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Abstract  8 
The synthesis of vaterite was investigated from a statistical point of view to identify sets of optimal 9 
experimental conditions to obtain pure anhydrous calcium carbonate polymorph. Relevant research 10 
papers in the field of the precipitation of calcium carbonate were compiled in a secondary dataset 11 
using a statistical mixed method described in another of our publications. This statistical mixed 12 
method consisted of three distinctive stages: a systematic literature review (Stage 1), followed by a 13 
meta-analysis of the acquired secondary data (Stage 2) and the validation in the laboratory (Stage 3). 14 

In this work we present the results of Stages 2 and 3 of the mentioned method. A decision tree was 15 
built with the vaterite dataset and obtained good classification performance. A number of if-then 16 
decision rules were created covering the occurrence and absence of vaterite. The oven drying 17 
temperature, the pH and the concentration of the salt were used to control polymorphism. The best 18 
result corresponded to a vaterite polymorphic abundance of 93.6 ± 0.3%. It was possible to carry out 19 
a different investigation and arrive at new insights as a result of the unique size and characteristics of 20 
the mined data from Web of Science scientific articles. 21 

Keywords 22 
Supervised Learning, Decision tree, Vaterite, Meta-Analysis, Reactive Crystallization23 



2 
 

1. Introduction 24 

1.1 Problem Statement 25 
The reactive crystallization of calcium carbonate (CaCO3) polymorphs from the reaction between 26 
calcium and carbonate ions has been much studied. Despite the apparent simplicity of this reaction, 27 
the simultaneous and rapid occurrence of nucleation, crystal growth and other processes such as 28 
agglomeration during precipitation is a challenge for the control of the final properties of the solid. 29 
An extensive body of literature on the subject is available; but controlling polymorphism in an 30 
industrial process still remains difficult. Vaterite is the most unstable anhydrous form of CaCO3 [1]; 31 
its appearance in nature is rare and its synthesis in the lab using the spontaneous precipitation 32 
method is difficult [2]. In spite of it, vaterite particles has numerous applications [1], [3], among 33 
them, it is the most important form of CaCO3 applied in regenerative medicine, drug delivery and 34 
personal care products [3]. 35 

Many variables affect the precipitation characteristics of calcium carbonate (i.e. crystal habit and 36 
polymorphism). Some of them include the addition of additives like magnesium ions, initial 37 
concentration of reactants, initial pH, temperature, CO3

2-/Ca2+ molar ratio, Mg2+/Ca2+ molar ratio, 38 
configuration of the feed, mixing mode and contact time. Typically, a researcher would select 39 
subsets of experimental conditions from the variables (also called attributes) that are known to 40 
affect more the outcome and then carry out further experimentation in the laboratory to verify the 41 
hypothesis. This decision is mainly based on literature searchers conducted by the researcher and his 42 
or her previous professional experience.  43 

1.2 The Statistical Mixed Method 44 
This work is the third article of a larger study. The reader is encouraged to start with the main 45 
publication titled “Development of a Data-Driven Scientific Methodology: From Articles to 46 
Chemometric Data Products” [4]. In that paper, a statistical mixed methodology called data-driven 47 
scientific methodology (DDSM) was developed and all the stages described in detail. The first stage 48 
corresponds to a second article titled “Systematic Review using a Semi-Supervised Bibliometric 49 
Methodology for Application in a Precipitation Process”; there we discussed the process by which 50 
scientific articles were collected from Web of Science, transformed into maps and the most 51 
influential articles identified using network centrality measures and mapping techniques. Then, 52 
numerical data was compiled from these relevant documents to finally obtain the secondary dataset 53 
used in the present study.  54 

The main objective of this work is to identify key variables at optimal ranges to control calcium 55 
carbonate polymorphism. The task was accomplished creating decision tree models with the 56 
secondary dataset. Only the case of vaterite is disclosed. This information was used to develop an 57 
adequate experimental design and setup that was tested in a real laboratory.  58 

By comparison, the present work provides the technical details necessary to understand and 59 
reproduce the work. A summary of the main findings was included in our previous publication [4]. 60 
We have omitted a statement of the main points here to avoid an overlap between both research 61 
articles. Nonetheless, all the information is described as part of the analysis in the results section. 62 
This article also highlights new findings in the conclusions with a concrete example of how the data-63 
driven approach shaped the experiments and assisted scientific discovery. 64 

 65 
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2 Methodology 66 

2.1 Research Design: The Meta-Analysis 67 
In this section, a broad perspective of the second stage of the statistical mixed methodology is 68 
provided. A sequence of steps were followed to process the secondary dataset and obtain optimal 69 
sets of experimental conditions to synthesize single phase vaterite. The steps were: data 70 
preparation, exploratory meta-analysis (EMA), subsetting the CaCO3 phases from the overall 71 
secondary dataset, building the decision tree models and collating all the results to produce an array 72 
of hypothesis from the EMA study and the supervised learning algorithms. Finally, the validity of the 73 
meta-model predictions was verified with laboratory experiments. Only the case of vaterite is 74 
disclosed. The process is depicted in Figure 1. The word “Meta” indicates that the secondary data 75 
was taken from published manuscripts through a systematic literature review, and therefore uses all 76 
the relevant literature available on a subject [4]. A bibliometric technique was developed for 77 
screening thousands of papers, and identify publications likely to contain optimal experiments of 78 
vaterite. The maps obtained after this procedure corresponds to the so called Meta – Mode I in 79 
Stage 1. 80 

The nuts and bolts of how the Meta – Model II was built, as well as, a description of the structure of 81 
the secondary dataset are provided in the next sections. 82 

 83 

Figure 1 Flow diagram of the second part of the method: the application of secondary data for the 84 
development of synthetic routes of all the calcium carbonate polymorphs 85 

2.2 Decision trees 86 
A decision tree (DT) is a supervised learning algorithm used in data mining to classify cases 87 
(instances) into categories. Among them, J4.8 algorithm – a Weka implementation of C4.5 – is one of 88 
the most popular decision tree learners. A tree consists of a root node (the first attribute picked by 89 
the algorithm, having the greatest information gain), internal nodes (the attributes), branches (the 90 
attribute values) and leaves (the terminal nodes representing the single category or class). The goal 91 
of the algorithm is to split the root in two or more branches to produce pure subsets of data 92 
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belonging to a single class. The splitting is recursive from top to bottom based on the amount of 93 
information gained by knowing the value of an attribute [5]. The algorithm computes how many bits 94 
of information are gained at each split and pick the attribute with the highest gain of information. 95 
The process stops when all nodes are pure, which in many cases occurs when the node contains just 96 
one observation. This is a common and undesirable behaviour of decision trees called overfitting. 97 
The size of the tree becomes too big and the dataset is fitted too tightly. Pruning the tree is one 98 
prerequisite to avoid fitting this noise. Pruning can be achieved in several ways, after building the 99 
tree (post-pruning) or during its construction (on-line pruning) [6], [7]. The pruning process removes 100 
unnecessary branches using threshold values that controls the size of the tree. There are other 101 
implementations such as Random Forest that can overcome overfitting issues. 102 

Besides pruning, a study might include attribute selection methods for optimizing the tree. Given all 103 
the attributes under study, sometimes it is useful to select a handful of them following different 104 
criteria and then build the classifier with this small subset. This is a worthwhile approach to 105 
implement since the inclusion of irrelevant attributes is known to affect negatively the performance 106 
of data mining algorithms [8]. In this case, wrapper and filter selection methods are available and 107 
described elsewhere [8], [9].  108 

In general, DTs offers many advantages: they are easy to read and interpret, can deal effectively with 109 
both numeric and categoric variables, as well as, missing and imbalanced data. DTs handle 110 
effectively redundant attributes and there are no a priori assumptions about the nature of the data 111 
[10], [11].  However, DTs have some disadvantages. As previously mentioned, one of the main 112 
disadvantages of decision trees is that they are prone to overfitting. Another one is instability. The 113 
output is unstable in the sense that slight changes in the training set usually lead to different 114 
attribute selections and attribute splits, producing different trees [10]. A common solution to reduce 115 
high variance is to apply ensemble methods such as bagging and boosting. 116 

