1,433 research outputs found

    Marriages of Mathematics and Physics: A Challenge for Biology

    Get PDF
    The human attempts to access, measure and organize physical phenomena have led to a manifold construction of mathematical and physical spaces. We will survey the evolution of geometries from Euclid to the Algebraic Geometry of the 20th century. The role of Persian/Arabic Algebra in this transition and its Western symbolic development is emphasized. In this relation, we will also discuss changes in the ontological attitudes toward mathematics and its applications. Historically, the encounter of geometric and algebraic perspectives enriched the mathematical practices and their foundations. Yet, the collapse of Euclidean certitudes, of over 2300 years, and the crisis in the mathematical analysis of the 19th century, led to the exclusion of “geometric judgments” from the foundations of Mathematics. After the success and the limits of the logico-formal analysis, it is necessary to broaden our foundational tools and re-examine the interactions with natural sciences. In particular, the way the geometric and algebraic approaches organize knowledge is analyzed as a cross-disciplinary and cross-cultural issue and will be examined in Mathematical Physics and Biology. We finally discuss how the current notions of mathematical (phase) “space” should be revisited for the purposes of life sciences

    Diagrammatic Reasoning and Modelling in the Imagination: The Secret Weapons of the Scientific Revolution

    Get PDF
    Just before the Scientific Revolution, there was a "Mathematical Revolution", heavily based on geometrical and machine diagrams. The "faculty of imagination" (now called scientific visualization) was developed to allow 3D understanding of planetary motion, human anatomy and the workings of machines. 1543 saw the publication of the heavily geometrical work of Copernicus and Vesalius, as well as the first Italian translation of Euclid

    A comparison of VLSI architectures for time and transform domain decoding of Reed-Solomon codes

    Get PDF
    It is well known that the Euclidean algorithm or its equivalent, continued fractions, can be used to find the error locator polynomial needed to decode a Reed-Solomon (RS) code. It is shown that this algorithm can be used for both time and transform domain decoding by replacing its initial conditions with the Forney syndromes and the erasure locator polynomial. By this means both the errata locator polynomial and the errate evaluator polynomial can be obtained with the Euclidean algorithm. With these ideas, both time and transform domain Reed-Solomon decoders for correcting errors and erasures are simplified and compared. As a consequence, the architectures of Reed-Solomon decoders for correcting both errors and erasures can be made more modular, regular, simple, and naturally suitable for VLSI implementation

    Cognitive Computation sans Representation

    Get PDF
    The Computational Theory of Mind (CTM) holds that cognitive processes are essentially computational, and hence computation provides the scientific key to explaining mentality. The Representational Theory of Mind (RTM) holds that representational content is the key feature in distinguishing mental from non-mental systems. I argue that there is a deep incompatibility between these two theoretical frameworks, and that the acceptance of CTM provides strong grounds for rejecting RTM. The focal point of the incompatibility is the fact that representational content is extrinsic to formal procedures as such, and the intended interpretation of syntax makes no difference to the execution of an algorithm. So the unique 'content' postulated by RTM is superfluous to the formal procedures of CTM. And once these procedures are implemented in a physical mechanism, it is exclusively the causal properties of the physical mechanism that are responsible for all aspects of the system's behaviour. So once again, postulated content is rendered superfluous. To the extent that semantic content may appear to play a role in behaviour, it must be syntactically encoded within the system, and just as in a standard computational artefact, so too with the human mind/brain - it's pure syntax all the way down to the level of physical implementation. Hence 'content' is at most a convenient meta-level gloss, projected from the outside by human theorists, which itself can play no role in cognitive processing

    On Categorical Theory-Building: Beyond the Formal

    Get PDF
    I propose a notion of theory motivated by Category theory.Comment: 28 pages, no image

    Axiomatic Structure and the Method of Analysis: Shifting Styles in the History of Mathematics

    Get PDF
    This article surveys the different views of mathematical methodology that occurred from ancient Greek times through the early modern period up until its codification around 1900. After summarizing the axiomatic approach advocated by Aristotle and implemented in mathematics by Euclid, the talk explores the character of analysis in ancient Greek times, its development into a symbolic algebra by Viete and Descartes, and its expansion into a calculus of fluxions and differentials by Newton and Leibniz. The article concludes by touching on the recovery and transformation of the deductive ideal for mathematics by Pasch, Peano, and Hilbert during the late nineteenth and early twentieth centuries
    corecore