146 research outputs found

    On the Integration of Adaptive and Interactive Robotic Smart Spaces

    Get PDF
    © 2015 Mauro Dragone et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)Enabling robots to seamlessly operate as part of smart spaces is an important and extended challenge for robotics R&D and a key enabler for a range of advanced robotic applications, such as AmbientAssisted Living (AAL) and home automation. The integration of these technologies is currently being pursued from two largely distinct view-points: On the one hand, people-centred initiatives focus on improving the user’s acceptance by tackling human-robot interaction (HRI) issues, often adopting a social robotic approach, and by giving to the designer and - in a limited degree – to the final user(s), control on personalization and product customisation features. On the other hand, technologically-driven initiatives are building impersonal but intelligent systems that are able to pro-actively and autonomously adapt their operations to fit changing requirements and evolving users’ needs,but which largely ignore and do not leverage human-robot interaction and may thus lead to poor user experience and user acceptance. In order to inform the development of a new generation of smart robotic spaces, this paper analyses and compares different research strands with a view to proposing possible integrated solutions with both advanced HRI and online adaptation capabilities.Peer reviewe

    Supporting active and healthy aging with advanced robotics integrated in smart environment

    Get PDF
    The technological advances in the robotic and ICT fields represent an effective solution to address specific societal problems to support ageing and independent life. One of the key factors for these technologies is the integration of service robotics for optimising social services and improving quality of life of the elderly population. This chapter aims to underline the barriers of the state of the art, furthermore the authors present their concrete experiences to overcome these barriers gained at the RoboTown Living Lab of Scuola Superiore Sant'Anna within past and current projects. They analyse and discuss the results in order to give recommendations based on their experiences. Furthermore, this work highlights the trend of development from stand-alone solutions to cloud computing architecture, describing the future research directions

    Conversational affective social robots for ageing and dementia support

    Get PDF
    Socially assistive robots (SAR) hold significant potential to assist older adults and people with dementia in human engagement and clinical contexts by supporting mental health and independence at home. While SAR research has recently experienced prolific growth, long-term trust, clinical translation and patient benefit remain immature. Affective human-robot interactions are unresolved and the deployment of robots with conversational abilities is fundamental for robustness and humanrobot engagement. In this paper, we review the state of the art within the past two decades, design trends, and current applications of conversational affective SAR for ageing and dementia support. A horizon scanning of AI voice technology for healthcare, including ubiquitous smart speakers, is further introduced to address current gaps inhibiting home use. We discuss the role of user-centred approaches in the design of voice systems, including the capacity to handle communication breakdowns for effective use by target populations. We summarise the state of development in interactions using speech and natural language processing, which forms a baseline for longitudinal health monitoring and cognitive assessment. Drawing from this foundation, we identify open challenges and propose future directions to advance conversational affective social robots for: 1) user engagement, 2) deployment in real-world settings, and 3) clinical translation

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    The use of robots in the workplace: Conclusions from a health promoting intervention using social robots

    Get PDF
    Workplace wellness programs constitute a preventive measure to help avoid healthcare costs for companies, with additional benefits for employee productivity and other organizational outcomes. Interventions using social robots may have some advantages over other conventional telemedicine applications, since they can deliver personalized feedback and counseling. This investigation focused on a health-promoting intervention within work environments, and compared the efficacy of the intervention on two distinct groups, one guided by a human agent and the other by a robot agent. Participants (n = 56) were recruited from two Portuguese organizations and led through eight sessions by the social agent, the goal being to encourage health behavior change and adoption of a healthier lifestyle. The results indicate that the group led by the robot agent revealed better post-intervention scores than the group led by the human agent, specifically with regard to productivity despite presenteeism and regard of their level of mental well-being. No effects were found concerning the work engagement level of participants in either group. By demonstrating the potential of using social robots to establish therapeutic and worth relationships with employees in their workplaces, this study provides interesting new findings that contribute to the literature on health behavior change and human–robot interaction.info:eu-repo/semantics/publishedVersio

    Design of Interactive Service Robots applying methods of Systems Engineering and Decision Making

