
Electronic Notes in Theoretical Computer Science 82 No. 3 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume82.html 20 pages

A Framework for Datatype Transformation

Jan Kort1 and Ralf L̈ammel2,3

1 Universiteit van Amsterdam
2 Centrum voor Wiskunde en Informatica

3 Vrije Universiteit van Amsterdam

Abstract

We study one dimension in program evolution, namely the evolution of the datatype decla-
rations in a program. To this end, a suite of basic transformation operators is designed. We
cover structure-preserving refactorings, but also structure-extending and -reducing adapta-
tions. Both the object programs that are subject to datatype transformations, and the meta
programs that encode datatype transformations are functional programs.

1 Introduction

We study operators for the transformation of the datatype declarations in a program.
The presentation will be biased towards the algebraic datatypes in Haskell, but the
concepts are of relevance for many typed declarative languages, e.g., Mercury and
SML, as well as frameworks for algebraic specification or rewriting like ASF+SDF,
CASL, Elan, and Maude. Our transformations are rather syntactical in nature as
opposed to more semantical concepts such as data refinement. Our transformations
contribute to the more general notion offunctional program refactoring [TR01].

The following introductory example is about extracting a new datatype from con-
structor components of an existing datatype. This is illustrated with datatypes that
represent the syntax of an imperative language. The following extraction identifies
a piece of syntax to enable its reuse in later syntax extensions:
- - Datatypes with focus on two constructor components

data Prog = Prog ProgName [Dec] [Stat]
data Dec = VDec Id Type
data Stat = Assign Id Expr | If Expr Stat Stat | ...

- - After extraction of [Dec] [Stat] to constitute a new datatype Block
data Prog = Prog ProgName Block
data Block = Block [Dec] [Stat]

In the present paper, we describe the design of a framework for datatype transfor-
mations including the operators for the above extraction. In Sec. 2, we identify
all the concerns addressed by the framework. In Sec. 3, we describe all the basic
operators for datatype transformations. In Sec. 4, these operators are lifted from
datatypes to complete programs. Related work is discussed in Sec. 5. The paper is
concluded in Sec. 6.

c©2003 Published by Elsevier Science B. V. CC BY-NC-ND license. Open access under

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81199158?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

Kort & Lämmel

2 Concerns in datatype transformation

The central contribution of the present paper is a simple, well-defined, and ‘editing-
complete’ suite of operators for datatype transformations. Before we embark on
this suite, we identify the concerns addressed by our approach:

• Datatype transformations via scripting or interactive tool support.
• Well-defined primitives for datatype transformations.
• Generic meta-programming for conciseness of datatype transformations.
• Flexible means of referring to fragments of interest in datatype transformations.

We will now discuss these concerns in some depth.

2.1 Scripting vs. interactive tool support

From the point of view of a programmer, datatype transformations should be founded
on intuitive scenarios for adaptation. To actually perform (datatype) transforma-
tions, there are two modes of operation. The first mode isscripting: the program-
mer encodes the desired transformation as an expression over basic or higher-level
operators. The second mode isinteractive transformation based on a corresponding
GUI. The benefits of an interactive tool are rather obvious. Such a tool is useful to
issue a transformation on the basis of an operator-specific dialogue, and to provide
a tailored list of options for transformations that make sense in a given context. A
crucial benefit of interactive transformation is that the GUI can be used to provide
feedback to the programmer: Which locations were changed? Where is the pro-
grammer’s attention needed to complete the issued transformation scenario? The
apparent benefits of scripting such as the opportunities to revise transformations
and to replay them can be also integrated into an interactive setting.

In Fig. 1, we illustrate the interactive treatment of the introductory example using
our prototypical toolTH — TransformHaskell. As the snapshot indicates, we use
a designatedfold dialogue to perform the extraction of the piece of syntax. (Fold-
ing is the basic transformation underlying extraction.) This dialogue combines
several transformation steps and side conditions in a convenient way. The figure
shows the following situation. The user has selected two consecutive types “[Dec]
[Stat]” and initiated thefold dialogue. The user has also typed in “Block” in the
“type name” field. The introduction check-box is marked automatically since the
given type name does not yet exist. The user has also selected the “kind” radio-
button to be “data” and filled in “Block” in the “cons name” field. After this, the
user would press “Replace” to make the change. If there had been more than one
occurrence, the user could replace them all with “Replace All”, or step through all
occurrences with “Next”, and replace only specific ones with “Replace” as with
ordinaryfind and replace in text editors.

2

Kort & Lämmel

Fig. 1. A snapshot related to the interactive treatment of the introductory example

Here is an open-ended list of further common transformation scenarios:

• Renaming type and constructor names.
• Permuting type arguments and constructor components.
• The dual of extracting datatypes, i.e., inlining datatypes.
• Including a constructor declaration together with associated functionality.
• Excluding a constructor declaration together with associated functionality.
• Inserting a constructor component together with associated functionality.
• Deleting a constructor component together with associated functionality.

2.2 Well-defined transformation primitives

The core asset of our framework is a suite ofbasic operators, which can be either
used as is, or they can be completed into more complex,compound transforma-
tions. In the design of this suite, we reuse design experience from a related effort
on grammar adaptation [Läm01]. Indeed, there is an obvious affinity of grammar
transformations and datatype transformations. A challenging problem that we did
not need to address in this previous work, is the completion of datatype transforma-
tions to apply to entire (functional) programs in which evolving datatypes reside.

We list the required properties of our basic transformation operators:

Correctness Mostly, we insist on ‘structure preservation’, that is, the resulting
datatype is of the same shape as the original datatype. This is enforced by the
pre- and postconditions of the operators.

3

Kort & Lämmel

Completeness The operators are ‘editing-complete’, that is, they capture all sce-
narios of datatype evolution that are otherwise performed by plain text editors.
Semantics-preserving adaptations are defined in terms of disciplined primitives.

Orthogonality The operators inhabit well-defined, non-overlapping roles. Higher-
level scenarios for interactive transformation are derivable. Operators for datatype
transformations are complementary to expression-level transformations.

