7 research outputs found

    Equational Characterization of Covariant-Contravariant Simulation and Conformance Simulation Semantics

    Get PDF
    Covariant-contravariant simulation and conformance simulation generalize plain simulation and try to capture the fact that it is not always the case that "the larger the number of behaviors, the better". We have previously studied their logical characterizations and in this paper we present the axiomatizations of the preorders defined by the new simulation relations and their induced equivalences. The interest of our results lies in the fact that the axiomatizations help us to know the new simulations better, understanding in particular the role of the contravariant characteristics and their interplay with the covariant ones; moreover, the axiomatizations provide us with a powerful tool to (algebraically) prove results of the corresponding semantics. But we also consider our results interesting from a metatheoretical point of view: the fact that the covariant-contravariant simulation equivalence is indeed ground axiomatizable when there is no action that exhibits both a covariant and a contravariant behaviour, but becomes non-axiomatizable whenever we have together actions of that kind and either covariant or contravariant actions, offers us a new subtle example of the narrow border separating axiomatizable and non-axiomatizable semantics. We expect that by studying these examples we will be able to develop a general theory separating axiomatizable and non-axiomatizable semantics.Comment: In Proceedings SOS 2010, arXiv:1008.190

    Conformance Testing with Labelled Transition Systems: Implementation Relations and Test Generation

    Get PDF
    This paper studies testing based on labelled transition systems, presenting two test generation algorithms with their corresponding implementation relations. The first algorithm assumes that implementations communicate with their environment via symmetric, synchronous interactions. It is based on the theory of testing equivalence and preorder, as is most of the testing theory for labelled transition systems, and it is found in the literature in some slightly different variations. The second algorithm is based on the assumption that implementations communicate with their environment via inputs and outputs. Such implementations are formalized by restricting the class of labelled transition systems to those systems that can always accept input actions. For these implementations a testing theory is developed, analogous to the theory of testing equivalence and preorder. It consists of implementation relations formalizing the notion of conformance of these implementations with respect to labelled transition system specifications, test cases and test suites, test execution, the notion of passing a test suite, and the test generation algorithm, which is proved to produce sound test suites for one of the implementation relations

    A Framework Based on Implementation Relations for Implementing LOTOS Specifications

    Full text link
    A framework is developed for studying the implementation process, as a stepwise process in which an abstract specification is successively transformed to reach a final compilable specification adapted to the computer environment. In this context, an implementation relation is referred to as the relation which should link any ``valid'' implementation to its abstract formal specification. In other words, the implementation relation is intended to express formally the notion of validity. Our framework allows the exact characterization of the transformations which may take place at each step for a given implementation relation. This framework is essential for dealing with non-transitive implementation relations. In the second part of the paper, these results are exemplified in LOTOS on some existing relations, and an apparent paradox is presented. Some new results about these relations are also derived

    Construction incrémentale de spécifications de systèmes critiques intégrant des procédures de vérification

    Get PDF
    Cette thèse porte sur l'aide à la construction de machines d'états UML de systèmes réactifs. Elle vise à définir un cadre théorique et pragmatique pour mettre en œuvre une approche incrémentale caractérisée par une succession de phases de construction, évaluation et correction de modèles. Ce cadre offre des moyens de vérifier si un nouveau modèle est conforme à ceux définis durant les étapes précédentes sans avoir à demander une description explicite des propriétés à vérifier. Afin de pouvoir analyser les machines d'états, nous leur associons une sémantique LTS ce qui nous a conduit à définir une procédure de transformation automatique de machines d'états en LTS. Dans un premier temps, nous avons défini et implanté des techniques de vérification de relations de conformité de LTS (red, ext, conf, et confrestr). Dans un second temps, nous nous sommes intéressés à la définition d'un cadre de construction incrémentale dans lequel plusieurs stratégies de développement peuvent être mises en œuvre en s'assurant que le modèle final élaboré sera une implantation conforme à la spécification initiale. Ces stratégies reposent sur des combinaisons de raffinements qui peuvent être de deux types : le raffinement vertical pour éliminer l'indéterminisme et ajouter des détails ; le raffinement horizontal pour ajouter de nouvelles fonctionnalités sans ajouter d'indéterminisme. Enfin, nous transposons la problématique de construction incrémentale d'une machine d'états à la construction d'architectures dont les composants sont des machines d'états. Des conditions sont définies pour assurer la conformité entre des architectures dans le cas de la substitution de composants.This thesis focuses on supporting construction of UML state machines of reactive systems. It aims at developing a theoretic and pragmatic framework to implement an incremental approach characterized by a succession of construction, evaluation and correction of models. This framework provides the means to verify whether a new model is consistent with those defined in the previous steps without requiring an explicit description of the properties to be verified. To analyze the state machines, we associated with them a LTS semantics which led us to define a procedure for automatic transformation of state machines in LTS. Initially, we have defined and implemented verification technique of conformance relations on LTS (red, ext, conf and confrestr). In a second step, we have defined a framework for incremental construction in which several development strategies can be implemented ensuring that the final developed model will be an implementation consistent with the initial specification. These strategies are based on combination of refinements that may be of two types: vertical refinement to eliminate nondeterminism and add details, and the horizontal refinement to add new features without adding nondeterminism. Finally, we transpose the problem of incremental construction of state machines to the construction of architectures whose components are state machines. Conditions are defined to ensure conformance between architectures in the case of substitution of components
    corecore