direct response to rising current density. These equations predict
that when cell temperature rises, overpotentials diminish, causing the cell’s potential
to fall and its efficiency to rise. For instance, the electrolyzer becomes 2.6% more
efficient when the temperature rises from 40 to 80 °C at i = 4400 A/m2.
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Table 4.12 Performance
parameters of the subsystems
and overall system

Parameter Value

ORC

Wnet,ORC (kW) 1085

ηORC (%) 11.15

CC

CO2 recovery (%) 90.74

Reboiler duty (GJ/tCO2) 3.79

Lean loading (mol CO2/mol MEA) 0.203

Rich loading (mol CO2/mol MEA) 0.496

pHlean 9.79

pHrich 8.52

PEME

Current density (A/m2) 7186

Voltage (V) 1.986

Power (MW) 1320

ηPEME (%) 74.20

MSU

CO2 conversion in the reactor (%) 21.30

CO2 conversion in the unit (%) 94.84

Methanol selectivity (%) 97.70

Methanol yield (%) 20.81

Methanol production (t/d) 518.88

DMFC

Current density (A/m2) 2082

Voltage (V) 0.25

Power (MW) 1.82

ηcell (%) 8.83

ηDMFC (%) 8.49

Overall energy efficiency (%) 66.84

Overall exergy efficiency (%) 55.10

The fluctuations in methanol concentration, CO2 conversion, and temperature
profiles over the axial reactor distance at five different input temperatures are
depicted in Figs. 4.15, 4.16, and 4.17. Initially, a hydrogenation process transforms
carbon dioxide into methanol, and then a reverse water-gas shifting reaction trans-
forms it into carbon monoxide. Figures 4.15 and 4.16 demonstrate the effects of
these processes on methanol concentration and carbon dioxide conversion, respec-
tively. The hydrogenation reaction is exothermic, as stated in Eqs. (4.27)–(4.29), but



15
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Fig. 4.8 Portion of each
subsystem in total exergy
destruction. (Reprinted from
Nazerifard et al. [24],
copyright (2022), with
permission from Elsevier)
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Fig. 4.9 At various turbine intake temperatures, the impact of turbine inlet pressure on ORC
efficiency may be observed. (Reprinted from Nazerifard et al. [24], copyright (2022), with permis-
sion from Elsevier)
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Fig. 4.10 Profiles of temperature and gas-phase CO2 molar flowrate inside the absorber column.
(Reprinted from Nazerifard et al. [24], copyright (2022), with permission from Elsevier)
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Fig. 4.12 Comparison between heat demand and produced heat of PEME at 80 °C. (Reprinted
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the reverse shifting reaction is endothermic. The total thermal effect is shown by the
rise in reactor temperature in Fig. 4.17 because the rate of the hydrogenation reaction
is larger than that of the RWGS reaction. The CO2 concentration falls as the stream
passes through the reactor, and both processes come to a stop at a specific distance
from the reactor entrance. The reactor temperature, methanol concentration, and CO2

conversion are all at their peak values at this time. The intake temperature has a
significant impact on the equilibrium point’s position and properties. The equilib-
rium distance from the reactor intake decreases as a greater inlet temperature causes
the equilibrium state to occur earlier, as seen in Figs. 4.15, 4.16, and 4.17. The
kinetic rate of both processes is enhanced by a high input temperature, which
accounts for this. The reactions are so kinetically restricted at an intake temperature
of 200 °C that no equilibrium state is established in the reactor. Both processes go
forward quickly at an inlet temperature of 210 °C, achieving a maximum equilibrium
concentration of methanol and a maximum CO2 conversion. The RWGS reaches
equilibrium sooner and subsequently progresses in the opposite direction, leading to
a lower equilibrium methanol concentration and CO2 conversion if the reactor input
temperature is higher than 210 °C. In other words, a low intake temperature is
preferred by the exothermic nature of CO2 hydrogenation. On the other side,
extremely low temperatures cause the reactions’ kinetic to slow down. As a result,
there is an ideal inlet temperature, which in this case is 210 °C, that fulfills both of
these opposing factors. According to Fig. 4.17, the greater the inflow temperature,
the higher the reactor temperature will be.
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The correlation between intake temperature and pressure and carbon dioxide
conversion is shown in Fig. 4.18. The processes in the reactor have not achieved
an equilibrium state at 200 °C, as indicated in Figs. 4.15, 4.16, and 4.17. As a result,
as the temperature rises, the rate of reactions rises as well, increasing the conversion
of CO2. These numbers indicate that the processes attain equilibrium at temperatures
of 210 °C or above. Therefore, Le Chatelier’s concept is applicable in these
circumstances. As a result of the exothermic nature of the methanol synthesis
process, the conversion of CO2 declines with rising temperature. When the temper-
ature rises from 200 to 275 °C and the pressure remains constant, the CO2 conver-
sion first reaches a maximum value before linearly declining. Maximum CO2

conversion occurs at a temperature of around 210 °C and depends on the reactor
input pressure. The relationship between the reactor intake temperature and the
impact of a change in input pressure on CO2 conversion is also seen in Fig. 4.18.
In other words, the CO2 conversion degrades as the input pressure rises if the
reactor’s inlet temperature is below 210 °C (the maximum point). CO2 conversion
and inlet pressure are connected, nevertheless, if the input temperature is greater than
210 °C. The hydrogenation processes (Eqs. 4.27 and 4.28) proceed in accordance
with Le Chatelier’s principle as the input pressure rises. As a result, the production of
methanol increases and the CO2 conversion rate rises. Additionally, at higher
temperatures, the reliance of CO2 conversion on pressure is more prominent. For
instance, the CO2 conversion decreases by 1.583% when the pressure is increased
from 50 to 80 bar at 200 °C while increasing by 5.097% at 250 °C.



4 Investigation of a New Methanol, Hydrogen, and Electricity. . . 123

0

5

10

15

20

25

200 215 230 245 260 275

C
O

2
co

nv
er

sio
n 

(%
)

Temperature (˚C)

p = 50 bar

p = 60 bar

p = 70 bar

p = 80 bar

Fig. 4.18 Effect of reactor inlet temperature and pressure on CO2 conversion. (Reprinted from
Nazerifard et al. [24], copyright (2022), with permission from Elsevier)

To confirm the simulation of the DMFC in this study, the generated results for the
DMFC are compared with the experimental data in [49] in the form of a cell voltage-
current density plot under the identical operating circumstances. The two exhibit
good agreement, as seen in Fig. 4.19, and the resulting model is quite good for
forecasting DMFC behavior. The kinetic equations of MOR and ORR, Eqs. (4.54)
and (4.55), and their parameters, Eq. (4.56), are responsible for the variation at low
current density levels. On the other side, the variation at high current density results
from the liquid fuel’s restricted reaction and diffusion rates, as well as the simulation
code’s disregard for two-phase effects.

Figure 4.20 shows how changing the DMFC current density affects the
overpotentials and cell voltage. According to the calculation, the thermodynamic
equilibrium voltage, or the cell voltage at zero current density, is 1.214 V, which is
significantly greater than the open circuit value. This is brought on by the fuel cell’s
methanol crossover phenomena and a substantial cathode overpotential that exists
even when no current is being provided. There are no additional overpotentials when
there is no current density. Due to two opposing factors—methanol crossover and
the actual performance of the DMFC—the cathode overpotential displays a roughly
constant trend as the DMFC current density rises. The other overpotentials start to
rise with current density, as seen in Fig. 4.20. When taking into account Eqs. (4.22),
(4.57), (4.58), and (4.60), this procedure is anticipated. The anode overpotential is
increasing at a rapid pace, yet the membrane’s ohmic overpotential is minimal at all
current densities. Finally, a reduction in cell voltage is brought on by an increase in
overpotentials with current density.
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Figure 4.21 displays the DMFC efficiency and power density curves as a function
of current density. The voltage efficiency of the cell declines as methanol usage rises
(Eq. 4.63), whereas the fuel efficiency increases (Eq. 4.64). Fuel efficiency has a
major role in cell efficiency at low current densities, but voltage efficiency plays a
major role at high current densities. As a result, as seen in Fig. 4.21, the cell
efficiency curve has a maximum value. The power density of the DMFC rises with
the current density first increases to its maximum value and subsequently falls.
According to Eq. (4.52), current density and cell voltage are two opposing factors
that affect the fuel cell’s power density. The influence of rising DMCF current
density is more pronounced at low current densities, but at high current densities,
the power density is mostly determined by the rate at which cell voltage is reducing.

The variations in cell voltage and power density with current density at various
operating temperatures are shown in Fig. 4.22. This graph demonstrates how
increasing the fuel cell’s operating temperature raises its voltage and power density
because a higher temperature enhances the reactant’s transport characteristics and
the electrochemical reaction’s kinetics. However, because methanol crossover rises
with operating temperature, it has a detrimental influence on the limiting current
density.
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4.5 Conclusions

In this study, a novel trigeneration system is constructed and thermodynamically
investigated. It consists of an organic Rankine cycle, a carbon capture unit, a proton
exchange membrane electrolyzer, a methanol synthesis unit, and a direct methanol
fuel cell. By collecting the majority of the carbon dioxide present in the flue gas and
turning it into methanol, hydrogen, and energy, the suggested system lowers the rate
of carbon dioxide emissions. The organic Rankine cycle regulates the carbon flue
gas temperature for carbon capture system. The electrolyzer receives the necessary
energy from solar radiation, and it also generates the necessary hydrogen for the
methanol synthesis unit. The following can be used to summarize the key findings of
the current work:

• Due to its significant power consumption, electrochemical processes, and heat
exchange, the electrolyzer system contributes the most to the overall exergy
destruction rate. On the other hand, because no reaction takes place in the organic
Rankine cycle, its influence on the overall loss of exergy is insignificant.

• The system’s estimated energy and exergy efficiencies are 66.84% and 55.10%,
respectively.

• Increasing the ORC turbine inlet pressure increases the efficiency, while increas-
ing the turbine inlet temperature degrades efficiency.
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• The carbon capture rate is high in the lower stages of the absorber column in the
carbon capture unit. After that, it slows down. As the stream moves through the
absorber column, the temperature peaks in the fourth stage.

• As the current density of the electrolyzer increases, the cell voltage increases, but
the energy efficiency decreases.

• The methanol concentration, CO2 conversion, and temperature profiles over the
reactor length are all significantly influenced by the reactor input temperature.
The temperature at the reactor’s input determines even how much pressure the
reactor exerts to convert carbon.

• The cell efficiency and power density of the direct methanol fuel cell rise to their
maximum levels and subsequently fall as the current density rises.

• Although the fuel cell’s operating temperature is greater, this has a favorable
impact on cell voltage and power density while reducing the fuel cell’s current
density.
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Chapter 5
Protection and Monitoring of Digital
Energy Systems Operation

Reza Jalilzadeh Hamidi and Ananta Bijoy Bhadra

Abstract Digital transition of energy systems encloses all major parts of the electric
grids, including power system protection and monitoring. This chapter first accu-
rately reviews the basics of smart microgrid protection since the definitions vary
from a reference to another. Then it focuses on the fault responses of inverter-based
resources (IBRs), as those are emerging technologies that will be playing the great
role of interfacing primary energy resources and the grid. In particular, for materi-
alization of net-zero carbon emission in electricity generation, the use of IBRs is
indispensable. However, the non-universal and software-defined IBR fault responses
make conventional relays such as overcurrent, directional, and distance relays
inapplicable in heavily IBR-based grids. Therefore, the discrepancy between con-
ventional and IBR fault responses is elaborated, and possible solutions to the
looming protection issues are discussed. The shortcomings and merits of each
solution are also discussed.

Keywords Autonomous grid · Fault current · Fault level · Fault response · IBR ·
Inverter · Source-independent protection

5.1 Introduction

Digital energy systems are technologies and schemes that utilize digital computers
together with digital models to manage the increasingly sophisticated modern energy
systems. The emergence of digital energy system (DES) will have profound impres-
sion on the betterment of energy resiliency, cost-effectiveness, transparency, quality
of service, and consequently both customer and provider satisfaction [1, 2]. One of
the major aims of DESs is to develop highly sophisticated and complex protection
and monitoring schemes to respond to smart microgrid needs, utilizing communi-
cations, uncertainty analysis, and intelligent management capabilities [3, 4].
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The addition of distributed energy resources (DERs) either uncertain renewable-
based or dispatchable [5], integration of energy storage systems (ESSs), and the
emergence of new types of power electronic-based loads, adaptive power network
topology, DC grids, and so on necessitate the development of new methods for
recognition of faults and protection coordination [6–9]. These developments are
necessary to safeguard the power grid against new phenomena and new components
[9–11] as well as providing real-time monitoring.

This chapter will provide an insight into the protection and monitoring needs of
advanced power grids and then delivers some of the most up-to-date developments
in response to the arising issues and needs.

5.2 Overview of Protection Key Points and Definitions

This section briefly, but precisely, reviews the basics of protection. This is necessary
since there are some discrepancies in different resources and technical texts. There-
fore, providing a precise definition of the fundamentals helps understanding from the
readers.

• Protection zone: with reference to Fig. 5.1a, protection zone is a part of a power
grid that is protected by a certain protective scheme. Whenever a fault happens in
a specific zone, only the faulty zone will be disconnected by the circuit breakers
surrounding that zone, and the rest of the system keeps functioning. Conversely,
the protective devices supporting a particular zone stay restrained in case of faults
outside their own zone.

• Unit protection: following this scheme, the protective relays operate in case of
abnormal conditions inside the protection zone, while the relays stay stable for
abnormal conditions outside the zone. The circumference of the zone is limited by
the measuring devices connected to the relays. For example, and with reference to
Fig. 5.1a, a unit protection, which is differential protection, protects a trans-
former, and the zone is the span between two CTs. It is worth noting that the

Fig. 5.1 A typical unit protection, (a); a typical non-unit protection, (b)
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CBs are generally placed in a way that their failure is detected by the closest CT to
them, or in other words, CBs are placed toward the protected component.
Therefore, CBs are normally placed inside the protection zone. In Fig. 5.1a, the
differential relay should react to F2 that is inside the zone, but it should remain
restrained against F1 that falls outside the zone. In unit protection, coordination
between relays is not needed.

• Non-unit protection: converse to the unit protection, non-unit relays’ protection
zones extend well beyond their measuring components and often cover large
portions of power grids. One of the typical examples in this area is overcurrent
relays (OCRs). As shown in Fig. 5.1b, each upper OCR overlaps the zones of the
lower ones. In non-unit protection, relay-to-relay coordination should be done
with extra care following the general protection scheme selected for the grid.

• Overlapping zones: with reference to Fig. 5.1b, when some protection zones
intersect, the intersection is an overlapping zone. This can be deliberately done
for providing backup protection, or it happens unintentionally that often leads to
coordination issues.

• Graded coordination: when relays’ zones overlap, the closest relay to the fault
should react first as the “main” relay to keep the de-energization of the grid as
minimal as possible. If it fails to disconnect the faulty zone for any reasons, then
the “backup” one should now react. Therefore, non-unit relays are coordinated as
the main and backup one(s). This coordination procedure is done by putting the
characteristic curves of the backup ones above the main one. For example, as for
OCRs, grading can be done considering both time and current, which is called
time-current-graded coordination, as shown in Fig. 5.2a. The coordination can be
done with respect to time only; that is called time-graded coordination, as
depicted in Fig. 5.2b, or as Fig. 5.2c shows, the coordination can be current-
graded (e.g., instantaneous function) [7, 12].

Fig. 5.2 Different ways for graded coordination: (a) Time-current-graded coordination; (b) time-
graded coordination; (c) current-graded coordination
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5.3 Overview of Microgrid Protection Bottlenecks

5.3.1 Loss of Coordination

• As DERs participate in fault currents and increase their levels, DERs disturb the
time-current and current graded coordination of non-unit protective devices.
However, this has no effect on time-graded coordination.
Solutions: (i) Re-coordination of time-current- or current-graded coordination
schemes [13]; (ii) using only time-graded coordination [14]; (iii) addition of fault
current limiters (FCLs) to the system [15].

• The second problem arising from DERs is that they change the power flow in
distribution grids, which conventionally flows upstream to downstream. How-
ever, when DERs are added toward the end of feeders, then power-flow direction
can be reversed downstream to upstream.

Solution: (i) Adaptively readjustments of the settings of OCRs; (ii) addition of
directional elements to OCRs to prevent them from tripping in case of upstream
faults.

5.3.2 Protection Under-reaching, Desensitization,
or Blinding

With respect to Fig. 5.3, when infeed DERs are added to the grid, the responsible
relays sense a fault current lower than the actual fault current passing through the
faulty feeder. Therefore, the relays may not react in time, and the system gets
damaged [16, 17]. In severe cases, the built-up voltage across the fault resistance
and the feeder can decrease the contribution of the main grid to the fault causing
blindness of the feeder’s relay [17].

Solution: The solution to this issue is to add a protective relay at the distributed
generation (DG) location.

Fig. 5.3 Interconnection of
a DG as an infeed
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5.3.3 False Tripping (Nuisance and Sympathetic)

Due to the contribution of DERs to the faults, there are currents flowing throughout
the grid during the fault that may cause unwanted tripping of some of the relays in
the grid. If a relay reacts to a fault outside its protection zone, it is generally called
“false tripping,” which can be divided into two major categories.

• Sympathetic Tripping
When healthy feeders become disconnected due to a fault in the other feeder,

sympathetic tripping happens. For example, in Fig. 5.4a, if there is any of R1 or
R2 trips for F1 because of the currents fed by the DG units, a sympathetic trip
occurred [18].

Solution: Directional blockers should be added to R1 and R2.
• Nuisance Tripping

With reference to Fig. 5.4b, there are two protection schemes for the faulty
feeder with DERs: (a) all the DERs should be disconnected (the present-time
scheme suggested by [19]). (b) Only the fault location should be disconnected,
and the rest of the system continues working in the islanding mode (the preferable
scheme). If the first scheme is selected for the grid, and if R2 disconnects F2
before both RDG1 and RDG2, nuisance tripping will happen.

Solution: it is suggested that the system is equipped with transfer trip relays
that disconnect RDG1 or RDG2 when R1 or R2 detects a fault [20].

5.3.4 Auto-reclosers

As some faults are temporary (e.g., caused by lightning), the system can be kept from
outages with the use of auto-reclosers. A typical operation sequence of

Fig. 5.4 False trips. (a) Sympathetic tripping. (b) Nuisance tripping



auto-reclosers is shown in Fig. 5.5. However, the number of fast and slow shots, as
well as dead times, is selected based on the protection scheme and the grid
specifications.
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Fig. 5.5 A typical operation sequence of auto-reclosers

Fig. 5.6 Auto-recloser issues. (a) Auto-recloser protection zone. (b) The sectionalizer issue arising
from DERs

An auto-recloser is installed in a power grid well upstream, and its protection
zone covers a large portion of the system as Fig. 5.6a shows. If a temporary fault
happens, the recloser de-energizes the system with a short delay as the fast shot in
Fig. 5.5 shows. The dead time should give the arc enough time to quench, and when
the recloser reconnects after the deadtime, there is no longer any fault in the system.
However, if the fault is permanent (e.g., a dropped bare conductor or broken
insulator), after several dead shots, the fault still exists, and the recloser does not
reconnect anymore. In setting the recloser, there are two major schemes to follow:

(i) Fuse blowing scheme: the recloser gives fuses enough time to blow and clear the
fault during recloser’s slow shots.

(ii) Fuse saving scheme: the recloser does not let fuses blow by having no slow
shots.
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As Fig. 5.6b depicts, when a recloser disconnects a system with DERs connected
to it, (i) the contribution of the DER to the fault may not let the arc quench. (ii) The
asynchronous reclosing may result in high currents in the grid.

Solution: for the first issue, the dead time of the recloser should be increased such
that the protective systems of all DERs in the recloser zone trip. As for the second
issue, a synchronous relay should block asynchronous reclosures.

5.3.5 Sectionalizers

Sectionalizers are devices that are used together with reclosers to disconnect the
faulted feeders. When an upper recloser interrupt the fault currents, a lower
sectionalizer counts high currents (caused by a fault along their feeder) after the
dead times. If a specific number of unsuccessful reclosures occurs, the sectionalizer
disconnects the faulty feeder during the next dead time.

As Fig. 5.6b shows, the problem arises from the contribution of DERs to the fault
that does not allow the sectionalizer to count the high currents and dead times since a
fault current continuously flows from the DER without any interruption during the
recloser’s dead times.

5.3.6 Unintentional Islanding

Different contingencies, in particular false tripping, may result in undesirable
islanding in that a part of the microgrid stays energized by DERs while it is
disconnected from the rest of the grid. Islanding operation of the grids requires
advanced frequency, voltage, load-sharing control systems, as well as sophisticated
monitoring systems. Therefore, in most of the practical grids, a part of the system
should not be allowed to continue working in islanding mode [20]. There is a
significant body of research looking into islanding detection.