Locality The basic operators operate on small code locations as opposed to ‘global’
or ‘exhaustive’ operators, which iterate over the entire program. Note that some
operators are necessarily exhaustive, e.g., an operator to rename a type name.

Implementability The operators are implemented as syntactical transformations
that are constrained by simple analyses to check for pre- and postconditions, but
which otherwise do not necessitate any offline reasoning.

Universality While the present paper focuses on datatype transformations, the
principles that are embodied by our operators are universal in the sense that they
also apply to other abstractions than datatypes, e.g., functions or modules.

We do not list these properties to announce a formal treatment. This would be
very challenging as we opt for the complex language setup of Haskell. The above
properties provide merely a design rationale. A formal approach is an important
subject for future work, but it does not contribute anything to the narrow goal of the
present paper: to compile an inventory of the basic roles in datatype transformation.

2.3 Generic meta-programming

We implement transformation operators and compound meta-programs in Haskell.
We reuse a publicly available abstract syntax for Haskell.1 We rely on generic
programming techniques to perform meta-programming on the non-trivial Haskell
syntax in Haskell. We use the Strafunski-style2 of generic programming that
allows us to complete functions on specific syntactical sorts into generic traver-
sals that process subterms of the specific sorts accordingly. This style of meta-
programming is known to be very concise because one only provides functionality
for the types and constructors that are immediately relevant for the given problem.

All our datatype transformations are of typeTrafo which is defined as follows:

type Trafo = HsModule → Maybe HsModule

That is, a datatype transformation is a partial function onHsModule — the abstract
syntactical domain for Haskell modules. Partiality is expressed by means of the
Maybe type constructor that wraps the result type. Partially is needed to model
side conditions.

In Fig. 2, we illustrate generic meta-programming by giving the definition of a
simple operator for replacing type names. The specification formalises the fact that

1 The used abstract syntax is part of the Haskell Core Libraries — in the haskell-src package.
2 http://www.cs.vu.nl/Strafunski/

4

http://www.cs.vu.nl/Strafunski/

Kort & Lämmel

Replace a type name
replaceTypeId :: TypeId → TypeId → Trafo
replaceTypeId n n′ = full tdTP (adhocTP (adhocTP idTP declSite) refSite)

where

Transform declaring occurrences of type names
declSite :: HsDecl → Maybe HsDecl

declSite (HsTypeDecl l n0 ps t) | n0 ≡ n = return (HsTypeDecl l n′ ps t)

declSite (HsDataDecl l c n0 ps cds d) | n0 ≡ n = return (HsDataDecl l c n′ ps cds d)

declSite (HsNewTypeDecl l c n0 ps cd d) | n0 ≡ n = return (HsNewTypeDecl l c n′ ps cd d)

declSite decl = return decl

Transform using occurrences of type names
refSite :: HsType → Maybe HsType

refSite (HsTyCon (UnQual n0)) | n0 ≡ n = return (HsTyCon (UnQual n′))
refSite tpe = return tpe

Fig. 2. Specification of the replacement operation underlying renaming of type names

type names can occur in two kinds of locations: either on a declaration site, when
we declare the type, or on a using site, when we refer to the type in a type expres-
sion. So we need to synthesise a transformation which pays special attention to the
syntactical domains for declaring and using sites. Indeed, in the figure, there are
two type-specific ‘ad-hoc’ cases which customise the identity functionidTP. In the
given context, we choose the traversal schemefull tdTP for ‘ full top-down traversal
in Type-Preserving manner’. This way, we will reach each node in the input tree
to transform type names on declaring and using sites. The operatorreplaceTypeId,
by itself, is a total function. (So theMaybe in its type is not really needed here.)
Partiality would be an issue if we derived an operator for renaming type names.
This necessitates adding a side condition to insist on a fresh new name.

2.4 Means of referring to fragments of interest

Both the basic operators for datatype transformation but also actual transformation
scenarios in scripts or in interactive sessions need to refer to program fragments of
interest. Recall our introductory example. Extracting a type necessitates referring
to the constructor components that are meant to constitute the new type. In our
framework, we use three ways to refer to fragments of interest:

Focus markers on subterms This approach is particularly suited for interactive
transformations. Here, relevant fragments can be directly marked. In Fig. 3,
we extend Haskell’s abstract syntax to include term constructors for focusing on
relevant fragments in datatype transformations. That is, we are prepared to focus
on names of types, on type expressions, and on lists of constructor components.

Selectors of subterms This approach is particularly suited for scripting transfor-
mations. Selectors for Haskell’s type expressions are defined in Fig. 4. The three
forms ofTypeSel represent the three kinds of declarations that involve types. The
helperTypeSel ′ allows to select any part of a given type expression.

5

Kort & Lämmel

Focus on names

data HsName = ... | HsNameFocus HsName

Focus on type expressions

data HsType = ... | HsTypeFocus HsType

Focus on lists of constructor components

data HsConDecl = HsConDecl SrcLoc HsName [HsFocusedBangType]
| HsRecDecl SrcLoc HsName [([HsName], HsBangType)]

data HsFocusedBangType = HsUnfocusedBangType HsBangType
| HsFocusedBangType [HsBangType]

Fig. 3. Kinds of focus for datatype transformation

data TypeSel = AliasRef TypeId TypeSel ′ -- Refer to a type alias
| ConRef ConPos TypeSel ′ -- Refer to a constructor component
| SigRef [FunId] TypeSel ′ -- Refer to a function signature

data TypeSel ′ = SelStop -- Reference stops here
| SelDom TypeSel ′ -- Refer to domain of function type
| SelCod TypeSel ′ -- Refer to co-domain of function type
| SelIth ParaPos TypeSel ′ -- Refer to products component
| SelFun TypeSel ′ -- Refer to type constructor
| SelArg TypeSel ′ -- Refer to type argument

type TypeId = HsName -- Refer to a type
type ConId = HsName -- Refer to a constructor
type FunId = HsName -- Refer to a function name
type ConPos = (ConId , ParaPos) -- Refer to a component of a constructor
type ParaPos = Int -- Refer to a parameter position
data HsName = ... -- Syntactical sort for all kinds of names

Fig. 4. Selectors that refer to type expressions, and others

Predicates on subterms Such predicates typically constrain the type of a term or
the top-level pattern. This approach is particularly suited for the repeated appli-
cation of a transformation to different focuses that match a given predicate.

