4,047 research outputs found

    Medical Cyber-Physical Systems Development: A Forensics-Driven Approach

    Full text link
    The synthesis of technology and the medical industry has partly contributed to the increasing interest in Medical Cyber-Physical Systems (MCPS). While these systems provide benefits to patients and professionals, they also introduce new attack vectors for malicious actors (e.g. financially-and/or criminally-motivated actors). A successful breach involving a MCPS can impact patient data and system availability. The complexity and operating requirements of a MCPS complicates digital investigations. Coupling this information with the potentially vast amounts of information that a MCPS produces and/or has access to is generating discussions on, not only, how to compromise these systems but, more importantly, how to investigate these systems. The paper proposes the integration of forensics principles and concepts into the design and development of a MCPS to strengthen an organization's investigative posture. The framework sets the foundation for future research in the refinement of specific solutions for MCPS investigations.Comment: This is the pre-print version of a paper presented at the 2nd International Workshop on Security, Privacy, and Trustworthiness in Medical Cyber-Physical Systems (MedSPT 2017

    Determining Training Needs for Cloud Infrastructure Investigations using I-STRIDE

    Full text link
    As more businesses and users adopt cloud computing services, security vulnerabilities will be increasingly found and exploited. There are many technological and political challenges where investigation of potentially criminal incidents in the cloud are concerned. Security experts, however, must still be able to acquire and analyze data in a methodical, rigorous and forensically sound manner. This work applies the STRIDE asset-based risk assessment method to cloud computing infrastructure for the purpose of identifying and assessing an organization's ability to respond to and investigate breaches in cloud computing environments. An extension to the STRIDE risk assessment model is proposed to help organizations quickly respond to incidents while ensuring acquisition and integrity of the largest amount of digital evidence possible. Further, the proposed model allows organizations to assess the needs and capacity of their incident responders before an incident occurs.Comment: 13 pages, 3 figures, 3 tables, 5th International Conference on Digital Forensics and Cyber Crime; Digital Forensics and Cyber Crime, pp. 223-236, 201

    Calm before the storm: the challenges of cloud computing in digital forensics

    Get PDF
    Cloud computing is a rapidly evolving information technology (IT) phenomenon. Rather than procure, deploy and manage a physical IT infrastructure to host their software applications, organizations are increasingly deploying their infrastructure into remote, virtualized environments, often hosted and managed by third parties. This development has significant implications for digital forensic investigators, equipment vendors, law enforcement, as well as corporate compliance and audit departments (among others). Much of digital forensic practice assumes careful control and management of IT assets (particularly data storage) during the conduct of an investigation. This paper summarises the key aspects of cloud computing and analyses how established digital forensic procedures will be invalidated in this new environment. Several new research challenges addressing this changing context are also identified and discussed

    CSPCR: Cloud Security, Privacy and Compliance Readiness - A Trustworthy Framework

    Get PDF
    The privacy, handling, management and security of information in a cloud environment are complex and tedious tasks to achieve. With minimum investment and reduced cost of operations an organization can avail and apply the benefits of cloud computing into its business. This computing paradigm is based upon a pay as per your usage model. Moreover, security, privacy, compliance, risk management and service level agreement are critical issues in cloud computing environment. In fact, there is dire need of a model which can tackle and handle all the security and privacy issues. Therefore, we suggest a CSPCR model for evaluating the preparation of an organization to handle or to counter the threats, hazards in cloud computing environment. CSPCR discusses rules and regulations which are considered as pre-requisites in migrating or shifting to cloud computing services

    DIGITAL FORENSIC READINESS FRAMEWORK BASED ON HONEYPOT AND HONEYNET FOR BYOD

    Get PDF
    The utilization of the internet within organizations has surged over the past decade. Though, it has numerous benefits, the internet also comes with its own challenges such as intrusions and threats. Bring Your Own Device (BYOD) as a growing trend among organizations allow employees to connect their portable devices such as smart phones, tablets, laptops, to the organization’s network to perform organizational duties. It has gained popularity over the years because of its flexibility and cost effectiveness. This adoption of BYOD has exposed organizations to security risks and demands proactive measures to mitigate such incidents. In this study, we propose a Digital Forensic Readiness (DFR) framework for BYOD using honeypot technology. The framework consists of the following components: BYOD devices, Management, People, Technology and DFR. It is designed to comply with ISO/IEC 27043, detect security incidents/threats and collect potential digital evidence using low- and high-level interaction honeypots. Besides, the framework proffers adequate security support to the organization through space isolation, device management, crypto operations, and policies database. This framework would ensure and improve information security as well as securely preserve digital evidence. Embedding DFR into BYOD will improve security and enable an organization to stay abreast when handling a security incident