Ensemble methods for classification such as bagging (bootstrap aggregating), boosting and random 117 
forest are used for improving decision tree models. The general idea of these procedures is to 118 
produce and then combine multiple trees to yield a single prediction. Bagging reduces the variation 119 
of unstable classifiers, while boosting minimize both variance and bias [12]. Bagging is a technique 120 
that sample with replacement from the training set to randomly generate data subsets, then grows a 121 
decision tree for each bootstrap sample and combines the classifiers’ predictions by voting (in the 122 
case of classification) [13]. Boosting follows a similar approach but here the subsets are created from 123 
the training set sequentially rather than randomly, giving misclassified instances from the previous 124 
tree higher preference in the next iteration. Furthermore, weights are used to give more influence to 125 
the most successful models, while in bagging all the classifiers receive equal weights [5]. AdaBoost is 126 
the most commonly used classification boosting algorithm and Weka uses the simpler version 127 
AdaBoost.M1 [12]. Random forest is a meta-learner that constructs random forest by bagging 128 
ensembles of random trees using the Random Tree algorithm [14]. Similar to bagging, it takes 129 
random subsets of data but also random sets of predictors that then uses to grow the trees. 130 
Although combined trees have given excellent results in many fields they lack the simplicity of a 131 
single tree and are in general more difficult to interpret.  132 

The use of these complex methods is only justified if their accuracy outperforms other more simple 133 
alternatives. In this regard, simple classification algorithms such as OneR and ZeroR can be a useful 134 
reference. ZeroR predicts the majority class, ignoring the predictors, and it is included in the analysis 135 
to determine the baseline performance of the rest of the classifiers. OneR classification algorithm 136 
creates one single rule for each variable and then pick up the rule with the smallest error rate [15]. 137 
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Besides their limitations, DTs are able to solve a wide array of classification problems. For instance, 138 
among their applications can be cited citation networks [16], pharmaceutical manufacturing process 139 
[17], modelling building energy demand [18], weather forecast [19], diagnosis of diseases [8], [9], 140 
detection of forest fires [20], agriculture [21], finance [22], computer vision and many more [23]. 141 

2.3 Secondary Dataset Description 142 
The raw vaterite dataset comprised of a total of 256 experiments. The scope of the study was limited 143 
to the spontaneous precipitation method [24] and the synthesis of single form vaterite and its 144 
mixtures with amorphous calcium carbonate (ACC), calcite and aragonite. 145 

Overall, 56 different attributes described each of the CaCO3 experiments. The complete list of 146 
attribute and their definitions are provided in the Supporting Information. The variables 147 
corresponding to the vaterite study are shown in Table 1 where each attribute name, type, range, 148 
definition and units are described.  149 

Table 1 Dataset description (N = 256 cases, A = 23 attributes) 150 

Attribute Type Range Description 
• Operational Categoric Attributes 

SynRoute Categoric Single-stage, 
Multi-stage 

Experiments where the experiment was performed 
in two steps (Multi-stage route) or one step (Single-
stage route) 

Feeding Categoric CarbToSalt, 
SaltToCarb, 
Simultaneous 

Reactant addition mode 

Mixing Categoric Dynamic, 
Static 

Agitation mode during precipitation (vigorous 
stirring versus no stirring) 

• Attributes related to reactant concentration 

Volume Numeric 0.05 –2.0 Total volume of the solution mixture (L) 
Ca_M Numeric 0.001 – 2.0 CaCl2 initial concentration (mol/L) 
Mg_M Numeric 0 – 0.065 MgCl2 initial concentration (mol/L) 
CO3_M Numeric 0 – 2.0 Na2CO3 initial concentration (mol/L) 
HCO3_M Numeric 0 – 1.0 NaHCO3 initial concentration (mol/L) 
Mg_Ca Numeric 0 – 6.5 Initial ionic Mg2+/Ca2+ molar ratio 
CO3_Ca Numeric 0.025 – 13.3 Initial ionic CO3

2-/Ca2+ molar ratio 
Mg_Pct Numeric 0 – 87 Molar percent of Mg in the initial salt solution 

• Operational Numeric attributes 
pH Numeric 7.5 – 12.7  Initial pH  
TempRe Numeric 1 – 96  Reaction Temperature (°C) 
TempOv Numeric 25 – 105  Oven drying Temperature (°C) 
time Numeric 0.15 – 3300 Contact time (min) 

• Target Attributes 

VAT, MIX Categoric Yes, No Ocurrence or Non-Ocurrence of a polymorph 
(Vaterite and Mixtures) in the final precipitate 
(Binary targets) 

FstPhase Categoric VAT, MIX, 
ACC, CAL, ARG 

Appearance of a polymorph as first phase (Vaterite, 
Calcite, Amorphous, Aragonite and Mixtures) if 
polymorphic abundance of at least 85%; (Multiclass 
target) 
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PolType Categoric Hydrate, 
Anhydrous 

Polymorph type. Crystalline nature of the 
polymorph. Refers to water content (Binary target) 

PA_Cal, 
PA_Arg, 
PA_Vat, 
PA_ACC 

Numeric 0 – 100 Polymorphic abundance (%) of calcite (PA_Cal), 
aragonite (PA_Arg), vaterite (PA_Vat) and 
amorphous (PA_ACC) 
(Numeric targets) 

 151 

2.4 Stage 2: Secondary Data Analysis 152 
The unified data obtained as a result of the repetition of the systematic review for each CaCO3 153 
polymorph was integrated by 732 experiments. The subset of the secondary dataset corresponding 154 
to vaterite experiments contained 256 experiments. The structure of this dataset was described in 155 
the previous section.  156 

The secondary data analysis consisted of several stages as depicted in Figure 1 and explained below. 157 
The 4 major stages in the modelling process of the vaterite decision tree are shown in more detail in 158 
Figure 2 and are described in this section: data collection, data preparation, model construction and 159 
evaluation. 160 

 161 

Figure 2 Flow diagram methodology for the construction of Meta Model II: The vaterite decision tree 162 

 163 

2.4.1 Data preparation 164 
Dataset preprocessing steps such as cleaning, data transformation, attribute selection and data 165 
exploration were used to analyse the initial dataset and prepare it for the subsequent modelling.  166 

The analysis of missing data was performed to describe patterns of missing values, assess if missing 167 
values were random and finally decide if a missing value required a multiple imputation method. 168 
With regards to cleaning, the numerical attributes were rounded up to the nearest integer or 169 
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nearest decimal. Once the dataset was collected and cleaned, new features were defined in order to 170 
use classification algorithms. Discretization was intended to construct meaningful boundaries that 171 
could explain the differences observed in the polymorphism with time. Quantile binning (same 172 
number of observations per bin) was performed to transform the numeric time attribute into a 4-173 
class nominal attribute. A comparison between the discretized and original attribute was done.  174 

The 230 instances forming the balanced dataset were split randomly in two groups named 175 
training/validation set (90%) and test set (10%). Data exploration was performed over the training 176 
set. The training set was also used by the learning scheme to build the classifier, the validation set 177 
was used for parameter optimization and to compare and select the best classifier. However, the 178 
final true model performance was assessed using only the test set, which was set aside from the 179 
beginner of the modelling process. The training set was balanced (same proportion of each class) 180 
and the test set also had each class well represented. Once the modelling procedure was finished 181 
and a reliable predictive power was obtained using the unbiased test set, the EDA and model were 182 
rebuilt with a whole balanced dataset ready for deployment in the Lab Validation stage. Results 183 
shown in this work correspond to the complete set of training values at this later stage. 184 

In the data exploration stage, sample distribution analysis using bar charts, box plots and density 185 
plots was performed. The worth of each attribute was investigated following feature selection 186 
techniques. Two single-attribute evaluators were used, named GainRatioAttributeEval and 187 
CorrelationAttributeEval in Weka. The first evaluates the merit of the attribute based on gain ratio, 188 
the measure used by J48 to determine the splits and to select the most important features [9]. The 189 
second evaluates the Pearson’s correlation between the predictor and the class. Both uses the 190 
Ranker method to create an ordered list of attributes, from the most to the least influential with 191 
respect to the class.  192 

2.4.2 Modelling a Decision Tree 193 
This section includes the construction, optimization and comparison of the following algorithms: 194 
simple classifiers such as ZeroR and OneR, J48 pruned single tree, J48 ensemble trees using bagging 195 
and boosting techniques and feature selection modelling. Model construction was done using the 196 
training/validation set containing 207 instances and 6 attributes (pH, time, [CaCl2], [MgCl2], TempRe, 197 
TempOv). Training dataset was balanced and contained no missing values (except for pH). The binary 198 
class target attribute VAT used for classification was formed by 2 categories: Yes, No; corresponding 199 
to the occurrence and the non-occurrence of vaterite precipitation.  200 