There are ways to mediate between these different ways of referring to subterms.
For example. given a term with a focus marker on a type expression, one can
compute the selector that refers to the focused subterm. Given a predicate on type
expressions, one can compute the list of all selectors so that an operator that is
defined on selectors can be used with predicates as well. Finally, given a selector,
one can also add the corresponding focus marker in the input at hand.

3 Basic operators for datatype transformation

We will now describe the themes that constitute our operator suite:

• Renaming type and constructor names.
• Permutation of type parameters and constructor components.
• Swapping types on use sites.
• Introduction vs. elimination of type declarations.
• Folding vs. unfolding of type declarations.

6

Kort & Lämmel

Sample input datatype
data ConsList a = Nil | Cons a (ConsList a)

Renamed and permuted datatype
data SnocList a = Lin | Snoc (SnocList a) a

Fig. 5. Illustration of renaming and permutation

renameTypeId ::TypeId → TypeId → Trafo -- Rename a type declaration
renameConId ::ConId → ConId → Trafo -- Rename a constructor
permuteTypeId ::TypeId → [ParaPos] → Trafo -- Permute type parameters
permuteConId ::ConId → [ParaPos] → Trafo -- Permute constructor components

Fig. 6. Operators for renaming and parameter permutation

renameTypeId (HsIdent "ConsList") (HsIdent "SnocList") ‘seqTrafo‘
renameConId (HsIdent "Nil") (HsIdent "Lin") ‘seqTrafo‘
renameConId (HsIdent "Cons") (HsIdent "Snoc") ‘seqTrafo‘
permuteConId (HsIdent "Snoc") [2, 1]

Fig. 7. Script for the scenario in Fig. 5

• Wrapping vs. unwrapping of constructor components.
• Inclusion vs. exclusion of entire constructor declarations.
• Insertion vs. deletion of constructor components.

As this list makes clear, we group an operator with its inverse such as in “folding
vs. unfolding”, unless the operator can be used to inverse itself. This is the case for
renaming, permutation, and swapping. The operators from the first six groups are
(almost)structure-preserving. The last two groups deal withstructure-extending
and -reducing transformations. We will now explain the operators in detail in-
cluding illustrative examples. We will only explain the effect of the operators on
datatype declarations while we postpone lifting the operators to the level of com-
plete programs until Sec. 4.

3.1 Renaming and permutation

Let us start with the simplest datatype refactorings one can think of. These are
transformations to consistently rename type or constructor names, and to permute
parameters of type and constructor declarations. In Fig. 5, a simple example is
illustrated. We rename the type nameConsList , the constructor namesNil and
Cons, and we permute the two parameter positions ofCons. The resulting datatype
specifies aSnocList as opposed to theConsList before.

In Fig. 6, we declare the operators for renaming names and permuting parameter
lists. In Fig. 7, we include the script that encodes theConsList-to-SnocList sample
as a sequence of basic renaming and permuting transformations. To this end, we
assume a sequential composition operatorseqTrafo for datatype transformations.
(In the script,seqTrafo is used as an infix operator ‘seqTrafo‘.)

7

Kort & Lämmel

data HsDecl = ... -- Syntactical sort for (type) declarations

introTypes :: [HsDecl] → Trafo -- Introduction of type declarations
elimTypes :: [TypeId] → Trafo -- Elimination of type declarations

Fig. 8. Operators for introduction and elimination of datatypes

type TypeHdr = (TypeId , [TypeVar]) -- Header (LHS) of type declaration
type TypeVar = HsName -- Type variables

foldAlias :: TypeSel → TypeHdr → Trafo -- Folding the referred type
unfoldAlias :: TypeSel → Trafo -- Unfolding the referred type

Fig. 9. Operators for folding and unfolding

3.2 Introduction vs. elimination

The next group of operators deals with the introduction and elimination of type
declarations (see Fig. 8). Introduction means that the supplied types are added
while their names must not be in use in the given program. Elimination means
that the referenced types are removed while their names must not be referred to
anymore in the resulting program. The two operators takelists of types as opposed
to single ones because types can often only be introduced and eliminated in groups,
say mutually recursive systems of datatypes. All kinds of type declarations make
sense in this context: aliases, newtypes, and proper datatypes. The operators for
introduction and elimination are often essential in compound transformations. This
will be illustrated below when we reconstruct the introductory example in full detail
(see Sec. 3.4).

3.3 Folding vs. unfolding

Instantiating the folklore notions of unfolding and folding for datatypes basically
means to replace a type name by its definition and vice versa. Extra provisions
are needed for parameterised datatypes. The prime usage scenarios for the two
operators are the following:

• extraction = introduction of a type followed by itsfolding.
• inlining = unfolding a type followed by itselimination.

To give an example, the introductory example basicallyextracts the structure of
imperative program blocks. To actually reconstruct this example, we need a few
more operators. So we postpone scripting the example (see Sec. 3.4).