Based on IEEE Standard 1547, DERs must be switched out from the grid in 2 s
after the occurrence of islanding [19]. To this end, reliable islanding detection
methods are required. Major types of islanding detection methods have been devel-
oped as shown in Fig. 5.7 [21, 22]. (i) Remote methods utilize both the local and far
measurements through communication systems for detection of islanding. (ii) Local
methods only rely on local measurements at the location of the DERs, and they do
not use communications.

• Passive islanding detection methods rely on measuring electrical parameters of
the grid such as voltage displacement, frequency deviation, rate of change of
frequency or voltage (ROCOF or ROCOV), rate of change of frequency with
respect to power (df/dp), and total harmonic distortion together with voltage
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Fig. 5.7 General
classification of islanding
detection methods

unbalances. However, large non-detection zones and false tripping are major
downsides of passive methods.

• In active methods, some external signals are injected into the grid. Then, the
grid’s response to the signal is observed at the location of DERs and premised on
the system response, a probable islanding is detected. However, power quality
issues due to the injected signal and also comparatively longer times to detect the
islanding detract from active methods.

• Hybrid methods have been developed to improve the shortcomings of passive and
active methods. This classification not only injects a noise into the system, but it
also concurrently monitors the electrical parameters throughout the grid for the
betterment of islanding detection.

5.3.7 Heavily Power Electronic-Based Grids

In conventional power grids, which are mainly supplied by synchronous or
induction generators, the fault contribution and during-the-fault current patterns of
conventional generators are well-known. However, the contribution of the power-
electronic-based sources is unpredictable, software-defined, and incomparable with
the conventional generators [20, 23]. The protection issues caused by inverter-based
resources (IBRs) are summarized in Fig. 5.8, and then, each one is described.



tems and directional elements fail in detecting fault-current direction.
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Fig. 5.8 Main protection
issues of IBRs

(i) In conventional systems, a fault is detected by fault-current features; this is the
most basic and widely used method for detection of faults in power systems.
The steady-state fault current is reversely proportional to the driving-point
impedance (diagonal elements of the impedance matrix, also referred to as
Z-bus) of the fault location. However, in the case of heavily or 100% inverter-
based grids, the size and pattern of fault currents do not follow the
abovementioned well-known patterns [19, 20, 23, 24]. The differences are as
follows:

• Magnitude: IBRs generate fault currents in the order of 1.00–1.2 p.u. (in less
common ones, the fault current can increase to 1.5 p.u.), while conventional
generators typically generate fault currents as large as 3–5 p.u [25]. This can
be found in Figs. 5.9 and 5.10.

• Fault current phase Angle: In conventional systems, fault currents lag
voltage. However, in the case of IBRs, the fault currents can be capacitive,
inductive, or even resistive [23, 25].

• Sequence: The negative and zero current sequences are negligible
depending on the control system of the IBR, whereas those sequences can
be high in case of unsymmetrical faults in conventional systems [19, 23,
24]. Figure 5.9b depicts this.

• Fault current direction: the directional elements find direction of fault
currents by comparing the angle between voltage and current, considering
that the system is inductive, and therefore, the fault current lags the voltage.
As mentioned above, this may not happen in heavily IBR-dependent sys-

(ii) Non-universal fault current pattern: non-universal control methods for IBRs
make the fault patterns irregular and non-uniform in IBR-based grids, which
make use of some conventional protection schemes impossible for protection of
the grids [19, 23].

(iii) Short fault current transient: the transient of fault currents in conventional grids
is mainly associated with the sub-transient impedance of generators and X-to-R
ratio of the driving point impedance. However, a limited and relatively low
amount of energy stored in inverters’ DC-bus capacitances leads to a rapid
decay in the short-circuit current in converter-dominated grids
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Fig. 5.9 Fault responses of conventional and inverter-based generators. (a) A typical fault current
in conventional systems. (b) Examples of the fault responses of IBRs. (The figures are from Kobet
and Pourbeik [25], Keller and Kroposki [26])

[27, 28]. Moreover, inverters are rarely controlled to mimic the behavior of
generators during a fault.

Accordingly, in IBR-based grids, protection schemes have to mostly rely on
voltage, sequential components, or extracting other features from during-fault cur-
rent or voltage. This will be elaborated in the next sections.

Moreover, Fig. 5.10 shows the voltages and currents at Bus 1. The fault is bolted
A-G. The voltage pattern is analogous to conventional systems. However, during-
fault currents are significantly different. It is obvious in Fig. 5.10 that (i) the phase
currents are nearly in-phase with one another because of the high zero-sequence
current produced by the synchronous generator. (ii) The magnitude of B-phase
current is the largest although the fault is A–G. (iii) Regardless of the inductive
nature of the transmission line (TL), the current and voltage of phases are somehow
in phase [23].

Accordingly, protection algorithms trusting the fault-current magnitude, the
phase differences between the phase currents, and the phase differences between
currents and voltages are no longer reliable in heavily IBR-contaminated grids.
Therefore, overcurrent, directional, and distance relays have no use in such grids,
yet differential relays are still useful [23].
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Fig. 5.10 A system including synchronous generators and IBRs. The AC parts of pre-, during-, and
post-fault voltages and currents are shown as well [23]

Table 5.1 General control
methods of IBRs

Control scheme Control parameters Inverter type

Grid forming VF control VSIa

Grid feeding PQ control CSIb

Grid supporting Droop control CSI or VSI
aVoltage Source Inverter
bCurrent Source Inverter

5.4 IBR Control Schemes and Grid Protection

In order to profoundly dig into the arising issues from IBRs, first, their control
methods should be reviewed. There are three core control schemes for IBRs sum-
marized in Table 5.1 [27].
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Fig. 5.11 Summarized general controllers and their characteristics. (a) Grid feeding. (b) Grid
forming and its controller characteristics. (c) CSI grid supporting. (d) VSI grid supporting

• In the grid forming scheme (also referred to as voltage-frequency control, V/F
control), the inverter actively regulates its output voltage and frequency. There-
fore, the inverter has to consciously supply the grid. The V/F-controlled IBRs can
be modelled with a controlled voltage source in series with impedance
[27, 29]. The need to control the output power is answered by controlling their
output frequency to adjust their bus angle [27]. Figure 5.11b shows the principal
structure and control characteristics of grid-forming inverters. It is noteworthy
that at least one grid-forming inverter should be in any autonomous grid.

• Pursuing the grid feeding scheme (or real-and-reactive power control,
PQ-control), the inverter tracks the voltage angle and frequency of the system
mainly using PLLs and supplies a current to the grid proportional to the reference
values for real and reactive powers. These inverters work as a current source
inverter (CSI), and they do not undertake frequency and voltage correction tasks.
In today’s practical grids, all the inverters must be CSI [30]. If harmonic analysis
and internal aspects of inverters are not under question, the equivalent circuit of a
PQ-controlled IBR (CSI) can be a power-controlled current source with or even
without a parallel impedance [31] as shown in Fig. 5.11a. This scheme efficiently
controls the power injection to the grid since the inverters are relaxed from
controlling the voltage and frequency.

• The grid supporting control scheme combines the droop controller with any of the
other two schemes to lessen the immediate demand-supply mismatch. However,
the power quality issue is a concern whenever the grid supporting scheme is
followed [27, 32]. Figure 5.11c, d, respectively, shows grid-supporting CSI and
voltage source inverter (VSI) basic structures and droop curves.

• The critical point in IBR controllers is that the controllers usually require a quarter
of a power cycle to react to the fault which can be seen in Fig. 5.9b as some sort of
disturbance. Therefore, the protective devices should be agile enough to detect
the fault in that short period.
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5.4.1 Solutions to IBR Protection Issues

Different methods have been proposed to overcome the protection issues arising
from the IBRs where the short-circuit current of the system is quite low. In the next
sections, those will be reviewed.

5.4.1.1 Emulation of Synchronous-Generator Fault Response

One of the methods for enabling protective devices to detect faults is to repeat the
synchronous generators’ fault responses. The relays largely rely on the high and
unbalanced currents generated by synchronous generators for detection of faults
[33]. There is a wide body of research working on the development of the negative-
sequence current loop to generate currents suitable enough for relays in case of
unbalanced faults (e.g., SLG, LL, LLG) as Fig. 5.12 shows [33, 34]. Moreover, it
should be taken into account that the DC bus usually does not have enough storage
capacity for supplying the inverter to make high fault currents.

5.4.1.2 Active Protection Methods

Active protection is defined as injection of sort of waves with a frequency consid-
erably other than the nominal frequency into the grid and identification of faults by
means of measuring the parameters of the injected waves [35]. In active protection
methods, IBRs are mainly responsible to generate some harmonics. The point is that
the intentionally generated harmonics should drastically differ from the ones gener-
ated by nonlinear loads, saturated transformers, etc. This is critical, and extra care

Fig. 5.12 Conventional positive- and zero-sequence inverter model (a). (b) Positive- and zero-
sequence models of the inverters equipped with controllers to mimic generators’ fault currents. (c)
Unbalanced fault response of the inverters with such controllers. (This figure is mainly based on
Banaiemoqadam et al. [34])



should be taken that in the future, such harmonic sources will never be added to the
grid. There are two ways for harmonic generation:
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• Fault-triggered harmonic injection in that IBRs start producing harmonics only
after fault occurrence [34–36]. The problem with this strategy is that the harmonic
generator module should rely on a fault detector as a third party, such as [35, 36],
and correct detection of faults in weak grids with low fault levels is not always
possible. In [34], the occurrence of a fault is detected at the location of the IBR
when its terminal voltage drops below 0.9 p.u. Although [19] necessitates that
DERs must keep generating during low-voltage situations to meet low voltage
ride-through (LVRT) requirements, the issue arises from the fact that SLG faults
in weak or non-effectively grounded grids do not drop the below range, and also
the voltage drop can be caused by other contingencies such as a cut in generation.

• Continual harmonic injection in which IBRs produce harmonics continuously or
repeatedly. This method does not have fault detection problems, however at the
price of reducing power quality and power losses in harmonic generation [28].

5.4.1.3 Source-Independent Relays

Considering non-universal fault responses of inverters due to their software-defined
and non-standard structure and control, protective methods independent of the
source have been developed. One of the major types of source-independent relays
is traveling wave (TW)-based relays, which are able to detect and locate a wide range
of faults in highly complex systems [37, 38]. When a fault occurs, the fault-induced
TWs start moving along TLs as Fig. 5.13a shows. The waves do not depend on the
source specifications, but they are dependent on the fault parameters such as fault
inception angle (FIA), fault impedance, location of the fault, and medium charac-
teristics [39]. Then, TW-based protective devices detect and even locate the fault
through the analysis of the wave parameters such as arrival time, peak, polarity, and
frequency contents. The key to the efficient function of the TW-based relays is the
method used for detection and evaluation of fault-induced waves. Different methods
have been used to this end, including sliding-window digital Fourier, wavelet

Fig. 5.13 A typical ladder diagram of TW propagation in an electrical grid (a). The TWs originate
at the fault location and move along the TLs. When they reach discontinuities, they break into parts,
and each continues traveling. (b) The TWs at the endpoints



transformation with different mother wavelets, Hilbert, short-time matrix pencil
method, and custom-defined methods such as [8]. Korean power transmission
network installed several high-frequency measuring devices throughout a part of
their system. Having collected their real-time measurements, TW-based relays
efficiently detected different faults, and the system is working as a prototype for
further development [40].
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Table 5.2 Comparison of different solutions to the arisen protective problems

Solution Advantage Disadvantage

Emulation of
conventional
generators

1. The currently in-use relays can con-
tinue serving
2. The developed methods for predic-
tion and monitoring of power system
contingencies can continue working
3. Readily applicable for protection
engineers

1. The main problem is that how the
inverters become aware of the
occurrence of the faults

Active
protection

1. Highly sensitive 1. Implementation is not always
possible due to the unknown
2. Increasing the total harmonic
distortion

Source-inde-
pendent
TW-based

1. Highly sensitive
2. Able to detect the fault location

1. Hard to be practically
implemented
2. Costly
3. In some cases (e.g., low fault
angle, long lines, etc.), it cannot
detect TWs

However, TW-based methods are largely prone to measurement noises. If FIA is
low, then the TW is likely to vanish in the noises. For example, the two upper
sub-figures in Fig. 5.13b show TWs discernible in the noises. However, in the two
lower sub-figures, the TWs disappeared in the noises. Also, if there are several
discontinuities in the grid, then the wave traveling pattern becomes quite complex,
which makes the fault detection challenging. One of the practical examples of the
TW-based relays is introduced in [41].

5.4.1.4 Comparison of the Solutions to Protection Methods

The solutions to the issues caused by a large number of IBRs can be summarized in
Table 5.2.

5.5 Predictive Wide-Area Monitoring, Protection,
and Control

For a profound insight into wide power outages originating from various unsettling
events, it is useful to hypothetically divide power system operation into five situa-
tions as depicted in Fig. 5.14a [42].
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5.5.1 Cascading Failures in Large Power Systems

The majority of power outages are resultant of cascading failures initiated by either a
fault, line congestions, hardware dysfunction, extreme climate, or wildfires.
Figure 5.14b illustrates the movement of cascading failures. Figure 5.15 shows the
aggregate substantial power outages from 2011 to 2020 in each continent and also
their grounds. It is obvious that severe weather condition is one of the major triggers
to the total 250 blackouts.

5.5.2 Estimation Based on Synchronized Measurements

One of the remedies for reducing the number and intensity of blackouts is the use of
phasor measurement units (PMUs) and intelligent electronic devices (IEDs). How-
ever, the power grids are already equipped with supervisory control and data
acquisition (SCADA)-based measuring devices that do not provide accurate and

Fig. 5.14 Operation conditions of power systems (a) [42]. (b) Cascading failures inducing
blackouts [43]

Fig. 5.15 The number and causes of the blackouts in different continents [43]



fast enough data from the purpose of semi-real-time monitoring, which is necessary
to protection. The basic architecture of protective wide-area monitoring (PWAM) is
shown in Fig. 5.16a.
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Fig. 5.16 The basic structure of the PWAM (a). (b) Sinusoidal to phasor conversion by PMUs

With reference to Fig. 5.16a, the synchronized measurement technology (SMT)
provides continuous time-stamped estimations. However, the PMU measurements
are in the form of phasors, which are absolutely different than the data provided by
conventional power system metering devices. Figure 5.16b clarifies transformation
of a sine wave to a phasor using synchronization technology. The primary idea of
PMUs is to measure the voltage and current phasors on distinguishable time arrays
and communicate them to a PMU Data Collector (PDC) where the data can be
evaluated and further processed. The essential functionalities of PMUs are as
follows: (i) system observing/state estimation and (ii) fault recording.

Although PMUs are beneficial to the system observability, conventional state
estimators are not capable of using unprocessed PMU data since there are two major
differences between SCADA and PMU measurements: (i) the mathematical formu-
lation of conventional state estimators is suitable to SCADA data, and (ii) the data
rate of PMUs is much faster than that of SCADA [44]. Therefore, it is essential to
convert PMU data to be compatible with conventional state estimators [45]. The
most widely used method for state estimation is weighted least square (WLS), which
is calculated as [46]:

min
x

J xð Þ ¼ z� h xð Þ½ �TR�1 z� h xð Þ½ �, ð5:1Þ

where J(x) is the objective function, R is the measurement-error covariance matrix,
(.)T symbolizes matrix transposition, z is the measurement vector, h(x) is the system
equation, and x is the vector of states. Solving (5.1) through the Newton-Raphson
method results in [46]:

G xk
� �

Δxkþ1 ¼ HT xk
� �

R�1 z� h xk
� �� �

, ð5:2Þ



where G(xk) HT(xk)R 1H(xk) is the gain matrix and H(xk) is the Jacobian matrix

� �
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¼ �

of h(xk), Δxk + 1 ¼ xk + 1 � xk.
One of the powerful methods to remove the mismatch between the data rates of

SCADA and PMU is compressive sensing, a way for compression and recovery of a
sparse signals only utilizing a small number of linear projections. The sparsity is
modeled as [44, 45]:

xj ¼ zþ zj, j 2 1, 2, . . . , Jf g, ð5:3Þ

where z is the common component of compressed signals in that the common
component and also the innovation terms are both sparse on Ψ, which is defined
as [44, 45]:

z ¼ Ψθz, θzk k0 ¼ K and zj ¼ Ψθj, θj� �
0
¼ Kj: ð5:4Þ

Then, the vector of sparse coefficients is calculated through:

bθ ¼ argmin θk k1 s:t: y ¼ bΦbΨθ ð5:5Þ

and finally, the signal is recovered by:

x ¼ bΨθ: ð5:6Þ

Using compressive sensing, the gaps between SCADA and PMU data can be
filled by assuming SCADA data as sparsely compressed data [44, 45].

5.5.3 Protective Wide-Area Monitoring Structure

The PWAM framework essentially comprises several layers as shown in Fig. 5.17. It
starts from the sensors connected to the electrical grid that measure electrical
parameters, and then PMUs using synchronizing signals find the phasor values out
of the sensory data and send them to the PDC. The PDC collects a large volume of
data and prepares them for recording and visualization as well as other custom-
defined applications. The protective algorithms can be implemented as a custom-
defined function.

However, the protection at this stage has to be backed up, considering the delays
and probable communication failures from the first level to the protection level,
although the use of PWAM is such accurate and keen that it reduces 70% of
significant power outages [47, 48]. There are several studies and real-world
PWAM projects as follows: in [49], a multifunctional line protection system is
designed using PWAM, which is able to prevent false trips due to complicated
cases that distance relays falsely trip. Tokyo Electric Power Co. (TEPCO) utilized a



wide-area relay technology in light of power angle assessment technique. A major
atomic generator was chosen as a locus generator, and its momentary power and
voltages information were moved to each siphoned stockpiling plant by means of
microwave communications. Then, relays used the received and local information to
detect oscillations, out-of-phase, frequency deviations [50].
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Fig. 5.17 Different layers for transferring and using PMU data

5.6 IoT, Auxiliary Protection, and Monitoring Methods

As smart grid’s topology and renewable generations connected to it are both
uncertain, a different yet efficient approach is IoT, which involves the Internet for
data transmission. The flow of data through the Internet keeps relays and monitoring
centers aware of the semi-real-time changes in the system topology, generation, and
demand. However, protection has to be a subordinate auxiliary service of IoT due to
IoT intermittency and reliability issues [30, 51, 52].

The ability of machine-to-machine coordination has made IoT a matter of greater
interest. IoT was first defined in 1999 [53]. As Fig. 5.18 shows, IoT comprises the
following portions: (i) sensors for collection of data, (ii) identifiers for identification
of the data source, (iii) software for analysis of the data, and (iv) Internet connec-
tivity for communication among all the associated machines.

One of the prominent uses of IoT is seen in power systems. The use of IoT in
power systems emphasizes (i) IoT in protection [54] and (ii) IoT in monitoring [55].
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Fig. 5.18 Components
of IoT

5.6.1 IoT in Protection

IoT-based protection is defined as the protection of equipment and subsystems with
the main focus on fault diagnosis and cyberattacks [56], however, as the backup
protection scheme. The IoT-based protection is applicable to situations where the
fault is not intense or imminent. For example, in [57], an IoT protection scheme is
introduced to monitor the distribution transformers’ parameters such as temperature,
rise or fall of the oil level, vibration, and oil humidity. Upon encountering any
abnormality, it alerts the operators, and if no operator is not present on-site, it
disconnects the transformers. In [58], another IoT-based distribution transformer
protection is introduced that monitors overheating, deformation, short circuit, and
suffocation of windings. The system also stores data and sends alerts to operators
upon detecting any abnormality.

5.7 Artificial Intelligence-Based Protection

Artificial intelligence (AI) is most popular as it is precise in terms of problem
classification and decision-making. It optimizes the management strategy as well
as involves the process of making an intelligent decision based on its prior training
[59]. AI is defined as the ability of computer systems to solve poorly defined
problems using methods inspired by the human brain [60]. Over the years, AI has
been implemented in various sectors as well as power systems from the 1990s.
Several AI-based monitoring techniques are established and have proved to be
effective [61]. There are several AI methods available, including (i) rule-based
systems, (ii) knowledge-based systems, (iii) object-oriented methodologies, and
(iv) case-based reasoning.



