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On Categorical Theory-Building: Beyond the Formal 

 

Abstract:  

Formal Axiomatic method as exemplified in Hilbert’s Grundlagen der Geometrie is based on a 

structuralist vision of mathematics and science according to which theories and objects of these 

theories are to be construed “up to isomorphism”. This structuralist approach is tightly linked with the 

idea of making Set theory into foundations of mathematics. Category theory suggests a generalisation 

of Formal Axiomatic method, which amounts to construing objects and theories “up to general 

morphism” rather than up to isomorphism. It is shown that this category-theoretic method of theory-

building better fits mathematical and scientific practice. Moreover so since the requirement of being 

determined up to isomorphism (i.e. categoricity in the usual model-theoretic sense) turns to be 

unrealistic in many important cases. The category-theoretic approach advocated in this paper suggests 

an essential revision of the structuralist philosophy of mathematics and science. It is argued that a 

category should be viewed as a far-reaching generalisation of the notion of structure rather than a 

particular kind of structure.  Finally, I compare formalisation and categorification as two alternative 

epistemic strategies.        

 

1. Introduction: Languages, Foundations and Reification of Concepts 

The term "language" is colloquially used in mathematics to refer to a theory, which grasps 

common features of a large range (or even all) of other mathematical theories and so can 

serve as a unifying conceptual framework for these theories. "Set-theoretic language" is a case 

in point. The systematic work of translation of the whole of mathematics into the set-theoretic 

language has been endeavoured in 20-th century by a group of mathematicians under the 

collective name of Nicolas Bourbaki.  Bourbakist mathematics proved successful both in 

research and higher education (albeit not in the school math education) and is practised until 

today at mathematical departments worldwide.   

The project of Bourbaki as well as other attempts to do mathematics "set-theoretically" should 

be definitely distinguished from the project of reduction of mathematics to set theory 

defended by Quine and some other philosophers. This latter project is based on the claim that 

all true mathematical propositions are deducible from axioms of Zermelo-Frenkael set theory 

with Choice (ZFC) or another appropriate system of axioms for sets, so basically all the 

mathematics is  set theory. A working mathematician usually sees this claim as an example of 

philosophical absurdity on a par with Zeno's claim that there is no motion, and Bourbaki 

never tried to put it forward. Actually Bourbaki used set theory (more precisely their own 
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version of axiomatic theory of sets) for doing mathematics in very much the same way in 

which classical first-order logic is used for doing axiomatic theories like ZFC. In other words 

Bourbaki made set theory a "part of their logic", and then developed specific mathematical 

theories stipulating new axioms expressed in this extended language. According to the 

philosophical view just mentioned all Bourbaki's proofs are nevertheless translatable into 

deductions from axioms of set theory. I shall not go for pros and contras about this 

controversial claim here but put instead these two questions: (1)Which features of sets make 

set theory a reasonable candidate for foundations of mathematics? and (2)Which features of 

sets allow set theory to be an effective mathematical language? Although the two questions 

are mutually related they are not the same and require different answers.  

In order to answer the first question remind Hilbert's Grundlagen der Geometrie of 1899 

which provides the notion of foundation relevant to the question. Hilbert suggests to think of 

geometrical points and straight lines as of abstract "things" (of two different types) holding 

certain relations with required formal properties;  one is left free to imagine then these things 

in any way one likes or not imagine them in any particular way at all. However abstract and 

unspecific might be the notion of thing involved here one cannot avoid making certain 

assumptions about it. In order to clarify these assumptions one needs an appropriate "theory 

of things". Set theory proves appropriate for this purpose: sets provide the standard (Tarski) 

semantic for classical first-order logic and for theories axiomatised with this logic. Hence the 

idea to use set theory on a par with formal axiomatic method and the claim that mathematics 

is ultimately "about" sets.  Building of axiomatic set theories becomes then a rather tricky 

business since any such theory involves an infinite regress: in order to build an axiomatic 

theory of sets one needs to assume some (usually different) notion of set in advance for 

semantic purposes. This and other relevant problems about set theory and logic have been 

scrutinised by mathematicians and philosophers throughout 20th century. I shall not explore 

this vast issue here but I want to stress the intimate link between sets and formal axiomatic 

method just explained.  True, this method allows for building not only theories of sets but also 

theories of lines and points (plane geometries), of parts and wholes (mereologies) and of 

whatnot. However some notion of set  (or class) is anyway required by all such theories. 