The operators for folding and unfolding are declared in Fig. 9, The operators make
a strict assumption: the type which is subject to folding or unfolding is necessar-
ily a type alias as opposed to a proper datatype. This assumption simplifies the
treatment of the operators considerably since type aliases and their definitions are
equivalent by definition. Extra operators for so-called wrapping and unwrapping
allow us to use proper datatypes during folding and unfolding as well. This will be
addressed below. In the type of thefoldAlias operator, we do not just provide a type

8

Kort & Lämmel

type ConRange = (ConPos, Int) -- Refer to consecutive components

groupConRange :: ConRange → Trafo -- Group constructor components
ungroupConPos :: ConPos → Trafo -- Inline product
alias2newtype :: TypeId → ConId → Trafo -- Turn type alias into newtype
newtype2data :: TypeId → Trafo -- Turn newtype into datatype
data2newtype :: TypeId → Trafo -- Turn datatype into newtype
newtype2alias :: TypeId → Trafo -- Turn newtype into type alias

Fig. 10. Operators for wrapping and unwrapping

0. Original syntax
data Prog = Prog ProgName [Dec] [Stat]
data Dec = VDec Id Type
data Stat = Assign Id Expr | If Expr Stat Stat
data Expr = Var Id | Const Int

1. After grouping[Dec] and[Stat]

data Prog = Prog ProgName ([Dec], [Stat])

2. After introduction ofBlock to prepare folding
data Prog = Prog ProgName ([Dec], [Stat])
type Block = ([Dec], [Stat])

3. After folding away the type expression([Dec], [Stat])

data Prog = Prog ProgName Block
type Block = ([Dec], [Stat])

4. After turningBlock into a proper datatype with the constructorBlock
data Prog = Prog ProgName Block
data Block = Block ([Dec], [Stat])

5. After ungrouping the product([Dec], [Stat])

data Prog = Prog ProgName Block
data Block = Block [Dec] [Stat]

Fig. 11. Illustration of wrapping, unwrapping, and extraction

name but also a list of type variables (cf. helper typeTypeHdr). This is needed for
parameterised datatypes, where we want to specify how the free type variables in
the selected type expression map to the argument positions of the type alias.

The preconditions for the operators are as follows. In the case offoldAlias, we need
to check if the referenced type expression and the right-hand side of the given alias
declaration coincide. In the case of unfolding, we need to check that the referenced
type expression corresponds to an application of a type alias.

3.4 Wrapping vs. unwrapping

We will now consider operators that facilitate certain forms of wrapping and un-
wrapping of datatype constructors (see Fig. 10). There are operators for grouping
and ungrouping, that is, to turn consecutive constructor components into a single
component that is of a product type, and vice versa. There are also operators to
mediate between the different kinds of type declarations, namely type aliases, new-
types and datatypes. This will allow us to toggle the representation of datatypes
in basic ways. As a result, the normal forms assumed by other operators can be
established; recall, for example, the use of type aliases in folding and unfolding.
This separation of concerns serves orthogonality.

9

Kort & Lämmel

groupConRange ((HsIdent "Prog", 2), 2) ‘seqTrafo‘
introTypes [HsTypeDecl noLoc "Block" []

(HsTyTuple [
HsTyApp (HsTyCon (UnQual (HsIdent "List")))

(HsTyCon (UnQual (HsIdent "Dec"))),
HsTyApp (HsTyCon (UnQual (HsIdent "List")))

(HsTyCon (UnQual (HsIdent "Stat")))])] ‘seqTrafo‘
foldAlias (ConRef (HsIdent "Prog", 2) SelStop) ((HsIdent "Block"), []) ‘seqTrafo‘
alias2newtype (HsIdent "Block") (HsIdent "Block") ‘seqTrafo‘
newtype2data (HsIdent "Block") ‘seqTrafo‘
ungroupConPos ((HsIdent "Block"), 1)

Fig. 12. Script for the scenario in Fig. 11

data Maybe a = Nothing | Just a

‖ ‖ ‖ ‖ ‖
data Maybe′ a = Nothing ′ | Just ′ a

‖ ‖ ‖ ‖ ‖

data Maybe′ a = Nothing ′ | Just ′ a (Maybe′ a)

‖ ‖ ‖ ‖ ‖ ‖
data ConsList a = Nil | Cons a (ConsList a)

Fig. 13. Illustration of the generalisation ofMaybe to ConsList

In Fig. 11, we show the steps that implement the introductory example. As one
can see, we basically implement extraction, but extra steps deal with grouping and
ungrouping the two components subject to extraction. Also, the extracted type
should be a proper datatype as opposed to a type alias (see transition from 3. to 4.).
For completeness’ sake, the transformation script is shown in Fig. 12. The script
precisely captures the steps that underly the interactive transformation in Fig. 1.

Some of the operators are not completely structure-preserving, that is, strictly speak-
ing, the structures of the datatypes before and after transformation are not fully
equivalent. For example, a newtype and a datatype are semantically distinguished,
even if the defining constructor declaration is the very same. (This is because a con-
structor of a datatype involves an extra lifting step in the semantical domain, i.e.,
there is an extra ‘bottom’ element.) The operators for grouping and ungrouping
also deviate from full structure preservation.

3.5 Swapping types on use sites

We will now deal with transformations that eliminate or establish type distinctions
by what we callswapping types on use sites. In Fig. 13, we illustrate a typical ap-
plication of swapping. In the example, we want to generalise the standard datatype
Maybe to allow for lists instead. In fact, we do not want to change the general
definition of the library datatypeMaybe, but we only want to change it on one use
site (not shown in the figure). This is where swapping helps: as an intermediate
step, we can replaceMaybe on the use site by a newly introduced datatypeMaybe′

with equivalent structure. The figure illustrates how subsequent adaptations derive

10

Kort & Lämmel

type DataNames = (TypeId , [ConId])
type DataUnifier = (DataNames,DataNames)

swapAlias :: TypeSel → TypeId → TypeId → Trafo
swapData :: TypeSel → [DataUnifier] → Trafo

Fig. 14. Operators for swapping types on use sites

type ConDecl = (ConId , [HsType]) -- Constructor declaration
data HsType = ... -- Syntactical sort for type expressions

includeConDecl :: TypeId → ConDecl → Trafo
excludeConDecl :: ConId → Trafo

Fig. 15. Operators for inclusion and exclusion of constructor declarations

Syntax as of Fig. 11
data Prog = Prog ProgName Block
data Block = Block [Dec] [Stat]
data Dec = VDec Id Type
data Stat = Assign Id Expr | If Expr Stat Stat
data Expr = Var Id | Const Int

After syntax extension by statement blocks
data Stat = Assign Id Expr | If Expr Stat Stat | SBlock Block

Fig. 16. Illustration of constructor inclusion

theConsList datatype from the clone of theMaybe datatype. In particular, we add
the boxed constructor component.

