968 research outputs found

    Development of predictive models for catalyst development

    Get PDF
    Abstract. This work was done as a part of the BioSPRINT project, which aims to improve biorefinery operations through process intensification and to replace fossil-based polymers with new bio-based products. The goal was to identify machine learned (ML) models that will accelerate the catalyst identification with high-throughput (HTP) screening methods, identify non-obvious formulations and allow catalyst tuning for different feedstock compositions. Maximum activity for conversion of complex sugar mixtures with optimal selectivity towards the key products of interest is desired. In the literature part of the thesis, ML was studied in general, where the focus was on different variable selection methods and modeling techniques, more specifically on data-driven modeling. Furthermore, modeling in catalysis was discussed with focus on ML in catalysis. Catalyst screening and selection, descriptor modeling and selection, and predictive modeling in catalysis were studied. In the experimental part, focus was on developing ML models that predict catalyst performance with relevant descriptors. Dataset for hydrogenation of 5-ethoxymethylfurfural with simple bimetal catalysts, including main metals and promoters, was used as ML model input with the addition of catalyst descriptors found in the literature. Four different responses were used in the experiments: selectivity and conversion with two different solvents. Methods used in the experimental part were discussed in detail, where data collection, preprocessing, variable selection, modeling and model validation were considered. Reference models without variable selection were first identified. Secondly, regularization algorithms were used to identify models. Finally, models with variable subsets obtained with regularization algorithms were identified. The effect of cross-validation was also studied. In general, good modeling results were obtained with boosted ensemble tree methods, support vector machine (SVM) methods and Gaussian process regression (GPR) methods. Lasso regression turned out to be the best variable selection method. Good results were obtained with the descriptors found in the literature. It was also shown, that fairly good results can be obtained with only two variables in the studied case. Promoter variables were not considered nearly as important as main metals with variable selection algorithms. Even though the modeling results were good, the variable selection methods were almost purely data-driven, and the actual relevance of the variables cannot be guaranteed. In the future work, optimization should be studied with the goal of finding catalysts that maximize catalyst performance values based on the model predictions. Also, extrapolation capabilities of the models need to be studied and improved. The studied methods can be easily implemented to other datasets. In the BioSPRINT project, experimental results related to the dehydration reaction of C5 and C6 sugars with simple metal catalysts will be obtained and used with the studied methods.Ennustavien mallien laatiminen katalyytin valmistuksen tehostamiseksi. Tiivistelmä. Tämä työ tehtiin osana BioSPRINT-projektia, jonka tavoitteena on kehittää biojalostamoiden toimintaa parantamalla niiden prosessitehokkuutta ja korvata fossiilipohjaiset polymeerit uusilla biopohjaisilla tuotteilla. Työn tavoitteena oli muodostaa koneoppimista hyödyntämällä mallit, jotka nopeuttavat optimaalisten katalyyttien löytämistä tehoseulonnan (high-throughput (HTP) screening) avulla, auttavat identifioimaan vaikeasti löydettäviä katalyyttiyhdistelmiä ja mahdollistavat katalyytin valinnan eri lähtöainekoostumuksilla. Tavoitteena on maksimoida monimutkaisten sokeriyhdisteiden konversio ja selektiivisyys halutuiksi tuotteiksi. Työn kirjallisuusosiossa perehdyttiin koneoppimiseen yleisellä tasolla, missä pääpaino oli muuttujanvalintamenetelmissä ja datapohjaisissa mallinnusmenetelmissä. Lisäksi kirjallisuusosassa tutkittiin mallinnuksen käyttöä katalyysissä, missä pääpaino oli koneoppimisen käytössä. Työssä tarkasteltiin myös katalyyttien seulontaa ja valintaa, laskennallisten muuttujien (deskriptorien) määrittelyä ja valintaa, sekä ennustavan mallinnuksen käyttöä katalyysissä. Kokeellisessa osiossa painopiste oli koneoppimista hyödyntävien mallien muodostuksessa, jotka ennustavat katalyyttien suorituskykyä oleellisilla deskriptoreilla. Data-aineistona käytettiin 5-etoksimetyylifurfuraalin hydrausreaktion tuloksia yksinkertaisilla kaksikomponenttisilla metallikatalyyteillä, jotka sisältävät päämetallin ja promoottorin. Data-aineistoa täydennettiin kirjallisuudesta löytyvillä katalyyttien deskriptoreilla ja käytettiin koneoppimista hyödyntävien mallien sisääntulona. Tutkimuksissa käytettiin neljää eri vastemuuttujaa: selektiivisyyttä ja konversiota kahdella eri liuottimella. Kokeellisessa osiossa käytetyt menetelmät käytiin läpi perusteellisesti huomioon ottaen data-aineiston keräämisen, esikäsittelyn, muuttujanvalinnan, mallinnuksen ja mallin validoinnin. Ensin referenssimallit identifioitiin. Tämän jälkeen regularisaatioalgoritmeilla suoritettiin mallinnus. Lopuksi mallinnus suoritettiin käyttämällä muuttujajoukkoja, jotka oli valittu käyttäen regularisaatioalgoritmeja. Myös ristivalidoinnin vaikutusta tutkittiin. Yleisesti hyvät mallinnustulokset saavutettiin boosted ensemble tree -tekniikalla, tukivektorikoneella ja Gaussian process -regressiolla. Lasso-menetelmä todettiin parhaaksi muuttujanvalinta-algoritmiksi. Hyvät tulokset saavutettiin kirjallisuudesta löytyvien deskriptorien avulla. Tutkimuksissa todettiin myös, että hyvät mallinnustulokset voidaan saavuttaa kyseisessä tutkimustapauksessa jopa vain kahdella muuttujalla. Päämetalleja kuvaavien muuttujien merkitsevyys todettiin paljon suuremmaksi kuin promoottorien vastaavien muuttujien. Saatavia mallinnustuloksia tarkasteltaessa täytyy huomioida, että muuttujanvalinta oli melkein täysin datapohjainen eikä muuttujien varsinaista merkitsevyyttä voida taata. Jatkossa mallien ennustuksia voidaan hyödyntää optimoinnissa, jossa tavoitteena on etsiä katalyyttiyhdistelmä, joka maksimoi katalyyttien suorituskyvyn. Myös mallin ekstrapolointikykyä täytyy tutkia ja kehittää. Tutkittavat menetelmät ovat helposti sovellettavissa myös muille samantyylisille data-aineistoille. BioSPRINT-projektista saadaan tulevaisuudessa käytettäväksi viisi- ja kuusihiilisten sokerien dehydraatioon perustuva data-aineisto yksinkertaisilla metallikatalyyteillä, jota tullaan käyttämään jatkotutkimuksissa