    Get PDF
    Interaktive Service Roboter werden heute bereits in einigen Anwendungsszenarien eingesetzt, in denen sie beispielsweise Menschen durch GebĂ€ude geleiten oder bei hĂ€uslichen Aufgaben unterstĂŒtzen. Dennoch gibt es bislang kein System, das den erwarteten Marktdurchbruch geschafft hat. Die hohe KomplexitĂ€t solcher Systeme und vielfĂ€ltige Anforderungen durch Benutzer und Betreiber erschweren die Entwicklung von erfolgreichen Service Robotern. In dieser Arbeit wurden zwei interaktive Service Roboter entwickelt, die das Potential haben, die beschriebenen HinderungsgrĂŒnde fĂŒr einen breiten Einsatz zu ĂŒberwinden. Das erste Robotersystem wurde als Shopping Roboter fĂŒr BaumĂ€rkte entwickelt, in denen es Kunden zu gesuchten Produkten fĂŒhrt. Das zweite System dient als interaktiver Pflegeroboter Ă€lteren Menschen in hĂ€uslicher Umgebung bei der BewĂ€ltigung tĂ€glicher Aufgaben. Diese Arbeit beschreibt die Realisierung der Embedded Systems beider Robotersysteme und umfasst insbesondere die Entwicklung der Low-Level System Architekturen, Energie Management Systeme, Kommunikationssysteme, Sensorsysteme, sowie ausgewĂ€hlte Aspekte der mechanischen Umsetzung. Die Entwicklung einer Vielzahl von Steuerungsmodulen, notwendig fĂŒr die Realisierung interaktiver Service Roboter, wird beschrieben. Die vorliegende Arbeit verwendet und erweitert Methoden des Systems Engineerings, um die hohe SystemkomplexitĂ€t von interaktiven Service Robotern sowie die vielfĂ€ltigen Anforderungen an deren spĂ€teren Einsatz beherrschen zu können. Der Entwicklungsprozess der beiden Roboter basiert auf dem V-Model, welches einen strukturierten Entwurfsablauf unter BerĂŒcksichtigung aller Systemanforderungen erlaubt. Es zwingt ferner zur frĂŒhzeitigen Spezifikation von PrĂŒfablĂ€ufen, was die QualitĂ€t und ZuverlĂ€ssigkeit der Entwicklungsergebnisse verbessert. FĂŒr die UnterstĂŒtzung von Entscheidungen im Entwicklungsprozess schlĂ€gt diese Arbeit eine Kombination aus dem V-Model und dem Analytic Hierarchy Process (AHP) vor. Der AHP hilft bei der Auswahl verfĂŒgbarer technischer Alternativen unter BerĂŒcksichtigung von PrioritĂ€ten im Entwicklungsprozess. Diese Arbeit spezifiziert sieben Kriterien, die Service Roboter charakterisieren: Anpassbarkeit, Laufzeit, Benutzbarkeit, Robustheit, Sicherheit, Features und Kosten. Die PrioritĂ€ten dieser Kriterien im Entwicklungsprozess werden fĂŒr jeden Roboter individuell bestimmt. Der AHP ermittelt die beste Lösung basierend auf diesen gewichteten Kriterien und den bewerteten technischen Alternativen. Die Einbindung des AHP in den V-Model Prozess wurde am Entwurf des Shopping Roboter entwickelt und geprĂŒft. Die AllgemeingĂŒltigkeit dieser Methode wurde wĂ€hrend der Entwicklung des Pflegeroboters verifiziert.Interactive service robots have already been developed and operate as example installations taking over guidance tasks or serving as home assistants. However, none of these systems have become an off-the-shelf product or have achieved the predicted breakthrough so far. The challenges of the design of such systems are, on the one hand, the combination of cutting edge technologies to a complex product; on the other hand, the consideration of requirements important for the later marketing during the design process. In the framework of this dissertation, two interactive service robot systems are developed that have the potential to overcome current market entry barriers. These robots are designed to operate in two different environments: one robot guides walked-in users in large home improvement stores to requested product locations and interacts with the customer to provide product information; the other robot assists elderly people to stay longer in their homes and takes over home-care tasks. This work describes the realization of the embedded systems of both robots. In particular, the design of low-level system architectures, energy management systems, communication systems, sensor systems, and selected aspects of mechanical implementations are carried out in this work. Multiple embedded system modules are developed for the control of the robots' functionalities; the development processes as well as the composition and evaluation of these modules are presented in this work. To cope with the complexity and the various factors that are important for the design of the robots, this thesis applies and further develops system engineering methods. The development process is based on the V-Model system design method. The V-Model helps to structure the design process under consideration of all system requirements. It involves evaluation procedures at all design levels, and thus increases the quality and reliability of the development outputs. To support design decisions, this thesis proposes to combine the V-Model with the Analytic Hierarchy Process (AHP) method. The AHP helps to evaluate technical alternatives for design decisions according to overall criteria, a system has to fulfill. This thesis defines seven criteria that characterize a service robot: Adaptability, Operation Time, Usability, Robustness, Safeness, Features, and Costs. These criteria are weighted for each individual robot application. The AHP evaluates technical design alternatives based on the weighted criteria to reveal the best technical solution. The integration of the AHP into the V-Model development is tested and improved during the design process of the shopping robot system. The generality of this combined systematic design approach is validated during the design of the home-care robot system

