3,183 research outputs found

    A Framework on A Computer Assisted and Systematic Methodology for Detection of Chronic Lower Back Pain using Artificial Intelligence and Computer Graphics Technologies

    Get PDF
    Back pain is one of the major musculoskeletal pain problems that can affect many people and is considered as one of the main causes of disability all over the world. Lower back pain, which is the most common type of back pain, is estimated to affect at least 60% to 80% of the adult population in the United Kingdom at some time in their lives. Some of those patients develop a more serious condition namely Chronic Lower Back Pain in which physicians must carry out a more involved diagnostic procedure to determine its cause. In most cases, this procedure involves a long and laborious task by the physicians to visually identify abnormalities from the patient’s Magnetic Resonance Images. Limited technological advances have been made in the past decades to support this process. This paper presents a comprehensive literature review on these technological advances and presents a framework of a methodology for diagnosing and predicting Chronic Lower Back Pain. This framework will combine current state-of-the-art computing technologies including those in the area of artificial intelligence, physics modelling, and computer graphics, and is argued to be able to improve the diagnosis process

    Development of Ground Truth Data for Automatic Lumbar Spine MRI Image Segmentation

    Get PDF
    Artificial Intelligence through supervised machine learning remains an attractive and popular research area in medical image processing. The objective of such research is often tied to the development of an intelligent computer aided diagnostic system whose aim is to assist physicians in their task of diagnosing diseases. The quality of the resulting system depends largely on the availability of good data for the machine learning algorithm to train on. Training data of a supervised learning process needs to include ground truth, i.e., data that have been correctly annotated by experts. Due to the complex nature of most medical images, human error, experience, and perception play a strong role in the quality of the ground truth. In this paper, we present the results of annotating lumbar spine Magnetic Resonance Imaging images for automatic image segmentation and propose confidence and consistency metrics to measure the quality and variability of the resulting ground truth data, respectively

    A Machine Learning and Computer Assisted Methodology for Diagnosing Chronic Lower Back Pain on Lumbar Spine Magnetic Resonance Images

    Get PDF
    Chronic Lower Back Pain (CLBP) is one of the major types of pain that affects many people around the world. It is estimated that 28.1% of US adults suffer from this illness and 2.5 million of the UK population experience this type of pain every day. Most CLBP cases do not happen overnight and it is usually developed from a less serious but acute variant of lower back pain. An acute type of lower back pain can develop into a chronic one if the underlying cause is serious and left untreated. The longer a person is disabled by back pain, the less chance he or she returns to work and the more health care cost he or she will require. It is therefore important to identify the cause of back pains as early as possible in order to improve the chance of patient rehabilitation. The speediness of early diagnosis can depend on many factors including referral time from a general practitioner to the hospital, waiting time for a specialist appointment, time for a Magnetic Resonance Imaging (MRI) scan and time for the analysis result to come out. Currently diagnosing the lower back pain is done by visual observation and analysis of the lumbar spine MRI images by radiologists and clinicians and this process could take up much of their time and effort. This, therefore, rationalizes the need for a new method to increase the efficiency and effectiveness of the imaging diagnostic process. This thesis details a novel methodology to automatically aid clinicians in performing diagnosis of CLBP on lumbar spine MRI images. The methodology is based on the current accepted medical practice of manual inspection of the MRI scans of the patient’s lumbar spine as advised by several practitioners in this field. The main methodology is divided into three sub-methods the first sub-method is disc herniation detection using disc segmentation and centroid distance function. While the second sub-method is lumbar spinal stenosis detection via segmentation of area between anterior and posterior (AAP) Elements. Whereas, the last sub-method is the use of deep learning to perform semantic segmentation to identify regions in the MRI images that are relevant to the diagnosis process. The method then performs boundary delineation between these regions, identifies key points along the boundaries and measures distances between these points that can be used as an indication to the health of the lumbar spine. Due to a limitation in the size and suitability of the currently existing open-access lumbar spine dataset necessary to train and test any good classification algorithms, a dataset consisting of 48,345 MRI slices from a complete clinical lumbar MRI study of 515 symptomatic back pain patients from several specialty hospitals around the world has been created. Each MRI study is annotated by expert radiologists with notes regarding the observed characteristics, condition of the lumbar spine, or presence of diseases. The ground-truth dataset containing manually labelled segmented images has also been developed. To complement this ground-truth dataset, a novel method of constructing and evaluating the suitability of ground truth data for lumbar spine MRI image segmentation has been developed. A subset of the dataset, which includes the data for 101 patients, is used in a set of experiments that have been conducted using a variety of algorithms to conclude with using SegNet as the image segmentation algorithm. The network consists of VGG16 layers pre-trained using a subset of non-medical images from the ImageNet database and fine-tuned using the training portion of the ground-truth dataset. The results of these experiments show the accurate delineation of important boundaries of regions in lumbar spine MRI. The experiments also show very close agreement between the expert radiologists’ notes on the condition of a lumbar spine and the conclusion of the system about the lumbar spine in the majority of cases

