142 research outputs found

    Meeting the design challenges of nano-CMOS electronics: an introduction to an upcoming EPSRC pilot project

    Get PDF
    The years of ‘happy scaling’ are over and the fundamental challenges that the semiconductor industry faces, at both technology and device level, will impinge deeply upon the design of future integrated circuits and systems. This paper provides an introduction to these challenges and gives an overview of the Grid infrastructure that will be developed as part of a recently funded EPSRC pilot project to address them, and we hope, which will revolutionise the electronics design industry

    Enabling Quantitative Data Analysis on Cyberinfrastructures and Grids

    Get PDF
    The social, behavioral and economic sciences (SBEs) do not currently benefit from a unified workflow environment for the quantitative analysis of social survey data. Some unified models integrating data storage, data management and data analysis do exist, for example the NESSTAR, IPUMS and LIS projects. However all of these services are focused on a limited number of data resources and functionalities. The Cyberinfrastructure could be exploited to develop and support a more generic workflow environment. In this paper, we build upon earlier work in providing a specialist data access service to social scientists (the GEODE project), to outline a proposed framework for a generic quantitative social science infrastructural service based on open standards

    From access and integration to mining of secure genomic data sets across the grid

    Get PDF
    The UK Department of Trade and Industry (DTI) funded BRIDGES project (Biomedical Research Informatics Delivered by Grid Enabled Services) has developed a Grid infrastructure to support cardiovascular research. This includes the provision of a compute Grid and a data Grid infrastructure with security at its heart. In this paper we focus on the BRIDGES data Grid. A primary aim of the BRIDGES data Grid is to help control the complexity in access to and integration of a myriad of genomic data sets through simple Grid based tools. We outline these tools, how they are delivered to the end user scientists. We also describe how these tools are to be extended in the BBSRC funded Grid Enabled Microarray Expression Profile Search (GEMEPS) to support a richer vocabulary of search capabilities to support mining of microarray data sets. As with BRIDGES, fine grain Grid security underpins GEMEPS

    An overview of S-OGSA: A Reference Semantic Grid Architecture

    Get PDF
    The Grid's vision, of sharing diverse resources in a flexible, coordinated and secure manner through dynamic formation and disbanding of virtual communities, strongly depends on metadata. Currently, Grid metadata is generated and used in an ad hoc fashion, much of it buried in the Grid middleware's code libraries and database schemas. This ad hoc expression and use of metadata causes chronic dependency on human intervention during the operation of Grid machinery, leading to systems which are brittle when faced with frequent syntactic changes in resource coordination and sharing protocols. The Semantic Grid is an extension of the Grid in which rich resource metadata is exposed and handled explicitly, and shared and managed via Grid protocols. The layering of an explicit semantic infrastructure over the Grid Infrastructure potentially leads to increased interoperability and greater flexibility. In recent years, several projects have embraced the Semantic Grid vision. However, the Semantic Grid lacks a Reference Architecture or any kind of systematic framework for designing Semantic Grid components or applications. The Open Grid Service Architecture ( OGSA) aims to define a core set of capabilities and behaviours for Grid systems. We propose a Reference Architecture that extends OGSA to support the explicit handling of semantics, and defines the associated knowledge services to support a spectrum of service capabilities. Guided by a set of design principles, Semantic-OGSA ( S-OGSA) defines a model, the capabilities and the mechanisms for the Semantic Grid. We conclude by highlighting the commonalities and differences that the proposed architecture has with respect to other Grid frameworks. (c) 2006 Elsevier B. V. All rights reserved

    DRIVER Technology Watch Report

    Get PDF
    This report is part of the Discovery Workpackage (WP4) and is the third report out of four deliverables. The objective of this report is to give an overview of the latest technical developments in the world of digital repositories, digital libraries and beyond, in order to serve as theoretical and practical input for the technical DRIVER developments, especially those focused on enhanced publications. This report consists of two main parts, one part focuses on interoperability standards for enhanced publications, the other part consists of three subchapters, which give a landscape picture of current and surfacing technologies and communities crucial to DRIVER. These three subchapters contain the GRID, CRIS and LTP communities and technologies. Every chapter contains a theoretical explanation, followed by case studies and the outcomes and opportunities for DRIVER in this field

    Grid-based semantic integration of heterogeneous data resources : implementation on a HealthGrid

    Get PDF
    The semantic integration of geographically distributed and heterogeneous data resources still remains a key challenge in Grid infrastructures. Today's mainstream Grid technologies hold the promise to meet this challenge in a systematic manner, making data applications more scalable and manageable. The thesis conducts a thorough investigation of the problem, the state of the art, and the related technologies, and proposes an Architecture for Semantic Integration of Data Sources (ASIDS) addressing the semantic heterogeneity issue. It defines a simple mechanism for the interoperability of heterogeneous data sources in order to extract or discover information regardless of their different semantics. The constituent technologies of this architecture include Globus Toolkit (GT4) and OGSA-DAI (Open Grid Service Architecture Data Integration and Access) alongside other web services technologies such as XML (Extensive Markup Language). To show this, the ASIDS architecture was implemented and tested in a realistic setting by building an exemplar application prototype on a HealthGrid (pilot implementation). The study followed an empirical research methodology and was informed by extensive literature surveys and a critical analysis of the relevant technologies and their synergies. The two literature reviews, together with the analysis of the technology background, have provided a good overview of the current Grid and HealthGrid landscape, produced some valuable taxonomies, explored new paths by integrating technologies, and more importantly illuminated the problem and guided the research process towards a promising solution. Yet the primary contribution of this research is an approach that uses contemporary Grid technologies for integrating heterogeneous data resources that have semantically different. data fields (attributes). It has been practically demonstrated (using a prototype HealthGrid) that discovery in semantically integrated distributed data sources can be feasible by using mainstream Grid technologies, which have been shown to have some Significant advantages over non-Grid based approaches.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Data-Intensive architecture for scientific knowledge discovery

    Get PDF
    This paper presents a data-intensive architecture that demonstrates the ability to support applications from a wide range of application domains, and support the different types of users involved in defining, designing and executing data-intensive processing tasks. The prototype architecture is introduced, and the pivotal role of DISPEL as a canonical language is explained. The architecture promotes the exploration and exploitation of distributed and heterogeneous data and spans the complete knowledge discovery process, from data preparation, to analysis, to evaluation and reiteration. The architecture evaluation included large-scale applications from astronomy, cosmology, hydrology, functional genetics, imaging processing and seismology
    corecore