Stronger technical notions of set corresponding to ZFC and other axiomatic set theories come 

about when this general requirement is further strengthened for specific mathematical needs. 

So when the notion of foundations is understood in the sense of Hilbert's Grundlagen or 

similarly the choice of set theory (rather than mereology or anything else) as foundations of 

mathematics is natural.  
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Second question requires, in my view, a very different answer. There is more than one reason 

why set theory is helpful for mathematics but perhaps the following one is the most important. 

Mathematics doesn't deal with "pure" concepts - whatever this might mean - but deals with 

concepts embodied into mathematical objects. There are different ways of such embodiment 

or reification of concepts. The most traditional one is exemplification. When Euclid wants to 

prove that all triangles have certain property P he always proceeds in the following way. He 

takes "for example" just one triangle ABC , proves that ABC has property P and then 

concludes that all triangles have this property. The conclusion is justified when the proof 

doesn't rely on any specific property S of ABC, which some other triangle A'B'C' might not 

have. This guarantees that the same proof can be applied to A'B'C'  or any other triangle. Such 

"reification through instantiation" is also widely used in today's mathematics as well. It seems 

to be fairly fundamental for mathematics as we know it through its history. 

However set theory provides another way of reifying concept. In the pre-set-theoretic 

mathematics people had among available objects particular triangles like ABC and particular 

(natural) numbers like 5 but they had no special mathematical object corresponding to the 

general concept of triangle or to the general concept of number (over and above the 

aforementioned particulars). Entities of this latter kind could be believed to exist somewhere 

on Platonic heavens but certainly not among mathematical objects. However set theory 

allowed for making such things up and treating them mathematically. Consider set T of all 

triangles (on a given plane) and set N of natural numbers. These sets are extensions of their 

corresponding concepts. They are genuine mathematical objects having certain properties 

(e.g. cardinality) and allowing for certain operations with them. In particular, N can be 

squared (the square of N is the set of all ordered number pairs) and factorised by some 

equivalence relation. Importantly T is not a triangle and N is not a natural number: the 

extension of a given concept is not an instance of this concept. But like an instance  

the extension is an embodiment of a given concept: it is an object one can play with, i.e. make 

further constructions. Obviously this second way of reification of concepts was not available 

for mathematicians until G. Cantor and his followers approved the notion of infinite set.  

One may remind Occam's Razor and wonder why having more objects is an advantage. The 

answer is this: it is an advantage as far as it leads to new non-trivial mathematics. This is 

indeed the case as far as set-theoretic mathematics is concerned. Mathematicians can be 

interested in a conceptual parsimony but hardly in an ontological parsimony. I cannot see any 

profit mathematics might get by preventing certain concepts from reification. In particular, 

since mathematical reasoning involves the notion of infinity anyway it is quite appropriate for 



 4 

this science to develop a calculus of infinities rather than keep the notion of infinity 

somewhere at the limit of the scope of the discipline without a properly mathematical 

treatment. The history of mathematics of last two centuries provides numerous examples of 

successful reification of "ideal elements" of different kinds. Think of ideal points in projective 

geometry, for example.  

 

2. Language of Categories and Categorical Foundations 

Unlike set theory category theory has been designed as a language to begin with and only 

later has been proposed as a foundation by Lawvere and his followers. The notion of category 

has been first explicitly introduced by Eilenberg and MacLane in their (1945) paper as a 

purely auxiliary device, and until works of Grothendieck and his school in late fifties, which 

made an essential use of category theory in algebraic geometry, nobody would consider this 

theory as anything more than a convenient system of notation. In his classical (1971) 

MacLane writes: 

 

Category theory starts with the observation that many properties of mathematical systems can be 

unified and simplified by a presentation with diagrams of arrows. (MacLane 1971, p.1) 

 

Such presentation is often possible because most of mathematical concepts come with a 

corresponding notion of map (otherwise called transformation or morphism) between tokens 

falling under a given concept. For example, maps between sets are functions, maps between 

topological spaces are continuous transformations, maps between groups are group 

homomorphisms. Such maps are composable in the usual way corresponding to the common 

intuition behind the notion of transformation. The mathematical notion of category makes this 

common intuition explicit assuming associativity of composition of maps and existence of 

identity map for each object. Using the "language of arrows" we may think of, say, natural 

numbers, not just as of "bare set" N = {0, 1, 2, 3, ...} but as a category where numbers are 

provided with succession maps: 

 

0 --> 1 --> 2 --> 3 --> ... 