In order to produce a decision tree with good predictive performance, parameter optimization of the 201 
J48 algorithm is often required [11]. The pruning confidence factor (-C) and the minimum number of 202 
instances in any leaf (minNumObj or -M) parameters in J48 were selected for the tuning procedure. 203 
The confidence threshold was used to control the complexity or size of the tree [6].-C was modified 204 
from 0.1 to 0.9 by an increment of 0.1 and -M from 1 to 10 with 10 steps. Cross-validated parameter 205 
selection (CVParameterEval) was the performance optimization method used in the Weka Explorer. 206 
In the case of VAT, an optimal set of parameter values was found using [C = 0.6, M = 5] for the 2-207 
class training set.  208 

Ensemble methods were configured as follows: The number of iterations (numIterations) in the 209 
algorithms was optimized in the Experimenter. AdaBoostM1 used the following J48 weak learner 210 
configuration: -U –M2 and 3 iterations. Bagging experiment was carried out with default options. 211 
Random forest learning scheme was configured to build 10 boosted trees and the maximum depth 212 
(maxDepth) parameter was set to 3, corresponding to the number of attributes measured. This 213 
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setting was selected based on the feature engineering analysis where at least 2 out of the 6 214 
attributes were found relevant for the classification. 215 

The implementation of the feature selection results into an effective classifier was done using a 216 
meta-learner called AttributeSelectedClassifier, using J48 as the base learner, the wrapper method 217 
(WrapperSubsetEval) as attribute subset evaluator (wrapping J48 for attribute selection) and Best 218 
First with forward direction as the search method. This approach builds the classifier selecting a 219 
smaller number of attributes based only on training set data and not in the validation set. The 220 
process was repeated 10 times in the Weka experimenter to provide a reliable estimate. J48 default 221 
options were used (-C0.25 -M2). A scheme-independent attribute subset evaluator, CFsSubsetEval, 222 
was as well used in conjunction with the mentioned meta-learner. In this case, the selection of the 223 
set of attributes is a function of how correlated they are with the class and how little among 224 
themselves. The same single-attribute evaluators used in the preprocessing stage were included in 225 
the comparison. In this case the number of attributes to retain was fixed to 3. 226 

2.4.3 Evaluation of the Classifiers 227 
The performance of the studied classifiers (ZeroR, OneR, J48 pruned, Bagging, AdaBoost, Random 228 
Forest, cost-sensitive and attribute selection schemes) was calculated using both Acc (accuracy or 229 
percent of correctly classified instances) and AUC (Area under the ROC curve) as a combined 230 
measure of the overall quality [25], [26]. Differences in AUC and Acc among classifiers were 231 
determined using stratified 10x10-fold cross validation in the Weka Experimenter and the corrected 232 
paired t-test statistic with 95% confidence level (two tailed). This corresponded to a total of 100 233 
experimental runs per dataset and classifier. Finally, a decision list was extracted from the decision 234 
trees and interpreted in the context of a precipitation experiment. 235 

2.5 Stage 3 - Laboratory Validation 236 

2.5.1 Design of experiments 237 
Full factorial design was adopted to study the simultaneous effect of pH, salt content (M) and the 238 
oven drying temperature (°C). The treatment objective was to achieve vaterite single phase. A total 239 
of 11 experiments (also called runs) were performed by designing a full factorial with 3 centre 240 
points, 3 factors and no replicates. All terms were free from aliasing, including main effects and 2-241 
way interactions. By default, all experiments were randomized to reduce the effect of experimental 242 
bias. The independent variables (also called factors) were the pH, oven temperature (°C) and ratio 243 
CO3/Ca (M). Their levels low (-1), middle (0) and high (1) are the following: pH (8.7 – 9.3 – 10.0), 244 
oven temperature (30 – 40 – 50 °C), and CO3/Ca (3 – 6 – 9). The polymorphic abundance of vaterite 245 
𝑅𝑅𝑉𝑉𝑉𝑉𝑉𝑉 (0 – 100 %) was set as the main response. The following formula was used to compare the 246 
results from the different runs 247 

𝑅𝑅𝑉𝑉𝑉𝑉𝑉𝑉 =
𝑉𝑉𝑉𝑉𝑉𝑉

(𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝐻𝐻𝑇𝑇𝑇𝑇𝐻𝐻𝑇𝑇𝐻𝐻) ∙ 100 (1) 

 248 

where 𝑉𝑉𝑉𝑉𝑉𝑉, 𝐻𝐻𝑇𝑇𝑇𝑇𝐻𝐻𝑇𝑇𝐻𝐻 and 𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 represent the vaterite (CaCO3), sodium chloride (NaCl) and total 249 
content of a fully dried precipitate using XRD quantitative phase analysis and the Rietveld 250 
multiphase refinement method. 251 

2.5.2 Run description 252 
The experiment took place in a 2 L borosilicate glass reactor at a fixed temperature of 19 °C. The 253 
concentration of the CaCl2 salt solution was prepared using CaCl2 flakes (purity 77%). Both the CaCl2 254 
salt concentration and the concentration of the carbonate/bicarbonate solution (Na2CO3/NaHCO3) 255 
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were modified based on the run conditions. The CaCl2 concentration (0.9 L) ranged from 0.11 to 0.33 256 
M depending on the CO3/Ca values. The carbonate solution (0.9 L) was prepared using a sodium 257 
carbonate/bicarbonate mixture with different molar ratios as described by the pH value (5, 25 and 258 
55 % Na2CO3). The total carbonate concentration (Na2CO3 + NaHCO3) was kept constant and equal to 259 
1 mol/L. The experimental methodology included the adjustment of the pH of the salt solution using 260 
NaOH (6M). The amount of NaOH necessary to raise the pH depended on both the required initial 261 
pH and salt concentration. Thus, the following reactant concentrations were used in the 262 
experimental design: at low level CO3/Ca = 3, [CaCl2] = 0.33 M, pH = 8.7, 5 %molar Na2CO3, [Na2CO3] 263 
= 0.05 M, [NaHCO3] = 0.95 M; at middle level CO3/Ca = 6, [CaCl2] = 0.17 M, pH = 9.3, 25 %molar 264 
Na2CO3, [Na2CO3] = 0.25 M, [NaHCO3] = 0.75 M; and at high level CO3/Ca = 9, [CaCl2] = 0.11 M, pH = 265 
10.0, 55 %molar Na2CO3, [Na2CO3] = 0.55 M, [NaHCO3] = 0.45 M. 266 

Both, carbonate and salt solutions were simultaneously added to the reactor at a constant rate of 267 
400 rpm using two 323Du Watson Marlow pumps. Vigorous stirring was provided during the 268 
duration of the run. After a contact time of 4 min, the solids from the reactive suspension were 269 
quenched by vacuum filtration and washed with water several times. Then, they were immediately 270 
dried overnight in an oven at different temperatures. A Memmert’s universal oven UF110 was used. 271 
Air circulation inside the oven was constant by fixing the fan setting to 10% and air flap to 100%. The 272 
rate of water evaporation from the sample was a function of the fan settings and was seen to have 273 
an effect on the distribution of polymorphs. 274 

The procedure is depicted in Figure 4. Out of the four steps involved (preparation of solutions, 275 
precipitation, physical separation and drying), the separation step was the one that introduced more 276 
uncertainty in the measurements. Unlike the other three steps, where all the variables involved 277 
were well controlled, the separation was not so meticulously supervised. Potential sources of error 278 
coming from the filtration and washing step included the unequal overall filtration times and the 279 
unequal thickness of the cake relative to the volume of water added during washing. These 280 
parameters varied in an undetermined and uncontrollable manner. The variability created by this 281 
stage affected the amount of NaCl extracted from the solid. This inequality was reflected in the 282 
halite content of the centre points of the experimental design. The elimination of the NaCl 283 
contribution determined by XRD decreased the error variance and, hence, the power of the 284 
experimental design increased. Qualitative and quantitative phase analysis was done using X-ray 285 
diffraction (XRD) in a Panalytical X’Pert Powder diffractometer and the Rietveld multiphase 286 
refinement method to determine phase abundance. 287 

 288 

 289 
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 290 

Figure 3 Lab experimental set up in the synthesis of vaterite CaCO3 polymorph 291 

