9,000 research outputs found

    The Sigma-Semantics: A Comprehensive Semantics for Functional Programs

    Get PDF
    A comprehensive semantics for functional programs is presented, which generalizes the well-known call-by-value and call-by-name semantics. By permitting a separate choice between call-by value and call-by-name for every argument position of every function and parameterizing the semantics by this choice we abstract from the parameter-passing mechanism. Thus common and distinguishing features of all instances of the sigma-semantics, especially call-by-value and call-by-name semantics, are highlighted. Furthermore, a property can be validated for all instances of the sigma-semantics by a single proof. This is employed for proving the equivalence of the given denotational (fixed-point based) and two operational (reduction based) definitions of the sigma-semantics. We present and apply means for very simple proofs of equivalence with the denotational sigma-semantics for a large class of reduction-based sigma-semantics. Our basis are simple first-order constructor-based functional programs with patterns

    The Sigma-Semantics: A Comprehensive Semantics for Functional Programs

    Get PDF
    A comprehensive semantics for functional programs is presented, which generalizes the well-known call-by-value and call-by-name semantics. By permitting a separate choice between call-by value and call-by-name for every argument position of every function and parameterizing the semantics by this choice we abstract from the parameter-passing mechanism. Thus common and distinguishing features of all instances of the sigma-semantics, especially call-by-value and call-by-name semantics, are highlighted. Furthermore, a property can be validated for all instances of the sigma-semantics by a single proof. This is employed for proving the equivalence of the given denotational (fixed-point based) and two operational (reduction based) definitions of the sigma-semantics. We present and apply means for very simple proofs of equivalence with the denotational sigma-semantics for a large class of reduction-based sigma-semantics. Our basis are simple first-order constructor-based functional programs with patterns

    A Non-Null Annotation Inferencer for Java Bytecode

    Get PDF
    We present a non-null annotations inferencer for the Java bytecode language. We previously proposed an analysis to infer non-null annotations and proved it soundness and completeness with respect to a state of the art type system. This paper proposes extensions to our former analysis in order to deal with the Java bytecode language. We have implemented both analyses and compared their behaviour on several benchmarks. The results show a substantial improvement in the precision and, despite being a whole-program analysis, production applications can be analyzed within minutes

    Simulation in the Call-by-Need Lambda-Calculus with Letrec, Case, Constructors, and Seq

    Full text link
    This paper shows equivalence of several versions of applicative similarity and contextual approximation, and hence also of applicative bisimilarity and contextual equivalence, in LR, the deterministic call-by-need lambda calculus with letrec extended by data constructors, case-expressions and Haskell's seq-operator. LR models an untyped version of the core language of Haskell. The use of bisimilarities simplifies equivalence proofs in calculi and opens a way for more convenient correctness proofs for program transformations. The proof is by a fully abstract and surjective transfer into a call-by-name calculus, which is an extension of Abramsky's lazy lambda calculus. In the latter calculus equivalence of our similarities and contextual approximation can be shown by Howe's method. Similarity is transferred back to LR on the basis of an inductively defined similarity. The translation from the call-by-need letrec calculus into the extended call-by-name lambda calculus is the composition of two translations. The first translation replaces the call-by-need strategy by a call-by-name strategy and its correctness is shown by exploiting infinite trees which emerge by unfolding the letrec expressions. The second translation encodes letrec-expressions by using multi-fixpoint combinators and its correctness is shown syntactically by comparing reductions of both calculi. A further result of this paper is an isomorphism between the mentioned calculi, which is also an identity on letrec-free expressions.Comment: 50 pages, 11 figure

    Singular and Plural Functions for Functional Logic Programming

    Full text link
    Functional logic programming (FLP) languages use non-terminating and non-confluent constructor systems (CS's) as programs in order to define non-strict non-determi-nistic functions. Two semantic alternatives have been usually considered for parameter passing with this kind of functions: call-time choice and run-time choice. While the former is the standard choice of modern FLP languages, the latter lacks some properties---mainly compositionality---that have prevented its use in practical FLP systems. Traditionally it has been considered that call-time choice induces a singular denotational semantics, while run-time choice induces a plural semantics. We have discovered that this latter identification is wrong when pattern matching is involved, and thus we propose two novel compositional plural semantics for CS's that are different from run-time choice. We study the basic properties of our plural semantics---compositionality, polarity, monotonicity for substitutions, and a restricted form of the bubbling property for constructor systems---and the relation between them and to previous proposals, concluding that these semantics form a hierarchy in the sense of set inclusion of the set of computed values. We have also identified a class of programs characterized by a syntactic criterion for which the proposed plural semantics behave the same, and a program transformation that can be used to simulate one of them by term rewriting. At the practical level, we study how to use the expressive capabilities of these semantics for improving the declarative flavour of programs. We also propose a language which combines call-time choice and our plural semantics, that we have implemented in Maude. The resulting interpreter is employed to test several significant examples showing the capabilities of the combined semantics. To appear in Theory and Practice of Logic Programming (TPLP)Comment: 53 pages, 5 figure

    A Framework for Datatype Transformation

    Get PDF
    We study one dimension in program evolution, namely the evolution of the datatype declarations in a program. To this end, a suite of basic transformation operators is designed. We cover structure-preserving refactorings, but also structure-extending and -reducing adaptations. Both the object programs that are subject to datatype transformations, and the meta programs that encode datatype transformations are functional programs.Comment: Minor revision; now accepted at LDTA 200
    • 

    corecore