 

Identifying number n with isomorphism classes of sets having exactly n elements and 

considering classes of maps between these sets as morphisms between numbers one gets a 

richer category comprising mexpn  different morphisms from any number n to any number m , 
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in particular nexpn morphisms to each number n to itself n! of which are isomorphisms. All 

these notions can be rather easily cooked set-theoretically; in more involved constructions 

such a set-theoretic regression is also often (but not always) possible but the advantage of 

using the language of arrows can be much more important. I shall not talk about specific 

mathematical matters here but remark that category theory like set theory allowed for 

reification of certain concepts which earlier could not be reified. Consider the concept of set 

for example. The extension S of this concept is the set of all sets. That S turns to be a 

contradictory notion is a part of the problem but not yet the whole problem (notice that the 

notion of infinite set before Cantor was believed to be contradicory too). Another part of the 

problem is that S doesn't have interesting properties to be studied and apparently doesn't allow 

for further non-trivial constructions. However as far as all sets are taken together with all 

maps between them the situation changes. The category of sets Set does have interesting 

specific properties distinguishing it from other categories and also allows for non-trivial 

constructions (like that of topos). This clearly shows that Set is a better embodiment of the 

general concept of set than S. The situation is similar in the case of the concept of group, 

topological space and many others (see paragraph 6 below). So category theory allows for 

reification of concepts when set theory doesn't.  

However useful category theory might be what has been said so far has no bearing on the 

problem of foundations. One may assume standard set-theoretic foundations and then 

construe the language of categories upon it. But why not to think (in particular to think about 

sets) category-theoretically to start with? The first systematic attempts of this kind has been 

made by Lawvere in his thesis of 1963 and papers of 1964 and 1966 based on this thesis. In 

these works Lawvere introduced categories using formal axiomatic method just like Zermelo 

and Fraenkel did this with sets. This amounts to the following: objects and morphisms are 

taken as primitives objects holding three primitive relations with intended meaning "domain 

of", "codomain of", and "composition of" plus the identity relation. Categorical objects and 

categorical morphisms are treated as belonging to the same type since every categorical object 

is formally identified with its identity morphism. Lawvere himself avoids speaking about 

objects and relations in this context taking first purely syntactical viewpoint and after listing 

the appropriate axioms saying: 

 

By a category we of course understand (intuitively) any structure which is an interpretation of the 

elementary theory of abstract categories ... (1966, p.4) 
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In his (1964) Lawvere adjoins to his axiomatic category theory a number of additional axioms 

making an abstract category "into" the category of sets so that 

 

There is essentially only one category which satisfies these ... axioms ... , namely the category S of 

sets and mappings. (1964, p. 1506)   

 

Remind that in order to use set theory as foundations one needs "abstract" sets rather than 

"concrete" sets like sets of points, numbers, etc. What these abstract sets are sets of? Cantor's 

answer is the following: abstract sets are sets of "pure units" ("lauter Einsen"). Another 

answer has been later given by Zermelo: abstract sets are sets of sets. This latter answer is 

obviously more economical conceptually. For a similar reason Lawvere put forward a theory 

of categories of categories (but not just a general theory of "concrete" categories like 

categories of sets, groups, etc...) and suggested it as foundations of mathematics (Lawvere 

1966).   

While in these early papers Lawvere sticks to formal axiomatic method and the corresponding 

notion of foundations in his more recent paper of 2003 this author takes a different approach 

and opts for a different notion of foundations understood  

 

... in a common-sense way rather than in the speculative way of the Bolzano-Frege-Peano-Russell 

tradition.  

 

This change of Lawvere's view seems me remarkable. The intimate link between sets and 

formal axiomatic method stressed in the previous paragraph suggests that sets cannot be 

replaced in their foundational role by categories or anything else unless one continue to use 

this method and applies the corresponding notion of foundation. This, in my view, explains 

why the idea of making categories into foundations finally led Lawvere to the refusal from the 

formal method. But Lawvere's reference to common sense hardly solve the problem either. To 

get rid of  "speculative foundations" one needs a new method of theory-building. In his (2003) 

Lawvere doesn't aim at general solution of this problem but gives a concrete example of how 

categorical foundations may look like.  The principle aim of my paper is to describe a general 

method of theory-building suggested by category theory. I shall call this new method 

categorical and distinguish it from formal method. Formal views on mathematics and science 

are usually opposed to more traditional views according to which mathematics and sciences 

always assume certain "substances" like "number" or "magnitude" as their subject-matters. In 
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today's philosophy of mathematics formal view is associated with mathematical structuralism. 