    A Revised Forensic Process for Aligning the Investigation Process with the Design of Forensic-Enabled Cloud Services

    Get PDF
    © Springer Nature Switzerland AG 2020. The design and implementation of cloud services, without taking under consideration the forensic requirements and the investigation process, makes the acquisition and examination of data, complex and demanding. The evidence gathered from the cloud may not become acceptable and admissible in the court. A literature gap in supporting software engineers so as to elicit and model forensic-related requirements exists. In order to fill the gap, software engineers should develop cloud services in a forensically sound manner. In this paper, a brief description of the cloud forensic-enabled framework is presented (adding some new elements) so as to understand the role of the design of forensic-enabled cloud services in a cloud forensic investigation. A validation of the forensic requirements is also produced by aligning the stages of cloud forensic investigation process with the framework’s forensic requirements. In this way, on one hand, a strong relationship is built between these two elements and emphasis is given to the role of the forensic requirements and their necessity in supporting the investigation process. On the other hand, the alignment assists towards the identification of the degree of the forensic readiness of a cloud service against a forensic investigation

    Are You Ready? A Proposed Framework For The Assessment Of Digital Forensic Readiness

    Get PDF
    This dissertation develops a framework to assess Digital Forensic Readiness (DFR) in organizations. DFR is the state of preparedness to obtain, understand, and present digital evidence when needed. This research collects indicators of digital forensic readiness from a systematic literature review. More than one thousand indicators were found and semantically analyzed to identify the dimensions to where they belong. These dimensions were subjected to a q-sort test and validated using association rules, producing a preliminary framework of DFR for practitioners. By classifying these indicators into dimensions, it was possible to distill them into 71 variables further classified into either extant or perceptual variables. Factor analysis was used to identify latent factors within the two groups of variables. A statistically-based framework to assess DFR is presented, wherein the extant indicators are used as a proxy of the real DFR status and the perceptual factors as the perception of this status

    A holistic based digital forensic readiness framework for Zenith Bank, Nigeria

    Get PDF
    The advancement of internet has made many business organizations conduct their operation automatically, in effect its open a possibly dangerous unforeseen information security incidents of both illegal and civil nature. Therefore, if any organization does’t arrange themselves for such instances, it’s likely that vital significant digital evidence will be damage. In other word an organization should has a digital forensic readiness framework (DFR). DFR is the capacity of anyassociation to exploit its prospective to use digital evidence whilst minimizing the cost of investigation. Subsequently, in order to prepare organizations for incident responds, the application of digital forensic readiness policies and procedures is important. Contemporary lack of forensic skills is one of the factors that make organizations reluctant to implement digital forensics. This project propose a holistic-based framework of DFR and investigate how it can be applied to Zenith Bank Plc. This paper surveys existing frameworks to identify the best-suited practical components for Zenith Bank’s operational unit

    Ontology‐driven perspective of CFRaaS

    Get PDF
    A Cloud Forensic Readiness as a Service (CFRaaS) model allows an environment to preemptively accumulate relevant potential digital evidence (PDE) which may be needed during a post‐event response process. The benefit of applying a CFRaaS model in a cloud environment, is that, it is designed to prevent the modification/tampering of the cloud architectures or the infrastructure during the reactive process, which if it could, may end up having far‐reaching implications. The authors of this article present the reactive process as a very costly exercise when the infrastructure must be reprogrammed every time the process is conducted. This may hamper successful investigation from the forensic experts and law enforcement agencies perspectives. The CFRaaS model, in its current state, has not been presented in a way that can help to classify or visualize the different types of potential evidence in all the cloud deployable models, and this may limit the expectations of what or how the required PDE may be collected. To address this problem, the article presents the CFRaaS from a holistic ontology‐driven perspective, which allows the forensic experts to be able to apply the CFRaaS based on its simplicity of the concepts, relationship or semantics between different form of potential evidence, as well as how the security of a digital environment being investigated could be upheld. The CFRaaS in this context follows a fundamental ontology engineering approach that is based on the classical Resource Description Framework. The proposed ontology‐driven approach to CFRaaS is, therefore, a knowledge‐base that uses layer‐dependencies, which could be an essential toolkit for digital forensic examiners and other stakeholders in cloud‐security. The implementation of this approach could further provide a platform to develop other knowledge base components for cloud forensics and security
    corecore