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Abstract. Disc herniation is a major reason for lower back pain (LBP), it cost 

the United Kingdom (UK) government over £1.3 million per day. In fact a very 

high proportion of the UK population will complain from their back pain. Fur-

thermore, Magnetic Resonance Imaging (MRI) is one of the main diagnosing 

procedure for LBP. Automatic disc labeling in the MRI to detect the herniation 

area will reduce the required time to issue the report from the radiologist. We 

present a method for automatic labeling for the lumbar spine disc area using the 

axial view MRI based on the pixels coordinate and gray level features. We use a 

clinical MRI for the training and testing. Moreover, the accuracy and the recon-

structed images was the main indicator for our result. The highest achieved ac-

curacy was 98.9 and 91.1 for Weighted KNN and Fine Gaussian SVM respec-

tively. 
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1 Introduction 

Low back pain considered as the second most popular illness after the common cold. 

More than half of the world population were affected by the lower back pain once in 

their live [1]. Sixty to eighty percent of the UK population will suffer from their back 

pain once in their lives [2]. As a result back pain cost the UK government £1.3 mil-

lion per day [3]. One of the main functions for diagnosing the cause of lower back 

pain is the MRI examination. It has been reported that the number of MRI examina-

tion in 2014 has increased in the UK by 11.3% to reach 2.61 million in compared with 

the number of imaging tests in 2013 [4]. However, the number of radiologist in the 

UK is insufficient for the clinical demand made by the radiology services as there an 

increased of 26% for the MRI request in comparison to only 3% increase in the con-

sultant radiology workforce [5]. The gap between the increasing rate of the radiology 
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services compared to the number of radiologist is too high which justifies the need of 

automating the diagnosing process which usually include two steps that start with 

labeling the inter vertebral discs area then diagnosing the disc abnormality. The focus 

of this paper is on labeling and localizing the disc area in the lumbar spine using the 

axial view MR images. In our previous work [6] we have developed a framework for 

detecting the disc herniation in the lumbar spine which require labeling the disc area 

to be able to detect the herniation.  

Currently diagnosing the lower back pain is done by a visual observation and anal-

ysis of the lumbar spine MR images and this process could take up much of a physi-

cian time and effort. Moreover, it can increase the possibility of misdiagnosis. In 

some other disease, a computer aided diagnosing systems (CAD) were developed to 

help the physician in the diagnosing process as an example of these systems, CAD 

system for detecting colonic polyp, CAD system for detecting breast cancer in mam-

mography and CAD system for detecting prostate cancer using MR images [7] [8] [9]. 

Unfortunately, this type of CAD does not exist to diagnose the back pain unlike other 

diseases as the CAD systems are used in the diagnosing process. At the same time, 

there is a pressing need for this type of application to help radiologists and orthope-

dists in their tasks. This makes one of the motivations of this research. Such an appli-

cation will need to employ sophisticated algorithms to overcome a number of tech-

nical challenges due to the wide range of imaging characteristics and resolutions [10] 

as well as technical limitations in detecting and highlighting areas of interest. 

2 Related Research 

Image analysis and comparison are performed by means of classifying its features. 

This is done by comparing the features from the test image in question with those 

from training data. A brute force approach for comparing two sets of image features 

would compare every feature in one set to every feature in the other and keep track of 

the "best so far" match. This results in a heavy computational complexity in the order 

of O(N
2
) where N is the number of features in each image. A number of proposed 

algorithms have been proposed to improve the computational complexity, including 

the popular kd-tree technique [11]. This technique uses exact nearest neighbour 

search and works very well for low dimensional data but quickly loses its effective-

ness as dimensionality increases. The popularity of the kd-tree technique has seen a 

number of proposals to further improve the algorithm including [12], [13]. Jiang et. al. 

[14] proposed a visualization and quantitative analysis framework using image seg-

mentation technique to derive six features that are extracted from patients MR images, 

which have a close relationship with Lumbar Disc Herniation score [14]. The six 

features are the distribution of the protruded disc, the ratio between the protruded part 

and the dural sacs, and its relative signal intensity. Alomari et. al. [7], [15] proposed a 

probabilistic model for automatic herniation detection work by combining the appear-

ance and shape features of the lumbar intervertebral discs. The technique models the 

shape depending on both the T1-weighted and T2-weighted co-registered sagittal 

views for building a 2D feature image. The disc shape feature is modelled using Ac-



tive Shape Model algorithm while the appearance is modelled using the normalised 

pixel intensity. These feature-pairs are then classified using Gibbs-based classifier. 