I say that categorical method goes beyond formal method (and beyond structuralism) in order 

to stress that my proposal has nothing to do with the traditional substantialism. As we shall 

see the mathematical notion of category suggests something genuinely new with respect to the 

traditional concepts of form and substance.      

The rest of the paper is organised as follows. In the next section I stress a distinctive feature of 

formal axiomatic method (seen against traditional axiomatic method), which concerns the 

notion of interpretation  relevant to mathematics. Then I argue that formal axiomatic method 

doesn't provide an adequate treatment of mathematical interpretation and introduce the notion 

of categorical method which does this. Then I analyse some logical aspects of categorical 

method and conclude with general epistemological arguments in its favour. 

 

 

 

3. Formal Axiomatic Method in the Nutshell 

A today's mathematical student can read in various textbooks that formal axiomatic method 

invented by Hilbert is nothing but a perfectioned version of the traditional axiomatic method 

known since Euclid. True, Hilbert certainly had Euclid's Elements in mind writing his 

Grundlagen, so his method can be rightly seen as a modification of Euclid's. However I don't 

think that the description of this modification as perfectioning sheds a lot of light on it. To see 

clearly what is specific for formal axiomatic method as distinguished from more traditional 

versions of axiomatic method a historical regression seems me helpful. Soon after the 

publication of Hilbert's Grundlagen in 1899 Frege sent Hilbert a letter (the precise date is 

missing) containing a severe criticism of Hilbert's approach. Frege's had the following 

traditional understanding of axiomatic method in mind. A given theory starts with axioms, 

which are truths taken for granted. These non-demonstrable truths are truths about certain 

objects. The theory proceeds with inferences from the axioms made according rules of 

inference, which must be also assumed. As a matter of course for any given theory meanings 

of all terms used in its axioms and further inferences must be unequivocally fixed once and 

for all. This general epistemological view dating back to Aristotle has been recently called 

classical model of science (Jong&Betti, forthcoming).    

Frege pointed to Hilbert that his Grundlagen falls short of meeting the requirements just 

mentioned and in particular the unequivocality requirement. Here is a quotation from Hilbert's 

reply to Frege where Hilbert explains his new method in the nutshell: 
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You say that my concepts, e.g. "point", "between", are not unequivocally fixed <...>. But surely it is 

self-evident that every theory is merely a framework or schema of concepts together with their 

necessary relations to one another, and that basic elements can be construed as one pleases. If I think 

of my points as some system or other of things, e.g. the system of love, of law, or of chimney sweeps 

<...> and then conceive of all my axioms as relations between these things, then my theorems, e.g. the 

Pythagorean one, will hold of these things as well. In other words, each and every theory can always 

be applied to infinitely many systems of basic elements. For one merely has to apply a univocal and 

reversible one-to-one transformation and stipulate that the axioms for the transformed things be 

correspondingly similar. Indeed this is frequently applied, for example in the principle of duality, etc. 

(quoted by Frege 1971, p.13, italic mine). 

 

Since a point is allowed to "be" (or to "be thought of as") a "system of love and chimney 

sweeps" (or a beer mug according to another popular Hilbert's saying) - and all this within one 

and the same theory  - Frege's notion of axiomatic method is certainly no longer relevant. But 

let's look for a serious mathematical reason behind Hilbert's colourful rhetoric. In the end of 

the quotation Hilbert refers to the duality principle in projective geometry. Given a true 

proposition of this theory, which involves straight lines and points, one may formally 

exchange terms "line" and "point" and get another true proposition. (This doesn't reduce to the 

trivial remark that one may call lines "points" and call points "lines" without changing the 

given theoretical structure since the original proposition remains true as it stands.) This 

suggests the following idea: a given mathematical object can be occasionally "thought of" or 

"interpreted" as another mathematical object. In particular in projective geometry one may 