2.5.3 X-ray Diffraction Analysis 292 
X-ray diffraction was carried out using a Malvern Panalytical XPert Powder Diffractometer. The 293 
samples were placed into sample holders prepared such that a smooth powder surface was 294 
produced. The samples were then placed into the diffractometer where they were subject x-rays. 295 
The x-rays were produced from a copper radiation source with Kα wavelength of 1.54 ˚A. The angle 296 
between radiation source and detector continually increased with time from 5◦2Θ to 60◦2Θ. Analysis 297 
of the resulting patterns was conducted using the HighScore Plus which allowed for phase 298 
identification and Rietveld refinement of the XRD diffractograms. To prepare the diffractograms for 299 
Rietveld refinement, the background noise was removed in HighScore Plus, all phases were 300 
identified by matching each peak to a dataset from the Open Crystalography Database that had a 301 
high match score in the software. The Rietveld refinement was then run, which uses a least squares 302 
method to quantify the contribution from each dataset to the provided diffractogram and rank the 303 
contribution of each to the peaks. 304 

2.6 Software  305 
Data preprocessing was performed in IBM SPSS Statistics version 24 (missing data analysis), Minitab 306 
17.1.0 and Rattle version 5.1.0, a free graphical interface for data science with R (data exploration, 307 
discretization and design of experiments). Waikato analysis for knowledge environment (Weka 308 
version 3.8.1) [27] was used as data mining software to assist the decision tree model construction 309 
and evaluation process.  310 
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3 Results 311 

3.1 Secondary Data Analysis 312 
The main idea behind the meta-analysis was to describe under which experimental conditions a 313 
researcher is most likely to find a particular polymorph such as vaterite after the reactive 314 
crystallization process. Furthermore, the meta-analysis was as well used to indicate which of the 315 
studied parameters were more relevant for the classification, and therefore able to play a greater 316 
role during precipitation.  317 

3.1.1 Preprocessing & EMA 318 
This section describe the application of the previous steps to the modelling process, including 319 
discretization, missing values treatment and data exploration. An attribute selection was included 320 
here as exploratory tool but is also part of the modelling stage. 321 

• Discretization  322 

A categorical attribute with 4 groups was created using the numeric time attribute, representing the 323 
precipitation contact time. The following 4 classes were built during the time discretization using 324 
quantile binning (Bins [min]): low (0.07 – 30), medium (30 – 120) high (120 – 720) and very high (720 325 
– 3300). In general, attribute transformations can be accomplished in different ways: normalization 326 
(standardize), discretization, principal components, among others [5]. With regards to discretization, 327 
the transformation of a numerical attribute into categories can be done in two main ways: using 328 
equal-width bins and using equal-frequency binning.  Overall, the best approach isn’t obvious since 329 
discretization is data dependent, so the most suitable discretization technique was determined 330 
experimentally. Although some information might be lost during the discretization process, binning 331 
is useful in that it helps to simplify the models [28]. To test the effect of discretization the 332 
classification was performed with the original and discretized time attribute. Better classification 333 
results were obtained with the original attribute (data not shown). 334 

• Missing data 335 

We followed the missing data methodology described in the help manual of IBM SPSS Statistics 336 
software but the analysis was not included in the article. The following numeric attributes were 337 
discarded prior to the modelling as more than 50% of their values were missing: Size (nm), Rate 338 
(ml/min), Yield (%), amount of Mg in the polymorph (%). Regarding the variables under study in the 339 
vaterite dataset, there were 18 variables with no missing values (FstPhase, PolType, SynRoute, 340 
Feeding, Ca_M, Mg_M, CO3_M, HCO3_M, volume, Mg_Ca, Mg_Pct, CO3_Ca, tempRe, tempOv, time, 341 
mixing, VAT, MIX) and only pH was included in the analysis and had missing values.  The analysis of 342 
missing data was performed to describe patterns of missing values using a tabulated patterns table, 343 
assess if the values were missing at random (Little’s MCAR test) and finally decide if a missing values 344 
multiple imputation method was required. The pattern of incomplete pH data was analysed to 345 
determine if there was randomness in the way the data was missing. There was no systematic 346 
difference between the instances with missing and nonmissing observations. No multiple imputation 347 
was applied. The pH of the initial solution is by far the most important operational variable in the 348 
control of CaCO3 polymorphism. This is a statement that is not demonstrated in this paper as it 349 
focuses only on the vaterite dataset rather than in the bulk of the compiled cases. For this reason, 350 
the pH was included in all the studies despite the fact that it contained a substantial amount of 351 
missing values (55 %). 352 

• Exploratory Meta-Analysis 353 
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This section describes some of the information contained in the dataset using descriptive statistics. 354 
The box plot distribution of several attributes by the VAT class values is shown in Figure 6 and the 355 
density plot distribution of each predictor by the target in Figure 7. This last figure corresponds to a 356 
histogram that used kernel smoothing to flatten the noise. The distribution of the categorical 357 
attribute – the feeding (i.e. the order of addition of the reactants) – was performed using bar charts 358 
(Figure 5). Some cases were identified as outliers at this early stage and deleted from the dataset 359 
(e.g. time > 1440 min). 360 

Once the dataset was built something became apparent; the number of experiments where vaterite 361 
was synthesized in single form was much lower than the number of experiments where vaterite was 362 
present in the final product as part of a mixture. This observation was true for all the CaCO3 363 
polymorphs. The identification of sets of conditions where mixtures occurred was considered 364 
relevant because in order to synthesize pure phases, regions where mixtures occur more frequently 365 
should be avoided. A typical mixture in the vaterite dataset contained a combination of the following 366 
phases in different proportions: vaterite, calcite, aragonite and ACC. Its relative quantity depended 367 
on the initial conditions of the independent variables. The inorganic synthesis of vaterite was mainly 368 
performed in the absence of magnesium and the importance of temperature as a means to obtain 369 
purity was always highlighted in most of the documents analysed. However, vaterite was also 370 
present in the composition of mixtures whenever a salt solution contained magnesium. 371 

The most common feeding configuration was the simultaneous addition of the salt and carbonate 372 
solutions under vigorous stirring. The occurrence of vaterite, aragonite, ACC and their mixtures was 373 
seen in these three feeding modes. Based on Figure 5, the addition of the carbonate on the salt 374 
solution (CarbToSalt) could favour the appearance of mixtures as compared with the other two 375 
feeding modes and therefore be detrimental to the synthesis of single phases. Vaterite was the 376 
CaCO3 phase less likely to occur, being found only in 18% of all the collected experiments. 377 
Conversely, the phase more common in the final precipitate was calcite and mixtures occurring in 378 
54% and 43% of the cases, respectively. The presence of mixtures in the final product is a 379 
widespread issue. 380 

 381 
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 382 

Figure 4 Bar chart of the occurrence and absence of vaterite, aragonite, ACC and their mixtures in the final precipitate as a 383 
function of the different feeding combinations. 384 

The distribution of the binary target attribute: VAT describing the occurrence (Yes) and non-385 
occurrence (No) of vaterite was analysed. The median of the Yes class in the CaCl2 distribution was 386 
0.1 M, a value not statistically significant from the No class (Figure 6 – A). Experimentalists obtained 387 
a higher number of positives cases when the CaCl2 salt concentration increased. Most of the 388 
experiments were carried out at CaCl2 < 0.5 M and CO3/Ca = 1.0 (Figure 7 – A). However, the Yes 389 
class happened more often at values of  CO3/Ca lower than 1.0 (62% of the cases found below 1.0 390 
corresponded to the class Yes, as opposed to, less than half of the cases were positives when the 391 
value was set to 1.0). Regarding the oven drying temperature in Figure 6 – B, the appearance of 392 
vaterite was seen at both high and low oven drying temperatures, and the median for the 393 
occurrence of vaterite was 50 °C. The reaction temperature most commonly used for 394 
experimentation within the compiled cases was 25 °C (Figure 7 – B). Both, the occurrence and non-395 
occurrence of VAT happened at this setting. The median Mg (% molar) for the occurrence of VAT was 396 
significantly different from the median of its non-occurrence. The direction of this difference, within 397 
the compiled cases, indicates that researchers are more likely to find VAT as precipitate in the 398 
absence of magnesium. In the case of the pH, the median of the Yes class was 10.5 and most of the 399 
No values were seen at a pH value around 9.0 (Figure 7 – C). Value of pH above 10 look good 400 
because the Yes class was found more often and the No class did not happened.  401 

 402 
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 403 

Figure 5 Box plots of the distribution of (A) CaCl2 (M), and (B) tempOv; and density plot of the distribution of (C) time by the 404 
occurrence (Yes) and the non-occurrence (No) of the VAT polymorph 405 

Most experiments were carried out at contact times lower than 60 min (71% of the dataset). The 406 
appearance of vaterite was seen more often in the precipitation experiments performed under an 407 
hour as compared with longer runs (Figure 6 – C). 408 