    Diabetes Management System for a New Type 2 Diabetes Geriatric Cohort: Improve the Interaction of Self-management

    Get PDF
    abstract: According to the ADA (American Diabetes Association), diabetes mellitus is one of the chronic diseases with the highest mortality rate. In the US, 25 million are known diabetics, which may double in the next decade, and another seven million are undiagnosed. Among these patients, older adults are a very special group with varying physical capabilities, cognitive functions and life expectancies. Because they run an increased risk for geriatric conditions, Type 2 diabetes treatments for them must be both realistic and systematic. In fact, some researchers have explored older adults’ experiences of diabetes, and how they manage their diabetes with new technological devices. However, little research has focused on their emotional experiences of medical treatment technology, such as mobile applications, tablets, and websites for geriatric diabetes. This study will address both elderly people's experiences and reactions to devices and their children's awareness of diabetes. It aims to find out how to improve the diabetes treatment and create a systematic diabetes mobile application that combines self-initiated and assisted care together.Dissertation/ThesisMasters Thesis Design 201

    Rehabilitative devices for a top-down approach

    Get PDF
    In recent years, neurorehabilitation has moved from a "bottom-up" to a "top down" approach. This change has also involved the technological devices developed for motor and cognitive rehabilitation. It implies that during a task or during therapeutic exercises, new "top-down" approaches are being used to stimulate the brain in a more direct way to elicit plasticity-mediated motor re-learning. This is opposed to "Bottom up" approaches, which act at the physical level and attempt to bring about changes at the level of the central neural system. Areas covered: In the present unsystematic review, we present the most promising innovative technological devices that can effectively support rehabilitation based on a top-down approach, according to the most recent neuroscientific and neurocognitive findings. In particular, we explore if and how the use of new technological devices comprising serious exergames, virtual reality, robots, brain computer interfaces, rhythmic music and biofeedback devices might provide a top-down based approach. Expert commentary: Motor and cognitive systems are strongly harnessed in humans and thus cannot be separated in neurorehabilitation. Recently developed technologies in motor-cognitive rehabilitation might have a greater positive effect than conventional therapies

    Segmentation of Lumbar Spine MRI Images for Stenosis Detection using Patch-based Pixel Classification Neural Network

    Get PDF
    This paper addresses the central problem of automatic segmentation of lumbar spine Magnetic Resonance Imaging (MRI) images to delineate boundaries between the anterior arch and posterior arch of the lumbar spine. This is necessary to efficiently detect the occurrence of lumbar spinal stenosis as a leading cause of Chronic Lower Back Pain. A patch-based classification neural network consisting of convolutional and fully connected layers is used to classify and label pixels in MRI images. The classifier is trained using overlapping patches of size 25x25 pixels taken from a set of cropped axial-view T2-weighted MRI images of the bottom three intervertebral discs. A set of experiment is conducted to measure the performance of the classification network in segmenting the images when either all or each of the discs separately is used. Using pixel accuracy, mean accuracy, mean Intersection over Union (IoU), and frequency weighted IoU as the performance metrics we have shown that our approach produces better segmentation results than eleven other pixel classifiers. Furthermore, our experiment result also indicates that our approach produces more accurate delineation of all important boundaries and making it best suited for the subsequent stage of lumbar spinal stenosis detection

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Lumbar Spine Discs Labeling using Axial View MRI Based on the Pixels Coordinate and Gray Level Features

    Get PDF
    Disc herniation is a major reason for lower back pain (LBP), it cost the United Kingdom (UK) government over £1.3 million per day. In fact a very high proportion of the UK population will complain from their back pain. Fur-thermore, Magnetic Resonance Imaging (MRI) is one of the main diagnosing procedure for LBP. Automatic disc labeling in the MRI to detect the herniation area will reduce the required time to issue the report from the radiologist. We present a method for automatic labeling for the lumbar spine disc area using the axial view MRI based on the pixels coordinate and gray level features. We use a clinical MRI for the training and testing. Moreover, the accuracy and the recon-structed images was the main indicator for our result. The highest achieved ac-curacy was 98.9 and 91.1 for Weighted KNN and Fine Gaussian SVM respec-tively
    corecore