2,036 research outputs found

    A Fuzzy Guidance System for Rendezvous and Pursuit of Moving Targets

    Get PDF
    This article presents the development of a fuzzy guidance system (FGS) for unmanned aerial vehicles capable of pursuing and performing rendezvous with static and mobile targets. The system is designed to allow the vehicle to approach a maneuvering target from a desired direction of arrival and to terminate the rendezvous at a constant distance from the target. In order to perform a rendezvous with a maneuvering target, the desired direction of arrival is adjusted over time to always approach the target from behind, so that the aircraft and target velocity vectors become aligned. The proposed guidance system assumes the presence of an autopilot and uses a set of Takagi–Sugeno fuzzy controllers to generate the orientation and speed references for the velocity and heading control loops, given the relative position and velocity between the aircraft and the target. The FGS treats the target as a mobile waypoint in a 4-D space (position in 2-dimensions, desired crossing heading and speed) and guides the aircraft on suitable trajectories towards the target. Only when the vehicle is close enough to the rendezvous point, the guidance law is complemented with an additional linear controller to manage the terminal formation keeping phase. The capabilities of the proposed rendezvous-FGS are verified in simulation on both maneuvering and non-maneuvering targets. Finally, experimental results using a multi-rotor aerial system are presented for both fixed and accelerating targets

    Survey of computer vision algorithms and applications for unmanned aerial vehicles

    Get PDF
    This paper presents a complete review of computer vision algorithms and vision-based intelligent applications, that are developed in the field of the Unmanned Aerial Vehicles (UAVs) in the latest decade. During this time, the evolution of relevant technologies for UAVs; such as component miniaturization, the increase of computational capabilities, and the evolution of computer vision techniques have allowed an important advance in the development of UAVs technologies and applications. Particularly, computer vision technologies integrated in UAVs allow to develop cutting-edge technologies to cope with aerial perception difficulties; such as visual navigation algorithms, obstacle detection and avoidance and aerial decision-making. All these expert technologies have developed a wide spectrum of application for UAVs, beyond the classic military and defense purposes. Unmanned Aerial Vehicles and Computer Vision are common topics in expert systems, so thanks to the recent advances in perception technologies, modern intelligent applications are developed to enhance autonomous UAV positioning, or automatic algorithms to avoid aerial collisions, among others. Then, the presented survey is based on artificial perception applications that represent important advances in the latest years in the expert system field related to the Unmanned Aerial Vehicles. In this paper, the most significant advances in this field are presented, able to solve fundamental technical limitations; such as visual odometry, obstacle detection, mapping and localization, et cetera. Besides, they have been analyzed based on their capabilities and potential utility. Moreover, the applications and UAVs are divided and categorized according to different criteria.This research is supported by the Spanish Government through the CICYT projects (TRA2015-63708-R and TRA2013-48314-C3-1-R)

    Towards an autonomous vision-based unmanned aerial system againstwildlife poachers

    Get PDF
    Poaching is an illegal activity that remains out of control in many countries. Based on the 2014 report of the United Nations and Interpol, the illegal trade of global wildlife and natural resources amounts to nearly $213 billion every year, which is even helping to fund armed conflicts. Poaching activities around the world are further pushing many animal species on the brink of extinction. Unfortunately, the traditional methods to fight against poachers are not enough, hence the new demands for more efficient approaches. In this context, the use of new technologies on sensors and algorithms, as well as aerial platforms is crucial to face the high increase of poaching activities in the last few years. Our work is focused on the use of vision sensors on UAVs for the detection and tracking of animals and poachers, as well as the use of such sensors to control quadrotors during autonomous vehicle following and autonomous landing.Peer Reviewe

    Towards an autonomous vision-based unmanned aerial system against wildlife poachers.

    Get PDF
    Poaching is an illegal activity that remains out of control in many countries. Based on the 2014 report of the United Nations and Interpol, the illegal trade of global wildlife and natural resources amounts to nearly $ 213 billion every year, which is even helping to fund armed conflicts. Poaching activities around the world are further pushing many animal species on the brink of extinction. Unfortunately, the traditional methods to fight against poachers are not enough, hence the new demands for more efficient approaches. In this context, the use of new technologies on sensors and algorithms, as well as aerial platforms is crucial to face the high increase of poaching activities in the last few years. Our work is focused on the use of vision sensors on UAVs for the detection and tracking of animals and poachers, as well as the use of such sensors to control quadrotors during autonomous vehicle following and autonomous landing