The distribution of the numerical attributes by the multiclass target attribute: FstPhase was also 409 
considered in the exploratory analysis, although the plots are not displayed. We found that, on 410 
average, VAT was found in single form (considering purities higher than 85% or the only phase 411 
identified by the researchers) using low molar ratio CO3/Ca (median CO3_Ca = 1.0), low Mg molar 412 
content (median Mg_Pct = 0 %), high pH (median pH = 11) and high tempOv (median tempOv = 50 413 
°C). Both aragonite and vaterite showed the lowest CO3/Ca and Mg (%) median values, and highest 414 
pH and tempOv median values when compared with the other phases (Calcite, ACC and Mixtures). 415 
Comparatively single phase vaterite experiments were carried out using more concentrated CaCl2 416 
salt solutions (the median was 0.75 M) than for the synthesis of the other single phases. These 417 
results are in agreement with the median value obtained with the constructed binary target 418 
attribute VAT where the centre of CO3/Ca was 1.0, Mg content was 0 % and pH median was 10.5. 419 
Another distinctive characteristic of the vaterite synthesis (also seen in the case of the aragonite 420 
single phase) was higher temperature conditions during reaction and/or higher oven drying 421 
temperatures. The oven drying temperature required for aragonite synthesis was higher (median 422 
tempOv = 80 °C) than for vaterite precipitation (median tempOv = 50 °C). 423 
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 424 

Figure 6 Density plots of the distribution of (A) Na2CO3/CaCl2 (molar ratio), (B) TempRe, (C) pH and (D) Mg (% molar) for the 425 
two target levels 426 

It could be concluded from this section that an optimal set of experimental conditions for the 427 
synthesis of VAT would be selecting a contact time lower than 60 min, preparing a salt solution with 428 
no Mg content and a CaCl2 solution of 0.1 M, performing the reaction at ambient temperature and 429 
an initial pH of at least 10.0. Additionally, setting the oven drying temperature higher than 25 °C 430 
(median was 50 °C) would also aid the production of this anhydrous polymorph. This conclusion was 431 
included in the summary of results we provided in a previously published work [4]. 432 

• Attribute Selection 433 

A sorted list of the best attributes for the class VAT was created using attribute evaluators (Table 2). 434 
At the top of the list, the concentration of CaCl2 and the reaction temperature were the two single 435 
attributes more correlated with the class in this dataset. The metric gain ratio is the measure used 436 
by J48 to determine the splits and to select the most important features in the classification. Its 437 
value indicates the amount of information gained by selecting the attribute for the classification. In 438 
this case, values equal to 0 mean no information was gained and values close to 1 indicate that the 439 
attribute contained a high amount of information relevant for the classification. Overall, it seems 440 
that CaCl2 (M), tempRe and TempOv are the 3 most relevant attributes affecting the occurrence of 441 
VAT. Probably time could be considered as well since it appeared in 9 out of 10-fold using the 442 
scheme-dependent attribute subset evaluator. The least relevant attributes were MgCl2 and pH, this 443 
last attribute with a high amount of missing values. 444 

Table 2 Ranked list of attributes based on correlations (top left) and gain ratio (top right) calculations. Number of times the 445 
attribute appears in the subsets using attribute subset evaluators (bottom row). Select attribute panel in Weka and the 2-446 
class dataset (Test: 10-fold cross-validation) was used for these experiments. 447 

Evaluator: CorrelationAttributeEval  
Scheme: Ranker 

Evaluator:GainRatioAttributeEval  
Scheme: Ranker 

Pearson’s Corr. Avg rank Attribute Gain Ratio Avg rank Attribute 
0.259 ± 0.016 1 ± 0 tempRe 0.152 ± 0.021 1 ± 0 tempRe 
0.185 ± 0.02 2 ± 0 CaCl2 (M) 0.104 ± 0.014 2 ± 0 CaCl2 (M) 
0.123 ± 0.022 3.1 ± 0.3 tempOv 0.004  ± 0.004 3.1 ± 0.3 tempOv 
0.101 ± 0.018 3.9 ± 0.3 time 0 4.1 ± 0.3 pH 



16 
 

0.053 ± 0.021 5.1 ± 0.3 MgCl2 (M) 0  5.1 ± 0.3 MgCl2 (M) 
0.017 ± 0.015 5.9 ± 0.3 pH 0.006 ± 0.018 5.7 ± 0.9 time 
WrapperSubsetEval (J48 -C0.25 -M2) 
Search: Best First (Forward direction) 

CfsSubsetEval 
Search: Best First (Forward direction) 

Number of folds  Attribute Number of folds  Attribute 
10 (100%)  CaCl2 (M) 10 (100%)  CaCl2 (M) 
10 (100%)  tempRe 10 (100%)  tempRe 
9 (90%)  time 1 (10%)  time 
4 (40%)  pH 0 (0%)  MgCl2 (M) 
3 (30%)  tempOv  0 (0%)  tempOv 
2 (20%)  MgCl2 (M) 0 (0%)  pH 

 448 

3.1.2 Modelling & Evaluation 449 
• Simple classifiers 450 

ZeroR predicted the class value Yes with a success rate of 48.3 ± 1.1 % in the binary dataset VAT 451 
(Figure 9). This performance value can be considered as the model baseline. Any classifier built with 452 
this dataset should perform significantly better than the baseline in order to be considered useful 453 
[5]. OneR can be considered a 1-level decision tree [29]. The 1-rule classifier has one parameter 454 
called minimum bucket size (minBucketSize) that controls the discretization of the numeric 455 
attributes and thus the complexity of the rule to avoid overfitting. It indicates the minimum number 456 
of cases in a bucket. This means that when this parameter increases, the splits of the attribute are 457 
reduced and the rules are simplified. On the contrary, the lower the minBucketSize is, the higher 458 
becomes the accuracy and complexity of the rule. In Weka, the minBucketSize is also referred as -B 459 
in the corresponding configuration window. Its value was optimized using the cross-validated 460 
parameter selection (CVParameterEval). The attribute with the highest success rate was CaCl2, thus 461 
the one chosen by OneR learning scheme to produce the single rule: IF (CaCl2 ≥ 0.029 M) THEN VAT = 462 
Yes ELSE VAT = No. 463 

• J48 Decision Tree & Ensemble Methods 464 

Figure 8 shows the J48 decision tree drawn by Weka after training the model.  The run description 465 
and confusion matrix of this single experiment were added on Supporting Information. The best 466 
single predictor to start classification was the reaction temperature. Early nodes were also formed 467 
by the calcium salt concentration and the time. Decision trees can be read as If-Then decision rules 468 
by following the path from the root node to the leaves in every branch [18]. The confidence of each 469 
node is indicated by the number of correctly classified instances. The number of correctly classified 470 
instances at that leaf is indicated in parenthesis. As it can be read below in Rule 1, there were 73 471 
false positive observations among the 244 cases (repeated instances are included in the 472 
boostrapped tree) covered by the rule: “IF (Ca > 0.026 M) THEN VAT = Yes“. This rule was able to 473 
classify correctly a total of 171 instances. The higher the number of cases correctly classified in the 474 
node, the more confident we can be of the given decision. This means that for a rule to be 475 
considered better than others has to cover as many cases as possible of the class it is defining. To 476 
extract the decision list from the trees (J48 pruned and ensemble classifiers), all the rules for a single 477 
class were compiled and then each subset was ranked by its success (from higher to lower accuracy). 478 
Some of the rules with a support greater than 30 correctly classified instances are shown below in 479 
descending order, from the most to the least successful rule. Rules with higher error rate than the 480 
ones shown below were omitted although they also contributed to the whole classification rate (e.g. 481 
IF (tempRe > 70 °C) THEN VAT = No (11)). Some of these trees also contained duplicate rules.  482 



17 
 

 483 

IF (Ca > 0.026 M) THEN VAT = Yes (171/73)  Rule 1 

IF (tempRe ≤ 60 °C) AND (time < 100 min) AND (Mg/Ca ≤ 0.125) THEN VAT = Yes (95/25) Rule 2 

IF (20 < tempRe ≤ 40 °C) AND (0.026 < Ca ≤ 0.6 M) THEN VAT = Yes (86/18) Rule 3 

IF (19 < tempRe ≤ 40 °C) AND (Mg/Ca ≤ 0) THEN VAT = Yes (86/24) Rule 4 

IF (time > 120 min) THEN VAT = No (85/11) Rule 5 

IF (20 < tempRe ≤ 60 °C) AND (time ≤ 100 min) AND (pH > 10.2) THEN VAT = Yes (64/18) Rule 6 

