98,162 research outputs found

    Goal-driven agent-oriented software processes

    Get PDF
    The quality of software processes is acknowledged as a critical factor for delivering quality software systems. Any initiative for improving the quality of software processes requires their explicit representation and management. A current representational metaphor for systems is agent orientation, which has become one of the recently recognized engineering paradigms. In this article, we argue for the convenience of representing the software process using an agent-oriented language to model it and a goal-driven procedure to design it. Particularly we propose using the i* framework which is both an agent- and a goal-oriented modeling language. We review the possibilities of i* as a software process modeling language, and we also show how success factors can be made explicit in i* representations of the software processes. Finally, we illustrate the approach with an example based on the development of a set of ergonomic and safety software tools.Peer ReviewedPostprint (published version

    Logic-Based Specification Languages for Intelligent Software Agents

    Full text link
    The research field of Agent-Oriented Software Engineering (AOSE) aims to find abstractions, languages, methodologies and toolkits for modeling, verifying, validating and prototyping complex applications conceptualized as Multiagent Systems (MASs). A very lively research sub-field studies how formal methods can be used for AOSE. This paper presents a detailed survey of six logic-based executable agent specification languages that have been chosen for their potential to be integrated in our ARPEGGIO project, an open framework for specifying and prototyping a MAS. The six languages are ConGoLog, Agent-0, the IMPACT agent programming language, DyLog, Concurrent METATEM and Ehhf. For each executable language, the logic foundations are described and an example of use is shown. A comparison of the six languages and a survey of similar approaches complete the paper, together with considerations of the advantages of using logic-based languages in MAS modeling and prototyping.Comment: 67 pages, 1 table, 1 figure. Accepted for publication by the Journal "Theory and Practice of Logic Programming", volume 4, Maurice Bruynooghe Editor-in-Chie

    Ontology-based methodology for error detection in software design

    Get PDF
    Improving the quality of a software design with the goal of producing a high quality software product continues to grow in importance due to the costs that result from poorly designed software. It is commonly accepted that multiple design views are required in order to clearly specify the required functionality of software. There is universal agreement as to the importance of identifying inconsistencies early in the software design process, but the challenge is how to reconcile the representations of the diverse views to ensure consistency. To address the problem of inconsistencies that occur across multiple design views, this research introduces the Methodology for Objects to Agents (MOA). MOA utilizes a new ontology, the Ontology for Software Specification and Design (OSSD), as a common information model to integrate specification knowledge and design knowledge in order to facilitate the interoperability of formal requirements modeling tools and design tools, with the end goal of detecting inconsistency errors in a design. The methodology, which transforms designs represented using the Unified Modeling Language (UML) into representations written in formal agent-oriented modeling languages, integrates object-oriented concepts and agent-oriented concepts in order to take advantage of the benefits that both approaches can provide. The OSSD model is a hierarchical decomposition of software development concepts, including ontological constructs of objects, attributes, behavior, relations, states, transitions, goals, constraints, and plans. The methodology includes a consistency checking process that defines a consistency framework and an Inter-View Inconsistency Detection technique. MOA enhances software design quality by integrating multiple software design views, integrating object-oriented and agent-oriented concepts, and defining an error detection method that associates rules with ontological properties

    Applying tropos to socio-technical system design and runtime configuration

    Get PDF
    Recent trends in Software Engineering have introduced the importance of reconsidering the traditional idea of software design as a socio-tecnical problem, where human agents are integral part of the system along with hardware and software components. Design and runtime support for Socio-Technical Systems (STSs) requires appropriate modeling techniques and non-traditional infrastructures. Agent-oriented software methodologies are natural solutions to the development of STSs, both humans and technical components are conceptualized and analyzed as part of the same system. In this paper, we illustrate a number of Tropos features that we believe fundamental to support the development and runtime reconfiguration of STSs. Particularly, we focus on two critical design issues: risk analysis and location variability. We show how they are integrated and used into a planning-based approach to support the designer in evaluating and choosing the best design alternative. Finally, we present a generic framework to develop self-reconfigurable STSs