    Vision-Based navigation system for unmanned aerial vehicles

    Get PDF
    Mención Internacional en el título de doctorThe main objective of this dissertation is to provide Unmanned Aerial Vehicles (UAVs) with a robust navigation system; in order to allow the UAVs to perform complex tasks autonomously and in real-time. The proposed algorithms deal with solving the navigation problem for outdoor as well as indoor environments, mainly based on visual information that is captured by monocular cameras. In addition, this dissertation presents the advantages of using the visual sensors as the main source of data, or complementing other sensors in providing useful information; in order to improve the accuracy and the robustness of the sensing purposes. The dissertation mainly covers several research topics based on computer vision techniques: (I) Pose Estimation, to provide a solution for estimating the 6D pose of the UAV. This algorithm is based on the combination of SIFT detector and FREAK descriptor; which maintains the performance of the feature points matching and decreases the computational time. Thereafter, the pose estimation problem is solved based on the decomposition of the world-to-frame and frame-to-frame homographies. (II) Obstacle Detection and Collision Avoidance, in which, the UAV is able to sense and detect the frontal obstacles that are situated in its path. The detection algorithm mimics the human behaviors for detecting the approaching obstacles; by analyzing the size changes of the detected feature points, combined with the expansion ratios of the convex hull constructed around the detected feature points from consecutive frames. Then, by comparing the area ratio of the obstacle and the position of the UAV, the method decides if the detected obstacle may cause a collision. Finally, the algorithm extracts the collision-free zones around the obstacle, and combining with the tracked waypoints, the UAV performs the avoidance maneuver. (III) Navigation Guidance, which generates the waypoints to determine the flight path based on environment and the situated obstacles. Then provide a strategy to follow the path segments and in an efficient way and perform the flight maneuver smoothly. (IV) Visual Servoing, to offer different control solutions (Fuzzy Logic Control (FLC) and PID), based on the obtained visual information; in order to achieve the flight stability as well as to perform the correct maneuver; to avoid the possible collisions and track the waypoints. All the proposed algorithms have been verified with real flights in both indoor and outdoor environments, taking into consideration the visual conditions; such as illumination and textures. The obtained results have been validated against other systems; such as VICON motion capture system, DGPS in the case of pose estimate algorithm. In addition, the proposed algorithms have been compared with several previous works in the state of the art, and are results proves the improvement in the accuracy and the robustness of the proposed algorithms. Finally, this dissertation concludes that the visual sensors have the advantages of lightweight and low consumption and provide reliable information, which is considered as a powerful tool in the navigation systems to increase the autonomy of the UAVs for real-world applications.El objetivo principal de esta tesis es proporcionar Vehiculos Aereos no Tripulados (UAVs) con un sistema de navegacion robusto, para permitir a los UAVs realizar tareas complejas de forma autonoma y en tiempo real. Los algoritmos propuestos tratan de resolver problemas de la navegacion tanto en ambientes interiores como al aire libre basandose principalmente en la informacion visual captada por las camaras monoculares. Ademas, esta tesis doctoral presenta la ventaja de usar sensores visuales bien como fuente principal de datos o complementando a otros sensores en el suministro de informacion util, con el fin de mejorar la precision y la robustez de los procesos de deteccion. La tesis cubre, principalmente, varios temas de investigacion basados en tecnicas de vision por computador: (I) Estimacion de la Posicion y la Orientacion (Pose), para proporcionar una solucion a la estimacion de la posicion y orientacion en 6D del UAV. Este algoritmo se basa en la combinacion del detector SIFT y el descriptor FREAK, que mantiene el desempeno del a funcion de puntos de coincidencia y disminuye el tiempo computacional. De esta manera, se soluciona el problema de la estimacion de la posicion basandose en la descomposicion de las homografias mundo a imagen e imagen a imagen. (II) Deteccion obstaculos y elusion colisiones, donde el UAV es capaz de percibir y detectar los obstaculos frontales que se encuentran en su camino. El algoritmo de deteccion imita comportamientos humanos para detectar los obstaculos que se acercan, mediante el analisis de la magnitud del cambio de los puntos caracteristicos detectados de referencia, combinado con los ratios de expansion de los contornos convexos construidos alrededor de los puntos caracteristicos detectados en frames consecutivos. A continuacion, comparando la proporcion del area del obstaculo y la posicion del UAV, el metodo decide si el obstaculo detectado puede provocar una colision. Por ultimo, el algoritmo extrae las zonas libres de colision alrededor del obstaculo y combinandolo con los puntos de referencia, elUAV realiza la maniobra de evasion. (III) Guiado de navegacion, que genera los puntos de referencia para determinar la trayectoria de vuelo basada en el entorno y en los obstaculos detectados que encuentra. Proporciona una estrategia para seguir los segmentos del trazado de una manera eficiente y realizar la maniobra de vuelo con suavidad. (IV) Guiado por Vision, para ofrecer soluciones de control diferentes (Control de Logica Fuzzy (FLC) y PID), basados en la informacion visual obtenida con el fin de lograr la estabilidad de vuelo, asi como realizar la maniobra correcta para evitar posibles colisiones y seguir los puntos de referencia. Todos los algoritmos propuestos han sido verificados con vuelos reales en ambientes exteriores e interiores, tomando en consideracion condiciones visuales como la iluminacion y las texturas. Los resultados obtenidos han sido validados con otros sistemas: como el sistema de captura de movimiento VICON y DGPS en el caso del algoritmo de estimacion de la posicion y orientacion. Ademas, los algoritmos propuestos han sido comparados con trabajos anteriores recogidos en el estado del arte con resultados que demuestran una mejora de la precision y la robustez de los algoritmos propuestos. Esta tesis doctoral concluye que los sensores visuales tienen las ventajes de tener un peso ligero y un bajo consumo y, proporcionar informacion fiable, lo cual lo hace una poderosa herramienta en los sistemas de navegacion para aumentar la autonomia de los UAVs en aplicaciones del mundo real.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Carlo Regazzoni.- Secretario: Fernando García Fernández.- Vocal: Pascual Campoy Cerver