In [ ], the author has applied the Finite Impulse Response ANN (FIRANN),
where it is used in a differential relay for protection of three-phase power trans-
formers. Two different FIRANN were applied, where one was involved in
determining the existence of the fault and the other one indicates whether the
fault is inside the transformer. In [ ], the authors have used ANN for detection of
magnetization level in transformer cores. As the magnetic core saturation is
directly related to the current harmonics, the method detects saturation through
analysis of the current harmonics. In [ ], an ANN-based algorithm is developed,
which determines the transformer health investigating dissolved gases in the oil
(e.g., hydrogen (H2), methane (CH4), ethene (C2H6), carbon monoxide (CO)),
which are created from stresses on transformers such as internal sparking and
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• Rule-based systems are defined as a system containing information from human
in the form of rules (e.g., If-Then loops). Although it is simple and easily
implementable, it is improper in the case of large or scalable systems. Moreover,
the lack of flexibility and inability to adapt to changing environments reduces its
applications [62].

• Knowledge-based systems are defined as human-centered systems. They attempt
to understand and replicate human reactions through the training process. Then,
knowledge-based systems use their learning when they encounter new situations.
Knowledge-based system applications include after-the-fault analysis and power
transmission protection [63].

• Object-oriented method combines one data object with a specific procedure.
Rather than passing data to procedure, the program communicates by sending a
message for an object to perform a procedure that is already embedded. It is
heavily used in power capacity planning and power system maintenance [64].

• In case-based reasoning, different human experiences are recorded as cases. The
system searches the storage with similar problem characteristics and finds the
closet fit and applies it to the new ones.

Some of the implemented techniques in this area are artificial neural network
(ANN) [65, 66], support vector machine (SVM) [67], genetic algorithm (GA) [7],
fuzzy logic [68], and matching approach [69]. Each one of them has a different
algorithm to monitor and protect the power grids.

5.7.1 ANN-Based Relays

ANN is one of the most prominent intelligent techniques used for power system
monitoring and protection purposes. ANN shows a number of such qualities as
mapping capacities, adaption of the internal failure, speculation, and fast data
preparation [70]. ANN is essentially based on pattern recognition and training.
The output decision is determined by comparison with the previous results during
training procedure [71].

• Transformer Protection with ANN



overheating. In [ ], an ANN-based differential protection is designed, which is
able to distinguish different events such as inrush currents, sympathetic inrush,
and overexcitation.
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Another aspect of ANN is its application in the cybersecurity of power
systems. As modern power systems involve an abundant number of cyber
resources, it is evident that cyberattacks may be planned to cripple down the
system most treacherously by “data spoofing” (i.e., gaining control of the system
in disguise of trusted people). For cyberattack detection, an ANN-based algo-
rithm is proposed in that the algorithm shows more flexibility in detection of
attacks when the system does not work pursuing prior assumptions [ ]. In [ ],8483
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• Generator Protection with ANN
In [76], the authors have proposed an ANN-based detection and classification

of winding faults in windmill generators. The authors have concluded that
ANN-based algorithm provides higher accuracy at a small computation cost. In
[77], an ANN-based method for detecting loss of excitation (LOE) in synchro-
nous generators is proposed. The ability of generator protection in differentiating
LOE and stable power swing is essential for enhancing the traditional LOE
protection. The results clearly demonstrate that the ANN-based method has a
promising performance compared to conventional generator protection relays.

• Transmission Line Protection with ANN
Another prominent application of ANN is the protection of TLs. In [72], an

ANN-based method for the protection of TLs is developed. As power systems are
integrated and complex, the ANN is trained with 100,000 patterns. Therefore, for
more complex systems, training the ANN algorithm can be quite time-consuming
if it is even technically possible. In [78], the researchers have established an
ANN-based system with 99.91% fault classification accuracy. Although the
established system provides greater success in fault classification, it lacks the
capability of fault location in the system. In [79], the authors have presented a
novel filter premised on ANN for fault detection, classification, and location. The
results show that the accuracy is almost 96%. Another point of strength of
ANN-based systems is its fast response time. In [80], the authors have proposed
an ANN-based ultrafast fault detection system that has satisfactory classification
accuracy with one-eighth of a cycle of post-event data. In [81], the authors have
established an ANN-based protection system for STATCOM compensated TLs
where detection, classification, and location of the fault are done in a quarter cycle
(4 ms in case of 60 Hz system), which is suitable for IBR-based systems.

• Detection of High Impedance Faults with ANN
Another application of ANN is to detect high impedance faults (HIFs) in

distribution systems with IBRs [82]. This is due to the fact that HIFs are difficult
to be monitored using traditional digital relaying as their current is too low to
detect and, in some cases, the fault current is only available during a short time
duration. In [82], the input data are local current and voltage. The features of HIFs
then will be detected by the proposed method, and it not only finds an HIF fault,
but it also finds the location of the HIF in IBR-based grids.

• ANN for Cybersecurity



the author had compared the state-of-the-art techniques and inferred that through
ANN, cyberattacks can be prevented in cyber-physical systems such as smart
grid. Moreover, along with the data spoofing, false data injection is also seen as a
major threat in cyber protection, which ANN is able to detect them. The authors
of [ ] proposed an ANN-based algorithm that detects 92–99.5% of false injected
data, and consequently, the protection system has a minimum number of false
alarms. The ANN-based algorithm demonstrates stronger robustness than multi-
ple nonlinear regression (MNR) for wind power forecasting against false data
injection attacks [ ]. Another application of ANN is to detect the reason for a
reported event in the system whether it has a real source such as faults or it is
initiated only based on communications failure or data attacks. This is critical
especially when the event has a short duration and long-window filters and
detectors are not able to detect that or wrongly classify that as a noise [ , ].8887
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• Disadvantages of ANN
Although ANN involves a vast area of power system application, it brings up

some points of concern such as the need for a large training set, the issue of
obtaining a stable solution, as well as the danger of overfitting [59]. Therefore,
other AI algorithms have been established such as SVM and fuzzy logic. Their
application in power system protection will be described in the next parts.

5.7.2 Relays Based on SVM

The disadvantages of ANN created serious concerns on power system protection and
monitoring. Another approach is SVM. Similar to ANN, SVM also has been applied
to different protection purposes. For those purposes, SVM-based techniques have
played a key role and established themselves promising in power system protection.
In SVM, a generalized model is created for a certain purpose via analysis of a certain
dataset. Then, parts of the dataset are divided by planes defined as hyperplanes.
Additional planes are created as the margins for the prime hyperplane. The marginal
planes are established with respect to the nearest data or dataset available in the
plane. These data or datasets are known as support vectors. By this, a generalized
model is founded. Then SVM classifies new data which will be in one of the datasets
[89]. SVM mainly has wide applications in classification and event detection.

• SVM for Transformer Protection
Similar to ANN-based systems, SVM-based techniques are also applied to

transformer protection. In [90], an SVM-based fault classification is proposed for
transformers. It is capable of classifying in-zone and out-of-the-zone faults more
reliably compared to ANN-based algorithms. In [91], an SVM-based protection
technique is proposed. It monitors magnetization hysteresis loop by voltage-
differential current (V-DCurr) curves. It pinpoints faults by detection of changes
in the hysteresis loop trajectory. The algorithm achieves a success rate greater
than 98%. In [92], SVM is exploited to discriminate if the differential current (ΔI )
is caused by CT saturation or internal faults.
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• Generator Protection Using SVM
SVM-based techniques are also employed for generator protection. In [93], the

authors have proposed SVM-based techniques for identification of generator
LOE. In this technique, the SVM-based method is able to identify the LOE
condition moderately fast before the power-flow direction changes. In [94], the
LOE detection is advanced to a degree that the relay using SVM-based logic is
able to differentiate total and partial LOE in synchronous generators. In [95], an
SVM-based fault detection and classification technique is proposed that detects
small spikes in the stator winding of synchronous generators, which the conven-
tional generator relays are unable to find.

• Transmission Line Protection with SVM
Protection of TLs is also an important task for the SVM-based techniques. In

[96], the authors used SVM for fault location, and their comparative study finds
that SVM-based techniques are superior to ANN-based ones in this regard. In
[97], the researchers have established an SVM-based protection algorithm for a
multi-terminal high-voltage direct current (MT-HVDC) system. This protection
algorithm has been able to identify, classify, and locate the fault within 0.15 ms,
ensuring speedy DC grid protection. In [98], the authors proposed an effective
method for fault location in TLs that use the fundamental components of voltages
and currents of the faulty phases for fault detection and location. In [99], the
researchers have used the radial basis function (RBF) neural network and SVM to
identify the fault. This method utilizes three-phase voltage measurements, but it
does not require current measurements. The authors of [100] used SVM as an
intelligent tool to discriminate between different zonal faults in TLs in that
apparent impedance values are collected from distance relay under different
fault conditions. Then, after SVM gets trained, SVM is able to identify different
faults along the TL. In [101], SVM is employed for fault classification in a series
compensated TL with a fixed capacitor, which is placed at the center of the line.
The method is able to successfully detect and locate the faults even during line
energization.

• SVM for Cybersecurity
SVM-based methods are also beneficial to power system cybersecurity. In the

twenty-first century, the reliability of the power systems largely depends on cyber
protection. In [102], the authors have proposed an SVM-based malicious data
detection and classification method. The results proves that the method is suc-
cessfully able to classify intrusion data. Thus, cybersecurity of power grids can be
improved using SVM. In [103], the authors have proposed a cyber intrusion
protection system in that SVM is used for detecting suspicious behaviors of smart
meters. In [104], SVM is utilized for dynamic security assessment of grids in
which the changes of phase angles throughout the system are monitored and
suspicious deviations are detected.
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• Disadvantages of SVM
Although SVM demonstrated a great rate of success in event classification,

there are some specific drawbacks in the application of SVM. For example, there
are concerns about SVM real-time function since it is computationally expensive
and needs large volumes of reliable memory in industrial and noisy environ-
ments. In addition, the training process is slower compared to ANN [105].

5.7.3 Fuzzy Logic

Fuzzy logic is an approach to evaluating the degree of situation/incident/problem, in
contrast to the Boolean logic which defines the case as a whole true/false. For
example, a fault in a TL can be defined for computers by 0 as no fault and 1 as
fault. But in fuzzy logic, the fault might be a range within 0–1 by defining 0.2 as a
mild fault, 0.4 general fault, 0.6 strong fault, and 0.9 as an extreme fault. By this, a
new algorithm can be set to train the situation for a qualitative assessment of power
system apparatus. Fuzzy logic can be used similar to ANN and SVM. However, it is
capable of protecting power systems based on the severity of the fault. For example,
an SLG fault in a non-grounded system sensitive to power disconnection can be
postponed until a proper time, but an LL fault should be addressed almost without
any delay. In [106], a fuzzy logic algorithm is introduced for recognizing inrush
currents in transformers. A fuzzy logic-based method for turn-to-turn faults is
devised in [107]. In [107], a novel method is proposed based on fuzzy logic for
synchronous generator protection in which the fuzzy logic-based method is designed
for fault identification and detection with high sensitivity. But the high sensitivity is
not going to reduce the selectivity of the system in case of minor faults. In [108], a
fuzzy logic-based fault detection algorithm is developed for series compensated TLs.
The algorithm was extensively tested with a wide range of operating conditions. The
results demonstrate its effectiveness and robustness against various FIAs, load
angles, and source impedance. In [109], faults in double line TLs are successfully
detected and located with the use of fuzzy logic. The results show strong evidence
that the system is fast and reliable in detection of faults at different locations along
the TL. Regardless of fuzzy logic advantages, it has the major problem of determin-
ing global extremums.

5.8 Conclusion

Digital transition of electric grids includes all the major sections of electricity
delivery systems. Throughout this chapter, first, the fundamentals of protection
were covered, and then the issues arising from the connection of inverter-based
resources (IBRs) were explained. Some of the methods for overcoming the protec-
tion issues were discussed as well. In addition, the new measuring devices vary from



the conventional ones. Therefore, some new methods should be devised for making
the outputs of the new measuring devices compatible with the well-developed and
in-use monitoring systems.
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The main conclusions of this chapter can be summarized as follows: as the fault
response of IBRs differs from conventional electromechanical generators, currently
in-use relays are often unable to detect the faults, or they cannot disconnect the faulty
section selectively. Thus, the development of new protective devices (relays) and
coordination techniques is indispensable for the integration of IBRs to the grids in
large quantities. Additionally, artificial intelligence may assist the development of
protection and monitoring; however, the results are not based on definite and closed
mathematics, and more certain answers are expected for their application in power
system protection.
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Chapter 6
Optimizing Wind Power Participation
in Day-Ahead Electricity Market Using
Meta-heuristic Optimization Algorithms

Hamed Dehghani and Behrooz Vahidi

Abstract Recently, use of wind generation due to its clean and cheap power has
been considerably increased. The presence of wind sources in power systems brings
several challenges for the operators. They have difficulties to make suitable deci-
sions for electricity market, due to uncertain nature of wind power. In this chapter, a
new objective function considering wind power uncertainty is proposed to minimize
total expected costs. To do so, a new procedure is presented to quantify probability
density function (PDF) of each uncertainty interval based on wind power plant’s
information. Considering the derived PDF, the objective function is formed and
optimized by using meta-heuristic optimization algorithms. The results reveal a
reduction in total expected cost has up to 20%.

Keywords Electricity market · Day-ahead market · Social welfare · Spot market ·
Wind power · Uncertainty · Locational marginal price · Cost function · Optimal
bidding · TLBO · PSO-GSA · ALO · Normal distribution function · Weibull
distribution function · Prediction intervals

6.1 Introduction

Nowadays, renewable energy source (RES) penetration in power systems has been
considerably increased. RESs are taken into account by many researchers as a unique
solution for global warming and energy security [26, 33, 39, 40].

Because of technical advantages in conversion systems of wind energy, they are
significantly used in power systems in comparison with other RESs, such as photo-
voltaics (PVs). Moreover, in large scales, wind energy resources occupy less area.
These advantages can be very useful, especially in electricity market applications
[31, 44]. One of the main challenges in power systems is the uncertainty of the wind
power. Several stochastic approaches have been presented by Reddy et al. [37], to
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handle the uncertainties in renewable energy sources. In [1], a new probabilistic
optimization approach has been proposed to analyze the effects of position and
various control methods on prices of electricity market.

164 H. Dehghani and B. Vahidi

Most restructured power systems include two types of markets:

• Real-time market
• Day-ahead market

In a day-ahead market [13, 42], ISO takes the offer of all sellers and buyers and
plans them so as to minimize the power generation costs (maximizing social
welfare). The price of the day-ahead market is very low under high penetration
level of wind power plant due to its almost zero marginal cost. However, its
fluctuations can affect the day-ahead market and ancillary services. Imprecise
wind power prediction leads to unwanted deviation between available and scheduled
power. To guarantee secure operation of the system, ancillary reserve services
should be provided in order to manage deviations, while very short-term
unbalancing could occur in a real-time market.

Numerous researches have assessed the impacts of wind energy uncertainties in
electricity markets. Flexible resources such as demand response programs and
peaking units is one of the empirical solutions to cope with aforementioned chal-
lenges [2, 9].

The negative effects of uncertainty in wind power can be reduced by participating
dispatchable distributed energy resources (DERs) in the electricity markets [18, 29,
30, 35, 43, 47, 49].

A new method based on information sharing is addressed by Exizidis et al.
[14]. In this method, each participant anticipates its own power and shares the
predicted power with each other in day-ahead market. In [6], the optimized amount
of wind power in the electricity market is determined based on recorded data of wind
speed considering uncertainties. The above approaches need a large amount of data
and are time-consuming.

In [3, 20, 27, 45], evaluating the uncertainties’ effects is carried out based on two
probabilistic methods: ARIMA and Monte Carlo.

In [16, 28], demand response programs have been considered as the auxiliary
resources. In [19], robust programming along with demand response programs has
been used to minimize the cost of market in the presence of uncertainty in wind
power. Optimal bidding strategy for wind power has been carried out in [5, 46],
taking locational marginal price (LMP) mechanism and penalty factors into account.

Reddy et al. [36] present a market clearing mechanism considering the effects of
uncertainties in loads and wind power. In [7, 17], wind power owners can cope with
their uncertainties by participating in a bilateral energy and reserve markets. Wind
power producers’ (WPPs) participation in the electricity market as the price takers is
studied in [8]. WPP participation in the day-ahead and real-time markets as the price
makers is evaluated in [8, 44]. The results show that capacity of real-time market,
demand elasticity, and RES special subsidies can facilitate the effective contribution
of WPPs to the electricity market. On the other hand, to overcome the wind power
producers’ market power, a deviation penalty factor should be determined.
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A bilevel game model (one-leader multi-follower) in a scenario-based market has
been proposed to minimize operation cost and maximize social welfare [48].

According to this literature review, a great deal of attention has been drawn on
minimizing the costs, considering wind power uncertainties by applying Monte
Carlo-based methods or statistical models. These methods have two main
disadvantages:

1. They do not consider uncertainty intervals in optimum point determining process.
2. They need a large amount of data and are time consuming.

In all of these methods, uncertainties create optimum intervals, causing system
operator to face problem in making a definitive choice about the optimum point. In
[11, 12], the effects of prediction intervals (PI) on the day-ahead electricity market
price, profits, and losses have been investigated. The authors of the mentioned study
have presented a new method to maximize social welfare via optimizing the wind
power share in demand supply. However, the reserve market is not taken into
account, and probability density function (PDF) of wind power is estimated with
normal distribution function. In this chapter, a method is presented to calculate the
optimum amount of wind power, considering uncertainty intervals with the goal of
minimizing total expected cost. In other words, the method is a hybrid mathematical-
heuristic one, which is offered in order to optimize the total expected costs [11, 12]
of wind power and thermal plants during a day in a day-ahead electricity market.

The main contributions of this chapter can be concluded as follows:

1. Calculating wind power PDF based on a new approach for obtaining considering
uncertainties intervals

2. Determining optimum amounts instead of optimum ranges throughout a day by
presenting a new hybrid mathematical-heuristic method

3. Simultaneous participation in both real-time and reserve markets mechanisms
4. Using different model of meta-heuristic optimization algorithm and evaluating

their performance in terms of minimizing the proposed objective function

The reminder of the chapter can be organized as follows.
The electricity market modelling and wind farm power uncertainty are presented

in Sects. 6.2 and 6.3, respectively. In Sect. 6.4, the problem formulation is proposed.
Simulations are carried out on a sample network in Sect. 6.5, and the results are
evaluated. Finally, in Sects. 6.6 and 6.7, future works and conclusions are given.

6.2 Electricity Market Modeling

One of the most substantial ISO duties is the determining of market clearing price
using the following objective function [4, 22]:



 !
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min
Xn
i¼1

CGi Pð Þ ð6:1Þ

CGi a:P2 b:P c 6:2

where:

a, b, c: coefficients
CGi(P): cost function of the generator
P: produced power
n: number of generators

The above equation is solved via DCOPF [15].The optimization problem’s
constraints can be stated as:

1. Net injected active power at bus i

Pi � PDi ¼ Ii ¼
Xn
j¼1

Yijðθi � θjÞ j ¼ 1, : . . . , n ð6:3Þ

where:

Pi: generated power at ith bus
PDi: consumed power at ith bus
Ii: net injected power at ith bus
Yij: mutual admittance
θi: i

th bus angle

2. Transmission lines thermal limit

Yij θi � θj � Pij
max j, i ¼ 1, : . . . , n ð6:4Þ

where:

Pij
max: maximum allowable active power.

3. Generation units’ capacity limit

Pi
min � Pi � Pi

max ð6:5Þ

Lagrange function of the optimization problem is obtained based on the above
constraints as follows:
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l ¼
Xn
i¼1

C Iið Þ þ
Xn
i¼1

πi Ii�
Xn
j¼1

Yij θi � θj
� � þ

Xn
i¼1

�
Xn
j¼1

μij P
max
ij � Yij θi � θj

� �h i
ð6:6Þ

Optimal conditions are met by taking partial derivative from this function with
respect to the variables. Therefore, the LMP of each bus can be calculated by taking
the derivative from the Lagrangian function with respect to the net injected power of
each bus as follows:

∂l
∂Ii

¼ dCi

dIi
� πi ¼ 0 i ¼ 1, :: . . . , n ð6:7Þ

where:

πi: LMP for ith bus

6.3 Calculation of Uncertainty in Wind Power

Wind power should be determined so that the LMPs can be calculated and the market
be cleared by the ISO. Wind speed has to be predicted in order to calculate its power.
The forecasting method suffers from uncertainties. However, they are of high
accuracy. In this study, in order to simulate the aforementioned uncertainties, a
method based on quantile regression is used [23]. Applying this method leads to a
specific interval, [Vl, Vu]. It should be noted that, with a certain level of confidence,
the exact wind speed will be in range of [Vl, Vu]. The wind power can be calculated
by the following equations [34]:

Pw ¼ 0 for v < vcut in or v > vcut out

Pw ¼ Pr
v� vcut in
vr � vcut in

� �
for vcut in � v � vr

Pw ¼ Pr for vr � v � vcut out

ð6:8Þ

where:

Pr: rated power
vr: nominal wind speed of related turbine

By using Eq. (6.8) and resulted range for wind speed, [Vl, Vu], wind power will be
in the range of [Pl, Pu].