IF (tempRe ≤ 60 °C) AND (time > 100 min) AND (CO3/Ca > 0.845) THEN VAT = No (36/7) Rule 7 

 484 

Some of them are very generic (e.g. IF (Ca > 0.026 M) THEN VAT = Yes (171/73)). More specific rules 485 
from the AdaBoost classifier are listed below. They include more attributes and cover less number of 486 
cases.  487 

IF (19 < tempRe ≤ 70 °C) AND (2 < time ≤ 120 min) AND (Ca > 0.016 M) AND (pH > 10.7) 

THEN VAT = Yes (33/2) 

Rule 8 

IF (19 < tempRe ≤ 25 °C) AND (time > 4 min) AND (Ca > 0.067 M) AND (Mg ≤ 0.065 M) 

THEN VAT = Yes (36/3) 

Rule 9 

 488 

 489 

Figure 7 Decision tree of Vaterite (J48 pruned C0.6 M5, size of the tree: 25, number of leaves: 13) with 163 correctly 490 
classified instances (78.7% accuracy) as shown by the Weka Explorer (single experiment) 491 

After training the model, the classifiers were evaluated using a holdout method and 10-fold cross-492 
validation. The overall model classification performace was measured in terms of its Acc (accuracy or 493 
percent of correctly classified instances) and AUC (Area under the ROC curve). The larger is this area, 494 
the better is the model [5]. In general, an ideal prediction has AUC values around 1, while a random 495 
decision will show an AUC of 0.5. The classifiers with the best performance were those having 496 
simultaneously high accuracy and high AUC. The paired t-test showed that the differences in Acc and 497 
AUC between the simple classifiers (OneR, ZeroR) and J48 were significant. ZeroR was significantly 498 
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worse than J48 and the rest of the classifiers in this dataset at the 95% confidence level. For 499 
instance, results from the Weka Experimenter indicated that the J48 pruned tree had an average 500 
accuracy rate of 73.8 ± 8.7% (10 iterations), value significantly better than ZeroR (48.3 ± 1.1%) and 501 
OneR (64.9 ± 8.6%) at the 95% confidence interval. In terms of accuracy, the model showed a 502 
significant improvement in the AUC values using stratified 10x10-fold cross validation (Figure 9).   503 

Based on Figure 9, the metalearners (boosting, bagging and random forest) outperformed J48 and all 504 
the other classifiers. They showed the greatest accuracy and largest AUC in all sets: the validation, 505 
test and lab sets. The prediction on the lab test set was good. Some models such as J48 and 506 
CfsAttributeEval performed well in the validation and test sets but failed to predict the outcome of 507 
our laboratory experiments. Having a single well-performing tree is a more advantageous result as it 508 
is easier to interpret than an ensemble of them. Random forest and bagging are less interpretable 509 
but the results from the AdaBoost classifier can be understood to some extent because the classifier 510 
consisted of just 3 decision trees (some of the rules were shown above). The excellent performance 511 
of the AdaBoost metalearner in this and other datasets could be attributed to the fact that the 512 
classification algorithm primarily reduces the bias but it is also able to reduce the variance [30]. 513 

 514 

Figure 8 Model performance evaluation (Area under ROC curve versus percent of correctly classified instances) for the 515 
vaterite dataset. Colour groups indicate results for the cross-validation set (green), test set (red) and lab set (blue) 516 

In conclusion, we created a classification predictive model using three metalearners that – given 517 
some initial conditions of pH, time, reaction temperature, oven drying temperature and reactant 518 
concentrations – successfully predict the presence or absence of vaterite in the final precipitate. 519 
However, this outcome tells nothing about how abundant vaterite will be in the crystalline product 520 
(will the phase be found pure or as part of a mixture?). Once a set of optimal conditions to predict 521 
the occurrence of vaterite was found, the next step in Figure 1 involves the repetition of this meta 522 
modelling procedure using another polymorphic data subset. In the case of mixtures, the decision 523 
tree is not shown but it provided with additional and complementary information to determine 524 

908070605040

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Acc (%)

AU
C

Lab
Test Set
Validation Set

R. Forest

Bagging

AdaBoost

CfsAttrEv WrapSubEv
GainRatioAttrEv

CorrAttrEv

J48

OneR

ZeroR

R. Forest

Bagging

AdaBoost

CfsAttrEv

WrapSubEv
GainRatioAttrEv

CorrAttrEv
J48

OneR

ZeroR

R. Forest
Bagging AdaBoost

CfsAttrEv
WrapSubEvGainRatioAttrEv

CorrAttrEv

J48

OneR

ZeroR



19 
 

suitable and unsuitable experimental regions. There is a certain range of attribute values that made 525 
more likely the appearance of mixtures. The avoidance of these zones contributed to the success of 526 
the laboratory validation experiments.  527 

Once the secondary data is available, the possibilities for analysis are broad, if enough time and 528 
effort is invested. For instance, we could built a model that calculate the polymorphic abundance of 529 
the precipitate using the mentioned attributes or different ones. In this case with a multilinear 530 
regression model to infer the effect of some variables on the numeric target attribute polymorphic 531 
abundance described in table 2 (PA_VAT), instead of the binary categoric attribute VAT used in the 532 
classification problem. However, this would require a completely different data processing to be 533 
able to meet all the assumptions of this type of analysis. Schmack et al. [31] provided a good 534 
example on how multivariate analysis can be coupled with a supervised learning strategy to examine 535 
relationships in a secondary dataset. The authors used a classification method with nested classes to 536 
refine the multiple regression model iteratively. The classes were built using reference tables from 537 
textbooks and expert knowledge hypotheses. The combination of multiple streams of data for meta-538 
analysis was suggested by them as a way to improve the results. 539 

3.2 Laboratory Validation 540 
The main strategy in the synthesis of CaCO3 was to promote the lifespan of ACC to minimize the 541 
production of mixtures and have a better control of polymorphism. Given the measurable influence 542 
of pH in the discrimination of single phases and the undeniable effect that time had on the 543 
precipitation of CaCO3, effort was placed in controlling these two factors as a means of obtaining 544 
better persistence of ACC without full isolation of the material. A number of single phases (NEQ, CAL, 545 
ACC and MHC) were obtained with high purity in this way which confirms the success of the concept. 546 
Accordingly, a common experiment was designed and depicted in Figure 4 where the reaction time 547 
and the reaction temperature were fixed based on previous polymorph models (data not published). 548 
The selection of attributes in the synthesis of vaterite was influenced as well by our previous studies 549 
on polymorphism. 550 

The response was sorted in descending order (Table 3) to identify what was the variable with the 551 
greatest effect on the response. Experiments where vaterite was synthesized in greater amount had 552 
in common a higher pH than the runs where the pH was at its lowest level (pH = 8.7). The effect of 553 
temperature is unclear because the design of experiments was left unfinished due to the COVID-19 554 
lockdown. Results from runs 8, 9 and 11 are missing (run 10 is a centre point). However, the 555 
AdaBoost classifier predicts the presence of vaterite in the three missing experiments. Given the 556 
current results, a combination of low temperature (30 °C) and high pH (10.0) seems to be the best 557 
setting to maximize the response. The effect of rising pH can be observed by comparing run 3 and 2. 558 
At a fixed low level of tempOv (30 °C) and molar ratio (CO3/Ca = 3 corresponding to a high level 559 
concentration of calcium), changing the pH from 8.7 (more bicarbonate than carbonate) to 10.0 560 
(more carbonate than bicarbonate) had a profound effect on the synthesis of vaterite (response 561 
changed from RVAT = 0.240 at pH = 8.7 to RVAT = 0.936 at pH = 10.0). 562 

Table 3 Full factorial results sorted by the response in descending order. The actual and predicted occurrence of vaterite 563 
calculated with the AdaBoost classifier of VAT dataset is shown 564 

Run Order CP pH tempOv (°C) CO3/Ca RVAT 
Actual 

Occurrence 

Predicted  

VAT (Yes, No) 

8 1 10.00 30 9 - ? Yes 
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9 1 10.00 50 3 - ? Yes 