"think of lines as points and think of points as lines". Such a liberal treatment of mathematical 

objects is common in today's mathematics. In the end of 19th century it was not yet common 

but a number of important examples were already around (I elaborate on one such example in 

the next section). Hilbert's Grundlagen provides a justification for this apparently careless 

conceptual game. The problem Hilbert addressed can be formulated as follows: How to 

construe a mathematical concept, which can be occasionally "interpreted" as another 

concept?; How to formulate a theory in which basic concepts are defined only "up to 

interpretation"? Hilbert's answer is roughly this. One should first conceive of mathematical 

objects as bare "things" (possibly of different types) standing in certain relations to each other, 

and then describe these relations stipulating their formal properties as axioms. Any "system of 

things", which hold relations satisfying the axioms would be a model of the theory.  
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As Hilbert makes it explicit in the quoted passage he thinks about re-interpretations of 

theories as "reversible one-to-one transformations", i.e. as isomorphisms. Hilbert's clearness 

often absent in later expositions of formal method allows one to see its limits: mutual 

interpretations of mathematical theories are, generally, not reversible. To build a theory "up to 

isomorphism" is not the same thing as to build a theory "up to interpretation". For 

interpretations are, generally, not isomorphisms. Let me now demonstrate this fact using a 

historical example, which was already available to Hilbert.  

 

4. Irreversible Interpretations 

Non-Euclidean geometries emerged in mathematics of 19th century as a result of at least two 

different developments. The first started in Ancient times and culminated with (Bolyai 1832) 

and (Lobachevsky 1837). These mathematicians like their predecessors tried to prove the 5-th 

Postulate of Euclid's Elements (the "Axiom of Parallels") by getting a contradiction from its 

negations but at certain point changed their attitude and came to a conviction that they were 

exploring a new vast territory rather than approaching the desired dead end. The second line 

of development, which I associate with the names of Gauss and Riemann, was relatively 

recent. Gauss had a genuinely new insight on the old "problem of parallels" guessing a link 

with geometry of curve surfaces. This allowed his pupil Riemann to build a new generalised 

concept of geometrical space (Riemanean manifold), which still serves us as the best 

mathematical description of the physical space-time (in General Relativity).  

The two lines of development were brought together by Beltrami in his two prominent papers 

(1868) and  (1868-69). Anachronistically speaking, in his Saggio of 1868 Beltrami gave a 3D 

Euclidean model of plane Lobachevskian geometry. More precisely it was only a partical 

model where finite segments of geodesics of a surface named by Beltrami pseudo-sphere 

represented straight line segments of Lobachevskian plane. But Beltrami didn't have the 

notions of formal theory and model in mind. He first thought he discovered what the 

Lobachevskian plane was indeed: he believed it was the pseudo-sphere. However this 

conclusion was not quite satisfactory even in Beltrami's own eyes. He didn't notice that his 

model for plane Lobachevskian gometry was only partial (this was first noticed by Helmholz 

in 1870, see Kline 1972) but he saw that Lobachevskian 3D geometry couldn't be treated in 

the same way. So he looked for a better solution. He found it after reading Riemann's (1854) 

and presented in his Teoria of 1869: Lobachevskian space is a Riemanean manifold of 

constant negative curvature. This holds for spaces of any number of dimensions.  



 10 

The latter solution apparently makes the talk of interpretation no longer necessary. Let's 

however see how the result of Saggio looks from the point of view of Teoria: a 2-manifold of 

constant negative curvature is partially embeddable into 3D Euclidean space (which is another 

Riemanean manifold). So we have here two manifolds and a map, which can still be thought 

of as interpretation as suggested by Saggio. The point I want to stress is that this map is not an 

isomorphism, it is not reversible. It restricts to an isomorphism (a part of Lobachevskian plane 

is isomorphic to a part of Euclidean space) but the whole construction cannot be conceived on 

this restricted basis alone: the map in question is a map between two spaces (manifolds) but 

not between their "parts". As a surface in Euclidean space the pseudo-sphere cannot be 

"carved out" of this space. One may remark that we are talking about a map between spaces 

(manifolds) but not about an interpretation between theories, and so this example is not quite 

relevant to the issue discussed in the previous section. But it is obvious that however the 

notion of theory is construed in this case the situation remains asymmetric: while 

Lobachevskian plane geometry can (modulo needed reservations) be explained in or 

"translated into" terms of Euclidean 3D geometry the converse is not the case. Observe that 

the mere existence of interpretation f :A-->B of theory A in terms of another theory B and a 

backward interpretation g:B-->A is not sufficient for considering f as reversible:  f  and g 

should "cancel" each other for it. To give a precise definition one needs to stipulate 

appropriate "identical interpretations" idA, idB (which leave A,B correspondingly "as they 

are") and then require  fg=idA and gf=idB, where fg and gf denote composition interpretations 

(written here in the direct geometrical order). This standard categorical definition of 

isomorphism often allows for but doesn't require thinking of it in terms of set-theoretic 

"correspondences" between elements. Hereafter talking about isomorphisms I shall 

understand this notion in the sense of the above definition.  