The wind power PDF is needed to implement the uncertainties. Weibull distri-
bution function has been introduced by many researchers in order to assign wind
speed variations. This function is stated as:



� �� �

� � � � !

f Z
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f V vð Þ ¼ k
c

v
c

k�1ð Þ
eð Þ� v

cð Þk ð6:9Þ

where:

c: scale
k: shape factors

Wind power’s PDF can be provided considering Eqs. (6.8) and (6.9) as:

P ¼ g vð Þ ¼ αvþ β for vcut in � v � vr ð6:10Þ� 	 � �
f P pð Þ ¼ f V g�1 pð Þ� � dg�1 vð Þ

dp
¼ j1

α
jf V p� β

α
ð6:11Þ

So,

f p pð Þ ¼ k:vcut in:λ
c

� λ:pþ prð Þvcut in
pr:c

k�1

� exp � λ:pþ prð Þvcut in
pr:c

k

λ ¼ vr � vcut in
vcut in

� �
ð6:12Þ

As can be seen from Eq. (6.12), the density function fP( p) has two setting
parameters: c and k. If the wind speed distribution function is determined properly,
the wind speed would limit between upper and lower bounds for the assigned CL. To
do so, c and kmust be derived for each PI as follows. This can be done based on two
assumptions:

• Expected value is equal to predicted wind speed.
• CL is equal to probability of wind speed occurrence at [Vl, Vu].

The above assumptions can be stated as:

vu

vl

vf V ðvÞdv ¼ vpreZ vu

vl

f V ðvÞdv ¼ CL ð6:13Þ

where:

vpre: anticipated wind speed
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6.4 Main Focus of the Chapter

Wind power plant participation in electricity markets, due to their uncertain nature,
has become a serious challenge for system operators. In one hand, if the available
wind power surpasses the scheduled amount, ISO must buy the additional amount.
On the other hand, if the available wind power is less than the scheduled, ISO must
provide the power shortage from real-time and reserve markets. These cases imply
that the wind power uncertainty can increase costs of systems. So, a probabilistic
approach should be implemented to manage the costs [11].

Equation (6.14) calculates the expected costs based on penalty factors in case
available wind power surpasses the scheduled amount (underestimating).

Cus ¼ Ku

ZPu

Pi

p� Pið Þf P pð Þdp

Ku ¼ πrt

ð6:14Þ

where:

Pi: scheduled wind power
πrt: price of real-time market
Cus: cost of underestimating

Equation (6.15) calculates the expected cost resulted by overestimating the wind
power in case, when available power is less than scheduled one. If the price of
energy is cheaper in real-time market than the reserve market, the power shortage
will be provided from real-time market. Otherwise, if the power shortage does not
meet the reserve market limitation, all the lack of power will be provided from the
reserve market. In this case, the price of reserve market will be considered as the
penalty factor. When the power shortage meets the reserve market limitation, the rest
of power shortage will be provided from real-time market. In this situation, the price
of real-time market will be considered as the penalty factor.

Cos¼Ko,1

ZPi
Pl

ðPi�pÞf PðpÞdp i f ΔP�Plim res

Cos¼Ko,1

ZPlþPlim res

Pl

ðPi�pÞf PðpÞdpþKo,2

ZPi
PlþPlim res

ðPi�pÞf PðpÞdp i f ΔP>Plim res

8>>>>>>>>>><
>>>>>>>>>>:

if πres� πrt

Cos¼Ko,2

ZPi
Pl

ðPi�pÞf PðpÞdp if πres> πrt

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð6:15Þ

where:



 !( )

 ! !( )

ΔP ¼ Pi � Pl , Ko,1 ¼ πres , Ko,2 ¼ πrt

Cos: cost of over-estimation.
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The wind power plant’s generation cost can be given as follows:

CPw ¼ πj � Pi ð6:16Þ

where:

πj: LMP of jth bus

Considering the above discussion, production costs of thermal and wind power
plants should be minimized by ISO. Therefore, the objective function can be
presented as below:

min
Xn
i¼1

CGi þ Cus þ CPw þ Cos ð6:17Þ

where:

n: number of thermal power plants

As can be seen, the goal of Eq. (6.17) is to minimize total expected cost. This
study tries to minimize 24-h expected costs in a day-ahead market. Finally, the
objective function is expressed as follows:

min
X24
h¼1

Xn
i¼1

CGi

h

þ Cus,h þ CPw,h þ Cos,h ð6:18Þ

Equation (6.18) shows that the determining of wind plant’s power in range of [Pl,
Pu] has a considerable effect on LMPs and thermal power plants’ generations, as
well. The system operator must choose the best amount of power production for
wind and thermal plants in order to minimize the total costs and satisfy its con-
straints. Overall framework of probabilistic method is shown in Fig. 6.1 [11].

6.5 Results of Analysis

In this section, a sample transmission system, shown in Fig. 6.2, is used to carry out
mentioned framework in a day-ahead electricity market and determine the optimal
wind power with the aim of optimizing the objective function [21]. Tables 6.1 and
6.2 present the information of the network. The hourly scaling factor is used to form
the hourly consumption pattern of loads using Eq. (6.19). The load scaling factor is
shown in Fig. 6.3.
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Fig. 6.1 Flowchart of probabilistic method
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Fig. 6.2 Sample transmission system

Table 6.1 Bus data

Bus a ($/MWh2) b ($/MWh) C ($/h) Pmin (MW) Pmax(MW) Pd (MW)

1 0.0048193 14.37181 89.62 0 35 0

0 0 0 0 15

3 0.0245283 37.60189 17.64 0 20 11

4 0.0730337 26.34562 31.60 0 32 15

5 0.002 13.39 79.78 0 40 0

6 0.01 13.47 49.75 0 20 15

7 0.05 25.47 24.05 0 12 0

0 0 0 0 15
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Table 6.2 Lines data Line From To Reactance (p.u.) Limit (MW)

1 1 2 0.0300 9.0

2 1 4 0.0300 15.0

3 1 5 0.0065 20.0

5 2 3 0.0110 10.0

6 3 4 0.0300 10.0

7 4 5 0.0300 20.0

8 5 6 0.0200 10.0

9 6 1 0.0250 19.0

10 7 4 0.0150 19.0

11 7 8 0.0220 20.0

12 8 3 0.0180 15.0

Fig. 6.3 Load scaling factor

Pload j,h ¼ Pdj:ScalingFactorh ð6:19Þ

The wind speed is forecasted for May 11, 2015, based on the historical data
provided from Khaf City, Iran, between January 2015 and April 2015. The fore-
casted wind speed along with its upper and lower bounds (PIs) corresponding to 95%
of confidence level is depicted in Fig. 6.4.

Wind power and its uncertainty intervals are calculated using Eq. (6.8) and shown
in Fig. 6.5. To do this, vcut in, vr, vcut out, and Pr are assumed to be 5 m/s, 25 m/s,
45 m/s, and 10 MW, respectively.

The available reserve capacity of is assumed to be 5% of network’s hourly power
consumption. Besides, the next day reserve market price is given in Fig. 6.6.

Using DCOPF for each hour, hourly LMPs are derived. Furthermore, the reserve
and day-ahead market prices are usually lower than those of real-time market.



Therefore, to simplify the calculation and based on what is presented in ([11, 12]),
real-time market price will be assumed to be a coefficient of the most expensive bus
price in each hour.
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Fig. 6.4 Forecasted wind speed along with its uncertainty intervals [10]

Fig. 6.5 Forecasted wind power along with its uncertainty intervals [10]

πrt,h ¼ μ:max πj,h
� �

, μ ¼ 1:4, h ¼ 1, . . . , 24, j ¼ 1, . . . , 8 ð6:20Þ



1 3 5

�

6 Optimizing Wind Power Participation in Day-Ahead Electricity Market. . . 175

Fig. 6.6 Next day reserve market price

Table 6.3 Total expected cost values under various scenarios of wind power at bus 2

Scenarios

2 4

Pl 0.5 * (Pl + Ppre) Ppre 0.5 * (Pu + Ppre) Pu

Total cost ( 104$) 6.8 5.9 5.5 5.4 5.73

6.5.1 Meta-heuristic Optimization Algorithms Application
in Minimizing Total Expected Costs

First, the PDF of wind power and its related c and k parameters are calculated by
using Eqs. (6.8), (6.9), (6.10), (6.11), (6.12) and (6.13), considering Figs. 6.4 and
6.5. By adding the wind power plant to bus 2, shown in Fig. 6.2, the objective
function is evaluated under five scenarios of wind power:

1. Pl

2. 0.5 * (Pl + Ppre)
3. Ppre

4. 0.5 * (Pu + Ppre)
5. Pu as scheduled

The results of Table 6.3 show that applying the marginal points of bound leads to
a greater value of the objective function.

These scenarios are not optimum, and the optimum one should be within these
intervals. As the problem is complex and nonlinear, meta-heuristic methods are the
best choice to solve it. So, three heuristic optimization algorithms, inspired by
nature, have been used for minimizing the given objective function in Eq. (6.18).
Three mentioned algorithms are:



s

hour hour

�
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Table 6.4 Optimum wind power for each hour and optimum total expected costs under three
optimization algorithms

Optimum (MW) Optimum (MW)

TLBO PSO-GSA ALO TLBO PSO-GSA ALO

1 8.47 8.88 9.59 13 6.35 6.49 6.75

2 8.25 8.69 8.49 14 6.22 5.955 5.07

3 7.145 7.28 6.805 15 4.78 4.635 5.17

4 6.98 6.33 6.96 16 5.48 5.47 5.59

5 6.12 7.16 6.31 17 3.025 3.15 3.51

6 6.94 7.05 6.96 18 1.43 1.59 1.66

7 5.38 5.44 5.36 19 2.98 3.02 2.49

8 5.41 5.35 5.29 20 1.79 1.86 1.28

9 7.54 7.98 4.96 21 2.21 2.30 2.45

10 7.64 7.64 7.76 22 5.03 5.04 4.95

11 6.79 6.78 6.30 23 5.02 5.11 4.88

12 6.16 6.24 4.55 24 5.24 4.82 3.45

Total cost ( 104$) TLBO PSO-GSA ALO

5.27 5.26 5.30

Fig. 6.7 The optimum wind power provided by PSO-GSA algorithm [10]

• Teaching learning-based optimization (TLBO) [32]
• Particle swarm optimization-gravity search algorithm (PSO-GSA) [25]
• Ant Lion Optimizer (ALO) [24]

The results of optimum wind power for each hour and optimum total expected
costs under three optimization algorithms have been tabulated in Table 6.4. A
revealed by the results, three aforementioned algorithms have a close performance
in minimizing the total expected cost values. As the PSO-GSA algorithm has the
least amount of total expected costs, it is chosen as the best solution. In this regard,
the optimum wind power provided by PSO-GSA algorithm is shown in Fig. 6.7.
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Fig. 6.8 The total expected cost under various scenarios [10]

Table 6.5 Total expected cost values under various scenarios of wind power at bus 8

Scenarios

2 4

Pl 0.5 * (Pl + Ppre) Ppre 0.5 * (Pu + Ppre) Pu

Total cost (�104$) 6.75 6.02 5.51 5.36 5.77

As stated before, Fig. 6.7 implies that optimized amount of wind power values is
different from predicted value, upper and lower bounds. Furthermore, in most cases,
the derived value is more than the predicted one. This is due to the fact that in lack of
wind power conditions, the power or part of it can be provided with a lower price
from the reserve market than the real-time market.

The total expected costs under various scenarios are shown in Fig. 6.8. A
revealed by the results of this figure, applying meta-heuristic algorithms has reduced
the total cost by 14,681$, 6735.7$, 477.5$, and 4584.4$ for scenarios 1, 2, 4, and
5, respectively. Also, as can be seen, when ISO applies the predicted power without
any uncertainties (scenario 3), the total cost is raised by 2062.8$.

To demonstrate the effectiveness of the proposed approach, the wind plant is
added to bus 8, and all above analyses have been conducted. The results of these
analyses are tabulated in Tables 6.5 and 6.6. The obtained results verify the effi-
ciency of presented method in terms of minimizing the total expected cost.

As shown in Tables 6.5 and 6.6, applying meta-heuristic algorithms has reduced
the total cost, considerably. Among them, TLBO algorithm has the best perfor-
mance. The amount of cost reduction under TLBO algorithm implementation for
scenarios 1 to 5 is 14310.1$, 7031.5$, 1933.2$, 424.3$, and 4591.2$, respectively.

All calculated results have carried out from producers’ point of view. Customers’
behavior is important, and their viewpoint must be considered, too. Therefore, their
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�

payments are calculated by Eq. (6.21). Figure 6.9 depicts these payments under
various scenarios of wind at bus 2.
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Table 6.6 Optimum wind power for each hour and optimum total expected costs under three
optimization algorithms

Optimum(MW) Optimum (MW)

TLBO PSO-GSA ALO TLBO PSO-GSA ALO

1 8.86 4.32 9.00 13 6.61 6.63 6.76

2 8.21 8.28 7.95 14 6.20 6.19 4.62

3 7.10 7.30 6.615 15 4.78 4.87 5.34

4 6.89 7.21 6.34 16 6.27 6.27 6.27

5 6.18 7.15 6.39 17 3.31 3.455 3.225

6 6.92 7.035 6.65 18 1.42 1.43 1.76

7 5.40 5.53 5.06 19 3.06 2.87 2.10

8 5.37 5.55 5.36 20 0.44 0.17 0.77

9 7.17 7.54 7.20 21 2.29 2.61 2.62

10 7.69 7.73 7.79 22 4.97 4.96 5.06

11 5.996 6.23 6.6 23 5.11 5.03 5.08

12 5.95 5.79 5.35 24 5.10 5.25 5.66

Total cost ( 104$) TLBO PSO-GSA ALO

5.32 5.33 5.34

Fig. 6.9 Payments of customers under various scenarios of wind at bus 2 [10]

Paymentl,h ¼ Ploadl,h � πbusload l,h l ¼ 1, . . . , 5, h ¼ 1, . . . , 24 ð6:21Þ

where:

πbusload l ,h: LMP of lth bus at hth hour.
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Table 6.7 Total expected cost and total payments under various scenarios of wind power at bus 2

No. Scenarios Expected cost Payments Total

Pl 67,370 59,302.3 126,672.3

2 0.5 * (Pl + Ppre) 59,430 56,844.6 116,274.6

3 0.5 * (Pu + Ppre) 54,750 54,933 109,683

4 Ppre 53,170 52,956.6 106,126.6

5 Pu 57,280 52,194.4 109,474.4

6 Optimuma 52,691.8 52,374.4 105,066.2

7 Optimumb 52,695.4 52,367.6 105,063
aNeglecting payments
bConsidering payments

As mentioned earlier, the higher the amount of wind power, the lower the amount
of LMPs. As can be seen from Fig. 6.9, in fifth scenario, the highest amount of wind
power leads to the lowest amount of payments.

ISO can satisfy all the participants by simultaneously minimizing costs of sellers
and buyers. For this purpose, a new objective function can be given as follows:

min
X24
h¼1

Xm
j¼1

Paymentj,h þ
Xn
i¼1

CGi

 !
h

þ CPw,h þ Cus,h þ Cos,h

 (
ð6:22Þ

where:

m: the number of loads

By solving Eq. (6.22) using the mentioned meta-heuristic algorithms, the results
have been calculated and tabulated in Table 6.7.

According to the results of Table 6.7, optimization results have the lowest values.
So, these results are suitable from power plants’ point of view. However, from
customers’ point of view, the result of upper bound is desirable. Taking both
customers’ and producers’ viewpoints into account, scenarios 6 and 7 have the
best performance. Moreover, implementing scenario 7 reduces the amount of total
expected cost and payments by 4$ compared to scenario 6. These reductions indicate
that the presented objective function has an excellent ability to reduce costs of both
producers and customers. So, the optimum equilibrium points can be found by ISO
so as to satisfy all the participants.

6.6 Future Work

The future suggested works in the probabilistic cost minimization of day-ahead
electricity market based on meta-heuristic optimization algorithms would be con-
sidering energy storage systems, photovoltaic power plants, and simultaneous



demand response program implantation [41]. Also, wake effect among wind turbines
can affect the delivered power [38]. Therefore, considering probable wake effects in
electricity markets planning can lead to interesting results.
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6.7 Conclusion

This chapter proposes a probabilistic technique to minimize the daily total expected
cost considering uncertainty in the output power of wind farm in the day-ahead
market.

Using the wind farm data, an approach is presented to calculate PDF of uncer-
tainty intervals. Then, the costs of underestimation and overestimation are calculated
based on the market rules. These costs should be paid by ISO. The model exploits the
reserve and real-time markets to obtain lack of power. Furthermore, additional costs
due to uncertainties are modeled by proposing two new objective functions. These
objective functions are used to minimize the generation costs of thermal and wind
power plants along with the costs of uncertainties.

In order to evaluate the efficiency of the proposed method, meta-heuristic opti-
mization algorithms have been applied to optimize the proposed objective functions.
The results indicate that the highest amount of wind power (upper bound) is
desirable for the customers. However, the predicted amount is suitable for power
producers. By applying the presented procedure, the value of total costs reduced
ranging from 1063.7$ to 21609.3$ under various scenarios. According to the results,
it is found that the optimum amount of wind power in uncertainty intervals is usually
different from predicted amount. Due to non-linearity of the optimization problem,
meta-heuristic optimization algorithm can solve it with high accuracy, which shows
their importance in electric markets problems.
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Chapter 7
Robust Energy Management of Virtual
Energy Hub Considering Intelligent
Parking Lots for the Plug-In Hybrid
Electric Vehicles

Mohammad Seyfi, Mehdi Mehdinejad, and Heidarali Shayanfar

Abstract Energy systems transitions have faced a big challenge with the advent of
multi-energy systems. Smart grid and virtual energy hub (VEH) concepts provide
the opportunity for the integration of multiple energy carriers with electrical energy.
A VEH formed by smart grid framework can operate the plug-in hybrid electric
vehicles (PHEV) and manage their behavior in a smart way. In this chapter, the
energy management problem for the participation of VEH in the electrical and
thermal energy markets considering intelligent parking lots is presented. For model-
ing PHEVs, the uncertainty of entrance and exit times of PHEVs is considered,
which affects their charging and discharging process. In addition to PHEVs’ behav-
ior, the output power of renewable energy resources, energy price, and energy
demand have uncertain nature. For dealing with these uncertainties, robust optimi-
zation is a promising option, which provides the opportunity for managing the
system for the worst-case scenarios.

Keywords Virtual energy hub · Intelligent parking lot · Robust optimization · Plug-
in hybrid electric vehicles · Demand response program

7.1 Introduction

7.1.1 Background and Motivations

Distributed energy resources (DER) are the one significant option for the reduction
of environmental pollutants [1]. This category of energy generation consists of
small-scale energy generation units with a particular focus on renewable energy
resources (RES). DERs can produce energy at a location near the consumption
centers, which cause to reduce the transmission loss by shortening the energy
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pathway. The mentioned specifications of DERs allow them to be considered
seriously in the novel power systems framework. DERs based on their structure
can produce electrical energy, thermal energy, cooling energy, etc. This product
differentiation of DERs forms the basics of integrated multi-energy systems, which
means the integration of power systems with other energy carriers. The virtual
energy hub (VEH) concept [2], a combination of energy hub (EH) [3] and virtual
power plant (VPP) [4], can aggregate and control multiple types of DERs and their
related energy carriers. The VEH framework allows the DERs to participate in
multiple energy markets and benefit from the opportunities of these markets. The
operator of VEH schedules DERs using the local operating system and manages
their participation in the energy markets. High rate of spreading in the distribution
network makes it extremely hard to operate the whole DERs altogether, and con-
ventional central operation of power systems can’t be reliable for scheduling them. It
is better to aggregate the DERs by local operating, which causes the central system
operator to consider them as a united power plant. Under this situation, DERs of any
size can participate in energy and ancillary markets and gain profit by selling their
energy and services in these markets. VEH can local operate these DERs and
manage their related energy carriers. Therefore, DERs can participate in multiple
energy and ancillary markets [5].
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Given the features of VEH, various types of DERs can be part of the VEH
structure. VEH can aggregate distributed generators, RESs, electric vehicles (EV),
energy storage systems, demand-side services, etc. EVs are one of the efforts of the
international community to address pollutant emissions concerns. These vehicles
consume electrical energy to drive using produced power by the electric motor. As a
result, they do not produce environmental pollutants. VEH can benefit the hardware
and software of the smart grid in the energy management of DERs, which provides
high-end technologies for communication to transmit information between DERs
fast and safely. Participation of electric vehicles in smart grids planning and oper-
ation is a challenge that has drawn much attention from researchers. A smart VEH,
VEH formed by the smart grid structure, can ease the integration and management of
plug-in hybrid electric vehicles (PHEV). Intelligent parking lot (IPL) is the
aggregator of PHEVs, which can schedule the PHEVs and determine their charging
and discharging planning automatically. IPL has access to real-time energy price
data using smart grid communication systems. Thus, it updates the charging and
discharging planning of PHEVs in response to the price variations. The aggregation
of a high number of electric vehicles helps the VEH operator use their battery
capacity as an energy storage system.