    An Appearance-Based Tracking Algorithm for Aerial Search and Rescue Purposes

    Get PDF
    The automation of the Wilderness Search and Rescue (WiSAR) task aims for high levels of understanding of various scenery. In addition, working in unfriendly and complex environments may cause a time delay in the operation and consequently put human lives at stake. In order to address this problem, Unmanned Aerial Vehicles (UAVs), which provide potential support to the conventional methods, are used. These vehicles are provided with reliable human detection and tracking algorithms; in order to be able to find and track the bodies of the victims in complex environments, and a robust control system to maintain safe distances from the detected bodies. In this paper, a human detection based on the color and depth data captured from onboard sensors is proposed. Moreover, the proposal of computing data association from the skeleton pose and a visual appearance measurement allows the tracking of multiple people with invariance to the scale, translation and rotation of the point of view with respect to the target objects. The system has been validated with real and simulation experiments, and the obtained results show the ability to track multiple individuals even after long-term disappearances. Furthermore, the simulations present the robustness of the implemented reactive control system as a promising tool for assisting the pilot to perform approaching maneuvers in a safe and smooth manner.This research is supported by Madrid Community project SEGVAUTO 4.0 P2018/EMT-4362) and by the Spanish Government CICYT projects (TRA2015-63708-R and TRA2016-78886-C3-1-R), and Ministerio de EducaciĂłn, Cultura y Deporte para la FormaciĂłn de Profesorado Universitario (FPU14/02143). Also, we gratefully acknowledge the support of the NVIDIA Corporation with the donation of the GPUs used for this research

    UAV Optimal Cooperative Obstacle Avoidance and Target Tracking in Dynamic Stochastic Environments

    Get PDF
    Cette thèse propose une stratégie de contrôle avancée pour guider une flotte d'aéronefs sans pilote (UAV) dans un environnement à la fois stochastique et dynamique. Pour ce faire, un simulateur de vol 3D a été développé avec MATLAB® pour tester les algorithmes de la stratégie de guidage en fonctions de différents scénarios. L'objectif des missions simulées est de s'assurer que chaque UAV intercepte une cible ellipsoïdale mobile tout en évitant une panoplie d'obstacles ellipsoïdaux mobiles détectés en route. Les UAVs situés à l'intérieur des limites de communication peuvent coopérer afin d'améliorer leurs performances au cours de la mission. Le simulateur a été conçu de façon à ce que les UAV soient dotés de capteurs et d'appareils de communication de portée limitée. De plus, chaque UAV possède un pilote automatique qui stabilise l'aéronef en vol et un planificateur de trajectoires qui génère les commandes à envoyer au pilote automatique. Au coeur du planificateur de trajectoires se trouve un contrôleur prédictif à horizon fuyant qui détermine les commandes à envoyer à l'UAV. Ces commandes optimisent un critère de performance assujetti à des contraintes. Le critère de performance est conçu de sorte que les UAV atteignent les objectifs de la mission, alors que les contraintes assurent que les commandes générées adhèrent aux limites de manoeuvrabilité de l'aéronef. La planification de trajectoires pour UAV opérant dans un environnement dynamique et stochastique dépend fortement des déplacements anticipés des objets (obstacle, cible). Un filtre de Kalman étendu est donc utilisé pour prédire les trajectoires les plus probables des objets à partir de leurs états estimés. Des stratégies de poursuite et d'évitement ont aussi été développées en fonction des trajectoires prédites des objets détectés. Pour des raisons de sécurité, la conception de stratégies d'évitement de collision à la fois efficaces et robustes est primordiale au guidage d'UAV. Une nouvelle stratégie d'évitement d'obstacles par approche probabiliste a donc été développée. La méthode cherche à minimiser la probabilité de collision entre l'UAV et tous ses obstacles détectés sur l'horizon de prédiction, tout en s'assurant que, à chaque pas de prédiction, la probabilité de collision entre l'UAV et chacun de ses obstacles détectés ne surpasse pas un seuil prescrit. Des simulations sont présentées au cours de cette thèse pour démontrer l'efficacité des algorithmes proposés

    Intelligent Autonomous Decision-Making and Cooperative Control Technology of High-Speed Vehicle Swarms

    Get PDF
    This book is a reprint of the Special Issue “Intelligent Autonomous Decision-Making and Cooperative Control Technology of High-Speed Vehicle Swarms”,which was published in Applied Sciences
    • …
    corecore