    A model driven component agent framework for domain experts

    Get PDF
    Industrial software systems are becoming more complex with a large number of interacting parts distributed over networks. Due to the inherent complexity in the problem domains, most such systems are modified over time to incorporate emerging requirements, making incremental development a suitable approach for building complex systems. In domain specific systems it is the domain experts as end users who identify improvements that better suit their needs. Examples include meteorologists who use weather modeling software, engineers who use control systems and business analysts in business process modeling. Most domain experts are not fluent in systems programming and changes are realised through software engineers. This process hinders the evolution of the system, making it time consuming and costly. We hypothesise that if domain experts are empowered to make some of the system cha nges, it would greatly ease the evolutionary process, thereby making the systems more effective. Agent Oriented Software Engineering (AOSE) is seen as a natural fit for modeling and implementing distributed complex systems. With concepts such as goals and plans, agent systems support easy extension of functionality that facilitates incremental development. Further agents provide an intuitive metaphor that works at a higher level of abstraction compared to the object oriented model. However agent programming is not at a level accessible to domain experts to capitalise on its intuitiveness and appropriateness in building complex systems. We propose a model driven development approach for domain experts that uses visual modeling and automated code generation to simplify the development and evolution of agent systems. Our approach is called the Component Agent Framework for domain-Experts (CAFnE), which builds upon the concepts from Model Driven Development and the Prometheus agent software engineering methodolo gy. CAFnE enables domain experts to work with a graphical representation of the system, which is easier to understand and work with than textual code. The model of the system, updated by domain experts, is then transformed to executable code using a transformation function. CAFnE is supported by a proof-of-concept toolkit that implements the visual modeling, model driven development and code generation. We used the CAFnE toolkit in a user study where five domain experts (weather forecasters) with no prior experience in agent programming were asked to make changes to an existing weather alerting system. Participants were able to rapidly become familiar with CAFnE concepts, comprehend the system's design, make design changes and implement them using the CAFnE toolkit

    Agent-based hybrid framework for decision making on complex problems

    Full text link
    Electronic commerce and the Internet have created demand for automated systems that can make complex decisions utilizing information from multiple sources. Because the information is uncertain, dynamic, distributed, and heterogeneous in nature, these systems require a great diversity of intelligent techniques including expert systems, fuzzy logic, neural networks, and genetic algorithms. However, in complex decision making, many different components or sub-tasks are involved, each of which requires different types of processing. Thus multiple such techniques are required resulting in systems called hybrid intelligent systems. That is, hybrid solutions are crucial for complex problem solving and decision making. There is a growing demand for these systems in many areas including financial investment planning, engineering design, medical diagnosis, and cognitive simulation. However, the design and development of these systems is difficult because they have a large number of parts or components that have many interactions. From a multi-agent perspective, agents in multi-agent systems (MAS) are autonomous and can engage in flexible, high-level interactions. MASs are good at complex, dynamic interactions. Thus a multi-agent perspective is suitable for modeling, design, and construction of hybrid intelligent systems. The aim of this thesis is to develop an agent-based framework for constructing hybrid intelligent systems which are mainly used for complex problem solving and decision making. Existing software development techniques (typically, object-oriented) are inadequate for modeling agent-based hybrid intelligent systems. There is a fundamental mismatch between the concepts used by object-oriented developers and the agent-oriented view. Although there are some agent-oriented methodologies such as the Gaia methodology, there is still no specifically tailored methodology available for analyzing and designing agent-based hybrid intelligent systems. To this end, a methodology is proposed, which is specifically tailored to the analysis and design of agent-based hybrid intelligent systems. The methodology consists of six models - role model, interaction model, agent model, skill model, knowledge model, and organizational model. This methodology differs from other agent-oriented methodologies in its skill and knowledge models. As good decisions and problem solutions are mainly based on adequate information, rich knowledge, and appropriate skills to use knowledge and information, these two models are of paramount importance in modeling complex problem solving and decision making. Follow the methodology, an agent-based framework for hybrid intelligent system construction used in complex problem solving and decision making was developed. The framework has several crucial characteristics that differentiate this research from others. Four important issues relating to the framework are also investigated. These cover the building of an ontology for financial investment, matchmaking in middle agents, reasoning in problem solving and decision making, and decision aggregation in MASs. The thesis demonstrates how to build a domain-specific ontology and how to access it in a MAS by building a financial ontology. It is argued that the practical performance of service provider agents has a significant impact on the matchmaking outcomes of middle agents. It is proposed to consider service provider agents\u27 track records in matchmaking. A way to provide initial values for the track records of service provider agents is also suggested. The concept of ‘reasoning with multimedia information’ is introduced, and reasoning with still image information using symbolic projection theory is proposed. How to choose suitable aggregation operations is demonstrated through financial investment application and three approaches are proposed - the stationary agent approach, the token-passing approach, and the mobile agent approach to implementing decision aggregation in MASs. Based on the framework, a prototype was built and applied to financial investment planning. This prototype consists of one serving agent, one interface agent, one decision aggregation agent, one planning agent, four decision making agents, and five service provider agents. Experiments were conducted on the prototype. The experimental results show the framework is flexible, robust, and fully workable. All agents derived from the methodology exhibit their behaviors correctly as specified