7.1.2 Related Works

Multi-energy systems are studied in numerous works in the literature. In [6],
stochastic programming is used to assess the effects of an ice storage system on
the energy hub performance. The obtained results show the importance of a proper



cooling energy storage system for improving the energy hub performance. This
energy hub consists of renewable energy resources and consumers capable of
participating in the demand response program (DRP). The authors of [7] have
used particle swarm optimization to optimally design an energy hub to reduce
pollutant emissions and increase energy consumption. Electrical energy, thermal
energy, natural gas, and wood chips are the included energy carriers in this energy
hub. In [8], multi-objective operation of a multi-energy system using multi-objective
particle swarm optimization is presented. A two-stage combined planning and
operation for a multi-energy system is presented in [9]. Particle swarm optimization
is a metaheuristic method and can be utilized in convex and convex optimization
problems. Although metaheuristic algorithms can optimize complex optimization
problems, they perform on a random basis and yield different solutions every time. It
is better to develop and implement mathematical optimization models for the
scheduling and planning problems related to energy hubs and integrated energy
systems. The authors of [10] presented the self-scheduling of a smart energy hub for
participating in the energy and regulation markets. Electric vehicles, CHP units,
boilers, diesel generators, wind turbines, and energy storage systems are considered
in the smart energy hub model. This smart energy hub can participate in electrical
and natural gas markets. Participation of a VEH in the multiple energy and reserve
markets is studied in [5].
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With the advent of thermal networks, and consequently the thermal markets,
participation of DERs in these markets becomes very important. DERs should be
able to sell their produced thermal energy to earn money. However, the reviewed
papers are neglected the participation of DERs in thermal markets. For addressing
this, the authors of [4] have proposed the new model for multi-energy systems, called
VEH, which can provide more options for DERs for gaining profit by participating
in multiple energy markets. In this work, the IGDT approach is used for scheduling
the developed VEH by risk-averse and risk-seeking strategies. A cooperative sched-
uling of a VEH considering the active and reactive power flows is studied in
[11]. Because the VEH notion is a development on the VPP, it can participate in
the ancillary markets, associated with multiple energy carriers. Participation of a
VEH in the multiple energy and reserve markets is studied in [5]. In these references,
hybrid CNG and plug-in electric vehicles are studied, which can use CNG as their
alternative energy resource. The integration of power systems, thermal networks,
natural gas grid, and transportation systems is addressed in this reference by con-
sidering hybrid CNG and plug-in electric.

Recently, attention to electric vehicles as the next generation of transportations
has dramatically increased in the literature [12]. The spreading of electric vehicles
can lead to huge reduction in pollutant emissions released by transportation systems.
However, the integration of these vehicles with power systems and multi-energy
systems is an important challenge. IPLs have been proposed in many works to
provide a control mechanism for scheduling the charging and discharging of electric
vehicles. IPLs can adjust the planning of charging and discharging of electric
vehicles automatically. In [13], energy management for charging and discharging
of electric vehicles in an IPL is presented. The uncertain behavior of drivers is taken



into account. The authors of [14] have investigated the performance of IPL for
electric vehicles in the presence of the hydrogen storage system.
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Uncertainties and power systems are inseparable duos. Generally, the uncer-
tainties of energy price, energy demand, and RESs are the most common uncer-
tainties that exist in power systems problems [15]. Since VEH consists of a high
number of DERs that can produce electrical, thermal, cooling, and other energies,
especially RESs, the VEH scheduling problem requires proper uncertainty modeling
methods. Many efforts for modeling the uncertainties and their impact on multi-
energy systems can be found in the literature. Stochastic programming is suitable for
the problems, in which the information of probability distribution function of
uncertain parameters is achievable. A risk-based stochastic optimization using
scenario generation method for energy management of an energy hub considering
electrical and thermal DRPs is presented in [16]. Stochastic modeling for uncer-
tainties of RESs in an energy hub scheduling problem is presented in [17]. Beta and
Weibull probability distribution functions have been used for modeling the uncer-
tainties of solar radiation and wind speed, respectively. The developed energy hub is
optimized using particle swarm optimization approach. A hybrid IGD/stochastic
approach is developed in [18] to determine the bidding strategy of a wind-based
energy hub. When the data related to the statistical behavior of uncertain parameters
are limited, fuzzy methods can be the proper approach for handling the uncertainties.

Robust optimization (RO) is one of the most used approaches to deal with
uncertainties. RO methods deal with uncertainties in a conservative way to ensure
that the real solution of the problem will be better than the calculated one. In other
words, in robust optimization approaches, the worst case of related problem is
investigated. In RO, the variations of the uncertain parameter are determined by
the uncertainty set, which can be a box, ellipsoidal, etc. In [19], robust optimization
is used to optimize the load dispatch of a community energy hub. The objective
function of mentioned work is to minimize the operation cost and pollutant emis-
sions. RO has been used in [20] to coordinately operate multiple energy hubs. The
objective function is to minimize the total cost of energy hubs. The uncertainties of
energy price and RESs are modeled by the RO and uncertainty sets. The authors of
[21] presented a RO for the operation of a multi-energy microgrid. The developed
microgrid is a renewable-based system integrated with flexibility and storage sys-
tems. This microgrid is connected to the electrical network, thermal network, and
natural gas grid and supplies the associated demands. Energy management of
multiple energy distribution company considering multi-energy conversion and
storage technologies is developed in [13]. RO optimization is used in this reference
to model the uncertainties lying in hourly wind speed and solar radiation.

7.1.3 Novelties and Contributions

In this chapter, a novel VEH structure is developed to integrate the electrical and
thermal energy carriers. The RO method is developed for day-ahead self-scheduling



of a VEH, including IPL, to manage the participation of DERs in the energy markets.
The uncertainties associated with the arrival and departure times, state of charge of
the battery, nominal battery capacity, and required surplus energy of electric vehicles
when they are exiting from parking are taken into account. The developed VEH can
participate in the thermal and electrical energy markets to buy/sell energy from/to
these markets.
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The rest of the paper is organized as follows: In the problem modeling section, the
mathematical modeling of developed VEH and its component are presented. The
data relating to the VEH components and the simulation results of developed multi-
energy system is presented. At the end, the conclusion section concludes the
presented work.

7.2 Problem Modeling

In this chapter, a novel VEH structure that contains IPL for managing electric
vehicles is presented. The VEH is connected to the electrical grid and thermal
networks and can have energy trading with these markets. Moreover, the VEH is
connected to the natural gas grid and provides the natural gas needed by DERs by
importing it from the natural gas grid. The operator of VEH analyzes the real-time
price and consuming energy data and, based on that, operates the DERs of the VEH.
Also, the operator should manage and moderate the energy transactions with the
energy markets to ensure that the profit of VEH will be equal to its maximum
possible value. In other words, the operator determines the behavior of distributed
generators, energy storage systems, flexible loads, and the energy transactions with
markets to maximize the profit of VEH.

The developed VEH in this chapter includes combined heat and power (CHP)
units, boilers, wind farm, IPL, electric vehicles, and thermal buffer tank (BT). CHP
units produce electrical and thermal energy together, which can be used to provide
the required electrical and thermal energy demands. Boiler units can produce thermal
energy by consuming natural gas imported from the natural gas grid. The wind farm
in this structure is comprised of a large number of wind turbines and can convert the
energy of wind to electrical energy. IPL is considered in this chapter to aggregate the
electric vehicles and manage their charging and discharging plan in an efficient way.
IPL can provide electrical storage capacity for the operator of VEH by aggregating
the battery capacity of the existing electric vehicles. For providing the thermal
energy storage capacity, the thermal buffer tank is considered and modeled linearly.
VEH fulfills the demand of end consumers, which can participate in the demand
response program to increase the possible maximum profit for the VEH. Figure 7.1
shows the proposed VEH structure.

Some parameters of developed VEH are uncertain. It is important to model these
parameters by proper uncertaintymodelingmethods. In this chapter, the RO is used to
deal with the existed uncertainties. The RO ensures that the actual profit of VEH will
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not be lower than the calculated one, which causes the omission of the economic risk
of the problem. Figure 7.2 shows the optimization problem of the developed VEH.
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Fig. 7.1 The developed VEH structure

In the following, the mathematical formulation of VEH and the optimization
model are presented. In these equations, t stands for time index, i is CHP units index,
k is boilers index, and v is the index of PHEVs.

7.2.1 Objective Function

The objective function of the developed system is to maximize the profit of VEH
achieved by participating in electrical and thermal markets. Equation (7.1) states the
objective function of the proposed VEH. The cost of CHP units, boiler units,
electrical and thermal markets, and the profit of selling energy to end consumers
and electric vehicles are the terms of this objective function. CHP, B, EMarket,
THMarket, IPL, and Cons denote CHP units, boiler units, electrical market, thermal
maker, intelligent parking lot, and consumers, respectively.

max Profit=
Xnt
t= 1

-CostCHPt -CostBt -CostEMarket
t -CostTHMarket

t þ ProfitIPLt þ ProfitConst

� ð7:1Þ



!

7 Robust Energy Management of Virtual Energy Hub Considering. . . 189

Uncertainties

Wind Speed

Energy Price

Demand

Robust Optimization

Dealing with Uncertainties

Objective Function

Maximize Total Profit of VEH

Decision Variables

DERs Schduling

Energy Exchange with Thermal 

& Power Markets

DERs 

Constraints

Power 

Balances

Reserve 

Constraints

Network Line 

Limit

Outputs

All DERs Dispatch

Optimal Profit

Loads 

Constraints

Fig. 7.2 The optimization problem of developed VEH

7.2.2 CHP

The CHP unit can consume natural gas and produce both electrical and thermal
energies. The cost related to CHP units is given by (7.2). This cost is comprised of
the cost of consuming natural gas cost, start-up cost, and shutdown cost. The output
electrical and thermal energy of CHP units are correlated, and they should be in the
feasible operational region (FOR) related to the CHP unit. Equation (7.3) states the
correlation of output electrical and thermal energy of CHP units, which depends on
heat to power ratio and heat exchanger efficiency. Furthermore, the output power of
CHP has a minimum and maximum values. Equation (7.4) states the limitation
related to the output power of CHP units. In these equations, PCHP

i,t and TCHP
i,t are

output electrical and thermal powers, and SUCHP
i,t and SDCHP

i,t are start-up and
shutdown binary variables. Also, λNG, CCHP,U

i , and CCHP,D
i are natural gas cost,

start-up cost, and shutdown cost, respectively.

CostCHPt =
XNCHP

i= 1

λNG ×
PCHP
i,t

ηCHPi

 !
þ CCHP,U

i × SUCHP
i,t

� �þ CCHP,D
i × SDCHP

i,t

� � 
ð7:2Þ

TCHP
i,t =PCHP

i,t ×HPRCHP × ηHE ð7:3Þ
PCHP
min ≤PCHP

i,t ≤PCHP
max ð7:4Þ
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7.2.3 Boiler

The VEH can use the thermal output energy of boiler units to supply the thermal
demand. The cost of the boiler unit can be written similarly to the CHP units. The
cost of the boiler unit is given by (7.5). This cost is comprised of consuming the
natural gas cost, start-up cost, and shutdown cost. The maximum and minimum
power of boiler units is stated by (7.6).

CosttB =
XNB

k= 1

λNG ×
TB
k,t

ηBk

� �
þ CB,U

k × SUB
k,t

� �þ CB,D
k × SDB

k,t

� ��
ð7:5Þ

PB
min ≤TB

k,t ≤ TB
max ð7:6Þ

7.2.4 Wind Farm

Wind turbines can produce electrical energy with a near-to-zero production cost.
Therefore, in this chapter, it is assumed that the operation costs of wind turbines are
zero. Wind turbines convert the energy of wind to electrical energy. Therefore, the
output power of a wind turbine is dependent on the wind speed. In other words,
during the 24 hours of a day, the output power of the wind turbine, denoted by Pwind

t ,
varies based on the wind speed. Wind turbines have three important specifications:
rated wind speed, cut-in wind speed, and cut-off wind speed. When the wind speed is
more than the rated speed of the wind turbine, the output power of the turbine
reaches its nominal value. But it should be mentioned that wind turbines cannot
produce electrical energy when the wind speed is excessive. The cut-off speed
determines the maximum wind speed that wind turbine is capable of generating
electrical energy. On the other hand, the cut-in speed determines the minimum wind
speed required to a wind turbine to start energy production. In other words, the wind
turbine cannot generate energy at speeds below the cut-in speed. When the wind
speed is higher than the cut-in speed and lower than the nominal value, the output
power of the wind turbine is calculated through a third-order function of wind speed.
These explanations can be seen in (7.7) [22].

Pwind
t =

0 vwindt ≤ vcut- in

Prated ×
vwindt - vcut- in

vrated - vcut- in

� �3

vwindt 2 vcut- in, vrated
� �

Prated vwindt ≥ vcut- in

0 vwindt ≥ vcut- off

8>>>><
>>>>:

ð7:7Þ
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7.2.5 Intelligent Parking Lot

In this chapter, electric vehicles are two-rolled distributed energy resources. They
can offer their battery capacity to the operator of VEH for providing the required
electrical energy storage capacity. Also, for distance traveling, they need to consume
some portion of stored energy in their battery. It is a challenge for the VEH operator
to manage these vehicles one by one. To address this, the intelligent parking lot is
considered in the developed VEH model. The intelligent parking lot can aggregate
the electric vehicles and their battery capacity and offer it to the operator of VEH.
The arrival time of electric vehicles is uncertain. In other words, each vehicle can
reach the intelligent parking lot at a different time. It is assumed that when vehicles
arrive at the parking lot, they have the minimum of their battery SOC. Also, their
departure time and their required surplus energy that should be stored in their battery
when leaving the intelligent parking lot are uncertain. Therefore, the role of the
intelligent parking lot for moderating and scheduling the behavior of electric vehi-
cles is so significant. The electric aspects of electric vehicles are important when they
reach the intelligent parking lot and when they are plugged in. During the time that
vehicles are in the lot, their charging and discharging are under the control of the
intelligent parking lot. The intelligent parking lot measures the real-time voltage and
current of plugged-in electric vehicles to assess their state of charge (SOC), charging
power, discharging power, and available capacity [23].

The profit achieved by selling electrical energy to electric vehicles in the intelli-
gent parking lot is calculated by (7.8), where λEt is the hourly electrical energy price
and PchPHEVv,t and PdchPHEVv,t are hourly charging and discharging powers of vehicles,
respectively. Equation (7.9) gives the SOC of electric vehicles at the arriving hour,
which is assumed to be equal to the minimum SOC of vehicles. According to (7.10),
the difference of SOC at an hour with the previous hour is equal to the electric
current taken from the battery, which can be either positive or negative. In this
equation, ηIv denotes the current efficiency of batteries. The electrical current of
battery can be calculated by having the open-circuit voltage (OCV) and closed-
circuit voltage (CCV) through (7.11)–(7.13). In these equations, Vn is nominal
voltage of PHEVs, α is Sensitivity parameter between SOC & OCV, F is the faraday
constant, T is the temperature of battery, RinBattv is batteries internal resistance, and
CapPHEVv is the nominal capacity of PHEVs. Equations (7.15) and (7.16) express the
amount of possible charge and discharge power of the battery, which depends on the
current level of SOC, where ηPHEVv represents the efficiency of PHEVs. Equations
(7.17) and (7.18) state the maximum charge and discharge power that the battery is
capable of, regardless of the current SOC. It should be mentioned that according to
(7.20), the battery cannot been charged and discharged simultaneously, which can be
controlled by UchPHEVv,t and UdchPHEVv,t . According to (7.21), electric vehicles cannot
charge or discharge their battery, while they are disconnected from the grid. When
vehicles are leaving the intelligent parking lot, they should have the required energy
for their distance traveling denoted by δPHEVv , which is given by (7.22).
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ProfHPEVt =
XNν

v

λEt × PchPHEVv,t - PdchPHEVv,t

�� ð7:8Þ

SOCPHEV
v,t= tinv,t

= SOCPHEV,min
v,t t= tinv,t ð7:9Þ

SOCPHEV
v,t = SOCPHEV

v,t- 1 þ ηIv × I
Batt
v,t tinv,t ≤ t≤ toutv,t ð7:10Þ

OCVBatt
v,t =Vn þ α ×

R× T
F

log
SOCPHEV

v,t

CapPHEVv - SOCPHEV
v,t

tinv,t ≤ t≤ toutv,t ð7:11Þ

CCVBatt
v,t =OCVBatt

v,t þ RinBattv × IBattv,t tinv,t ≤ t≤ toutv,t ð7:12Þ

IBattv,t =
OCVBatt

v,t
2 þ 4 ×RinBattv × PchPHEVv,t - PdchPHEVv,t

� �
-OCVBatt

v,t

2 ×RinBattv

tinv,t ≤ t≤ toutv,t ð7:13Þ

PchPHEVv,t - PdchPHEVv,t =CCVBatt
v,t × IBattv,t ð7:14Þ

PchPHEVv,t × ηPHEVv ≤CapPHEVv × 1- SOCPHEV
v,t ×UchPHEVv,t ð7:15Þ

PchPHEVv,t

ηPHEVv
≤CapPHEVv × SOCPHEV

v,t

� �
×UdchPHEVv,t ð7:16Þ

ηIv × I
Batt
v,t ≤PchMax

v ×UchPHEVv,t ð7:17Þ
ηIv × I

Batt
v,t ≥ - PdchMax

v ×UdchPHEVv,t ð7:18Þ
SOCPHEV,min

v,t ≤ SOCPHEV
v,t ≤SOCPHEV,max

v,t ð7:19Þ
UchPHEVv,t þ UdchPHEVv,t ≤ 1 tinv,t ≤ t≤ toutv,t ð7:20Þ

UchPHEVv,t þ UdchPHEVv,t = 0 tinv,t ≥ t or t≥ toutv,t ð7:21Þ
SOCPHEV

v,t= tinv,t
= SOCPHEV,min

v,t þ δPHEVv t= toutv,t ð7:22Þ

7.2.6 Thermal Buffer Tank

The thermal buffer tank is considered for the thermal energy storage system in the
developed VEH model. The thermal energy stored in the thermal buffer tank at the
end of each hour is calculated by (7.23), where LossBT is the loss rate, ηBT is the
efficiency of storage, and TBT,in

t and TBT
out are the hourly charging and discharging

power of storage, respectively. Equations (7.24)–(7.26) determine the maximum and
minimum values of capacity, hourly charging energy, and hourly discharging energy
of buffer tank.
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EBT,Th
t = 1-LossBT

� �
×EBT,Th

t- 1 þ ηBT × TBT,in
t

� �
-

TBT
out

ηBT
ð7:23Þ

CapBT,min ≤EBT,TH
t ≤CapBT,max 7:24

0≤ TBT
in,t ≤ TBT,max

in ð7:25Þ
0≤ TBT

out,t ≤ TBT,max
out ð7:26Þ

7.2.7 Electrical and Thermal Markets

As mentioned, the developed virtual energy hub is connected to the power systems
and the thermal network and participates in the electrical and thermal energy
markets. The cost associated with buying energy from the upstream electrical market
is given by (7.27). Similarly, the cost of buying energy from the thermal network can
be calculated by (7.28). In these equations, PMarket

t and TMarket
t are the electrical and

thermal powers, and λEt and λTHt are the hourly electrical and thermal energy prices.
Equations (7.29) and (7.30) state the maximum limits for electrical and thermal
networks, respectively.

CostEMarket
t = λEt ×P

Market
t ð7:27Þ

CostTHMarket
t = λTHt × TMarket

t 7:28

-Pline
max ≤PMarket

t ≤Pline
max 7:29

- T line
max ≤TMarket

t ≤T line
max 7:30

7.2.8 End Consumers

The VEH assures its internal end consumers to supply their electrical and thermal
energy demands. The profit of selling electrical and thermal energy to the consumers
is calculated by (7.31), where LoadEt and LoadTHt are end consumers’ electrical and
thermal loads, respectively.

ProfitConst = λEt ×Load
E
t

� �þ λTHt ×LoadTHt
� � ð7:31Þ
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7.2.9 Demand Response

The consumers can participate in the demand response program and shift a percent of
their hourly demand to other hours. They can shift their demand from hours with
high energy prices to hours with lower prices to reduce their energy purchasing cost.
Equations (7.32) and (7.33) give the demand of consumers after participating in the
load shifting demand response program. Equation (7.34) states that the summation
of shifted loads should be equal to zero. Equation (7.35) states the maximum amount
of load that consumers can shift. In these equations, LoadE,DRPt is the proportion of
hourly load being shifted, and δLoadEt is the amount of shifted power in each hour.

