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Abstract

Industrial software systems are becoming more complex with a large number of interacting

parts distributed over networks. Due to the inherent complexity in the problem domains,

most such systems are modified over time to incorporate emerging requirements, making in-

cremental development a suitable approach for building complex systems. In domain specific

systems it is the domain experts as end users who identify improvements that better suit their

needs. Examples include meteorologists who use weather modeling software, engineers who

use control systems and business analysts in business process modeling. Most domain experts

are not fluent in systems programming and changes are realised through software engineers.

This process hinders the evolution of the system, making it time consuming and costly. We

hypothesise that if domain experts are empowered to make some of the system changes, it

would greatly ease the evolutionary process, thereby make the systems more effective.

Agent Oriented Software Engineering (AOSE) is seen as a natural fit for modeling and

implementing distributed complex systems. With concepts such as goals and plans, agent

systems support easy extension of functionality that facilitates incremental development.

Further agents provide an intuitive metaphor that works at a higher level of abstraction

compared to the object oriented model. However agent programming is not at a level ac-

cessible to domain experts to capitalise on its intuitiveness and appropriateness in building

complex systems.

We propose a model driven development approach for domain experts that uses visual

modeling and automated code generation to simplify the development and evolution of agent

systems. Our approach is called the Component Agent Framework for domain-Experts

(CAFnE), which builds upon the concepts from the smart definition framework [d’Inverno

and Luck, 2001], Prometheus design methodology [Padgham and Winikoff, 2004] and Model

Driven Architecture (MDA) [Kleppe et al., 2003]. CAFnE enables domain experts to work

with a graphical representation of the system, which is easier to understand and work with
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than textual code. The model of the system, updated by domain experts, is then transformed

to executable code using a transformation function. CAFnE is supported by a proof-of-

concept toolkit that implements the visual modeling, model driven development and code

generation. We used the CAFnE toolkit in a user study where five domain experts (weather

forecasters) with no prior experience in agent programming were asked to make changes

to an existing weather alerting system. Participants were able to rapidly become familiar

with CAFnE concepts, comprehend the system’s design, make design changes and implement

them using the CAFnE toolkit, within a relatively short period of time of two to three hours.



Chapter 1

Introduction

Everything should be made as simple as possible, but not simpler.

- Albert Einstein

Computer application domains are increasing in complexity. Software used in weather

modeling and in robot control systems are examples of such complex systems. Building and

maintaining these systems demands new approaches in software engineering to manage the

inherent complexity.

A key characteristic of complex systems is that they are continuously modified as new

or changed requirements emerge. In most complex domains, it is the domain experts who

identify improvements as end users and initiate the evolutionary process1. Domain experts

are normally not fluent in systems programming and changes are realised through software

engineers. The ability of domain experts to make some of the improvements can greatly

enhance the system evolution while reducing the time and cost of the change cycle.

Agent oriented software engineering (AOSE) is considered a natural fit for modeling and

implementing distributed complex systems [Jennings, 2001]. Characteristics of agent systems

such as autonomy and goal-plan based execution help manage the inherent complexity. The

agent model is intuitive and works at a higher level of abstraction compared to the object

oriented model. While agent systems support easy extension of functionality with mecha-

nisms such as goal and plan addition, agent programing is not at a level accessible to domain

experts.

Our work explores the possibility of empowering domain experts at the conceptual and

tool support level to allow them to make modifications to agent systems. We attempt to
1For example a meteorologist who uses a weather monitoring system and wants to add a new feature.

3
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provide a clear set of building blocks easily comprehensible by domain experts and with the

right amount of expressiveness in specifying an agent system. We investigate the nature

of tool support required to assist the domain experts in understanding a complex system

and easily making modifications. Our intention is not to have domain experts building and

maintaining an agent system at all possible levels. The aim is to empower domain experts to

make common changes such as adding new agents and editing plans, which are part of the

evolutionary process of an agent system.

