1,058 research outputs found

    Predicting Phishing Websites using Neural Network trained with Back-Propagation

    Get PDF
    Phishing is increasing dramatically with the development of modern technologies and the global worldwide computer networks. This results in the loss of customer’s confidence in e-commerce and online banking, financial damages, and identity theft. Phishing is fraudulent effort aims to acquire sensitive information from users such as credit card credentials, and social security number. In this article, we propose a model for predicting phishing attacks based on Artificial Neural Network (ANN). A Feed Forward Neural Network trained by Back Propagation algorithm is developed to classify websites as phishing or legitimate. The suggested model shows high acceptance ability for noisy data, fault tolerance and high prediction accuracy with respect to false positive and false negative rates

    Phishing Detection Using Natural Language Processing and Machine Learning

    Get PDF
    Phishing emails are a primary mode of entry for attackers into an organization. A successful phishing attempt leads to unauthorized access to sensitive information and systems. However, automatically identifying phishing emails is often difficult since many phishing emails have composite features such as body text and metadata that are nearly indistinguishable from valid emails. This paper presents a novel machine learning-based framework, the DARTH framework, that characterizes and combines multiple models, with one model for each composite feature, that enables the accurate identification of phishing emails. The framework analyses each composite feature independently utilizing a multi-faceted approach using Natural Language Processing (NLP) and neural network-based techniques and combines the results of these analyses to classify the emails as malicious or legitimate. Utilizing the framework on more than 150,000 emails and training data from multiple sources, including the authors’ emails and phishtank.com, resulted in the precision (correct identification of malicious observations to the total prediction of malicious observations) of 99.97% with an f-score of 99.98% and accurately identifying phishing emails 99.98% of the time. Utilizing multiple machine learning techniques combined in an ensemble approach across a range of composite features yields highly accurate identification of phishing emails

    Categorization of Phishing Detection Features And Using the Feature Vectors to Classify Phishing Websites

    Get PDF
    abstract: Phishing is a form of online fraud where a spoofed website tries to gain access to user's sensitive information by tricking the user into believing that it is a benign website. There are several solutions to detect phishing attacks such as educating users, using blacklists or extracting phishing characteristics found to exist in phishing attacks. In this thesis, we analyze approaches that extract features from phishing websites and train classification models with extracted feature set to classify phishing websites. We create an exhaustive list of all features used in these approaches and categorize them into 6 broader categories and 33 finer categories. We extract 59 features from the URL, URL redirects, hosting domain (WHOIS and DNS records) and popularity of the website and analyze their robustness in classifying a phishing website. Our emphasis is on determining the predictive performance of robust features. We evaluate the classification accuracy when using the entire feature set and when URL features or site popularity features are excluded from the feature set and show how our approach can be used to effectively predict specific types of phishing attacks such as shortened URLs and randomized URLs. Using both decision table classifiers and neural network classifiers, our results indicate that robust features seem to have enough predictive power to be used in practice.Dissertation/ThesisMasters Thesis Computer Science 201

    A Competent Approach for Type of Phishing Attack Detection Using Multi-Layer Neural Network

    Full text link
    With the enlargement of contemporary technologies and the large-scale global computer networks web-attacks are escalating because of emergent curiosity of people and lawful institutions towards internet. Phishing is one of web-attack carried out by attacker using both social and technical engineering. Generally on web more attacks are launched every month with seek of crafting web addict to consider that they are contacting with a legalized entity for the intention of embezzle identity information, logon records and account details. The phishing attack detection and classification methods are utilized for the prevention and in-depth analysis of the attacks. In this paper, the proposed model has been designed with the multi-directional feature analysis along with the Back-Propagation Probabilistic neural network (BP-PNN) classification. The proposed model has performed better in the terms of the accuracy in all of the domains based upon the attack detection and classification

    Deep learning in phishing mitigation: a uniform resource locator-based predictive model

    Get PDF
    To mitigate the evolution of phish websites, various phishing prediction8 schemes are being optimized eventually. However, the optimized methods produce gratuitous performance overhead due to the limited exploration of advanced phishing cues. Thus, a phishing uniform resource locator-based predictive model is enhanced by this work to defeat this deficiency using deep learning algorithms. This model’s architecture encompasses pre-processing of the effective feature space that is made up of 60 mutual uniform resource locator (URL) phishing features, and a dual deep learning-based model of convolution neural network with bi-directional long short-term memory (CNN-BiLSTM). The proposed predictive model is trained and tested on a dataset of 14,000 phish URLs and 28,074 legitimate URLs. Experimentally, the performance outputs are remarked with a 0.01% false positive rate (FPR) and 99.27% testing accuracy

    Phishing Website Detection Using Several Machine Learning Algorithms: A Review Paper

    Get PDF
    Phishing is one of the major web social engineering attacks. This has led to demand for a better way to predict and stop them in a commercial environment. This paper seeks to understand the research done in the field and analyse the next steps forward. This is done by focusing on what goes into the selection of proper features, from manual selection to the use of Genetic Algorithms such as ADABoost and MultiBoost. Then a look into the classifiers in use, Neural Networks and Ensemble algorithms which were prominent alongside some novel approaches. This information is then processed into a framework for cloud-based and client-based phishing website detection, alongside suggestions for possible future research and experiments that could help progress the field

    Machine-Learning Techniques for Predicting Phishing Attacks in Blockchain Networks: A Comparative Study

    Get PDF
    Security in the blockchain has become a topic of concern because of the recent developments in the field. One of the most common cyberattacks is the so-called phishing attack, wherein the attacker tricks the miner into adding a malicious block to the chain under genuine conditions to avoid detection and potentially destroy the entire blockchain. The current attempts at detection include the consensus protocol; however, it fails when a genuine miner tries to add a new block to the blockchain. Zero-trust policies have started making the rounds in the field as they ensure the complete detection of phishing attempts; however, they are still in the process of deployment, which may take a significant amount of time. A more accurate measure of phishing detection involves machine-learning models that use specific features to automate the entire process of classifying an attempt as either a phishing attempt or a safe attempt. This paper highlights several models that may give safe results and help eradicate blockchain phishing attempts
    • …
    corecore