466 research outputs found

    Using Multi-Threshold Threshold Gates in RTD-based Logic Design. A Case Study

    Get PDF
    The basic building blocks for Resonant Tunnelling Diode (RTD) logic circuits are Threshold Gates (TGs) instead of the conventional Boolean gates (AND, OR, NAND, NOR) due to the fact that, when designing with RTDs, threshold gates can be implemented as efficiently as conventional ones, but realize more complex functions. Recently, RTD structures implementing Multi-Threshold Threshold Gates (MTTGs) have been proposed which further increase the functionality of the original TGs while maintaining their operating principle and allowing also the implementation of nanopipelining at the gate level. This paper describes the design of n-bit adders using these MTTGs. A comparison with a design based on TGs is carried out showing advantages in terms of latency, device counts and power consumption.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    NanoThermoMechanical Logic Gates for Thermal Computing

    Get PDF
    Limited performance and reliability of electronic devices at extreme temperatures, intensive electromagnetic fields, and radiation found in space exploration missions (i.e., Venus & Jupiter planetary exploration, and heliophysics missions) and earth-based applications require the development of alternative computing technologies. Thermal computing, data processing based on heat instead of electricity, is proposed as a practical alternative and opens a new scientific area at the interface between thermal and computational sciences. We successfully developed thermal AND, OR and NOT logic gates, achieved through the coupling between near-field thermal radiation and MEMS thermal actuation. In the process, we developed two novel non-linear thermal expansion designs of microstructure silicon V-shaped chevron beams which were required to achieve the desired thermal AND gate operation. The successful design paves the way to develop full thermal logic circuits, so we show the design and simulation of a thermal calculator based on binary mathematical computations. This thermal calculator was able to perform the addition of two decimal numbers. Furthermore, we introduce the microfabrication and characterization of the thermal AND and OR logic gates. The thermal AND logic gate consists of two non-linear mechanisms using novel and ingenious chevron mechanisms consisting of spring-assisted reduction and cascading chevrons amplification for the reducing and the amplification mechanisms, respectively. The experimental results show that we achieved non-linearity ratios of thermal expansion of 0.36 and 3.06 for the reducing and the amplification mechanisms, respectively. For the characterization of thermal AND logic gate, for the case when the two inputs were at (i.e., 0,0 case), we achieved an effectiveness of 10.7 % at a heat source temperature of 1549 K. For the thermal OR logic gate, for the cases of (1,0) and (0,1), we achieved an effectiveness of 25.3 % and 23.2 % at an input temperature of 1324 K and 1391 K, respectively. These results are significant breakthroughs in the field of thermal computation science and technology as they demonstrate thermal computing at high temperatures based on demonstrated and easy to manufacture NanoThermoMechanical logic gates. Advisor: Sidy Nda

    NanoThermoMechanical Logic Gates for Thermal Computing

    Get PDF
    Limited performance and reliability of electronic devices at extreme temperatures, intensive electromagnetic fields, and radiation found in space exploration missions (i.e., Venus & Jupiter planetary exploration, and heliophysics missions) and earth-based applications require the development of alternative computing technologies. Thermal computing, data processing based on heat instead of electricity, is proposed as a practical alternative and opens a new scientific area at the interface between thermal and computational sciences. We successfully developed thermal AND, OR and NOT logic gates, achieved through the coupling between near-field thermal radiation and MEMS thermal actuation. In the process, we developed two novel non-linear thermal expansion designs of microstructure silicon V-shaped chevron beams which were required to achieve the desired thermal AND gate operation. The successful design paves the way to develop full thermal logic circuits, so we show the design and simulation of a thermal calculator based on binary mathematical computations. This thermal calculator was able to perform the addition of two decimal numbers. Furthermore, we introduce the microfabrication and characterization of the thermal AND and OR logic gates. The thermal AND logic gate consists of two non-linear mechanisms using novel and ingenious chevron mechanisms consisting of spring-assisted reduction and cascading chevrons amplification for the reducing and the amplification mechanisms, respectively. The experimental results show that we achieved non-linearity ratios of thermal expansion of 0.36 and 3.06 for the reducing and the amplification mechanisms, respectively. For the characterization of thermal AND logic gate, for the case when the two inputs were at (i.e., 0,0 case), we achieved an effectiveness of 10.7 % at a heat source temperature of 1549 K. For the thermal OR logic gate, for the cases of (1,0) and (0,1), we achieved an effectiveness of 25.3 % and 23.2 % at an input temperature of 1324 K and 1391 K, respectively. These results are significant breakthroughs in the field of thermal computation science and technology as they demonstrate thermal computing at high temperatures based on demonstrated and easy to manufacture NanoThermoMechanical logic gates. Advisor: Sidy Nda

    Communications techniques and equipment: A compilation

    Get PDF
    This Compilation is devoted to equipment and techniques in the field of communications. It contains three sections. One section is on telemetry, including articles on radar and antennas. The second section describes techniques and equipment for coding and handling data. The third and final section includes descriptions of amplifiers, receivers, and other communications subsystems

    Computers from plants we never made. Speculations

    Full text link
    We discuss possible designs and prototypes of computing systems that could be based on morphological development of roots, interaction of roots, and analog electrical computation with plants, and plant-derived electronic components. In morphological plant processors data are represented by initial configuration of roots and configurations of sources of attractants and repellents; results of computation are represented by topology of the roots' network. Computation is implemented by the roots following gradients of attractants and repellents, as well as interacting with each other. Problems solvable by plant roots, in principle, include shortest-path, minimum spanning tree, Voronoi diagram, α\alpha-shapes, convex subdivision of concave polygons. Electrical properties of plants can be modified by loading the plants with functional nanoparticles or coating parts of plants of conductive polymers. Thus, we are in position to make living variable resistors, capacitors, operational amplifiers, multipliers, potentiometers and fixed-function generators. The electrically modified plants can implement summation, integration with respect to time, inversion, multiplication, exponentiation, logarithm, division. Mathematical and engineering problems to be solved can be represented in plant root networks of resistive or reaction elements. Developments in plant-based computing architectures will trigger emergence of a unique community of biologists, electronic engineering and computer scientists working together to produce living electronic devices which future green computers will be made of.Comment: The chapter will be published in "Inspired by Nature. Computing inspired by physics, chemistry and biology. Essays presented to Julian Miller on the occasion of his 60th birthday", Editors: Susan Stepney and Andrew Adamatzky (Springer, 2017

    Spaceborne memory organization Interim report

    Get PDF
    Associative memory applications in unmanned space vehicle

    Methods for Determining Blood Flow Through Intact Vessels of Experimental Animals Under Conditions of Gravitational Stress and in Extra-terrestrial Space Capsules Final Report, 1 Nov. 1960 - 31 Dec. 1964

    Get PDF
    Electromagnetic blood flow meter to determine blood flow through intact vessels of test animals in gravitational stress and in extraterrestrial space capsule

    Implementation of a digital control unit for a space probe using mosfets

    Get PDF
    Implementation of digital control unit for space probe using MOSFET
    corecore