1.1 Case for Domain Expert Programming

Industrial software systems are becoming more complex with a large number of parts and

interactions between them [Jennings, 2001]. In many cases the parts are decoupled and

distributed over a network. Software used in telecommunications, business process model-

ing and manufacturing execution systems are examples of such complex systems. Software

engineering has been devising approaches and techniques to tackle the growing complexity

in systems such as improvements in development methodologies, component based software

engineering [Heineman and Council, 2001] and aspect oriented programming [Kiczales et al.,

1997].

A common dilemma faced by software engineers in building complex systems is the lack

of clear requirements and domain knowledge needed to come up with a detailed design of

the system. Factors such as the inherent complexity of the problem domain, number of

stakeholders involved and the long duration of development often leads to systems that

deviate from the desired functionality. New requirements leading to such changes are often

discovered by end users after the system is deployed in the actual environment. Additionally,

errors not captured in the testing phase are also identified by end users, once the system is

in use2. Hence a more practical approach is an iterative development strategy that allows

the evolution of a complex system by modifying it to incorporate new requirements.

In domain specific systems it is the domain experts who find new requirements and

modifications, as end users. For example a meteorologist working with a weather alerting
2According to [van Vliet, 2000] perfective and adaptive changes make up seventy five percent of system

maintenance tasks with total maintenance cost being at least fifty percent of the total life cycle cost. Perfective

changes are made to improve a system such as adding new features and adaptive changes are used to make a

system function in new environments. Two other change types identified by [van Vliet, 2000] are corrective

changes made to repair defects and preventive changes made proactively to improve the maintainability of

the system.
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system may find the need for a new type of alert. We view a domain expert as an individual

who is proficient in a given domain with or without formal training in computer programming.

Examples of domain experts include scientists, meteorologists, architects, engineers etc. They

are different to the typical ‘novice programmer’ [Smith et al., 2000] (see section 1.3) in that

domain experts are able to understand a system at the logical level due to their maturity

in domain knowledge and experience in using domain specific systems. However becoming

proficient in software engineering to change a system at the implementation level is not a

plausible option for many domain experts. Hence the usual approach in making changes is

to direct the new requirements to software engineers for making the necessary updates. Such

a process hinders the evolution of the system and is both time consuming and costly.

We hypothesise that if domain experts are empowered with a suitable development en-

vironment where they can make modifications to an existing system it could greatly ease

the evolution of the system. While domain experts may not be able to make changes at all

levels, we find that with the right level of support they are more likely to be able to change

domain specific functions of a system as opposed to platform or system architecture related

changes. For example, an engineer is likely to devise a new manoeuvre for a robot using its

basic actions but not be able to write a driver to control a new tool attached to the robot,

without the knowledge of low level programming. In order to achieve this, domain experts

need support in comprehending a system design and an intuitive programming approach at

the implementation level. We also require a conceptual model for defining an agent sys-

tem and tool support for the modification process. Software engineering practices, including

programming environments, currently used in building complex systems are not at a level

accessible to domain experts. While there are domain specific programming environments

(such as Matlab and AutoCAD used in engineering), they are only applicable within a narrow

scope compared to general purpose programming languages.

1.2 Agent Oriented Software Engineering

An agent is viewed as an autonomous piece of software characterized by properties such as

being reactive, proactive and showing social behaviour [Wooldridge, 2001]. A group of such

agents is used to implement a given system. Agent Oriented Software Engineering (AOSE)

proposes an approach for modeling and implementing complex systems [Jennings, 2001]. For

example the agent metaphor has been found to be a natural fit in modeling business processes

in such industries as insurance and packaging [Munroe et al., 2006].
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AOSE has been able to bring in powerful concepts from AI such as goals, plans, learning

and planning into building robust systems. Further it is argued that characteristics of agent

systems cater better to the development needs of distributed complex systems compared

to the object oriented approach [Odell, 2002]. Examples of such characteristics include the

asynchronous processing of data, distributed nature, self invocation of methods and coarse

grained encapsulation of functions. The encapsulation found in agents is specifically impor-

tant as it supports the evolutionary process by localising changes to an agent or a group

of agents. Changes to agent internals are also facilitated through architectures such as the

Belief-Desire-Intention (BDI) [Rao and Georgeff, 1995] architecture with a goal-plan based

agent design. For example, consider an agent system that monitors a smart house. Initially

the agents are provided with plans to notify the authorities and call the owner when an

intruder is detected. If there is a new requirement to light up the area of the house where

the intruder is, this can be added as a new plan for handling the event of intruder-detection,

without affecting the existing functionality.