The swapping operators are declared in Fig. 14. There is one operator for type
aliases and another for datatype declarations. In the case of proper datatypes, one
needs to match the constructors in addition to just the names of the types. This is
modelled by the helper datatypeDataUnifier. The type of the operatorswapData
clarifies that we are prepared to process a list ofDataUnifiers. This is necessary if
we want to swap mutually recursive systems of datatypes.

3.6 Inclusion vs. exclusion

We now leave the ground of structure-preserving transformations. That is, we
will consider transformations where input and output datatypes are not structurally
equivalent. In fact, we consider certain ways to extend or reduce the structure of the
datatype. The first couple of structure-extending and -reducing transformations is
about inclusion and exclusion of constructor declarations (see Fig. 15). These op-
erators are only feasible for proper datatypes and not for type aliases or newtypes.
(This is because a type alias involves no constructor at all, and a newtype is defined
in terms of precisely one constructor declaration.)

In Fig. 16, we show an example for constructor inclusion. In fact, we just con-
tinue the introductory example to make use of the extracted block structure in a
language extension for statement blocks. That is, we include a constructor applica-
tion for Stat to captureBlock as another statement form. This continuation of the

11

Kort & Lämmel

insertConComp :: ConPos → HsType → Trafo
deleteConComp :: ConPos → Trafo

Fig. 17. Operators for insertion and deletion of constructor components

A datatype for a transition relation / function, and helpers
type TransRel a = a → Maybe a
data Maybe a = Nothing | Just a
data ConsList a = Nil | Cons a (ConsList a)

Introduction of a substitute forMaybe
data Maybe′ a = Nothing ′ | Just ′ a

SwappingMaybe andMaybe’ in TransRel
type TransRel a = a → Maybe′ a

Extension ofMaybe′ to fit with shape ofConsList
data Maybe′ a = Nothing ′ | Just ′ a (Maybe′ a)

SwappingMaybe′ andConsList in TransRel
type TransRel a = a → ConsList a

Fig. 18. Illustration of component insertion and type swapping

introductory example amplifies the intended use of our operator suite: for program
evolution in the sense of datatype refactoring and adaptation.

3.7 Insertion vs. deletion

Inclusion and exclusion of constructor declarations is about thebranching structure
of datatypes. We will now discuss operators that serve for the insertion or deletion
of constructorcomponents (see Fig. 17). Insertion of a componentc into a con-
structor declarationC c1 · · · cn proceeds as follows. Given the target position for
the new component, be iti � n + 1, the new constructor declaration is simply
of the formC c1 · · · ci−1 c ci · · · cn. In general,c might need to refer to type
parameters of the affected datatype. Deletion of a constructor declaration relies on
the identification of the obsolete component.

In Fig. 18, we elaborate on the earlier example for generalising ‘maybies’ to lists
(recall Fig. 13). At the top of Fig. 18, we see three datatypesTransRel , Maybe,
andConsList . The idea is indeed to replaceMaybe by ConsList in the using oc-
currence inTransRel . (That is, we want to allow for a function froma to a list of
as instead of a partial function froma to a.) We call this adaptation a generalisation
because a list is more general than an optional. In the initial phase of the gener-
alisation ofMaybe, we disconnect the relevant occurrence ofMaybe in TransRel
from other possible occurrences in the program. So we introduce a copyMaybe ′ of
Maybe, and we perform type swapping so thatTransRel refers toMaybe ′ instead
of the ‘read-only’Maybe. Now we need to makeMaybe′ structurally equivalent to
ConsList . This amounts to adding a recursive component to the second construc-
tor Just ′. Then, we can again swap types to refer toConsList in the co-domain of
TransRel .

12

Kort & Lämmel

4 Datatype transformation meets program transformation

We will now re-iterate over the groups of operators to investigate their impact on
functional programs. It would be utterly complex to formalise the link between
datatype and program transformation. The mere specification of the transforma-
tions is already intractable for a publication because of its size, and the number of
details. So we will describe the implied program transformations informally while
omitting less interesting details.

4.1 Renaming

Type names only occur inside type declarations and type annotations. So there is
no need to adapt expressions or function declarations except for their signatures, or
the type annotations of expressions. Constructor names can very well occur inside
patterns and expressions that contribute to function declarations. Renaming these
occurrences is completely straightforward.

4.2 Permutation

The permutation of type parameters does not necessitate any completion at the
level of function declarations. The permutation of constructor components, how-
ever, needs to be realized in patterns and expressions as well. This is particularly
simple for pattern-match cases because all components are matched by definition.
Hence, we can directly permute the sub-patterns in an affected constructor pattern.
Witnessing permutations of constructor components in expression forms is slightly
complicated by currying and higher-order style. Instead of permuting components
in possibly incomplete constructor applications, we could first get access to all
components by ‘λ-pumping’: given a constructorC with sayn potential compo-
nents according to its declaration, we first replaceC by λx1 · · · xn. C x1 · · · xn

as justified byη-conversion. Then, we witness the permutation by permuting the
argumentsx1, . . . , xn in the pumped-up expression. In the presence of a non-
strict language with an evaluation order on patterns, the permutation of constructor
components might actually change the behaviour of the program regarding termi-
nation. We neglect this problem. We should also mention that it is debatable if
the described kind ofη-conversion is really what the programmer wants because it
obscures the code.

4.3 Introduction vs. elimination

Introduction does not place any obligations on the functions defined in the same
program. In the case of elimination, we have to ensure that the relevant types are not
used by any function. If we assume that all function declarations are annotated by
programmer-supplied or inferred signatures, then the precondition for elimination
can be checked by looking at these signatures. There is an alternative approach that
does not rely on complete type annotations: we check that no constructor of the
relevant types is used.

13

Kort & Lämmel

4.4 Folding vs. unfolding

The restriction of folding and unfolding to type aliases guarantees that these oper-
ators do not necessitate any adaptation of the function declarations. This is simply
because interchanging a type alias and its definition is completely structure- and
semantics-preserving, by definition. This is extremely convenient: despite the cru-
cial role of the operators for folding and unfolding, they do not raise any issue at
the level of function declarations.