LoadE,Shiftedt =LoadEt þ δLoadEt ð7:32Þ
δLoadEt =LoadE,DRPt ×LoadEt 7:33

X24
t= 1

δLoadEt = 0 ð7:34Þ

-LoadE,DRPt, max ≤LoadE,DRPt ≤LoadE,DRPt, max ð7:35Þ

7.2.10 Power Balance

One of the most important constraints in power systems and multi-energy systems
problems is power balance constraints. Based on the power balance constraint, total
energy production should be equal to total energy consumption. Energy production
is referred to the energy generation of DERs, energy bought from the energy market,
and discharge of energy storage systems. On the other hand, energy consumption is
referred to the consumption of end consumers, energy sold to the energy market, and
charge of energy storage systems. With these explanations, the electrical power
balance is given by (7.36). Similarly, (7.37) states the thermal balance.

PWind
t þ

XNCHP

i= 1

PCHP
i,t þ

Xnv
v= 1

PdchPHEVv,t þ PMarket
t =LoadE,Shiftedt þ

Xnv
v= 1

PchPHEVv,t ð7:36Þ

XNCHP

i= 1

TCHP
i,t þ

XNB

k= 1

TB
k,t þ TBT

out þ TMarket
t =LoadTHt þ TBT,in

t ð7:37Þ
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7.2.11 Robust Optimization

In this chapter, it is considered that the parameters related to energy demand, energy
price, and wind speed are uncertain. Therefore, it is not rational to study and
investigate the developed VEHmodel by deterministic methods. Using deterministic
study for a problem with uncertain parameters will lead to a large amount of
economic risk imposed on VEH and its DERs. Robust optimization is one of the
well-known methods for dealing with uncertainties. In robust optimization, the
uncertain parameters are considered to be limited in space, called uncertainty set.
Different types of uncertainty sets are developed and used in the literature.

In this chapter, we use the simple uncertainty set called the “box” uncertainty set.
The box uncertainty set is the most conservative one, and it is usually used when the
decision-maker wants to follow a risk-averse strategy [24]. In other words, when
using the box uncertainty set for modeling the uncertain parameters, reaching the
worst-case scenario that all of the uncertain parameters have their worst values is
possible, while other uncertainty sets like polyhedral, ellipsoidal, etc. are less
conservative and lead to solutions better than the real worst case.

Let the uncertain parameter ~a have an uncertainty set as ~a 2 a , �a½ �. It can be
rewritten using the nominal value of the uncertain parameter and its upper and lower
bounds. Let ba be maximum fluctuations of the uncertain parameter ~a . Using an
auxiliary variable ξ that is part of the infinity norm set U , we can write:

~a= aþ ξ×ba ð7:38Þ
ξ U1 → -ψ ≤ ξ≤ψ 7:39

Consider a standard form of maximization problem that has uncertain parameters
in its constraints as follows:

max
Xni
i= 1

ci × xi ð7:40Þ

S:t:Xni
i= 1

~ai,j × xi ≤ ~bj 8j ð7:41Þ

By using (7.38), we can change the model as:

max
Xni
i= 1

ci × xi ð7:42Þ

S:t:Xni
i= 1

ai,j × xi þ ξi,j ×
Xni
i= 1

bai,j × xi ≤ bj þ ξbj ×bbj 8j ð7:43Þ
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In robust optimization methods, the worst-case scenario is investigated. There-
fore, this model can be written as:

max
Xni
i= 1

ci × xi ð7:44Þ

S:t:Xni
i= 1

ai,j × xi þ x0 × bj þ max ξi,j ×
Xni
i= 1

bai,j × xi þ ξ0,j ×bbj × x0
 

≤ 0 8j

7:45

where x0 is an artificial variable, which is equal to -1. By finding the maximum of
enclosed term, the final optimization model using RO uncertainty modeling will be
as follows:

max
Xni
i= 1

ci × xi ð7:46Þ

S:t:Xni
i= 1

ai,j × xi þ x0 × bj þ ψ
Xni
i= 1

bai,j × jxij þ bbj × x0
 !

≤ 0 8j ð7:47Þ

If xi ≥ 0 8 i, then we can use xi itself instead of the absolute value. But if not, the
developed model can be linearized as follows:

max
Xni
i= 1

ci × xi ð7:48Þ

S:t:Xni
i= 1

ai,j × xi þ ψ
Xni
i= 1

bai,j × ui -bbj
 !

≤ bj 8j ð7:49Þ

- ui ≤ xi ≤ ui 7:50

ui ≥ 0 7:51

Now, consider a standard form of maximization problem that in addition to the
constraints, it also has uncertain parameters in the objective function as follows:

max
Xni
i= 1

~ci × xi þ ~di
� � ð7:52Þ
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S:t:Xni
i= 1

~ai,j × xi ≤ ~bj 8j ð7:53Þ

In order to implement the robust uncertainty set, this model should be converted
as follows:

max Z ð7:54Þ
S:t:

Z-
Xni
i= 1

ci × xið Þ≤
Xni
i= 1

~di
ð7:55Þ

Xni
i= 1

~ai,j × xi ≤ ~bj 8j ð7:56Þ

With the same procedure, we can implement the robust modeling of uncertainties
using the box uncertainty set.

7.3 Simulation

In this section, the simulation results of the developed VEH structure and the
intelligent parking lot are presented. The developed system is a mixed integer
nonlinear programming (MINLP) problem because of the logarithmic function in
the intelligent parking lot modeling. It should be simulated using proper software
and be optimized using strong solvers. The proposed optimization problem is
simulated using the GAMS software and SBB solver, which show acceptable
performance when dealing with nonlinear problems. The computer system that is
used for running the optimization problem has an Intel Core i7 CPU and 8 gigabytes
of RAM.

Developed VEH has various aspects for investigating. We study and discuss the
developed multi-energy system in two case studies. In case study 1, the VEH model
and the intelligent parking lot are optimized without the load shift demand response
program. By concluding case study 1, we will have a benchmark to discuss the
impacts of the demand response program on the VEH profit and the intelligent
parking lot scheduling. In case study 2, we discuss the effects of the demand
response program on the VEH performance and its energy transactions.
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7.3.1 Input Data

The developed VEH is connected to power systems and the thermal network and
supplies electrical and thermal demand of end consumers. Figure 7.3 shows the
hourly electrical and thermal data [25]. The VEH operator schedules the DERs and
energy transactions with electrical and thermal energy markets based on the hourly
electrical and thermal energy prices. The electrical and thermal energy prices are
given by Fig. 7.4. The data related to the electrical energy demand and the electrical
price are assumed to be uncertain, and the nominal values of them are depicted in
these figures. The maximum power limit between the VEH and electrical and
thermal network is considered equal to 1000 kWh and 500 kWh, respectively.
Also, the data associated with the hourly wind speed is taken from [25].

The thermal buffer tank data can be found in Table 7.1. Two CHP units and two
boiler units as conventional power plants are considered in the VEH structure. The
data related to CHP units is given by Table 7.2. Also, the data related to boiler units
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Unit

are given in Table 7.3. These units use natural gas to produce electrical and thermal
energies for selling in the energy markets or supplying the end consumers’ demand.
The natural gas price is considered constant equal to 0.45 $/kWh.
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Table 7.1 Data related to the BT

Parameter Value

ηc 0.98

ηdc 0.98

Loss 0.02

Capmax 1800 kW

Capmin 400 kW

Pmax
ch 800 kW

PBSS,max
dch

800 kW

Table 7.2 Data related
to the CHP units

Elec./ther.
conversion
efficiency

Capacity
(kW)

Startup/shutdown cost
($)

#1 0.36/0.38 350 2.1/2.1

#2 0.45/0.5 350 2.1/2.1

Table 7.3 Data related
to the boiler units

Unit Efficiency Capacity (kW) Startup/shutdown cost ($)

#1 0.70 150 0.3

#2 0.80 150 0.3

The studied VEH contains one intelligent parking lot for smart charging and
discharging of electric vehicles. It is considered that twenty electric vehicles exist in
the VEH territory. These vehicles have random and uncertain behaviors. Therefore,
their arrival time, departure time, and required energy for the rest of the day after
departing the intelligent parking lot are uncertain parameters. We assume that
vehicles can enter the intelligent parking lot after hour 6. It is also assumed that
they can stay in the intelligent parking lot for 8 hours, but they can leave the lot
earlier. Also, because the vehicles are equipped with different types of batteries, the
nominal capacity of the vehicle’s battery is random. Any of these uncertain param-
eters are handled by producing random numbers for modeling the random behavior
of electric vehicles. The data related to the electric vehicles and intelligent parking
lot are derived from [23], which is presented in Table 7.4.
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Table 7.4 The specifications
of the intelligent parking lot
and electric vehicles

Parameter Value Parameter Value

SOCPHEV,max
v,t 1 tinv [6,16]

SOCPHEV,min
v,t

0.1 Staying time [2,8]

PchMax
v

[0.9,1] F 9,650,000

PdchMax
v

[0.9,1] α 15

ηPHEVv 0.95 R 8.31

δPHEVv
[0.3,0.6] T 35

ηIv 0.85 Vn 120

CapPHEVv
[90,110] Rin 0.4
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Fig. 7.5 The electrical power balance

7.3.2 Case Study 1

In this case study, the developed system is simulated without considering the
emission tax and demand response program. It is assumed that all uncertain param-
eters have variations as 0.05% of their nominal values. The VEH model is optimized
in this case by considering ψ = 1. In this situation, the optimal profit of VEH from
participating in the electrical and thermal markets is $2080.50. Since the worst-case
robust optimization is used in this chapter, it is guaranteed that the real optimal profit
of VEH will not be lower than this achieved value. Figure 7.5 shows the power
balance related to electrical energy. At all hours, the equality of generation and
consumption should be satisfied. This figure shows the scheduling of DERs and
energy transactions between the electrical energy market and the VEH. All decision
variables are taken value based on the hourly electrical and thermal energy prices.
CHP units that can produce electrical and thermal energies are active during the



24 hours of the day to supply both electrical and thermal demands. They have high
start-up and shutdown costs. Therefore, it will impose a big cost to the VEH if CHP
units get shut down and start up again. When the energy price is high, the VEH
operator tries to sell the generated power by its DERs in the upstream electrical
market to gain the most possible money. On the other hand, when the energy price is
low, the operator decides to buy more energy from the electrical energy market and
sell lower amount of energy in this market. As a result, at low-energy price hours, the
energy storage systems are charged with the energy generated by DERs and shift this
charged power to the hours that have high energy prices. In this chapter, the
intelligent parking lot is considered to play the role of an energy storage system. It
can be seen that at hours 17 and 19, where the energy price has its maximum values,
the discharge of PHEVs supplies a significant amount of electrical energy demand.
As seen in Fig. 7.5, because the energy demand level is more than the total capacity of
DERs, during the 24 hours of the day, the VEH decides to import energy from the
energy market to fulfill some percent of electrical energy demand. At the middle
hours of the day, when the wind speed is high enough, the wind farm starts to generate
energy. At hours 10 to 14, wind turbines supply a large amount of energy demand that
causes a big reduction in the energy bought from the electrical energy market.
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The intelligent parking lot controls the charging and discharging of electric
vehicles when they arrive and get connected to the electrical grid. The total amount
of hourly charging and discharging power of electric vehicles in the intelligent
parking lot is shown in Fig. 7.10. As mentioned earlier, the arrival time and departure
time of electric vehicles are uncertain. The random numbers are produced to
determine when vehicles enter the intelligent parking lot and when they leave
it. The entrance time, leaving time, and the SOC of electric vehicles when they are
in the intelligent parking lot are shown in Figs. 7.6, 7.7, 7.8, and 7.9. Because the
SOC of electric vehicles when they are driving is not important, the SOC of these
vehicles when they are out of the intelligent parking lot is neglected. When vehicles
arrive at the intelligent parking lot, they have their minimum SOC. Therefore, most
of their battery capacity is free to use for charging the electrical energy. The
intelligent parking lot tries to charge these vehicles when the energy price is low
and profitable. Because many of the vehicles have arrived before the expensive
hours, the intelligent parking lot has charged their battery to near to full. When the
energy price rises, like hours 11, 14, 15, and 17 o’clock, the intelligent parking lot
discharge the stored energy in batteries of electric vehicles to earn more money.
When vehicles are ready for leaving, they charge their battery a bit to get the required
energy for their traveling for the rest of the day. Fig. 7.10 shows the total amount of
charging and discharging of electric vehicles that are aggregated by intelligent
parking lot. The two peaks of discharging have happened at hours 15 and
17, where the energy price reached its maximum numbers, according to Fig. 7.4.

In order to analyze the thermal part of the developed VEH, the thermal power
balance is shown in Fig. 7.11. As same as the electrical energy, the equality between
the generation and consumption of thermal energy should be satisfied at all hours of
the day. It can be seen that the thermal power balance constraint is totally satisfied at
all hours. As mentioned in the electrical power balance part, the CHP units are active
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during the 24 hours of the day. They provide the most of thermal energy demand
required by end consumers. In addition to the CHP units, the boilers also can
generate thermal energy. Boiler 2 is more cost-effective than boiler 1. As a result,
it produces maximum capacity. On the other hand, boiler 1 just produces energy
when the thermal energy price is high enough to make the production of boiler
1 profitable. For example, at 10 o’clock, when the thermal energy price is so low,
boiler 1 stops the energy generation.
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Fig. 7.11 Thermal power balance

The energy transactions with the upstream thermal markets depend on the hourly
thermal energy price. When the thermal energy price is high, it is more profitable to
sell the thermal energy in these markets. In contrast, when the energy price reaches
the lower number, the VEH can buy energy from the thermal energy market. It can



be seen that because the thermal energy price is high enough in almost all hours of
the day, except hour 10, the VEH operator decides to sell energy produced by its
DERs to earn money.
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The thermal buffer tank performs in a way to maximize the total profit gained by
VEH. For that, it should be charged in cheap hours and discharge the stored power at
hours with higher thermal energy prices. For example, it can be observed that at
10 o’clock, the BT has been charged heavily. Then, it discharges the energy at
11, 12, and 13 o’clock. This process leads to energy shifting from hours with
low-energy prices to the expensive hours in order to sell the thermal energy at higher
prices.

7.3.3 Case Study 2

In this case study, the effects of the demand response program on the performance of
developed VEH are investigated. The demand response can reduce the cost of
energy production in peak-load hours. It is possible that at peak-load hours, the
VEH is forced to turn on a unit with high operation cost, which can increase the final
energy price in the energy markets. Demand response program can reduce these
peaks and the energy price. On the other hand, the end consumers try to shift their
load to hours that have lower prices to reduce their energy purchasing cost. There-
fore, the electrical demand is reduced at the expensive hours and is increased at the
hours with the low level of electrical energy price. By considering a maximum 20%
of hourly shifting load, the profit of VEH is increased to $2102.16. The electrical
demand of end consumers before and after the participation in the demand response
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program is shown in Fig. 7.12. It can be seen that end consumers have reduced their
consuming load at hours 10–20 o’clock and shifted the reduced load to the other
hours. For example, their demand at early and late hours of the day is increased to get
their energy demand at lower prices. It should be mentioned that the method of
demand response that is used in this chapter is the load shifting demand response
program. In this method, the total amount of consuming load of consumers remains
the same. However, they can consume some of their non-priority demands at other
hours than it supposed to be.
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Demand response can affect the performance of intelligent parking lot and
electric vehicles in it. It can be noticed from Fig. 7.10 that the electric vehicles are
doing charge and discharge during the mid-hours. Because a large percentage of
demand is shifted from mid-hours of the day, the effects of demand response
program on the scheduling of the intelligent parking lot can be significant. We can
say that demand response programs can reduce the need for large energy storage
systems. In other words, the load shifting demand response is much similar to
shifting generated energy by energy storage systems. As a result, the required
investment for developing the multi-energy systems can be reduced by participation
of end consumers in the demand response program. The total amount of charging
and discharging of electric vehicles operated by the intelligent parking lot is shown
in Fig. 7.13. Compared to case study 1, the total discharged energy from electric
vehicles during the 24 hours is reduced from 1704.45 to 1567.39 kWh.

7.4 Conclusion

In this chapter, the short-term self-scheduling of a VEH for participating in the
electrical and thermal markets was presented. The VEH consists of various DERs for
supplying the electrical and thermal energy demands. The plug-in hybrid electric



vehicles were considered in the VH structure. For handling and aggregating the
plug-in hybrid electric vehicles, the intelligent parking lot was modeled to be able to
operate the electric vehicles in a smart way. The electric vehicles’ random behavior
was considered to simulate the VEH in near-to-reality situations. We used the RO
method to deal with uncertainties and optimize the developed VEH model. This
model can be a high potential solution to be able to integrate the power systems with
thermal networks and transportation system. Also, we investigated the effects of the
demand response program on the need for energy storage equipment. The result
showed that by considering a 20% demand response program, the charging and
discharging energy of energy storage systems is reduced.
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Chapter 8
Hybrid Interval-Stochastic Optimal
Operation Framework of a Multi-carrier
Microgrid in the Presence of Hybrid
Electric and Hydrogen-Based Vehicles
Intelligent Parking Lot

Masoud Agabalaye-Rahvar, Amir Mirzapour-Kamanaj, Kazem Zare,
and Amjad Anvari-Moghaddam

Abstract As to deliver sustainable and reliable energy to demands with low
emission, a multi-carrier microgrid (MCMG) structure has been proposed. Hybrid
electric and hydrogen-based vehicles (HEHVs) have been introduced to facilitate
decarbonized and decentralized coupled energy systems for decision-makers. So,
HEHVs intelligent parking lot (IPL) integrated with MCMG is an appropriate
solution. Accordingly, the considered MCMG in this chapter supplies multi-energy
demands (MEDs), i.e., electrical, thermal, and cooling, via various technologies
besides exchanging power and natural gas from the respective upstream grids. The
uncertainty of HEHVs’ driving patterns, generation of renewable energy sources
(RESs), and consumption of MEDs are modeled via the scenario-based stochastic;
however, an interval-based optimization approach is taken for the market price
uncertainty. Consequently, numerical results indicated the effectiveness of the
introduced hybrid interval-stochastic model in which the deviation of overall oper-
ation cost is reduced up to 67.47%, while the average cost approximately is
increased up to 1.87%.
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8.1 Introduction

Since the population growth trend has increased worldwide in recent decades,
supplying multi-energy demands (MEDs) has been given remarkable attention by
policymakers and researchers in terms of low greenhouse gas emissions, low
operation cost, more energy efficiency, and more robustness. So achieving the
mentioned goals and integrating various energy infrastructures along with increasing
the penetration rates of renewable energy sources (RESs) have been indispensable
[1]. Also, to provide an accessibility vision of coordinating these networks, inte-
grated analysis has been accomplished in [2]. In this environment, the concept of
multi-carrier microgrids (MCMGs) has appeared sufficiently with clean energy
sources (CESs) as well as hydrogen-based emerging technologies [3, 4]. One of
these CESs is producing hydrogen from RESs via deploying electrolyzers, which
could be directly injected into hydrogen-based industries and/or utilized in fuel cells
to produce power in terms of having a stable, flexible, and reliable system. The other
great motivation for facilitating the path to obtaining considered goals, applications
of hydrogen vehicles (HVs) and electric vehicles (EVs) in smart microgrids (SMGs)
have been hastened as a promising mobility option [5]. These EVs and HVs could be
executed in the vehicle-to-grid (V2G) mode to provide ancillary services and large-
capacity provisions, while the grid-to-vehicle (G2V) mode acts as a load in off-peak
times of the system [6].