    KInNeSS: A Modular Framework for Computational Neuroscience

    Full text link
    Making use of very detailed neurophysiological, anatomical, and behavioral data to build biological-realistic computational models of animal behavior is often a difficult task. Until recently, many software packages have tried to resolve this mismatched granularity with different approaches. This paper presents KInNeSS, the KDE Integrated NeuroSimulation Software environment, as an alternative solution to bridge the gap between data and model behavior. This open source neural simulation software package provides an expandable framework incorporating features such as ease of use, scalabiltiy, an XML based schema, and multiple levels of granularity within a modern object oriented programming design. KInNeSS is best suited to simulate networks of hundreds to thousands of branched multu-compartmental neurons with biophysical properties such as membrane potential, voltage-gated and ligand-gated channels, the presence of gap junctions of ionic diffusion, neuromodulation channel gating, the mechanism for habituative or depressive synapses, axonal delays, and synaptic plasticity. KInNeSS outputs include compartment membrane voltage, spikes, local-field potentials, and current source densities, as well as visualization of the behavior of a simulated agent. An explanation of the modeling philosophy and plug-in development is also presented. Further developement of KInNeSS is ongoing with the ultimate goal of creating a modular framework that will help researchers across different disciplines to effecitively collaborate using a modern neural simulation platform.Center for Excellence for Learning Education, Science, and Technology (SBE-0354378); Air Force Office of Scientific Research (F49620-01-1-0397); Office of Naval Research (N00014-01-1-0624

    Evaluating how agent methodologies support the specification of the normative environment through the development process