4.5 Wrapping vs. unwrapping

Grouping and ungrouping These operators are handled using the same overall ap-
proach as advocated for the permutation of constructor components. That is, in
patterns we witness grouping or ungrouping by inserting or removing the enclosing
“(. . .)”; in expressions, we performη-conversion to access the relevant compo-
nents, and then we group or ungroup them in the pumped-up constructor applica-
tion.

Mediation between newtypes and datatypes These datatype transformations do not
imply any adaptations of the functions that involve the datatype in question. (As
we indicated earlier, the extra bottom value of a datatype, when compared to a
newtype, allows a program to be ‘undefined’ in one more way.)

Newtype to alias migration We simply remove all occurrences of the associated
constructor both in pattern and expression forms. We require that the relevant new-
type is not covered by any instance declaration of some type class or constructor
class. Otherwise, we had to inline these members in a non-obvious way prior to the
removal of the constructor. If we neglected this issue, the resulting program either
becomes untypeable, or a different instance is applied accidentally, which would
be hazardous regarding semantics preservation.

Alias to newtype migration This operator requires a non-trivial treatment for func-
tion declarations. The crucial issue is how to know the following:

• What expressions have to be wrapped with the newtype constructor?
• In what patterns does the newtype constructor need to be stripped?

Our approach is as simple as possible. We observe that the new newtype might be
used in the declarations of other datatypes. The corresponding patterns and expres-
sions can be easily located and adapted as in the case of permutation, grouping, and
ungrouping (recallη-conversion etc.). We also need to adapt function declarations
if their argument or result types are known to refer to the relevant alias. This ba-
sically means that we need to access the affected arguments and result expressions
in all relevant equations to unwrap the arguments and wrap the result expressions.
These adaptations are slightly complicated by the fact that the affected type alias
can occur in arbitrarily nested locations.

In Fig. 19, we illustrate the effect of thealias2newtype operator in the introductory
example. We show the top-level interpreter function that maps over the statements

14

Kort & Lämmel

Top-level interpreter function before the illustrative extraction

run :: Prog → State ()
run (Prog name decs stats) = mapM interpret stats

The same function after extraction

run :: Prog → State ()
run (Prog name (Block decs stats)) = mapM interpret stats

Fig. 19. Function adaptation triggered by alias-to-newtype migration

Input program
type TransRel a = a → Maybe a
data Maybe′ a = Nothing | Just a
deadEnd :: TransRel a → a → Bool
deadEnd r a = case r a of Nothing → True

Just → False

Output program
type TransRel a = a → Maybe′ a

data Maybe′ a = Nothing | Just a
deadEnd :: TransRel a → a → Bool
deadEnd r a = case toMaybe (r a) of Nothing → True

Just → False

Induced helper for type swapping
toMaybe :: Maybe′ a → Maybe a
toMaybe Nothing ′ = Nothing
toMaybe (Just ′ a) = Just a

Fig. 20. Function adaptation triggered by type swapping

of the program. (The program name and the declarations do not carry any semantics
here.) The type of the functionrun exhibits that the meaning of a program is a
computation that involves aState for the program variables. The adapted version
of run refers to the extra constructorBlock, which resulted from extraction.

4.6 Swapping types on use sites

This operator relies on the same techniques asalias2newtype. However, instead of
wrapping and unwrapping a constructor. We invoke conversion functions that me-
diate between the two structurally equivalent types. These mediators merely map
old to new constructors and vice versa, and hence they are immediately induced by
the datatype transformation itself, namely by theDataUnifiers passed to the swap
operator. This approach implies that we only perform very local changes. The
program code will still work on the old datatypes thanks to the mediators.

The impact of swapping types at the function level is illustrated in Fig. 20. We
deal with the initial steps of theMaybe-to-ConsList migration in Fig. 18, where
we replace the occurrence ofMaybe within TransRel by a structurally equivalent
Maybe ′. We show an illustrative functiondeadEnd which performs a test if the
given transition relation allows for a transition in the presence of a given statea.
The adapted functiondeadEnd refers to the conversion functiontoMaybe prior to
performing pattern matching on the obsoleteMaybe type.

15

Kort & Lämmel

Input program
data Stat = Assign Id Expr | If Expr Stat Stat
interpret :: Stat → State ()
interpret (Assign i e) = envLookup i >>= λr → ...
interpret (If e s1 s2) = reval e >>= λv → ...

Output program
data Stat = Assign Id Expr | If Expr Stat Stat | SBlock Block
interpret :: Stat → State ()
interpret (Assign i e) = envLookup i >>= λr → ...
interpret (If e s1 s2) = reval e >>= λv → ...
interpret (SBlock) = ⊥

Fig. 21. Inclusion of a constructor declaration

4.7 Inclusion vs. exclusion

Intuitively, the inclusion of a constructor should be complemented by the extension
of all relevant case discriminations. This normally means to add a pattern-match
equation (or a case to a case expression) for the new constructor. Dually, exclusion
of a constructor should be complemented by the removal of all pattern-match equa-
tions (or cases) that refer to this constructor. In the case of added pattern-match
equations, we view the right-hand sides of these equations as a kind of ‘hot spot’
to be resolved by subsequent expression-level transformations. To this end, we use
“undefined”, i.e., “⊥”, as a kind of to-do marker. Dually, in the case of removed
constructors, we also need to replace occurrences of the constructor within expres-
sions by “⊥”. When using interactive tool support, these to-do markers are useful
to control further steps in a transformation scenario.

In Fig. 21, we progress with our running example of an interpreter for an impera-
tive language. We illustrate the step where blocks are turned into another form of
statements. Hence, the shown output program involves a new pattern-match equa-
tion that interprets statement blocks. This added equation reflects that the meaning
of such blocks is as yet undefined, subject to subsequent adaptations.