10 0 9.35 40 6 - Yes Yes 

11 1 10.00 50 9 - ? Yes 

2 1 10.00 30 3 0.936 Yes Yes 

4 0 9.35 40 6 0.899 Yes Yes 

5 0 9.35 40 6 0.893 Yes Yes 

6 1 8.70 50 9 0.529 Yes Yes 

1 1 8.70 30 9 0.402 Yes Yes 

3 1 8.70 30 3 0.240 Yes Yes 

7 1 8.70 50 3 0.004 No Yes 

 565 

The interaction effect between temperature and calcium at pH = 8.7 is plotted in Figure 10 – B. 566 
There was a strong interaction between these two factors at low levels of pH. Adding too much 567 
calcium when the amount of carbonate is low (at pH = 8.7 there is more bicarbonate than carbonate 568 
in the system) produced less vaterite when the experiments were performed at high temperature 569 
(RVAT = 0 at 50 °C versus RVAT = 0.240 at 30 °C). However, when the amount of calcium was reduced 570 
then an increase in temperature produced the opposite results and the synthesis of vaterite was 571 
favoured (RVAT = 0.402 at 30 °C versus RVAT = 0.529 at 50 °C). Comparatively, having a high level of 572 
molar ratio (CO3/Ca = 9) is preferred independently of the value of the temperature (Figure 10 – B). 573 
Main effect plot are not analysed when an interaction between the variables exist. The effect of the 574 
drying temperature on the response was more pronounced at 50 °C than at 30 °C. The effect of 575 
temperature and calcium was determined only at low level of pH (pH = 8.7) because at high level (pH 576 
= 10) most of the experiments were missing (Figure 10 – A).  577 

 578 

Figure 9 (A) Cube plot of pH, temperature and reactants molar ratio. The response label is shown above the vertexes of the 579 
cube. (B) Interaction plot between temperature and calcium amount for the synthesis of vaterite; constant pH = 8.7 580 
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4 Conclusions 581 
Our first attempts to synthesize single phases of calcium carbonate started in a conventional 582 
manner, replicating One Paper at a Time (OPAT), but the outcome was difficult to control and 583 
polymorph mixtures were found often. Instead, the DDSM provided the focus that OPAT was lacking. 584 
This section summarizes the experimental insight gained from applying a data-driven approach. This 585 
mode of working could be classified under the second dimension of the scientific method: data-586 
mining-inspired induction [32]. 587 

An inflexion point in the experimental strategy occurred when graph theory concepts were applied 588 
to understand amorphous calcium carbonate (ACC) research literature. Document and keyword co-589 
occurrence networks provided an accurate representation of the structure of this topic. The co-590 
occurrence map of keywords resembled the brain of a human with the right side representing 591 
biologically produced ACC and the left side the synthetically obtained amorphous material. A paper 592 
[33] was identified at the centre of this dichotomy using the document co-citation network. The 593 
uniqueness and understanding of this knowledge structure shifted our perspective and experimental 594 
efforts. The importance of ACC was also highlighted during secondary data analysis.  595 

Results indicated that ACC was found more often in the final product than the other phases. 596 
Attributes such as time, pH and composition of reactants were statistically more significant in 597 
discriminating between the occurrence and absence of the amorphous phase. The synthesis of single 598 
phase ACC was optimal at short contact times and when the reactants were added simultaneously in 599 
the precipitation vessel. Based on the attribute selection procedure, ACC formation and persistence 600 
was more sensitive to aqueous pH than the crystalline phases. Information on the most relevant 601 
variables to discriminate between the appearance and the absence of each phase was compiled 602 
from the meta-analysis. The study included as well the identification of their optimal values (one 603 
decision tree per phase). Comparisons were drawn to identify experimental differences and 604 
similarities between the phases, and to determine the phases more sensitive to the variables with 605 
the greatest effect on ACC. 606 

From here, a hybrid operation between the single-stage route and the multi-stage route described in 607 
Section 2.2  was created. Thus, the transformation from a precursor, metastable form, to a more 608 
stable polymorph was not done in the solution where the precursor was formed like in a traditional 609 
spontaneous precipitation experiment (single-stage route). The metastable precipitate of interest 610 
was ACC and the conditions to promote its lifespan were considered as a strategy to minimize the 611 
production of mixtures and control polymorphism. Moreover, it was not isolated at an early stage of 612 
the process like in a multi-stage route. Instead the reaction was delayed until it reached the oven. 613 
ACC was persistent after the separation stage for at least two hours. Phase transformation from ACC 614 
to vaterite occurred primarily in the oven and not in the solution. XRD characterization confirmed 615 
that samples reached the oven in an amorphous state and the polymorphic transformation occurred 616 
during drying operations and not in the solution during precipitation (Figure 4). This means that the 617 
optimization of operating variables such as the rate of water evaporation from the sample as a 618 
function of the fan settings and the drying time became relevant and had a direct effect in the 619 
distribution of polymorphs. The precipitation of CaCO3 was easier to control in this way. 620 

This was a concrete example on how the knowledge from different statistical approaches was 621 
applied dynamically to shape the experimental setup and arrive to an optimum result for all the 622 
phases.  623 
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Secondary Dataset Description 
Overall, 56 different attributes were compiled in Table 1 where each attribute name, type, range, 
definition and units are described. 

The variables represented general characteristics of the final precipitate such as the identity of the 
polymorph (FstPhase), its molecular water content (PolType), its polymorphic abundance (%), the 
CaCO3 precipitated yield (%), the amount of Mg (molar %) contained in the first phase and the mean 
particle size (nm).  

The presence and absence of single phases (CAL, ARG, ACC, MHC, VAT…), and the presence and 
absence of mixtures were recorded as categorical variables. These binary target attributes have class 
Yes and No, corresponding to the occurrence and non-occurrence of a particular polymorph. If the 
polymorph was identified in the solid phase, then the case was labelled as Yes, otherwise a No was 
written. The additional binary target MIX indicated if the solid was pure or more than one phase was 
formed.  

FstPhase represents a multiclass target attribute where the authors of that particular case identified 
first and second phases using XRD. The first phase is the most prominent phase when more than one 
phase were present. If abundance of the first phase is equal or greater than 85%, then the final 
precipitate was considered pure, and therefore named as ACC, CAL, ARG, MHC... Otherwise, the case 
was labelled as mixture (MIX). In this context, mixtures means that the characterized solid contained 
more than one polymorph. 

System attributes included the type of reactants (carbonate source and calcium and/or magnesium 
salts), their initial molar concentrations, solution volumes and molar ratios, the synthetic route 
(SynRoute), the reaction temperature, the oven drying temperature, the initial and final pH, the 
sampling location (Sam_Loc), the contact time (min), the stirring speed (rpm), the feeding order 
(Feeding), the mixing mode and the reactant rate of addition (ml/min).  

The exact definition of these mole ratios and percentages reads as follows: 

𝑀𝑀𝑀𝑀(%) =
[𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶2](𝑀𝑀)

[𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶2](𝑀𝑀) + [𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2](𝑀𝑀)
∙ 100 (1) 

𝑅𝑅 �𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶� � =
[𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶2](𝑀𝑀)
[𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2](𝑀𝑀)

 (2) 

𝑅𝑅 �𝐶𝐶𝑂𝑂3 𝐶𝐶𝐶𝐶� � =
[𝑁𝑁𝐶𝐶2𝐶𝐶𝑂𝑂3](𝑀𝑀) + [𝑁𝑁𝐶𝐶𝑁𝑁𝐶𝐶𝑂𝑂3](𝑀𝑀)

[𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2](𝑀𝑀)
 (3) 

where 𝑀𝑀𝑀𝑀(%) is the molar percent of magnesium in the initial salt solution (corresponds to Mg_Pct 
in Table 1), 𝑀𝑀𝑀𝑀 is the initial magnesium salt concentration (mol/L), 𝐶𝐶𝐶𝐶 is the initial calcium salt 
concentration (mol/L) and 𝐶𝐶𝑂𝑂3 is the initial carbonate concentration (mol/L). These equations 
describe bulk compositions before mixing. 𝑅𝑅(𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶⁄ ) and 𝑅𝑅(𝐶𝐶𝑂𝑂3 𝐶𝐶𝐶𝐶⁄ ) were designated as Mg_Ca 
and CO3_Ca in Table 1. Regarding the type of salt, CaCl2 and MgCl2 were the source of Ca2+ and Mg2+ 
ions in these experiments. In the case of the carbonate ions researchers varied more their approach 
using sometimes only carbonates (K2CO3, Na2CO3), only bicarbonates (NaHCO3) or a combination of 
both as initial source of carbonate ions.  
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Feeding described different ways to combine the salt and carbonate solutions at the initial stage of 
the precipitation process (simultaneous addition of both reactants, pour the salt solution on the 
carbonate solution – SaltToCarb, and the opposite arrangement – CarbToSalt). Once those reactants 
are combined, mixing and precipitation takes place. The different ways of mixing the suspension 
define the second categorical attribute called Mixing. In this case researchers have the option of 
vigorous stirring (dynamic setting), unstirred system (static) or a combination of both (first stirring 
then aging without agitation). 