The notion of an autonomous agent has been found to be an intuitive metaphor for

modeling dynamic systems compared to the passive object metaphor [Repenning, 1993].

Its intuitiveness in modeling business processes has been shown to be useful in attracting

customer interest through the use of concepts such as agent roles that map well to business

roles [Munroe et al., 2006]. Agent programming platforms have allowed the use of such

abstract concepts at the implementation level with a close match between intuitive design

artifacts and implementation constructs. For example, goals, plans and beliefs are some of the

implementation constructs found in agent programming languages such as JACK [Busetta

et al., 1998] and Jadex [Pokahr et al., 2005] that follow the BDI architecture.

The natural fit and the intuitive nature of the model make agents a suitable programming

paradigm for domain experts working in complex domains. However existing AOSE tools

and agent programming languages are developed for experienced programmers and are not

suited for domain experts. For example, most agent languages are text based and are im-

plemented as extensions to existing programming languages such as object oriented or logic

programming. Hence a domain expert requires knowledge of both the host language and

agent programming principles. Even though there is considerable tool support in AOSE for

designing and building systems, such as the JACK Development Environment [AOS, 2005a],

they still require a user to understand the syntax and semantics of the underlying textual

language.
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1.3 Existing Work

Our investigations found several areas of work within software engineering that attempt to

conceal the complexities in low level programming and provide an abstract set of constructs

that help in system comprehension and development. These include novice programming,

component based software engineering (CBSE), model driven development (MDD) and Inte-

grated Development Environments (IDEs) including CASE3 tools. Each of these areas have

their strengths and weaknesses with respect to domain expert programming and we examine

them in detail in chapter two.

Novice programming looks at developing programming environments for newcomers to

computer programming, including children [Smith et al., 2000]. Most novice programming

approaches adopt visual techniques to overcome the difficulties in textual programming.

While they highlight important aspects of visual programming, the resulting applications of

existing novice programming environments are too simple for domains where agent systems

are typically used. End user programming is a special case of novice programming where

the users are experienced computer users with specific programming needs, but are not

professional programmers [Nardi, 1993]. While our work is similar in nature in that domain

experts are end users, devising methods to change complex domain applications is not a

primary aim of existing end user programming tools.

Component based software engineering is a promising approach for tackling complexity,

widely used in mainstream software engineering [Heineman and Council, 2001]. CBSE pro-

vides a mechanism to modularise and encapsulate complex functionality in clearly defined

components, which makes development a process of assembling components as opposed to

working with textual code. A component based approach can be used to enhance understand-

ing and simplify the development of a system, which are desirable features for domain expert

use. However existing component technologies widely used in commercial software develop-

ment, such as Java Beans and Microsoft COM, work at a finer grained level than we require.

Further while these technologies provide an implementation platform for components, they

do not provide a domain independent model for defining system components. Hence most

adoptions of component based technologies in AOSE attempt to modularise agent platforms

whereas our interest is in modularising an agent system that runs on the platform.

Model driven development (MDD) proposes a development strategy of creating various

high level models of a system and then performing automated transformations on the mod-
3Computer Aided Software Engineering
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els to generate the executable code [Frankel and Parodi, 2004]. Model Driven Architecture

(MDA) is an initiative of the Object Management Group4 (OMG) that attempts to stan-

dardise MDD for mainstream software development. The MDD approach of working with

a relatively abstract specification of functionality, which is then transformed to executable

code is a potentially suitable development method for domain experts who are new to sys-

tems programming. However existing use of MDD concepts such as MDA are developed with

experienced software developers in mind. For example MDA uses UML [Booch et al., 1999]

as a modeling language and only generates skeleton code, which requires completion. Model

driven development is still new to AOSE and there have been attempts to extend MDA con-

cepts for agents using UML as the underlying modeling language to represent agent concepts

[Bauer and Odell, 2005]. However, UML is based on object oriented principles and therefore

is not a good match for the agent paradigm.