    Full text link
    [EN] Due to the increase in collaborative work and the decentralization of processes in many domains, there is an expanding demand for large-scale, flexible and adaptive software systems to support the interactions of people and institutions distributed in heterogeneous environments. Commonly, these software applications should follow specific regulations meaning the actors using them are bound by rights, duties and restrictions. Since this normative environment determines the final design of the software system, it should be considered as an important issue during the design of the system. Some agent-oriented software engineering methodologies deal with the development of normative systems (systems that have a normative environment) by integrating the analysis of the normative environment of a system in the development process. This paper analyses to what extent these methodologies support the analysis and formalisation of the normative environment and highlights some open issues of the topic.This work is partially supported by the PROMETEOII/2013/019, TIN2012-36586-C03-01, FP7-29493, TIN2011-27652-C03-00, CSD2007-00022 projects, and the CASES project within the 7th European Community Framework Program under the grant agreement No 294931.Garcia Marques, ME.; Miles, S.; Luck, M.; Giret Boggino, AS. (2014). Evaluating how agent methodologies support the specification of the normative environment through the development process. Autonomous Agents and Multi-Agent Systems. 1-20. https://doi.org/10.1007/s10458-014-9275-zS120Cossentino, M., Hilaire, V., Molesini, A., & Seidita, V. (Eds.). (2014). Handbook on agent-oriented design processes (Vol. VIII, 569 p. 508 illus.). Berlin: Springer.Akbari, O. (2010). A survey of agent-oriented software engineering paradigm: Towards its industrial acceptance. Journal of Computer Engineering Research, 1, 14–28.Argente, E., Botti, V., Carrascosa, C., Giret, A., Julian, V., & Rebollo, M. (2011). An abstract architecture for virtual organizations: The THOMAS approach. Knowledge and Information Systems, 29(2), 379–403.Argente, E., Botti, V., & Julian, V. (2009). GORMAS: An organizational-oriented methodological guideline for open MAS. In Proceedings of AOSE’09 (pp. 440–449).Argente, E., Botti, V., & Julian, V. (2009). Organizational-oriented methodological guidelines for designing virtual organizations. In Distributed computing, artificial intelligence, bioinformatics, soft computing, and ambient assisted living. Lecture Notes in Computer Science (Vol. 5518, pp. 154–162).Boella, G., Pigozzi, G., & van der Torre, L. (2009). Normative systems in computer science—Ten guidelines for normative multiagent systems. In G. Boella, P. Noriega, G. Pigozzi, & H. Verhagen (Eds.), Normative multi-agent systems, number 09121 in Dagstuhl seminar proceedings.Boella, G., Torre, L., & Verhagen, H. (2006). Introduction to normative multiagent systems. Computational and Mathematical Organization Theory, 12(2–3), 71–79.Bogdanovych, A., Esteva, M., Simoff, S., Sierra, C., & Berger, H. (2008). A methodology for developing multiagent systems as 3d electronic institutions. In M. Luck & L. Padgham (Eds.), Agent-Oriented Software Engineering VIII (Vol. 4951, pp. 103–117). Lecture Notes in Computer Science. Berlin: Springer.Boissier, O., Padget, J., Dignum, V., Lindemann, G., Matson, E., Ossowski, S., Sichman, J., & Vazquez-Salceda, J. (2006). Coordination, organizations, institutions and norms in multi-agent systems. LNCS (LNAI) (Vol. 3913).Bordini, R. H., Fisher, M., Visser, W., & Wooldridge, M. (2006). Verifying multi-agent programs by model checking. In Autonomous agents and multi-agent systems (Vol. 12, pp. 239–256). Hingham, MA: Kluwer Academic Publishers.Botti, V., Garrido, A., Giret, A., & Noriega, P. (2011). The role of MAS as a decision support tool in a water-rights market. In Post-proceedings workshops AAMAS2011 (Vol. 7068, pp. 35–49). Berlin: Springer.Breaux, T. (2009). Exercising due diligence in legal requirements acquisition: A tool-supported, frame-based approach. In Proceedings of the IEEE international requirements engineering conference (pp. 225–230).Breaux, T. D., & Baumer, D. L. (2011). Legally reasonable security requirements: A 10-year ftc retrospective. Computers and Security, 30(4), 178–193.Breaux, T. D., Vail, M. W., & Anton, A. I. (2006). Towards regulatory compliance: Extracting rights and obligations to align requirements with regulations. In Proceedings of the 14th IEEE international requirements engineering conference, RE ’06 (pp. 46–55). Washington, DC: IEEE Computer Society.Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., & Mylopoulos, J. (2004). Tropos: An agent-oriented software development methodology. Autonomous Agents and Multi-Agent Systems, 8(3), 203–236.Cardoso, H. L., & Oliveira, E. (2008). A contract model for electronic institutions. In COIN’07: Proceedings of the 2007 international conference on Coordination, organizations, institutions, and norms in agent systems III (pp. 27–40).Castor, A., Pinto, R. C., Silva, C. T. L. L., & Castro, J. (2004). Towards requirement traceability in tropos. In WER (pp. 189–200).Chopra, A., Dalpiaz, F., Giorgini, P., & Mylopoulos, J. (2009). Modeling and reasoning about service-oriented applications via goals and commitments. ICST conference on digital business.Cliffe, O., Vos, M., & Padget, J. (2006). Specifying and analysing agent-based social institutions using answer set programming. In O. Boissier, J. Padget, V. Dignum, G. Lindemann, E. Matson, S. Ossowski, J. Sichman, & J. Vázquez-Salceda (Eds.), Coordination, organizations, institutions, and norms in multi-agent systems. Lecture Notes in Computer Science (Vol. 3913, pp. 99–113). Springer. Berlin.Criado, N., Argente, E., Garrido, A., Gimeno, J. A., Igual, F., Botti, V., Noriega, P., & Giret, A. (2011). Norm enforceability in Electronic Institutions? In Coordination, organizations, institutions, and norms in agent systems VI (Vol. 6541, pp. 250–267). Springer.Dellarocas, C., & Klein, M. (2001). Contractual agent societies. In R. Conte & C. Dellarocas (Eds.), Social order in multiagent systems (Vol. 2, pp. 113–133)., Multiagent Systems, Artificial Societies, and Simulated Organizations New York: Springer.DeLoach, S. A. (2008). Developing a multiagent conference management system using the o-mase process framework. In Proceedings of the international conference on agent-oriented software engineering VIII (pp. 168–181).DeLoach, S. A., & Garcia-Ojeda, J. C. (2010). O-mase; a customisable approach to designing and building complex, adaptive multi-agent systems. International Journal of Agent-Oriented Software Engineering, 4(3), 244–280.DeLoach, S. A., Padgham, L., Perini, A., Susi, A., & Thangarajah, J. (2009). Using three aose toolkits to develop a sample design. International Journal Agent-Oriented Software Engineering, 3, 416–476.Dignum, F., Dignum, V., Thangarajah, J., Padgham, L., & Winikoff, M. (2007). Open agent systems? Eighth international workshop on agent oriented software engineering (AOSE) in AAMAS07.Dignum, V. (2003). A model for organizational interaction:based on agents, founded in logic. PhD thesis, Utrecht University.Dignum, V., Meyer, J., Dignum, F., & Weigand, H. (2003). Formal specification of interaction in agent societies. Formal approaches to agent-based systems (Vol. 2699).Dignum, V., Vazquez-Salceda, J., & Dignum, F. (2005). Omni: Introducing social structure, norms and ontologies into agent organizations. In R. Bordini, M. Dastani, J. Dix, & A. Seghrouchni (Eds.)Programming multi-agent systems. Lecture Notes in Computer Science (Vol. 3346, pp. 181–198). Berlin: Springer.d’Inverno, M., Luck, M., Noriega, P., Rodriguez-Aguilar, J., & Sierra, C. (2012). Communicating open systems, 186, 38–94.Elsenbroich, C., & Gilbert, N. (2014). Agent-based modelling. In Modelling norms (pp. 65–84). Dordrecht: Springer.Esteva, M., Rosell, B., Rodriguez, J. A., & Arcos, J. L. (2004). AMELI: An agent-based middleware for electronic institutions. In AAMAS04 (pp. 236–243).Fenech, S., Pace, G. J., & Schneider, G. (2009). Automatic conflict detection on contracts. In Proceedings of the 6th international colloquium on theoretical aspects of computing, ICTAC ’09 (pp. 200–214).Garbay, C., Badeig, F., & Caelen, J. (2012). Normative multi-agent approach to support collaborative work in distributed tangible environments. In Proceedings of the ACM 2012 conference on computer supported cooperative work companion, CSCW ’12 (pp. 83–86). New York, NY: ACM.Garcia, E., Giret, A., & Botti, V. (2011). Regulated open multi-agent systems based on contracts. In Information Systems Development (pp. 243–255).Garcia, E., Tyson, G., Miles, S., Luck, M., Taweel, A., Staa, T. V., & Delaney, B. (2012). An analysis of agent-oriented engineering of e-health systems. In 13th international eorkshop on sgent-oriented software engineering (AOSE-AAMAS).Garcia, E., Tyson, G., Miles, S., Luck, M., Taweel, A., Staa, T. V., and Delaney, B. (2013). Analysing the Suitability of Multiagent Methodologies for e-Health Systems. In Agent-Oriented Software Engineering XIII, volume 7852, pages 134–150. Springer-Verlag.Garrido, A., Giret, A., Botti, V., & Noriega, P. (2013). mWater, a case study for modeling virtual markets. In New perspectives on agreement technologies (Vol. Law, Gover, pp. 563–579). Springer.Gteau, B., Boissier, O., & Khadraoui, D. (2006). Multi-agent-based support for electronic contracting in virtual enterprises. IFAC Symposium on Information Control Problems in Manufacturing (INCOM), 150(3), 73–91.Hollander, C. D., & Wu, A. S. (2011). The current state of normative agent-based systems. Journal of Artificial Societies and Social Simulation, 14(2), 6.Hsieh, F.