    Simulating the Effects of Social Presence on Trust, Privacy Concerns & Usage Intentions in Automated Bots for Finance

    Get PDF
    FinBots are chatbots built on automated decision technology, aimed to facilitate accessible banking and to support customers in making financial decisions. Chatbots are increasing in prevalence, sometimes even equipped to mimic human social rules, expectations and norms, decreasing the necessity for human-to-human interaction. As banks and financial advisory platforms move towards creating bots that enhance the current state of consumer trust and adoption rates, we investigated the effects of chatbot vignettes with and without socio-emotional features on intention to use the chatbot for financial support purposes. We conducted a between-subject online experiment with N = 410 participants. Participants in the control group were provided with a vignette describing a secure and reliable chatbot called XRO23, whereas participants in the experimental group were presented with a vignette describing a secure and reliable chatbot that is more human-like and named Emma. We found that Vignette Emma did not increase participants\u27 trust levels nor lowered their privacy concerns even though it increased perception of social presence. However, we found that intention to use the presented chatbot for financial support was positively influenced by perceived humanness and trust in the bot. Participants were also more willing to share financially-sensitive information such as account number, sort code and payments information to XRO23 compared to Emma - revealing a preference for a technical and mechanical FinBot in information sharing. Overall, this research contributes to our understanding of the intention to use chatbots with different features as financial technology, in particular that socio-emotional support may not be favoured when designed independently of financial function

    Socially Assistive Robots in Smart Environments to Attend Elderly People—A Survey.

    Get PDF
    Assistive environments for daily living (Ambient Assisted Living, AAL) include the deployment of sensors and certain actuators in the home or residence where the person to be cared for lives so that, with the help of the necessary computational management and decision-making mechanisms, the person can live a more autonomous life. Such technologies are becoming more affordable and popular. However, despite the undoubted potential of the services offered by these AAL systems, there are serious problems of acceptance today. In part, these problems arise from the design phase, which often does not sufficiently take into account the end users. On the other hand, it is complex for these older people to interact with interfaces that are sometimes not very natural or intuitive. The use of a socially assistive robot (SAR) that serves as an interface to the AAL system and takes responsibility for the interaction with the person is a possible solution. The robot is a physical entity that can operate with a certain degree of autonomy and be able to bring features to the interaction with the person that, obviously, a tablet or smartphone will not be able to do. The robot can benefit from the recent popularization of artificial intelligence-based solutions to personalize its attention to the person and to provide new services. Their inclusion in an AAL ecosystem should, however, also be carefully assessed. The robot’s mission should not be to replace the person but to be a tool to facilitate the elderly person’s daily life. Its design should consider the AAL system in which it is integrated, the needs and preferences of the people with whom it will interact, and the services that, in conjunction with this system, the robot can offer. The aim of this article is to review the current state of the art in the integration of SARs into the AAL ecosystem and to determine whether an initial phase of high expectations but very limited results have been overcome.This work has been supported by grants PDC2022-133597-C42, TED2021-131739B-C21 and PID2022-137344OB-C32, funded by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR (for the first two grants), and “ERDF A way of making Europe” (for the third grant). Furthermore, this work has also been supported by the “Vivir en Casa” project (8.07/5.14.6298), funded by the European Union Next Generation/PRTR and by the Government of Andalusia
    • 

    corecore