Integrated Development Environments (IDEs) and CASE tools provide software support

to work with various development artifacts such as system designs and source code. Exam-

ples of typical IDE functions include editing, visual designing, skeleton code generation and

debugging support. While tool support is essential, current IDEs, especially ones used in

AOSE, are made for experienced programmers who understand the syntax and semantics of

the underlying textual language. For example, the available visual design tools such as the

JACK Design Environment while aiding the comprehension of the system design, generates

only skeleton code requiring completion by a programmer.

The above approaches for simplifying software development highlight various concepts

desirable for facilitating the direct involvement of domain experts in systems evolution. How-

ever they have not been utilised within AOSE with a focus on empowering domain experts.

Our research builds on MDD concepts to develop a framework for defining, representing and

implementing agent systems in a way that allows domain experts to understand and modify

the system with only a basic knowledge of agent concepts.

1.4 Research Questions

The research revolves around two main problems: first is finding a representation for an agent

system that is understandable by a domain expert while still preserving the characteristics of

the agent metaphor. Second is finding a method to facilitate the process of making changes,

with a minimum burden on the user with respect to lower level technical details. These two
4www.omg.org
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problems can be further refined with the following research questions:

1. What are the appropriate building blocks and models that define an agent system?

These should be:

• aligned with the underlying concepts of agenthood

• sufficiently expressive for developing complex applications

• intuitive to non-programmers

• independent of any application domain or implementation platform

2. What is an appropriate representation for visualising an agent system that helps in

understanding the system design?

3. How can concepts from Model Driven Development (MDD) be used in generating com-

plete executable from the higher level system models? Using MDD requires the defini-

tion of an agent meta-model from which a given agent system can be instantiated.

4. What type of tool support can be given to domain experts to assist in the process

of understanding and modifying an existing agent system? The tool needs to incor-

porate visual modeling and code generation with additional support in areas such as

manipulation of models and debugging.

1.5 Research Outcome and Main Contributions

The concepts and methods proposed in this thesis for domain expert programming of agent

systems are collectively identified as “Component Agent Framework for domain Experts”

or “CAFnE”5 in its abbreviated form. CAFnE is essentially a model driven development

approach for building agent systems that uses visual models and transformations between

models to generate executable code. The main contributions of the work are summarised

below.

Agent meta model:
5Domain experts were originally referred to as non-Experts, meaning non programming experts and the re-

sulting framework was initially named Component Agent Framework for non-Experts (abbreviated to CAFnE;

pronounced ’caffeine’). We kept the same name, except for changing non-experts to domain experts as it is a

more appropriate term for the audience we focus on.
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The thesis proposes an agent meta model, that defines the essential building blocks required

for modeling and implementing an agent system that follows the BDI principles. The meta

model has its roots in the smart framework [d’Inverno and Luck, 2001], which is a Z based

formalisation of software agent concepts.

In order to make the meta model usable by domain experts we first defined a simple

agent execution model that is both intuitive and rich in functionality. Based on this simple

agent model, we defined a set of agent building blocks that include: goal, event, plan, belief,

step, attribute, entity, environment and agent that make up the meta model. These concepts

are independent of any application domain and of any programming platform. The internal

structures and relationships of these building blocks are defined using XML Document Type

Definition6 (DTD) notation.

Model Driven Development for agent systems

The model driven development defined in CAFnE focuses on providing a process where do-

main experts are supported in modeling an agent application with the necessary runtime

code being derived automatically from the models. This automated generation of executable

code frees the domain expert from learning a difficult agent programming language and al-

lows them instead to work with graphical models. It is important to note that our interest

is in providing domain experts with a suitable development approach and not inventing a

new agent programming language. We used existing agent programming languages as the

platform for implementing the executable CAFnE system.