4.8 Insertion vs. deletion

Inserting a component into a declaration for a constructorC means that all patterns
with C as outermost constructor must be adapted to neglect the added component,
and all applications ofC must be completed to include “⊥” for the added compo-
nent. Dually, deletion of a component fromC means that all applications ofC and
all patterns withC as outermost constructor need to be cleaned up to project away
the obsolete component. Any reference to a pattern variable for the obsolete com-
ponent is replaced by “⊥”. As in the case of permutation and others,η-conversion
is needed to actually get access to constructor components in expressions.

In Fig. 22, the insertion of a constructor component is illustrated by continuing
the scenario from Fig. 20. The adapted equation oftoMaybe involves an extended
pattern. As the don’t care pattern “” indicates, the definition oftoMaybe does not
make use of the added component. In fact, the definition of the functiondeadEnd
does not need to be adapted; it only tests for the availability of a transition step.

16

Kort & Lämmel

Output program
type TransRel a = a → Maybe′ a
data Maybe′ a = Nothing ′ | Just ′ a (Maybe′ a)

deadEnd :: TransRel a → a → Bool
deadEnd r a = case toMaybe (r a) of Nothing → True

Just → False

Induced helper for type swapping
toMaybe :: Maybe′ a → Maybe a
toMaybe Nothing ′ = Nothing
toMaybe (Just ′ a) = Just a

Fig. 22. Illustration of the insertion of a constructor component

Normally, other functions will start to rely on the richer pattern.

5 Related work

Transformational program development Formal program transformation [BD77]
separates two concerns: the development of an initial, maybe inefficient program
the correctness of which can easily be shown, and the stepwise derivation of a bet-
ter implementation in a semantics-preserving manner. Partsch’s textbook [Par90]
describes the formal approach to this kind of software development. Pettorossi
and Proietti study typical transformation rules (for functional and logic) programs
in [PP96]. Formal program transformation, in part, also addresses datatype trans-
formation [dRE98], say data refinement. Here, one gives different axiomatisations
or implementations of an abstract datatype which are then related by well-founded
transformation steps. This typically involves some amount of mathematical pro-
gram calculation. By contrast, we deliberately focus on the more syntactical trans-
formations that a programmer uses anyway to adapt evolving programs.

Database schema evolution There is a large body of research addressing the re-
lated problem of database schema evolution [BKKK87] as relevant, for example, in
database re- and reverse engineering [HTJC93]. The schema transformations them-
selves can be compared with our datatype transformations only at a superficial level
because of the different formalisms involved. There exist formal frameworks for
the definition of schema transformations and various formalisms have been inves-
tigated [MP97]. An interesting aspect of database schema evolution is that schema
evolution necessitates a database instance mapping [BCN92]. Compare this with
the evolution of the datatypes in a functional program. Here, the main concern is to
update the function declarations for compliance with the new datatypes. It seems
that the instance mapping problem is a special case of the program update problem.

Refactoring The transformational approach to program evolution is nowadays called
refactoring [Opd92,Fow99], but the idea is not new [ABFP86,GN90]. Refactor-
ing means to improve the structure of code so that it becomes more comprehen-
sible, maintainable, and adaptable. Interactive refactoring tools are being studied
and used extensively in the object-oriented programming context [Moo96,RBJ97].
Typical examples offunctional program refactorings are described in [Läm00], e.g.,
the introduction of a monad in a non-monadic program. The precise inhabitation of

17

Kort & Lämmel

the refactoring notion for functional programming is being addressed in a project
at the University of Kent by Thompson and Reinke; see [TR01]. There is also
related work on type-safe meta-programming in a functional context, e.g., by Er-
wig [ER02]. Previous work did not specifically address datatype transformations.
The refactorings for object-oriented class structures are not directly applicable be-
cause of the different structure and semantics of classes vs. algebraic datatypes.

Structure editing Support for interactive transformations can be seen as a sophisti-
cation of structure editing [RT88,Koo94,KS98]. This link between transformation
and editing is particularly appealing for our “syntactical” transformations. Not sur-
prisingly, concepts that were developed for structure editing are related to our work.
For example, in [SdM99], primitives of structure editing are identified based on the
notion of focus to select subtrees, and on navigation primitives left, right, up and
down. Trees, subtrees and paths are here defined as follows:

data Tree = Fork Label [Tree]
type SubTree = (Path,Tree)
type Path = [Layer]
type Layer = (Label , [Tree], [Tree])

The t in a subtree(p, t) is the currently selected tree and it is between the left and
right trees in the top layer (the head of thep). This approach does not account for
the heterogeneous character of language syntaxes, but it shows that the fact if a
focus resides in a term can be encoded in types.

6 Concluding remarks

Contribution We identified the fundamental primitives for datatype transformation.
These operators are meant to support common scenarios of program adaptation in
functional programming, or other settings where algebraic datatypes play a role.
In fact, all the identified operators are universal in the sense, that they are also
meaningful for other program abstractions than just datatypes, e.g., function decla-
rations. We deliberately focused on adaptations of datatypes because a vast body of
previous work addressed fold/unfold transformations for recursive functions. De-
spite the focus on datatype transformations, we had to consider program trans-
formations that are necessitated by the modification of datatypes. Regarding the
executable specification of the operator suite, we adhered to the formula: meta-
programs = object-programs = Haskell programs. We employed generic functional
programming in the interest of conciseness. We also employed designated means
of referring to fragments of interest, e.g., a focus concept.

Partial project failure We are confident that the identified operators are sufficient
and appropriate for actual datatype transformations. We have attempted to comple-
ment this framework development by actual interactive tool support. We initially
thought that using Haskell for this interactive tooling as well would be a good idea.
Since the actual transformation operators are implemented in Haskell anyway, and
the interactive dialogues need to cooperate with the operator framework to perform
analyses, Haskell indeed seems to be the obvious choice. To make a long story

18

Kort & Lämmel

short, there are many GUI libraries for Haskell, but none of them is suitable for
developing a sophisticated GUI for interactive program transformation at the mo-
ment. It seems that environments for interactive language tools would provide a
better starting point, e.g., environments based on attribute grammars [RT88,KS98].