-S. (2005). Automated negotiation based on contract net and petri net. In E-commerce and web technologies. Lecture Notes in Computer Science (Vol. 3590, pp. 148–157).Kollingbaum, M., Jureta, I. J., Vasconcelos, W., & Sycara, K. (2008). Automated requirements-driven definition of norms for the regulation of behavior in multi-agent systems. In Proceedings of the AISB 2008 workshop on behaviour regulation in multi-agent systems, Aberdeen, Scotland, U.K., April 2008.Li, T., Balke, T., Vos, M., Satoh, K., & Padget, J. (2013). Detecting conflicts in legal systems. In Y. Motomura, A. Butler, & D. Bekki (Eds.), New Frontiers in Artificial Intelligence (Vol. 7856, pp. 174–189)., Lecture Notes in Computer Science Berlin Heidelberg: Springer.Lomuscio, A., Qu, H., & Solanki, M. (2010) Towards verifying contract regulated service composition. Journal of Autonomous Agents and Multi-Agent Systems (pp. 1–29).Lopez, F., Luck, M., & d’Inverno, M. (2006). A normative framework for agent-based systems. Computational and Mathematical Organization Theory, 12, 227–250.Lpez, F. y, Luck, M., & dInverno, M. (2006). A normative framework for agent-based systems. Computational and Mathematical Organization Theory, 12(2–3), 227–250.Mader, P., & Egyed, A. (2012). Assessing the effect of requirements traceability for software maintenance. In 28th IEEE International Conference on Software Maintenance (ICSM) (pp. 171–180), Sept 2012.Mao, X., & Yu, E. (2005). Organizational and social concepts in agent oriented software engineering. In AOSE IV. Lecture Notes in Artificial Intelligence (Vol. 3382, pp. 184–202).Meyer, J.-J. C., & Wieringa, R. J. (Eds.). (1993). Deontic logic in computer science: Normative system specification. Chichester, UK: Wiley.Okouya, D., & Dignum, V. (2008). Operetta: A prototype tool for the design, analysis and development of multi-agent organizations (demo paper). In AAMAS (pp. 1667–1678).Malone, T. W., Smith J. B., & Olson, G. M. (2001). Coordination theory and collaboration technology. Mahwah, NJ: Lawrence Erlbaum Associates.Oren, N., Panagiotidi, S., Vázquez-Salceda, J., Modgil, S., Luck, M., & Miles, S. (2009). Towards a formalisation of electronic contracting environments. COIN (pp. 156–171).Osman, N., Robertson, D., & Walton, C. (2006). Run-time model checking of interaction and deontic models for multi-agent systems. In AAMAS ’06: Proceedings of the fifth international joint conference on Autonomous agents and multiagent systems (pp. 238–240). New York, NY: ACM.Pace, G., Prisacariu, C., & Schneider, G. (2007). Model checking contracts a case study. In Automated technology for verification and analysis. Lecture Notes in Computer Science (Vol. 4762, pp. 82–97).Rotolo, A., & van der Torre, L. (2011). Rules, agents and norms: Guidelines for rule-based normative multi-agent systems. RuleML Europe, 6826, 52–66.Saeki, M., & Kaiya, H. (2008). Supporting the elicitation of requirements compliant with regulations. In CAiSE ’08 (pp. 228–242).Siena, A., Mylopoulos, J., Perini, A., & Susi, A. (2009). Designing law-compliant software requirements. In Proceedings of the 28th international conference on conceptual modeling, ER ’09 (pp. 472–486).Singh, M. P. Commitments in multiagent systems: Some history, some confusions, some controversies, some prospects.Solaiman, E., Molina-Jimenez, C., & Shrivastav, S. (2003). Model checking correctness properties of electronic contracts. In Service-oriented computing—ICSOC 2003. Lecture Notes in Computer Science (Vol. 2910, pp. 303–318). Berlin: Springer.Telang, P. R., & Singh, M. P. (2009). Conceptual modeling: Foundations and applications. Enhancing tropos with commitments (pp. 417–435).Vázquez-Salceda, J., Confalonieri, R., Gomez, I., Storms, P., Nick Kuijpers, S. P., & Alvarez, S. (2009). Modelling contractually-bounded interactions in the car insurance domain. DIGIBIZ 2009.Viganò, F., & Colombetti, M. (2007). Symbolic model checking of institutions. In ICEC (pp. 35–44).Walton, C. D. (2007). Verifiable agent dialogues. Journal of Applied Logic, 5(2):197–213, Logic-Based Agent Verification.Winkler, S., & Pilgrim, J. (2010). A survey of traceability in requirements engineering and model-driven development. Software and Systems Modeling (SoSyM), 9(4), 529–565.Wooldridge, M., Fisher, M., Huget, M., & Parsons, S. (2002). Model checking multi-agent systems with mable. In AAMAS02 (pp. 952–959). ACM