    Machine learning modeling of superconducting critical temperature

    Full text link
    Superconductivity has been the focus of enormous research effort since its discovery more than a century ago. Yet, some features of this unique phenomenon remain poorly understood; prime among these is the connection between superconductivity and chemical/structural properties of materials. To bridge the gap, several machine learning schemes are developed herein to model the critical temperatures (TcT_{\mathrm{c}}) of the 12,000+ known superconductors available via the SuperCon database. Materials are first divided into two classes based on their TcT_{\mathrm{c}} values, above and below 10 K, and a classification model predicting this label is trained. The model uses coarse-grained features based only on the chemical compositions. It shows strong predictive power, with out-of-sample accuracy of about 92%. Separate regression models are developed to predict the values of TcT_{\mathrm{c}} for cuprate, iron-based, and "low-TcT_{\mathrm{c}}" compounds. These models also demonstrate good performance, with learned predictors offering potential insights into the mechanisms behind superconductivity in different families of materials. To improve the accuracy and interpretability of these models, new features are incorporated using materials data from the AFLOW Online Repositories. Finally, the classification and regression models are combined into a single integrated pipeline and employed to search the entire Inorganic Crystallographic Structure Database (ICSD) for potential new superconductors. We identify more than 30 non-cuprate and non-iron-based oxides as candidate materials.Comment: 17 pages, 7 figure

    Discovery of Materials Through Applied Machine Learning

    Get PDF
    Advances in artificial intelligence technology, specifically machine learning, have cre- ated opportunities in the material sciences to accelerate material discovery and gain fundamental understanding of the interaction between certain the constituent ele- ments of a material and the properties expressed by that material. Application of machine learning to experimental materials discovery is slow due to the monetary and temporal cost of experimental data, but parallel techniques such as continuous com- positional gradients or high-throughput characterization setups are capable of gener- ating larger amounts of data than the typical experimental process, and therefore are suitable for combination with machine learning. A random forest machine learning algorithm has been applied to two different materials discovery challenges - discovery of new metallic glass forming ternary compositions and discovery of novel ammonia decomposition catalysts - and has led to accelerated discovery of high-performing materials

    Meta-Analysis of Vaterite Secondary Data Revealed the Synthesis Conditions for Polymorphic Control

    Get PDF
    Acknowledgements This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.Peer reviewedPostprin

    Benchmarking Materials Property Prediction Methods: The Matbench Test Set and Automatminer Reference Algorithm

    Full text link
    We present a benchmark test suite and an automated machine learning procedure for evaluating supervised machine learning (ML) models for predicting properties of inorganic bulk materials. The test suite, Matbench, is a set of 13 ML tasks that range in size from 312 to 132k samples and contain data from 10 density functional theory-derived and experimental sources. Tasks include predicting optical, thermal, electronic, thermodynamic, tensile, and elastic properties given a materials composition and/or crystal structure. The reference algorithm, Automatminer, is a highly-extensible, fully-automated ML pipeline for predicting materials properties from materials primitives (such as composition and crystal structure) without user intervention or hyperparameter tuning. We test Automatminer on the Matbench test suite and compare its predictive power with state-of-the-art crystal graph neural networks and a traditional descriptor-based Random Forest model. We find Automatminer achieves the best performance on 8 of 13 tasks in the benchmark. We also show our test suite is capable of exposing predictive advantages of each algorithm - namely, that crystal graph methods appear to outperform traditional machine learning methods given ~10^4 or greater data points. The pre-processed, ready-to-use Matbench tasks and the Automatminer source code are open source and available online (http://hackingmaterials.lbl.gov/automatminer/). We encourage evaluating new materials ML algorithms on the MatBench benchmark and comparing them against the latest version of Automatminer.Comment: Main text, supplemental inf
    corecore