The attribute SynRoute represented two different approaches followed by the experimentalists to 
carry out the CaCO3 synthesis. They were named as single-stage route and multi-stage route. The 
differences in the methodology of these two synthetic routes is described as follows: In the single-
stage route, the transformation from a precursor, metastable form, to a more stable polymorph was 
done in the same solution where the precursor was formed, just by letting the system age. In the 
case of the multi-stage route, a 2-step synthesis method was done by the experimentalist. The 
metastable precipitate is isolated at an early stage of the process, filtered, dried and stored until the 
solid is resuspended in deionized water, in its mother liquor or in another freshly-made salt solution. 
It is in this second stage where the stable form is produced. These two scenarios were considered 
independently, so the dataset was split based on these two routes. 

Table 1 Dataset description (A = 56 attributes) 

Attribute Type Range Description 
Categoric Attributes related to reactant concentration 
Ca_Salt Categoric None, CaCl2 Calcium salt 
Mg_Sal Categoric None, MgCl2 Magnesium salt 
Carbonate Categoric None, K2CO3, 

Na2CO3 
Carbonate source 

Bicarbonate Categoric None, NaHCO3 Bicarbonate source 
Numeric Attributes related to reactant concentration 
V_CaSalt Numeric 0 – 1.0 Volume of the calcium salt solution (L) 
V_MgSalt Numeric 0 – 0.5 Volume of the magnesium salt solution (L) 
V_Carb Numeric 0 – 1.2 Volume of the carbonate solution (L) 
V_Bicarb Numeric 0 – 0.5 Volume of the bicarbonate solution (L) 
Volume Numeric 0.05 – 2.0 Total volume of the solution mixture (L) 
Ca_M Numeric 0.001 – 2.0 CaCl2 initial concentration (mol/L) 
Mg_M Numeric 0 – 0.9 MgCl2 initial concentration (mol/L) 
CO3_M Numeric 0 – 2.0 Na2CO3 initial concentration (mol/L) 
HCO3_M Numeric 0 – 2.0 NaHCO3 initial concentration (mol/L) 
Mg_Ca Numeric 0 – 10.0 Initial ionic Mg2+/Ca2+ molar ratio 
Mg_Pct Numeric 0 – 91 Molar percent of Mg in the initial salt solution 
CO3_Ca Numeric 0 – 13.3 Initial ionic CO3

2-/Ca2+ molar ratio 
CO3_Mg Numeric 0 – 18.0 Initial ionic CO3

2-/Mg2+ molar ratio 
Operational Categoric Attributes 
SynRoute Categoric Single-stage, 

Multi-stage 
Experiments where the experiment was performed 
in two steps (Multi-stage route) or one step (Single-
stage route) 

Pathway Categoric None, ACC, 
VAT, MHC 

Metastable precursor leading to stable form in 
multi-stage route 

Feeding Categoric CarbToSalt, 
SaltToCarb, 
Simultaneous 

Reactant addition mode 
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Mixing Categoric Static, 
Dynamic, 
Dyn_Stat 

Mixing modes: with agitation, without stirring and a 
combination of both 

Sam_Loc Categoric Bulk, Top, 
Bottom 

Sampling location in the crystallizer 

Operational Numeric Attributes 
Precursor Numeric 0 – 48 Isolated metastable form in multi-stage route (g) 
Rate Numeric 3 – 200 Feeding addition rate (ml/min) 
pH Numeric 5.2 – 12.7  Initial pH (rich case solution) 
F_pH Numeric 5.2 – 12.7 Final pH 
Var_pH Numeric -10.0 – 4.2 Variations in pH between final and initial conditions 
TempRe Numeric 5 – 100  Reaction Temperature (°C) 
TempOv Numeric 25 – 105  Oven drying temperature (°C) 
t_min Numeric 1 – 70,080 Contact time (min) 
Mixing Numeric 0 – 1000 Stirring of reactants (rpm) 
Rate Numeric 1 – 200  Rate of addition of reactants (mL/min) 
Numeric Target Attributes 
CAL_Pt, 
ARG_Pt, 
MHC_Pt, 
ACC_Pt, 
VAT_Pt, 
NQ_Pt 

Numeric 0 – 100 Polymorphic abundance (%) of calcite, aragonite, 
monohydrocalcite, vaterite, amorphous, 
nesquehonite… 

Yield Numeric 0 – 100 Total CaCO3 precipitate yield 
Mg_sld Numeric 0 – 38 Amount of Mg in the polymorph (molar %) 
Size Numeric 90 – 40,000 Mean particle size (nm) 
Categoric Target Attributes 
FstPhase Categoric VAT, CAL, 

ARG, ACC, 
MHC, NEQ, 
IKA, MIX 

Appearance of a polymorph as first phase (Vaterite, 
Calcite, Aragonite, Amorphous, Monohydrocalcite, 
Nesquehonite, Ikaite, and Mixtures) if polymorphic 
abundance at least 85%; (Multiclass target) 

PolType Categoric Hydrate, 
Anhydrous 

Polymorph type. Crystalline nature of the 
polymorph. Refers to water content (Binary target) 

ACC, CAL, 
ARG, MHC, 
MIX, MHC, 
VAT, IKA, 
NEQ, MG, 
HMG, DOL, 
LAN 

Categoric Yes, No Ocurrence or Non-Ocurrence of a polymorph in the 
final precipitate (Amorphous, Calcite, Aragonite, 
Monohydrocalcite, Mixtures, Nesquehonite, Ikaite, 
Magnesite, Hydromagnesite, Lansfordite, Dolomite, 
Northupite,…) (Binary targets) 
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Decision Tree Model 
 

=== Run information === 

Scheme:       weka.classifiers.trees.J48 -C 0.6 -M 5 

Relation:     Training-weka.filters.unsupervised.attribute.Remove-R1-2,5-6,14-16,18-
weka.filters.unsupervised.attribute.Remove-R3-5 

Instances:    207 

Attributes:   7 

              Ca_M 

              Mg_M 

              TempRe 

              TempOv 

              pH 

              time 

              VAT 

Test mode:    10-fold cross-validation 

 

=== Classifier model (full training set) === 

J48 pruned tree 

------------------ 

TempRe <= 60 

|   Ca_M <= 0.026 

|   |   Ca_M <= 0.003: Yes (6.0/1.0) 

|   |   Ca_M > 0.003: No (35.0/4.0) 

|   Ca_M > 0.026 

|   |   time <= 120 

|   |   |   TempRe <= 20: No (10.0/4.0) 

|   |   |   TempRe > 20 

|   |   |   |   TempRe <= 40 

|   |   |   |   |   time <= 4.3 

|   |   |   |   |   |   TempRe <= 25: No (9.0/4.0) 
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|   |   |   |   |   |   TempRe > 25: Yes (6.0) 

|   |   |   |   |   time > 4.3: Yes (46.0) 

|   |   |   |   TempRe > 40 

|   |   |   |   |   Ca_M <= 0.6 

|   |   |   |   |   |   time <= 15: Yes (5.0/2.0) 

|   |   |   |   |   |   time > 15: No (9.0/4.0) 

|   |   |   |   |   Ca_M > 0.6: Yes (5.0) 

|   |   time > 120 

|   |   |   TempRe <= 40 

|   |   |   |   Mg_M <= 0.054: Yes (34.0/15.0) 

|   |   |   |   Mg_M > 0.054: No (7.0) 

|   |   |   TempRe > 40: No (5.0) 

TempRe > 60: No (30.0/3.0) 

 

Number of Leaves  :  13 

Size of the tree :  25 

 

Time taken to build model: 1.99 seconds 

 

=== Stratified cross-validation === 

=== Summary === 

Correctly Classified Instances         163               78.744  % 

Incorrectly Classified Instances        44               21.256  % 

Kappa statistic                          0.5748 

Mean absolute error                      0.2914 

Root mean squared error                  0.4078 

Relative absolute error                 58.2677 % 

Root relative squared error             81.5465 % 

Total Number of Instances              207      

 

=== Detailed Accuracy By Class === 
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                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 0.777    0.202    0.792      0.777    0.784      0.575    0.832     0.835     Yes 

                 0.798    0.223    0.783      0.798    0.790      0.575    0.832     0.774     No 

Weighted Avg.    0.787    0.213    0.788      0.787    0.787      0.575    0.832     0.804      

 

=== Confusion Matrix === 

  a  b   <-- classified as 

 80 23 |  a = Yes 

 21 83 |  b = No 
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