The paper reported that 91% accuracy is achieved in detecting the herniation. More 

details about the related research are available in our previous publication [6]. 

3 Proposed Approach 

The main goal of for our work is to detect the disc herniation automatically. To reach 

this goal we need firstly to automatic label the disc area via machine learning and 

artificial intelligence. In our experiment we will concentrate on the gray level for each 

pixel in the area of interest of the lumbar spine MRI and the coordinate value for that 

pixel. 

3.1 Feature Definition 

Our feature set covers the coordinate value for each pixel in the disc area in addition 

to the intensity value for that pixel.  Those features will be used to predict the disc 

area in the axial view MRI. Our feature set covers the coordinate value for X and Y 

coordinates and the intensity characteristic of the image content based on having dif-

ferent intensity level for each part of the lumbar spine in the MR image. 

Training Data. One of the main steps for using the machine learning is to prepare a 

training data to train the classifiers. In our experiments, the training data is the data 

that contain the disc and non-disc area clearly labelled. This training data is provided 

by manually labelling each disc image to create a mask image. An example of such 

mask images with the corresponding MRI can be seen in Fig. 1 . 

 

 

The intensity level for the disc on the mask is used for this comparison. The disc 

area on the mask filled in black colour with intensity level 0 and the remaining area of 

the mask image have the white colour with intensity level 255. The comparison will 

     
(A) MR image for 

L1-L2 disc 

(C) MR image 

for L2-L3 disc 

(E) MR image 

for L3-L4 disc 

(G) MR image 

for L4-L5 disc 

(I) MR image for 

L5-S1 disc 

     
(B) L1-L2 disc 

mask 
(D) L2-L3 disc 

mask 
(F) L3-L4 disc 

mask 
(H) L4-L5 disc 

mask 
(J) L5-S1 disc 

mask 

Fig. 1.  Discs MRI and the developed Mask for each disc. 



work pixel by pixel. For the same disc, each two pixels with the same coordinate in 

the MRI and the mask will be compared. If the pixel on the original MR image 

matches a pixel with intensity 255 the output will be zero indicating a non-disc area 

and if the original image pixel matches a pixel with intensity zero in the mask then the 

output will be one indicating a disc area. At the end of this comparison, an extra 

column of data will be produced indicating the disc area which will be used for 

system training process.  

System Classifier. There are a number of algorithms that could be used in the 

knowledge-based/artificial intelligence system. Our approach is to experiment with a 

number of classifiers and perform the training and classification process. The best 

classifier will be selected based on the achieved accuracy (high true positive and false 

negative rates as well as low false positive and true negative rates). To illustrate the 

training and classification process, the training will use the truth data which have been 

developed using a contrast weighted MR images as discussed earlier. Contrast 

weighted images are used to emphasis different types of tissues within the same MR 

images. The trained system will then be able to produce labelled images of the 

affected areas if a disc herniation is detected in the input MR images. 

3.2 Performance Measurement 

In order to evaluate the capability of our classifiers, we introduce a framework of 

performance measures, posed in conjunction with a series of comparator trials. In the 

comparator trials, we use models that are purposely selected from different theoretical 

classes. We reason that to be justified, our test classifiers should significantly outper-

form both linear classes of models and also simplistic models such as K-nearest 

neighbour (weak learners). Additionally, to demonstrate that the data we use as input 

contains true dependency, we compare the performance of all of the models presented 

with a random guessing baseline, showing that uninformed decisions are insufficient 

to produce significant results. Additionally, since generalisation is the goal of our 

classifier, we apply the described performance framework to the training (70 percent 

of the sample data), testing (20 percent of the sample data) and validation (10 percent 

of the data). A comparison of results between the reconstructed images from the clas-

sifiers with the original images is used to provide an indication of the classifier per-

formance as described in section 5.2. To furnish the classifier responses with objec-

tive measures of performance, we utilise the scalar metrics method, which we now 

describe. 