Perspective To cover full Haskell, a few further operators would have to be added
to our suite, in particular, operators that support type and constructor classes. We
should also pay full attention to some idiosyncrasies of Haskell; cf. refutable vs.
irrefutable patterns. Then, there are also transformation techniques that seem to
go beyond our notion of program evolution but it is interesting to cover them any-
way. We think of techniques like turning a system of datatypes into functorial style,
or threading a parameter through a system of datatypes. The ultimate perspective
for the presented work is to integrate the datatype transformations into a complete,
well-founded, and user-friendly refactoring tool for functional programming along
the lines of Thompson’s and Reinke’s research project [TR01]. Another perspec-
tive for our research is to further pursue the intertwined character of datatype and
program transformations in the context of XML format and API evolution.

References

[ABFP86] G. Arango, I. Baxter, P. Freeman, and C. Pidgeon. TMM: Software
maintenance by transformation.IEEE Software, 3(3):27–39, May 1986.

[BCN92] C. Batini, S. Ceri, and S.B. Navathe. Conceptual database design.
Benjamin/Cummings, Redwood City, US, 1992.

[BD77] R. M. Burstall and John Darlington. A transformation system for developing
recursive programs.Journal of the ACM, 24(1):44–67, January 1977.

[BKKK87] J. Banerjee, W. Kim, H.-J. Kim, and H.F. Korth. Semantics and
Implementation of Schema Evolution in Object-Oriented Databases.SIGMOD
Record (Proc. Conf. on Management of Data), 16(3):311–322, May 1987.

[dRE98] Willem-Paul de Roever and Kai Engelhardt.Data Refinement: Model-Oriented
Proof Methods and their Comparison, volume 47 ofCambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1998.

[ER02] M. Erwig and D. Ren. A rule-based language for programming software
updates. InProceedings of the 2002 ACM SIGPLAN workshop on Rule-based
programming, pages 67–78. ACM Press, 2002.

[Fow99] M. Fowler. Refactoring—Improving the Design of Existing Code. Addison
Wesley, 1999.

[GN90] W. G. Griswold and D. Notkin. Program restructuring as an aid to software
maintenance. Technical report, Seattle, WA, USA, August 1990.

[HTJC93] J.-L. Hainaut, C. Tonneau, M. Joris, and M. Chandelon. Schema
Transformation Techniques for Database Reverse Engineering. InProc. of the
12th Int. Conf. on ER Approach, Arlington-Dallas, 1993. E/R Institute.

19

Kort & Lämmel

[Koo94] J.W.C. Koorn. Generating uniform user-interfaces for interactive
programming environments. PhD thesis, University of Amsterdam, 1994.

[KS98] M. Kuiper and J. Saraiva. Lrc — A generator for Incremental Language-
Oriented Tools. In K. Koskimies, editor,Compiler Construction CC’98,
volume 1383 ofLNCS, pages 298–301. Springer-Verlag, April 1998. Tool
demonstration.

[L äm00] R. L̈ammel. Reuse by Program Transformation. In Greg Michaelson and
Phil Trinder, editors,Functional Programming Trends 1999, pages 143–152.
Intellect, 2000.

[L äm01] R. L̈ammel. Grammar Adaptation. In J.N. Oliveira and P. Zave, editors,Proc.
Formal Methods Europe (FME) 2001, volume 2021 ofLNCS, pages 550–570.
Springer-Verlag, 2001.

[Moo96] I. Moore. Automatic Inheritance Hierarchy Restructuring and Method
Refactoring. In OOPSLA ’96 Conference Proceedings: Object-Oriented
Programming Systems, Languages, and Applications, pages 235–250. ACM
Press, 1996.

[MP97] P. McBrien and A. Poulovassilis. A Formal Framework for ER Schema
Transformation. In D.W. Embley and R.C. Goldstein, editors,Conceptual
Modeling - ER ’97, 16th International Conference on Conceptual Modeling,
Los Angeles, California, USA, November 3-5, 1997, Proc., volume 1331 of
LNCS, pages 408–421. Springer-Verlag, 1997.

[Opd92] W. F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis,
University of Illinois at Urbana-Champaign, 1992.

[Par90] H.A. Partsch.Specification and Transformation of Programs. Springer-Verlag,
1990.

[PP96] A. Pettorossi and M. Proietti. Rules and Strategies for Transforming Functional
and Logic Programs.ACM Computing Surveys, 28(2):360–414, June 1996.

[RBJ97] D. Roberts, J. Brant, and R.E. Johnson. A Refactoring Tool for Smalltalk.
Theory and Practice of Object Systems (TAPOS), 3(4):253–263, 1997.

[RT88] T.W. Reps and T. Teitelbaum.The Synthesizer Generator: A System for
Constructing Language–Based Editors. Springer–Verlag, 1988.

[SdM99] B.A. Sufrin and O. de Moor. Modeless structure editing. In A.W. Roscoe and
J.C.P. Woodcock, editors,Proceedings of the Oxford-Microsoft symposium in
Celebration of the work of Tony Hoare, September 1999.

[TR01] S. Thompson and C. Reinke. Refactoring Functional Programs. Technical
Report 16-01, Computing
Laboratory, University of Kent at Canterbury, October 2001. Also see
http://www.cs.ukc.ac.uk/people/staff/sjt/Refactor/.

20

http://www.cs.ukc.ac.uk/people/staff/sjt/Refactor/

	Introduction
	Concerns in datatype transformation
	Scripting vs. interactive tool support
	Well-defined transformation primitives
	Generic meta-programming
	Means of referring to fragments of interest

	Basic operators for datatype transformation
	Renaming and permutation
	Introduction vs. elimination
	Folding vs. unfolding
	Wrapping vs. unwrapping
	Swapping types on use sites
	Inclusion vs. exclusion
	Insertion vs. deletion

	Datatype transformation meets program transformation
	Renaming
	Permutation
	Introduction vs. elimination
	Folding vs. unfolding
	Wrapping vs. unwrapping
	Swapping types on use sites
	Inclusion vs. exclusion
	Insertion vs. deletion

	Related work
	Concluding remarks
	References