Accordingly, various researches have been conducted around the optimal sched-
uling and optimal planning structures of MCMGs with different flexible emerging
technologies. In this way, several methodologies were adopted to deal with the
upcoming challenges. Authors in [7] have introduced optimal planning and sizing
of components for MCMG by considering net zero-emission (NZE), which was
modeled as a two-stage proposed method. In another work [8], cooperative optimal
planning and design of MCMG have been performed with regard to the demand
response program (DRP). In order to improve reliability, reduce greenhouse gas
emissions, and also reduce network losses, co-optimizing formulation of the reli-
ability-constrained MCMG has been represented in [9], acquiring the best type and
size of each component as well as optimal dispatch. Reference [10] has specified
two-stage cost-effective planning and scheduling model for MG coupled with
compressed air energy storage (CAES). The first stage of that is determining the
optimal location and size via considering two objectives as power loss and voltage
deviation, while stochastic scheduling is performed in the second stage. For the
integrated energy system of several sub-networks, i.e., electrical, natural gas, and
district heating types in [11], optimal day-ahead operational planning has been
proposed and investigated flexibility provisions of energy storage systems (ESSs)
via novel pricing policy-based economic approach. Also, for the interdependent
mentioned three sub-networks in [11], the day-ahead optimal scheduling of
networked MCMG has been provided by [12] to increase energy efficiency, reli-
ability, and security of the system. Despite the metaheuristic optimization algorithm,
i.e., modified whale optimization algorithm was used as a solution method in [12], a



mixed-integer linear programming (MILP) approach has been utilized through [13]
to achieve optimum energy management constrained with the AC power flow model
in MCMG. Owing to occur severe uncertainties in renewable-based MCMG, authors
in [14] have offered the probabilistic optimal power flow dispatch coordinated with
novel time-based demand-side management (DSM) via mixed-integer nonlinear
programming (MINLP). Another work to realize the optimal scheduling of
MCMGs is about taking external shocks. So, Ref. [15] has made known resil-
iency-oriented day-ahead and optimal real-time scheduling of multi-carrier energy
systems, which was modeled as an iterative three-stage optimization form. An
optimum resilient three-stage optimization model for a multi-carrier distribution
system [16] has been proposed in which non-utility plug-in EV (PEV) aggregators
and ESSs aggregators could sell their electricity. A robust framework based on the
model predictive control (MPC) approach has been utilized in [17] for optimal
energy scheduling of MCMG under uncertainties related to RESs’ generations and
electrical/thermal consumption demands. A hybrid robust-stochastic technique has
been presented in [5] to overcome all random parameters such as RESs, local
demands, driven patterns of EVs, and also market price for the proposed MCMG.
The strategically scheduled offering/bidding of PEVs and wind farm has been
modeled with a bilevel multi-objective hybrid robust-stochastic algorithm in [18],
such that minimizing two objectives as cost and emission in the upper level while
maximizing the social welfare in the lower level has been performed. The other
hybrid framework called stochastic-interval has been indicated in [19] to preserve
heterogeneous uncertainties in the decision-making operation strategy of MCMG
such that a scenario-based two-stage method has been utilized. Operational sched-
uling and management of MCMG integrated with EV IPL and price-based and
incentive-based DRP flexible technologies have been demonstrated in [20]. Consid-
eration of two objectives as economic and environmental in optimal scheduling of
renewable-based MCMG equipped with EV IPL and incentive-based DRP has been
taken via [21]. Therefore, the hybrid robust-stochastic deployed model for the
problem [21] has been formulated through the MILP approach. As hydrogen
deployment is increased in recent years due to having significant benefits of green
and clean energy, hydrogen storage systems (HSSs) coordinated with MCMGs.
Authors in [22] have presented a suitable scheduling environment for an optimum
complemented hydrogen-based smart energy hub (EH) that addressed system fluc-
tuations with the hybrid robust-stochastic procedure. Stochastic scheduling of smart
multi-carrier EH coordinated with HSS and DRP in terms of economic and envi-
ronmental aspects has been conducted in [23] to fulfill the obtained system’s profits.
In Ref. [24], HVs have been incorporated with real specifications of multi-carrier
ESSs to obtain optimal deterministic scheduling. Optimal coordinative HVs, price-
based DRP, and ESSs have been indicated in [25], along with utilizing modified risk-
constrained stochastic scheduling to address the uncertainties appropriately within
the MILP approach. For the hydrogen-based MCMG that participates in power,
natural gas, thermal, and hydrogen market [26], a risk-averse hybrid robust-stochas-
tic technique is integrated into the model not only to handle fluctuations of RESs and
market price but also take techno-economic benefits. Also, authors in [27] have
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investigated the application of power-to-hydrogen (P2H) technology in
interconnected power, natural gas, and thermal networks via the conditional value
at risk (CVaR)-based stochastic scheduling model. The power-to-gas (P2G) and P2H
flexible technologies in modern coupled power and hydrogen networks [28]
highlighted the synergy operation between these energy carriers to achieve maximum
daily profit using the probabilistic-based Monte Carlo simulation (MCS) method.
Another CVaR-based stochastic scheduling framework for considered EH consists of
RESs, combined heat and power (CHP), fuel cell power plant (FCPP), PEVs, and
electrical/thermal DRP [29] developed in order to reduce emission expenditure.
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According to the scrutinization of the aforementioned studies and researches in
the literature, some research gaps could be determined. So in most previous works,
some uncertain parameters such as RESs, several considered demands, electricity
market price, and driving patterns of EVs/HVs are handled through the hybrid
robust-stochastic frameworks in MCMG infrastructure. Furthermore, despite pro-
viding several advantages by the applications of flexible emerging green energy
called hydrogen production from RESs in integrated energy systems, it has only
been taken in a few recent studies. Also, coordinated operations of EVs/HVs in the
concept of IPL have not been widely modeled and investigated under the
unpredictable behaviors of these fleets. Thus, to solve the abovementioned short-
comings, a renewable-based MCMG integrated with EVs/HVs IPL is proposed
within the existence of inherent uncertainties in this chapter. The main contributions
are categorized as follows:

1. Managing uncertainty of RESs outputs, i.e., PV and wind generations, considered
electrical, thermal, and cooling demands, unpredictable behavior of HEHVs
owners, and also electricity market price has been handled via an appropriate
hybrid stochastic-interval method.

2. Smart charging and discharging provisions of each EVs/HVs in IPL have been
illustrated to obtain cost-effective strategies in the MCMG decision-making
process framework.

3. Another flexible technology called green hydrogen energy is developed either to
be directly used in fueling HVs or converted back to power in required peak
demands.

The rest of this chapter is organized as follows: Sect. 8.2 provides detailed
descriptions of the renewable-based MCMG model integrated with HEHV IPL,
and then in Sect. 8.3, the proposed problem formulation is defined. Various case
studies along with simulation results are indicated in Sect. 8.4. Finally, the outstand-
ing findings conclude in Sect. 8.5.

8.2 Problem Description

Various actions such as storing, or controlling multiple energies for diverse purposes
can be accomplished via the MCMGs concept [30]. In other words, multiple energies
could be entered as input for MCMG such that after converting, storing, and



controlling multi energies can result as output for supplying various types of
demands. According to the definition, the schematic structure of the proposed
model is represented in Fig. 8.1. RESs, i.e., wind and PV units, various types of
facilities, and also hybrid vehicle parking lots are integrated into the proposed
MCMG. Power and natural gas are used as input energies, while electrical, thermal,
and cooling demands are used as output energies. Electrical demand can be supplied
by RESs, the upstream network, and the CHP system. The gas boiler (GB), the CHP
system, and the heat storage system (HTSS) are responsible for supplying thermal
demand. Also, the electric chiller (EC), absorption chiller (AC), and ice storage
system (ISS) can provide cooling demand. Different ESSs are used for the flexibility
enhancement of the proposed MCMG. Also, the operator will be amenable to the
optimal operation of the HEHVs IPL. It means that the operator of MCMG can
control the charge and discharge power of EVs in the IPL, and also, the hydrogen
demand of HVs must be supplied by MCMG. The produced hydrogen by
electrolyzer (EZ) can be stored in the HSS for supplying the hydrogen demand of
vehicles. In addition, the stored hydrogen can be converted to power by the fuel cell
(FC) in a shortage of electric power or high electricity market price intervals.
Stochastic programming is adopted for uncertainty assessment of PV and wind
generation as well as various intended demands. Also, for modeling the
unpredictable behavior of HEHV owners, the arrival time, departure time, and initial
energy of EVs are modeled through stochastic programming. For simplicity, the
hydrogen demand of the HV IPL is just taken into account. To be clear, the modeling
of the hydrogen-based vehicles is not taken into account. Finally, the interval
optimization approach is applied for the assessment of electricity market price
uncertainty.
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Fig. 8.1 Schematic structure of the proposed model for MCMG
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8.3 Problem Formulation

As it has been identified in the previous section about how to supply the several
demands considered in Fig. 8.1, the main objective of the decision-making operator
for renewable-based MCMG structure is minimizing overall operation cost under
different intensive uncertainties. Therefore, the mathematical model related to that is
represented below.

8.3.1 Stochastic-Based Proposed Model

8.3.1.1 Objective Function

The expected daily operational cost function is defined as the imported power and
natural gas from the relevant upstream grids, which should be minimized (8.1).

Cost=
XΩ
ω

ωs

XT
t

γEt,ωP
Net
t,ω þ λGGNet

t,ω

� � ð8:1Þ

where t and ω are indices of time intervals and reduced scenarios; γEt,ω and λG denote
the electricity market price at hour t in scenario ω and natural gas price; PNet

t,ω and G
Net
t,ω

are the imported electrical and natural gas energies at hour t in scenario ω; and ωs is
the probability of each considered scenario ω.

8.3.1.2 Gas-Based Non-renewable Energy Source Constraints

The two gas-fired energy sources are taken herein as CHP and GB to help the system
operator in meeting electrical and thermal intended demands. The consumption of
natural gas by CHP unit results in producing electric and heat powers according to
energy efficiencies, i.e., ηE,CHP, ηH,CHP which are declared in (8.2) and (8.3), respec-
tively. Also, these productions of CHP units are restricted by (8.4) and (8.5).
However, the consumed natural gas by GB unit generates heat only power regards
to the energy efficiency of ηGB (8.6) such that its limitation is defined via (8.7).

PCHP
t,ω = ηE,CHPGCHP

t,ω 8t,ω ð8:2Þ
HCHP

t,ω = ηH,CHPGCHP
t,ω 8t,ω ð8:3Þ

0≤PCHP
t,ω ≤PCHP,Max 8t,ω ð8:4Þ

0≤HCHP
t,ω ≤HCHP,Max 8t,ω ð8:5Þ

HGB
t,ω = ηGBGGB

t,ω 8t,ω ð8:6Þ
0≤HGB

t,ω ≤HGB,Max 8t,ω ð8:7Þ



where PCHP and HCHP
t,ω t,ω represent the electric and heat power productions by CHP unit
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at hour t in scenario ω; PCHP, Max and HCHP, Max are the maximum limits of electric
and heat power production via CHP unit; GCHP

t,ω and GGB
t,ω are the consumed natural

gas of CHP and GB units at hour t in scenario ω; and HGB, Max is the maximum limit
of produced heat power in GB unit.

8.3.1.3 Renewable Energy Source Constraints

Since the probabilistic nature of RESs, i.e., PV and wind energy sources, exist, the
power productions relevant to the solar irradiance, ambient temperature, and wind
speed variations should be modeled appropriately as in (8.8) and (8.9), respectively.
Other details for specifying the behaviors of wind speed and solar irradiance could
be determined through the Rayleigh and Beta probability density functions (PDFs),
which are completely found in [31].

PPV
t,ω = ηPVSPVIt,ω 1- 0:005 Tt,ω - 25ð Þð Þ 8t,ω ð8:8Þ8

PWT
t,ω =

0 ;VWT
t,ω <VCI or VWT

t,ω ≥VCO

VWT
t,ω -VCI

VR -VCI PWT,R ;VCI ≤VWT
t,ω <VR

PWT,R ;VR ≤VWT
t,ω <VCO

>>><
>>>:

8t,ω ð8:9Þ

where ηPV and SPV are the energy efficiency and effective area of installed PV array;
It and Tt are hourly predicted sunlight irradiance and ambient temperature; PPV

t,ω is the
forecasted power of PV array at hour t in scenario ω; VCI, VCO, and VR denote the cut-
in, cut-out, and rated wind speeds; PWT,R and PWT

t,ω are the rated and hourly forecasted
scenario-based powers of a wind turbine; and VWT

t,ω is the forecasted wind speed at
hour t in scenario ω.

8.3.1.4 Hydrogen Energy-Based Source Constraints

A flexible green energy source named HSS is developed to help system operators
much better in different situations by preventing energy from being wasted. So, the
excess power of RESs and also power in off-peak intervals could be utilized in the
EZ facility to produce hydrogen energy according to its energy efficiency ηEZ (8.10)
in which the limitation of consumed power is expressed in (8.11) [32]. To contribute
to supplying the rest of the electrical demand in peak intervals, the FC facility which
consumes hydrogen is deployed with energy efficiency ηFC (8.12), whose production
is limited by (8.13) [32]. In order to convert the output energy of EZ and also FC
facilities to their corresponding real units, a coefficient γP2Hy is applied in Eqs. (8.10)
and (8.12), respectively.
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HyEZt,ω =
ηEZPEZ

t,ω

γP2Hy
8t,ω ð8:10Þ

0≤PEZ
t,ω ≤PEZ,Max 8t,ω ð8:11Þ

PFC
t,ω = ηFCHyFCt,ωγ

P2Hy 8t,ω ð8:12Þ
0≤PFC

t,ω ≤PFC,Max 8t,ω ð8:13Þ

where HyEZt,ω and HyFCt,ω are the produced and consumed hydrogen energy by EZ and
FC facilities at hour t in scenario ω; PEZ

t,ω and PFC
t,ω are the consumed and produced

electric power by EZ and FC facilities at hour t in scenario ω; and PEZ, Max and PFC,

Max represent the maximum limit of consumed and produced electric power of EZ
and FC facilities.

8.3.1.5 Cooling Energy Constraints

As a response to supply cooling intended demand in the proposed MCMG structure,
integrating AC and EC technologies is indispensable [33]. Therefore, producing
cooling energy by AC and EC sources is realized with their corresponding coeffi-
cient of the performance (COP) [33], i.e., COPAC and COPEC which are stated in
(8.14) and (8.16), respectively. The produced cooling energy has been limited via the
maximum allowable bound of heat and electric powers consumed in the AC and EC
facilities, which are defined in (8.15) and (8.17), respectively.

CAC
t,ω =COPACHAC

t,ω 8t,ω ð8:14Þ
0≤HAC

t,ω ≤HAC,Max 8t,ω ð8:15Þ
CEC
t,ω =COPECPEC

t,ω 8t,ω ð8:16Þ
0≤PEC

t,ω ≤PEC,Max 8t,ω ð8:17Þ

where CAC
t,ω and CEC

t,ω are the produced cooling energy by AC and EC facilities at hour
t in scenario ω; HAC

t,ω and PEC
t,ω are the consumed heat and electric powers in AC and

EC facilities at hour t in scenario ω; and HAC, Max and PEC, Max are the maximum
limit of consumed heat and electric powers in AC and EC facilities.

8.3.1.6 Energy Storage System Constraints

ESS is another flexible source that provides required electric power in peak intervals
with minimum energy cost [22]. The hourly stored energy of ESS has been calcu-
lated with regard to the charging and discharging powers and their related energy
efficiencies in (8.18). The stored energy at the first and final intervals must be
equivalent, which are defined in (8.19) and (8.20) such that this energy is maintained



!

in the specified range for each hour and each scenario (8.21). Similar to that, the
acceptable limitations for charging and discharging powers are denoted by (8.22)
and (8.23). One of these two operation modes of ESS is selected at the same time
(8.24).
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EESS
t,ω =EESS

t- 1,ω þ PESS,ch
t,ω ηESS,ch -

PESS,dch
t,ω

ηESS,dch

 !
8t,ω ð8:18Þ

EESS
t,ω =EESS,Initial 8t= 1,ω ð8:19Þ

EESS
t,ω =EESS,Initial 8t= T ,ω ð8:20Þ

EESS,Min ≤EESS
t,ω ≤EESS,Max 8t,ω ð8:21Þ

0≤PESS,ch
t,ω ≤PESS,ch,MaxBESS,ch

t,ω 8t,ω ð8:22Þ
0≤PESS,dch

t,ω ≤PESS,dch,MaxBESS,dch
t,ω 8t,ω ð8:23Þ

BESS,ch
t,ω þ BESS,dch

t,ω ≤ 1 8t,ω ð8:24Þ

where PESS,ch
t,ω and PESS,dch

t,ω are the charging and discharging powers at hour t in
scenario ω; ηESS,ch and ηESS,dch are charging and discharging energy efficiencies;
PESS,ch,Max and PESS,dch,Max are the maximum limit of charging and discharging
powers; BESS,ch

t,ω and BESS,dch
t,ω are the binary decision variables in charging and

discharging modes at hour t in scenario ω; EESS,Min and EESS,Max are the minimum
and maximum allowable amount of stored energy in ESS; EESS, Initial is the initial
amount of energy exists; and EESS

t,ω is the available stored energy of ESS at hour t in
scenario ω.

8.3.1.7 Heat Storage System Constraints

Similar to the ESS modeling described in the previous section, HTSS is provided
here as [22] to obtain the scheduling of interconnected energy carriers optimally. The
thermal stored energy of THSS in (8.25) is updated at each hour and each scenario
according to charging and discharging heat powers and energy efficiencies.
The first and final intervals of stored thermal energy should be identical according to
Eqs. (8.26) and (8.27) which are located in the predetermined range for each hour
and each scenario declared in (8.28). The charging and discharging heat powers are
restricted via (8.29) and (8.30). Finally, to prevent occurring simultaneous operating
modes of HTSS, constraint (8.31) is applied.

EHTSS
t,ω =EHTSS

t- 1,ω þ HHTSS,ch
t,ω ηHTSS,ch -

HHTSS,dch
t,ω

ηHTSS,dch

 
8t,ω ð8:25Þ
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EHTSS
t,ω =EHTSS,Initial 8t= 1,ω ð8:26Þ

EHTSS
t,ω =EHTSS,Initial 8t= T ,ω ð8:27Þ

EHTSS,Min ≤EHTSS
t,ω ≤EHTSS,Max 8t,ω ð8:28Þ

0≤HHTSS,ch
t,ω ≤HHTSS,ch,MaxBHTSS,ch

t,ω 8t,ω ð8:29Þ
0≤HHTSS,dch

t,ω ≤HHTSS,dch,MaxBHTSS,dch
t,ω 8t,ω ð8:30Þ

BHTSS,ch
t,ω þ BHTSS,dch

t,ω ≤ 1 8t,ω ð8:31Þ

where HHTSS,ch
t,ω and HHTSS,dch

t,ω are the charging and discharging heat powers at hour t
in scenario ω; ηHTSS,ch and ηHTSS,dch are charging and discharging energy efficien-
cies; HHTSS,ch,Max and HHTSS,dch,Max are the maximum limit of charging and
discharging heat powers; BHTSS,ch

t,ω and BHTSS,dch
t,ω are the binary decision variables in

charging and discharging modes at hour t in scenario ω; EHTSS,Min and EHTSS,Max are
the minimum and maximum allowable amount of heat stored energy in HTSS;
EHTSS,Initial is the initial amount of heat energy exists; and EHTSS

t,ω is the available
heat stored energy of HTSS at hour t in scenario ω.

8.3.1.8 Ice Storage System Constraints

In addition to supplying cooling demand by AC and EC technologies, utilizing the
ISS facility is a good option in an optimum cooperation manner [26]. The requested
cooling energy is produced via consuming electric power with consideration of
related COP (8.32). The cooling stored energy of ISS in (8.33) is updated at each
hour and each scenario regarding the charging and discharging cooling powers and
energy efficiencies. At the first and final intervals, the stored energy should be the
same through Eqs. (8.34) and (8.35) in which the acceptable variations for each hour
and each scenario are limited by (8.36). The limitations of charging and discharging
cooling powers are stated in (8.37) and (8.38). To obtain economic actions, only one
of these modes is specified via (8.39).

CISS,ch
t,ω =PIce

t,ωCOP
Ice 8t,ω ð8:32Þ !

EISS
t,ω =EISS

t- 1,ω þ CISS,ch
t,ω ηISS,ch -

CISS,dch
t,ω

ηISS,dch
8t,ω ð8:33Þ

EISS
t,ω =EISS,Initial 8t= 1,ω ð8:34Þ

EISS
t,ω =EISS,Initial 8t= T ,ω ð8:35Þ

EISS,Min ≤EISS
t,ω ≤EISS,Max 8t,ω ð8:36Þ



8 Hybrid Interval-Stochastic Optimal Operation Framework of a Multi-carrier. . . 219

0≤CISS,ch
t,ω ≤CISS,ch,MaxBISS,ch

t,ω 8t,ω ð8:37Þ
0≤CISS,dch

t,ω ≤CISS,dch,MaxBCES,dch
t,ω 8t,ω ð8:38Þ

BISS,ch
t,ω þ BISS,dch

t,ω ≤ 1 8t,ω ð8:39Þ

where CISS,ch
t,ω and CISS,dch

t,ω are the charging and discharging cooling powers at hour t
in scenario ω; PIce

t,ω is the equivalent consumed electric power in the charging mode at
hour t in scenario ω; ηISS,ch and ηISS,dch are charging and discharging energy
efficiencies; CISS, ch, Max and CISS, dch, Max are the maximum limit of charging and
discharging cooling powers; BISS,ch

t,ω and BISS,dch
t,ω are the binary decision variables in

charging and discharging modes at hour t in scenario ω; EISS,Min and EISS,Max are the
minimum and maximum allowable amount of stored energy in ISS; EISS,Initial is the
initial amount of cooling energy; and EISS

t,ω is the available stored cooling energy of
ISS at hour t in scenario ω.