CAFnE’s MDD is based on three main models namely Meta model (stated above), System

model and Executable model. The System model defines a given system and is represented

graphically allowing domain experts to easily understand and make system modifications

visually. The System model is a non-executable model not bound to any implementation

platform or programming language. CAFnE defines a Transformation function to generate

an Executable model from the System model. The Executable model is encoded in an existing

programming language, preferably an agent oriented language, such as JACK and Jadex. As

the System model is platform independent, using an appropriate transformation function it

can be mapped to multiple implementation platforms. CAFnE defines the algorithm for the

transformation function and demonstrates how it can be used to transform CAFnE models
6XML DTD is a grammar standardised by the World Wide Web Consortium (W3C) for defining the

meta-level structure of an XML document. More details could be found on the XML specification at http:

//www.w3.org/TR/2006/REC-xml-20060816/
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into two BDI based agent languages namely JACK and 3APL [Hindriks et al., 1999] with

dissimilar programming styles7.

A key difference between our approach and the one proposed by MDA is that, while MDA

hypothesises executable code generation, it has only been successful in generating skeleton

code. Our approach generates complete executable code, where domain experts do not need

to access the underlying textual code for completing changes made to higher level graphical

models. A contributory factor in this regard is the inclusion of an Initialization model in

CAFnE. A corresponding model is not found in the MDA framework. The Initialization

model defines the initial state of the system with respect to agent and data instances, essen-

tial in generating an executable system.

CAFnE toolkit for domain experts

The CAFnE Toolkit is a proof-of-concept toolkit that implements the concepts defined in

CAFnE and provides support for domain experts to modify CAFnE based systems. The

CAFnE Toolkit is built on top of the Prometheus Design Tool (PDT)8 and provides a vi-

sual environment for working with the various CAFnE models. Domain experts are able

to make modifications to a system via the various graphical views available and then use

the integrated transformation utility to generate the executable code, and run the system.

The current transformation utility includes the transformation function for generating JACK

language code. Additionally, the toolkit includes features for debugging, such as checking

for conformity of the System model with the Meta model and tracing events at runtime for

identifying undesired behaviors. The important aspect here is that users work with the basic

building blocks defined by the CAFnE meta model, which aligns with the intuitive agent

metaphor. It reduces the learning time required for a domain expert to get familiar with the

concepts and then start using them in modifying a system

Evaluation case study

We evaluated the CAFnE Toolkit with a group of five domain experts (meteorologists) who

were asked to make several modifications to a sample weather alerting system. The sample

system was based on an actual agent system tested at the Bureau of Meteorology, Melbourne

and the changes used in the study emulated modifications made to the actual system. All

five participants were new to agent programming and only two were experienced object ori-
7JACK extends Java with agent concepts whereas 3APL is based on logic programming
8www.cs.rmit.edu.au/agents/pdt
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ented programmers. They were all able to become familiar with the CAFnE concepts with a

30-40min introduction and then start making the specified changes, despite their skill level

variations. The data gathered in the study was analysed using the cognitive model of pro-

gram understanding by Letovsky et al. [Letovsky, 1986; Littman et al., 1986]. It showed

that domain experts with no prior experience in agent programming were able to comprehend

an agent system and make moderately complex changes in a short time using the CAFnE

Toolkit.

1.6 Structure of the Thesis

In chapter two we look at background material and other research work related to this thesis.

This includes agent concepts (especially BDI agents), agent oriented software engineering

(AOSE) including various methodologies and toolkits, component based software engineering

(CBSE), model driven development (MDD) and programming for novices. The CAFnE meta-

model for agents and the model driven development approach are introduced in chapter

three. We define each of the CAFnE agent components and show how the Prometheus

notation is extended to represent a CAFnE System model. In chapter three we also define

the concepts behind the transformation function used to generate executable code from the

system model. Chapter four presents the CAFnE toolkit that incorporates the model driven

approach described in chapter three. We discuss how we have extended the Prometheus

Design Toolkit (PDT) to come up with an implementation tool for domain experts to work

with a CAFnE System model. The outcome of the evaluation of the CAFnE approach and

the toolkit is discussed in chapter five. Conclusions and future work are presented in chapter

six.