Scalar Metrics. To characterise the capability of the classifiers simulated in our 

experimental trials, we use a number of scalar measures, each of which provides a 

different summary of the deviation between our classifier outputs and the correspond-

ing ground truth values. Such statistical measures are necessary, since complete dis-

crimination between sets of outcomes is often unrealistic, prompting a trade-off be-

tween the types of errors committed. A listing of the measures and their derivations is 

presented in Table 1 . We use accuracy which represents the most general correct 

classification proportion, grouping correct and incorrectly classified outcomes without 

reference to the underlying error types for each classifier then we depend on other 

statistical measures. 



 

Table 1. Performance Metrics. 

4 Experiment Result and Analysis 

To evaluate the capability of our proposed classifiers, we conducted a series of empir-

ical simulations, using the extracted feature from the MRI as our sample. The models 

used in our experiment are listed in Table 2 . 

4.1 Feature Origination 

Three feature are extracted from the selected five MR images and the produced masks 

for 101 patients using Matlab as defined in section 3.1.  Two experiments have been 

performed using two data sample. In the first set of experiments, we train the system 

using one patient data by selecting a random sample contain 7500 pixels from the five 

discs and use this sample in the system training. Table 2 shows the list of classifiers 

and their result whereas, Fig. 3Error! Reference source not found. show the recon-

structed output from the Weighted KNN model as a model with the highest accuracy. 

In the second set of expirements, we train the system by using 7000 pixels as a ran-

dom sample from seven patients with 1000 pixel data selected from each one of them. 

Table 2 shows the list of classifiers and their result while Fig. 4 represents the recon-

structed output from SVM Fine Gaussian as a model with the highest accuracy among 

the benchmarked models. The trials presented in this work were conducted using a 

common dataset partitioning scheme. We reserved 70% of the data for model training 

and the remaining 30% was divided 20 for testing and 10% for validation. The results 

of our experiment are divided into two parts the first part is the classifier training 

result and this will be explained in section 4.2 whereas the second part is the recon-

structed image of predicted data from the classifier which has the highest accuracy 

and this explained in section 4.3. 

4.2 Classifier Training Result 

The results from our experimental procedure are presented and organised for each 

respective classifier for the first experiment in Table 2 when the data source was one 

patient details with 7500 pixels for the first experiment whereas, the second experi-

ment the data source used seven patient details with 7000 pixels. We then proceed to 

present our evaluation of the classifiers according to the accuracy. We have experi-

ment all the 23 available classifiers in Matlab. Only the best 12 classifiers with the 



highest accuracy have been discussed. Fig. 2 shows the classifiers for the two experi-

ments and the achieved accuracy for each one of them. In our experiments, we con-

centrate on the disc area hence a positive value has been given when the classifier 

predict a disc area while a negative value is given when the non-disc area have been 

predicted. However, if the classifier is correctly predicted the area either disc or non-

disc a true value is given in this case and a false value is given for the incorrect pre-

diction. 

 

 

Fig. 2.  The classifiers for the two experiments and the accuracy for each of them. 

Model The first experiment Accuracy The second experiment Accuracy 
Complex Tree [16] [17] 98.4 94.0 

Medium Tree [16] [17] 98.3 92.0 

Fine KNN [18] [19] 98.4        89.1 

Medium KNN [18] [19] 98.9 91.1 

Coarse KNN [18] [19] 98.6 90.7 

Cosine KNN [18] [19] 93.4 88.7 

Cubic KNN [18] [19] 98.9 91.0 

Weighted KNN [18] [19] 98.9 90.8 

Quadratic SVM [20] 98.8 90.6 

Medium Gaussian SVM [20] 98.7       90.8 

Fine Gaussian SVM [20] 98.8 91.1 

Ensemble RUSBoosted Trees 

[21] [22] 

98.0 84.1 

Key: 

SVM Support Vector Machine 

KNN K-Nearest Neighbour 

 

Note: The selected classifier is highlighted in the table 

Table 2. First and Second Experiment results based on the evaluation of 12 models 



In our experiments, we concentrate on classifiers’ accuracy as the quality of the 

constructed images depends on the value of the accuracy compared to the other per-

formance measures. The best classifier for the first experiment was for the Weighted 

KNN, Medium KNN and Cubic KNN classifiers with accuracy = 98.9. Whereas, for 

the second experiment SVM Fine Gaussian classifier and Medium KNN got the same 

accuracy which is 91.1. However, Weighted KNN is the selected classifier in the first 

and SVM Fine Gaussian classifier for the second experiments respectively as they got 

the highest true positive rate. The selected classifiers will be used in subsequent steps 

and analysis. 