    The Multiscale Systems Immunology project: software for cell-based immunological simulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Computer simulations are of increasing importance in modeling biological phenomena. Their purpose is to predict behavior and guide future experiments. The aim of this project is to model the early immune response to vaccination by an agent based immune response simulation that incorporates realistic biophysics and intracellular dynamics, and which is sufficiently flexible to accurately model the multi-scale nature and complexity of the immune system, while maintaining the high performance critical to scientific computing.</p> <p>Results</p> <p>The Multiscale Systems Immunology (MSI) simulation framework is an object-oriented, modular simulation framework written in C++ and Python. The software implements a modular design that allows for flexible configuration of components and initialization of parameters, thus allowing simulations to be run that model processes occurring over different temporal and spatial scales.</p> <p>Conclusion</p> <p>MSI addresses the need for a flexible and high-performing agent based model of the immune system.</p

    Method integration: An approach to develop agent oriented methodologies

    Get PDF
    Agent oriented software engineering (AOSE) is an emerging field in computer science  and  proposes some systematic ideas for multi agent systems analysis, implementation and maintenance. Despite the various methodologies introduced in the agent-oriented software engineering, the main challenges are defects in different aspects of methodologies. According to the defects resulted from weaknesses in agent oriented methodologies in different aspects, a combinatory solution named ARA using, ASPECS, ROADMAP and AOR has been proposed. The three methodologies were analyzed in a comprehensive analytical framework according to concepts and Perceptions, modeling language, process and pragmatism. According to time and resource limitations, sample methodologies for evaluation and in titration were selected. This selection was based on the use of methodologies' and their combination ability. The evaluation show that, the ROADMAP methodology supports stages of agent-oriented systems' analysis and the design stage is not complete because it doesn’t model all semi agents. On the other hand, since AOR and ASPECS methodologies support the design stage and inter agent interactions, a mixed methodology has been proposed and is a combination of analysis stage of ROADMAP methodology and design stage of AOR and ASPECS methodologies. Furthermore, to increase the performance of proposed methodology of actor models, service model, capability and programming were also added to this proposed methodology. To describe its difference phases, it was used in a case study too. Results of this project can pave the way to introduce future agent-oriented methodologies
    corecore