8.3.1.9 Hydrogen Storage System Constraints

The flexible green energy provider-based HSS technology is also coordinated in
MCMG structures [22]. Since the HVs are getting noticed and implemented in some
real recent case studies, supplying their required energy is getting much attention.
Thus, the hourly stored hydrogen in HSS can be calculated through (8.40) such that
the first and final stored energies must be equal as mentioned in (8.41) and (8.42).
The allowable variations of stored hydrogen amount for each hour and each scenario
are assigned by (8.43).

AHSS
t,ω =AHSS

t- 1,ω þ HyFCt,ω -HyEZt,ω -HyLt,ω 8t,ω ð8:40Þ
AHSS
t,ω =AHSS,Initial 8t= 1,ω ð8:41Þ

AHSS
t,ω =AHSS,Initial 8t= T ,ω ð8:42Þ

AHSS,Min ≤AHSS
t,ω ≤AHSS,Max 8t,ω ð8:43Þ

where HyLt,ω is the hydrogen energy demand of HVs at hour t in scenario ω; AHSS,Min

and AHSS,Max are the minimum and maximum allowable amount of stored hydrogen
in HSS; AHSS, Initial is the initial amount of hydrogen energy; and AHSS

t,ω is the available
stored hydrogen amount at hour t in scenario ω.

8.3.1.10 Electric Vehicle Intelligent Parking Lot Constraints

In order to overcome environmental challenges, the development of EVs along with
deploying HVs have been increasingly motivated in recent years [34]. The charging



 !

and discharging process of EVs in IPL should be economically accomplished in the
MCMG structure. Therefore, the appropriate modeling of EVs is provided in the
following constraints. The hourly available energy of each EV’s battery is updated
with charging and discharging powers at each hour between arrival-departure times
and each scenario through Eq. (8.44). Since the arrival time of EVs has been
considered as an uncertain parameter, the accessible energy in this time is equal to
the predetermined scenario-based amount, i.e., EEV,arrival

v,ω (8.45). For the departure
time of EVs, the accessible energy is equal to a predetermined deterministic amount,
i.e., ψEV

v EEV,Max
v (8.46). It is worth mentioning the coefficient of charging EVs in IPL

is defined by ψEV
v . The allowable range of hourly available energy is stated in (8.47).

Also, restrictions of charging and discharging powers are reported in (8.48) and
(8.49). Similar to other mentioned storage devices, constraint (8.50) is utilized to
prevent simultaneous operating modes. The total daily switching between these two
modes must be less than the predetermined number, i.e., NMax

v for each EV (8.51).
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EEV
t,v,ω =EEV

t- 1,v,ω þ PEV,ch
t,v,ω ηEV,chv -

PEV,dch
t,v,ω

ηEV,dchv
8tarrivalv < t< tdeparturev , v,ω ð8:44Þ

EEV
t,v,ω =EEV,arrival

v,ω 8t= tarrivalv , v,ω ð8:45Þ
EEV
t,v,ω =ψEV

v EEV,Max
v 8t= tdeparturev , v,ω ð8:46Þ

EEV,Min
v ≤EEV

t,v,ω ≤EEV,Max
v 8tarrivalv < t< tdeparturev , v,ω ð8:47Þ

0≤PEV,ch
t,v,ω ≤PEV,ch,Max

v BEV,ch
t,v,ω 8tarrivalv < t< tdeparturev , v,ω ð8:48Þ

0≤PEV,dch
t,v,ω ≤PEV,dch,Max

v BEV,dch
t,v,ω 8tarrivalv < t< tdeparturev , v,ω ð8:49Þ

BEV,ch
t,v,ω þ BEV,dch

t,v,ω ≤ 1 8tarrivalv < t< tdeparturev , v,ω ð8:50Þ
XT
t

BEV,ch
t,v,ω þ BEV,dch

t,v,ω

� �
≤NMax

v 8tarrivalv < t< tdeparturev , v,ω ð8:51Þ

where PEV,ch
t,v,ω and PEV,dch

t,v,ω are the charging and discharging powers of EV v at hour t in
scenario ω; ηEES,chv and ηEES,dchv are charging and discharging energy efficiencies of
EV v; PEV,ch,Max

v and PEV,dch,Max
v are the maximum limit of charging and discharging

powers of EV v; BEV,ch
t,v,ω and BEV,dch

t,v,ω are the binary decision variables in selecting
charging and discharging modes of EV v at hour t in scenario ω; EEV,Min

v and EEV,Max
v

are the minimum and maximum allowable amount of stored energy in EV v; and
EEV
t,v,ω is the available stored energy of EV v at hour t in scenario ω.
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8.3.1.11 All Energy Balance Constraints

In Eqs. (8.52)–(8.55), determining the balancing constraints of electric power, heat
power, cooling energy, and natural gas energy is done to show that injecting and
consuming energies in meeting several demands should be equal at each hour and
each scenario.

PNet
t,ω × ηT þ PPV

t,ω þ PWT
t,ω þ PCHP

t,ω þ PESS,dch
t,ω þ PFC

t,ω þ
XV
v

PEV,dch
t,v,ω

=PL
t,ω þ PESS,ch

t,ω þ PIce
t,ω þ PEC

t,ω þ PEZ
t,ω þ

XV
v

PEV,ch
t,v,ω 8t,ω

ð8:52Þ

HCHP
t,ω þ HGB

t,ω þ HHTSS,dch
t,ω =HL

t,ω þ HAC
t,ω þ HHTSS,ch

t,ω 8t,ω ð8:53Þ
CEC
t,ω þ CAC

t,ω þ CISS,dch
t,ω =CL

t,ω 8t,ω ð8:54Þ
GNet

t,ω =GCHP
t,ω þ GGB

t,ω 8t,ω ð8:55Þ

where ηT is the energy efficiency of the transformer between MCMG and upper grid
and PL

t,ω, H
L
t,ω, and C

L
t,ω represent the electrical, thermal, and cooling demands at hour

t in scenario ω, respectively.

8.3.2 Interval-Based Stochastic Proposed Model

8.3.2.1 General Model Specifications

In this section, the uncertainty modeling of electricity market prices is modeled via
the proposed interval optimization method. In this approach, a multi-objective
problem for the objective function (8.1) is manufactured in which the average and
deviation costs should be minimized [35]. Moreover, the weighted sum solution
approach is deployed to achieve optimal Pareto solutions between the two afore-
mentioned costs. Then, a min-max fuzzy approach is considered to identify the
trade-off solutions from Pareto solutions.

At first, the full model for an optimization problem with input parameter Y,
uncertainty parameter φ, and decision variable X is provided in (8.56)–(8.58).

MinF X,Y ,φð Þ 8:56Þ
s:t:

H X,Y ,φ = 0
ð8:57Þ

G X,Y ,φ ≤ 0 8:58
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In this method, the upper and lower bounds for the uncertainty parameter are
considered as an interval [φMin,φMax]. According to this, the entire constraints and
also objective function are declared within intervals. Hence, the upper and lower
amounts of the objective function are determined as in Eqs. (8.59) and (8.60),
respectively. Afterward, the minimization of average cost and deviation cost simul-
taneously could be obtained as a bi-objective problem (8.61). With regard to the
obtained upper and lower amounts, the average cost and deviation cost, i.e., FM(X)
and FW(X), are calculated from Eqs. (8.62) and (8.63), respectively.

FMax Xð Þ= max
φ2Y

F Xð Þ ð8:59Þ

FMin Xð Þ= min
φ2Y

F Xð Þ ð8:60Þ

MinF X =Min FM X ,FW X 8:61

FM Xð Þ= FMax Xð Þ þ FMin Xð Þ
2

ð8:62Þ

FW Xð Þ= FMax Xð Þ-FMin Xð Þ
2

ð8:63Þ

8.3.2.2 Weighted Sum and Fuzzy Solution Approaches

Due to the nature of the weighted sum solution method, average cost and deviation
cost are multiplied by weight factors, i.e., α and β, in which their summation is equal
to one [36]. The formula for this method is shown in (8.64) and (8.65).

MinF Xð Þ= αFM Xð Þ þ βFW Xð Þ ð8:64Þ
α β= 1 8:65

Before achieving the best optimum solutions, the normalized forms of average
cost and deviation cost must be accomplished, which are computed in (8.66) and
(8.67), respectively. Afterward, the minimum value of N objective functions in each
iteration is opted via (8.68), and as a result, the maximum value of these obtained NP

solutions from (8.68) is selected as the trade-off outcome indicated in (8.69).

FM
p:u Xð Þ= FM Xð Þ-FM

Max Xð Þ
FM
Min Xð Þ-FM

Max Xð Þ ð8:66Þ

FW
p:u Xð Þ= FW Xð Þ-FW

Max Xð Þ
FW
Min X -FW

Max X
ð8:67Þ



8 ð Þ� � ð Þ

8 Hybrid Interval-Stochastic Optimal Operation Framework of a Multi-carrier. . . 223

Fn = min Fn
1, . . . ,F

n
N

� �
n= 1, . . . ,NP 8:68

Fmax = max F1, . . . ,FNP 8:69

8.4 Simulation Results

8.4.1 All Input Data

The forecasted hourly electrical, thermal, and cooling demands of the MCMG
structure are represented in Fig. 8.2. Electricity market price with upper and lower
levels is illustrated in Fig. 8.3. Technical data of considered ESSs, AC, EC, CHP
system, and GB are extracted from [37]. The required wind speed and solar irradi-
ance are taken from [31] such that modifications of these parameters are accom-
plished to obtain similar output forecasted generations of [37]. So, the forecasted PV
and wind generations are depicted in Fig. 8.4. The hydrogen demand of the HVs
parking lot is shown in Fig. 8.5. Three types of EVs are taken into account, and the
capacity of the EVs parking lot is assumed 50 numbers. The required data for EVs
are provided in Table 8.1. Technical data of hydrogen storage, FC, and EZ are
tabulated in Table 8.2. The Monte Carlo simulation (MCS) method is adopted to
generate 1000 scenarios for different demands, arrival time, departure time, and
initial energy of EVs. Due to the high computational burden of 1000 scenarios, the
GAMS/SCENRED program is used to reduce scenarios into ten numbers. The
proposed MILP problem is solved using a CPLEX solver in GAMS software on a
PC with an Intel(R) Core(TM) i7-7500U CPU 2.7 GHZ and 12 GB RAM.

8.4.2 Case Studies and Analysis of Results

In this section, two different case studies are clarified in the subsequent sections. It
could be stated that in case study 1, the stochastic programming of the proposed
model has been considered. However, proceeding toward the real results, the
uncertainty of electricity market price has been taken in case study 2 via an
interval-based stochastic proposed model.

8.4.2.1 Stochastic-Based Simulation Results

As mentioned before, after applying the scenario reduction method, ten scenarios
have been supposed to determine the performance and capability of the proposed
method. The total operation cost of the MCMG structure under several scenarios is
provided in Table 8.3. Regarding the probability of each scenario, the expected



4

operation cost could be obtained as $137,825. It can be realized from Table 8.3 that
due to the existence of various uncertainties, i.e., RESs outputs, multi-energy
demands, and the behavior of EVs in IPL, scenario 3 is the worst scenario, which
has the highest operation cost, i.e., $143,196, while the best scenario is scenario 1,

224 M. Agabalaye-Rahvar et al.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

)
W

k(
s

d
n

a
m

e
d

y
gr

e
n

e
itl

u
M

Time (h)

Electrical Thermal Cooling

Fig. 8.2 Forecasted hourly electrical, thermal, and cooling demands of MCMG structure [37]
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which has the lowest operation cost, i.e., $128,832. Thus, to indicate the effective-
ness and performance of the proposed approach, the following obtained results are
provided for scenario 3.
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Fig. 8.4 Forecasted PV and wind generations [37]
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Table 8.1 Requirement data of EVs [38]

EEV,Cap
v

(kWh)
PEV,ch,Max
v

(kW)
PEV,dch,Max
v

(kW)
EEV,Min
v

(kWh)
EEV,Max
v

(kWh)
ηEV,chv
(%)

ηEV,dchv
(%)

Tesla model
S

100 17.2 17.2 10 90 90 95

Renault Zoe 41 20 20 4 37 88 90

Alliance
other EV

25 12.5 12.5 2.5 22.5 90 93

Table 8.2 Technical data of
hydrogen storage, fuel cell,
and electrolyzer [39]

Parameter Value Parameter Value

PEZ, Max (kW) 500 PFC, Max (kW) 500

ηEZ (%) 70 ηFC (%) 80

AHSS, Min (kg) 3 AHSS, Max (kg) 15

γP2Hy (kW/kg) 33.6

Table 8.3 Total operation
cost of MCMG for various
scenarios of case 1

Scenario Cost ($) Scenario Cost ($)

1 128,832 6 134,189

2 140,560 7 137,219

3 143,196 8 136,631

4 138,342 9 129,624

5 131,567 10 137,104

The whole produced electric power of all facilities in the MCMG structure should
be equivalent to total electrical demand such that this total demand consists of
baseload and consumed electric power by relevant facilities. According to this,
Fig. 8.6 shows the electrical power balance along with the expected hourly fore-
casted market price. The purchased electric power from the upstream grid has
occurred in off-peak intervals (i.e., hours 1–7 and 24), whereas in the remaining
hours, which include mid-peak and peak intervals, CHP unit committed on with
maximum generation due to its low cost and also supplying thermal demand. Also,
as figured out in Fig. 8.6, the EC facility consumes electricity during the whole
scheduling horizon, which is related to the required cooling demand. Similar to that,
the EZ facility consumes electricity in some off-peak intervals and stores it in HSS,
which could discharge to supply hydrogen demand such that this action reduces
much more electricity consumption of the EZ in peak intervals (i.e., hours 19–22). It
should be noted that with the high hydrogen demand of HVs in mid-peak (i.e., hours
12–18) and peak intervals, the FC facility does not have the opportunity to contribute
to generating electrical power. The operated charging function of ESS technology
has happened in off-peak intervals, while in peak intervals and also in relative peak
interval (i.e., hour 8), it has discharged to meet the rest demand. The other outcoming
from Fig. 8.6 is about charging and discharging of cumulative EVs in IPL, which is
in the G2V mode in some off-peak and mid-peak intervals, while only two peak
intervals (i.e., hours 18, 22) are in the V2G mode. The thermal power balance is
shown in Fig. 8.7 with available thermal units. Due to the correlation of electrical



and thermal powers in CHP unit, the produced thermal power mostly exists in mid-
peak and peak intervals. However, in some, off-peak intervals (i.e., hours 4–7 and
24) generated a small amount of power. To fully supply the thermal demand in off-
peak intervals (i.e., hours 1–6), the GB unit committed on. In order to meet the rest of
the thermal demand in two intervals (i.e., hours 15, 24), discharging power of HTSS
is deployed, and in doing so, the charging power is accomplished in several hours of
excess thermal power. The AC facility is developed to assist the EC facility in
supplying cooling demand in peak and mid-peak intervals, with respect to high
electricity market price and increased cooling demand, respectively. Thus, the
cooling produced power of AC and EC facilities is demonstrated in Fig. 8.8. With
the charging process of ISS in off-peak intervals (i.e., hours 2–6), it has the
capability to respond to the increased cooling demand in some mid-peak intervals.
According to the operation mode of GB and CHP units in the whole scheduling
horizon, Fig. 8.9 represents the total gas consumption by these units, which is
purchased from the upstream grid. It can be understood that this amount increases
during mid-peak and peak intervals compared to off-peak intervals.
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Fig. 8.6 Electrical power balance of MCMG for scenario 3

To focus more on the effects of cumulative EVs behaviors in IPL, Figs. 8.10 and
8.11 show the total charging and discharging power, respectively. It is worth
mentioning that only three selected scenarios among ten scenarios are provided in
these two figures in order to track better different charging power patterns. As it can
be seen from Fig. 8.10, all of the requested power of EVs is drawn in off-peak and
mid-peak intervals, wherein scenario 10 has the lowest amount of total charging
power in comparison to the other two represented scenarios. The total injected power
of EVs is accomplished in Fig. 8.11 such that the most discharging power has
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happened in peak intervals. Also, it can be stated that scenario 5 has the highest
amount of total discharging power rather than the other two depicted scenarios.
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Fig. 8.11 Total discharging EVs in IPL for three different scenarios

Also, the various scenarios for the EZ facility have been conducted in Fig. 8.12,
which indicates the output hydrogen equivalent amount in terms of supplying HVs
demand. By paying attention to this figure, it can be realized that despite the no-
hydrogen demand in some off-peak intervals (i.e., hours 3–5), the EZ facility has
been implemented to produce hydrogen and store it in HSS. Furthermore, regarding
the increased HVs demand in most mid-peak intervals and also in all peak intervals,
deploying the EZ to generate hydrogen energy has been essential. The same expla-
nations have been established for hydrogen energy production and consumption
under the worst scenario, i.e., scenario 3 through Fig. 8.13. In this way, the state of
hydrogen amount in HSS technology, which is named as available hourly stored
energy, is indicated with a pink line. To implement the sensitivity analysis of
charging EVs in IPL, Fig. 8.14 has been presented. As shown in this figure,
increasing an IPL coefficient not only leads to a higher operation cost of MCMG
but also decreases the opportunity of achieving more profit for the decision-making
operator. Thus, it could be denoted that a 30% increase in the charging power of EVs
results in a 2.5% increment in total operation cost.
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Solutions α β FM FW FM
p:u FW

p:u Min FM
p:u,F

W
p:u

� �

232 M. Agabalaye-Rahvar et al.

133000

133500

134000

134500

135000

135500

136000

136500

137000

137500

138000

138500

0/7 0/8 0/9 1

)
$(

ts
o

C

IPL coefficient

Fig. 8.14 Expected cost variation of MCMG for various IPL coefficient

Table 8.4 Numerical Pareto solutions for interval-based stochastic programming model of case 2

1 1 0 135757.8 8426.2 1 0 0

2 0.9 0.1 135847.9 7131.9 0.99 0.15 0.15

3 0.8 0.2 136064.2 5992.6 0.97 0.28 0.28

4 0.7 0.3 136226.7 5576.1 0.96 0.33 0.33

5 0.6 0.4 136784.4 4540.5 0.91 0.46 0.46

6 0.5 0.5 137638.9 3494.1 0.84 0.58 0.58

7 0.4 0.6 138295.1 2993.6 0.78 0.64 0.64
8 0.3 0.7 140731 1780.2 0.58 0.78 0.58

9 0.2 0.8 146105.7 0 0.13 1 0.13

1 0.1 0.9 146105.7 0 0.13 1 0.13

11 0 1 147681.3 0 0 1 0

8.4.2.2 Interval-Based Simulation Results

As aforementioned in the formulation section, the optimal scheduling of renewable-
based MCMG coordinated with HEHV IPL within the uncertainty of electricity
market price should be modeled through the proposed hybrid interval-stochastic
framework. So, the generated bi-objective model aims to minimize the average and
deviation costs, simultaneously. In doing so, the weighted sum and fuzzy solution
approaches are taken to achieve optimal results such that the numerical and expli-
cative Pareto results are reported in Table 8.4 and Fig. 8.15. In Table 8.4, 10 Pareto



front solutions are announced, with the highlighted row, i.e., solution #7, being the
best trade-off solution with the corresponding values of 138295.1 $ and 2993.6 $ for
average and deviation costs, respectively. Afterward, Fig. 8.15 is utilized to illustrate
the best trade-off cost with a solid red circle. Compared to case 1 results, it could be
outlined that to reduce the impact of electricity market price fluctuations, the average
cost of introduced MCMG is increased by only 1.87%, and thus the deviation cost
indicating uncertainty impact is decreased by 67.47%.
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Fig. 8.15 Pareto solutions for interval-based stochastic programming model of case 2

8.5 Conclusions

In the present chapter, an optimal scheduling framework for the renewable-based
MCMG coordinated with HEHV IPL under several inherent uncertainties has been
proposed. To address all variations relevant to HEHVs’ driving patterns, produced
power of RESs, and consumption of MEDs, a scenario-based stochastic method has
been considered. Furthermore, due to the impact of severe electricity market price
uncertainty on the optimal results, the appropriate interval optimization technique
has been applied. Thus, taking the weighted sum and fuzzy approaches to solving the
bi-objective hybrid interval-stochastic model, Pareto solutions have been reached.
Concerning these solutions, the best trade-off cost is conducted in which the
uncertainty market price effect called deviation cost has been significantly dimin-
ished up to 67.47%. However, the average cost is almost increased by 1.87%
compared to the expected obtained cost from a stochastic manner. In the end, to



specify the future works of this study, some recommendations include considering
the interaction of different MCMGs, applying network constraints, and other uncer-
tainty handling methods.
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