4.3 Image Reconstruction  

In this section, we have reconstructed the images based on the classifiers result as 

discussed in Section4.2. From the first experiment, we took the result of the Weighted 

KNN classifier for each x and y coordinate as an input to Matlab codewhich converts 

this matrix to image as shown in Fig. 3 . On the other hand, the result of the SVM 

Fine Gaussian classifier has been selected in the second experiment and used as an 

input with x and y coordinate to the Matlab code to reconstruct the output image. Fig. 

4 shows the predicted image for SVM Fine Gaussian classifier. 

 

5 Discussion and Conclusion 

Overall it can be seen from the two experiments that the highest accuracy for the first 

experiment using one patient data is 98.9% which is higher than the highest accuracy 

MR Images 

     
(A) L1-L2 disc (C) L2-L3 disc (E) L3-L4 disc (G) L4-L5 disc (I) L5-S1 disc 

Classifier Predicted Image 

     
(B) Predicted Disc L1 

– L2 

(D) Predicted Disc 

L2-L3  

(F) Predicted Disc 

L3-L4  

(H) Predicted Disc 

L4-L5  

(J) Predicted Disc 

L5-S1  

Fig. 3. The Original and Predicted Images by Weighted KNN 

Original Image 

     
(A) L1-L2 disc (C) L2-L3 disc (E) MR image for 

L3-L4 disc 

(G) MR image for 

L4-L5 disc 

(I) MR image for 

L5-S1 disc 

Classifier Predicted Image 

     
(B) L1 – L2 Disc (D) L2-L3 Disc (F) L3-L4 Disc (H) L4-L5 Disc (J) L5-S1 Disc 

Fig. 4. The Original and Predicted Images by SVM Fine Gaussian 



in the second experiment using seven patients’ data which reached 91.1%.  Looking at 

the detail, the Medium, Cubic and Weighted KNN classifiers achieved the highest 

accuracy of 98.9% and as a second factor for selecting one of these classifiers we 

looked at the true positive rate for all of them to find a slight difference between them 

as medium and Cubic KNN classifiers got 93% while Weighted KNN got 94% and 

this classifier has been selected for the rest of work. In the second experiment, the 

Fine Gaussian SVM and Medium KNN achieved 91.1% as an accuracy rate but the 

ROC for the true positive rate for Fine Gaussian SVM was 62% and 60% for Medium 

KNN. Hence the Fine Gaussian SVM classifier was selected for the rest of the work.  

The second part of the experiment was to visualise the output from the selected classi-

fier using a new patient data. The selected classifiers used to predict the disc area 

based on a new patient input for each disc in the lumbar spine in addition to the X and 

Y coordinates for the corresponding pixel. The classifier output and the X and Y co-

ordinate have been used as an input to a Matlab revisualisation code to produce the 

output mask for the disc area from disc (L1 – L2) to (L5 – S1) as shown in Fig. 3 

from the first experiment while Fig. 4 shows the output from the second experiment.  

The reconstructed images in Fig. 3 and Fig. 4 show the discs area in the lumbar 

spine for the same patient. In general, the predicted images from the Weighted KNN 

classifier has better accuracy than SVM Fine Gaussian predicted images and we relate 

that to the difference in the classifier accuracy. However, the re-visualized images for 

both classifiers have some deformation if we compare it with the original image for 

that disc even with a very high accuracy rate which reached 98.9 percent in Weighted 

KNN. It is very important to have a very good quality mask from these experiments 

as this mask will be used to detect the disc herniation as mentioned earlier. The de-

formation in the output mask may relate to the data sample used to train the classifiers 

which need to be enhanced in a matter of the balancing the ratio between the two 

classes to improve the overall classifier performance outcomes. Additionally, it is also 

the possibility that the current features set are not sufficient to give the required out-

put. We, therefore, set a plan for future work relating to this experiment in using new 

features in training the classifiers and test use the image processing technique to au-

tomatically remove the noise from the produced image in addition to the data balance 

between the disc and the non-disc area in the input data. 
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