A similar point can be made about arithmetical models of plane Euclidean and other 

geometries used by Hilbert in Grundlagen. Perhaps one can indeed imagine geometrical 

points as usual dots, "systems of loves" or beer mugs indiscriminately. But representation of 

points by pairs of real numbers (or pairs of elements of another appropriate algebraic field) is 

a different matter. Unlike dots and beer mugs numbers are mathematical objects on their own 

rights belonging to a different mathematical theory, namely arithmetic. "Translations" of 

geometrical theories into arithmetic used by Hilbert are obviously non-reversible: they allow 

for translation of geometrical theories into arithmetic terms but not the other way round. 

Hilbert certainly saw this. He didn't mean to say that geometry and arithmetic seen from a 

higher viewpoint turn to be the same theory; actually he considered a possibility of reduction 
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of geometry to arithmetic. Nevertheless he thought about this translation as an isomorphism, 

namely an isomorphism between basic geometrical objects and relations, one the one hand, 

and specially prepared arithmetical constructions, on the other hand. But such constructions 

obviously cannot be made outside an appropriate arithmetical theory. As far as this "target" 

arithmetical theory is wholly taken into consideration (as it must be!) the translation in 

question doesn't look like an isomorphism any longer. We see that the example of projective 

duality mentioned by Hilbert (to leave alone "systems of love, of law or of chimney sweeps") 

is special and cannot be used as a model for treating the notion of interpretation in 

mathematics in the general case.   

One may perhaps remark that the point I am making is obvious but trivial or at best merely 

technical: the categorical notion of morphism allows indeed for a better treatment of 

interpretations between theories but doesn't essentially change anything. Let me now show 

that in fact it does. What might look like a minor technical amendment suggests a revision of 

the whole idea of "formal" mathematics and formal theory-building in general. (Note 1) 

 

5. Forms, Categories and Structuralism 

Many traditional mathematical concepts have the following property: all items falling under a 

given concept are isomorphic or, in other words, are defined "up to isomorphism". I shall call 

such concepts form-concepts or simply forms. The colloquial expression "up to isomorphism" 

apparently involves a systematic ambiguity between identity and isomorphism but it doesn't 

matter here. Think about any Euclidean geometrical form (shape) like that of  circle. A circle 

allows for (Euclidean) motions and scalings. I leave aside the tricky question of whether these 

transformations preserve identities of circles or rather associate with given circles some other 

circles (see Rodin, forthcoming). I only point here to the fact that all (Euclidean) circles are 

isomorphic in the sense that for any given pair of circles there always exist a reversible 

transformation (motion, scaling or their composition) transforming one circle into the other. 

Through an appropriate modification of the class of admissible transformations one may 

modify a given form-concept. Thinking about a circle up to reversible continuous 

transformation one gets a more general topological notion of circle. Klein (1872) first put 

forward the idea of description of geometrical spaces through group-theoretic properties of 

transformations available in these spaces. This approach requires all transformations in 

question to be reversible (to be isomorphisms) for otherwise they don't form a group by 

composition.  
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For a further example consider the traditional notion of (natural) number conceived as a 

"shared form" of isomorphic finite sets. (Number n is a form shared by all sets of exactly n 

elements; any pair of such sets allows for a one-to-one correspondence between their 

elements.) The colloquial notion of "algebraic form" provides yet another class of elementary 

examples of form-concepts. Take expression like (x+y)expn. All expressions obtained from 

this one through any admissible substitution of symbols x,y, n by some other variables, 

constants or algebraic expressions are told to share the "same algebraic form". Isomorphisms 

associated with this algebraic form are such substitutions (notice the reversibility of 

substitutions). For more modern examples of form-concepts think about any concept build up 

as "structured set". Think, for example, about "the" group of plane Euclidean motions already 

mentioned. Obviously one can take as many isomorphic "copies" of this group as one likes. 

The mathematical notion of form (and the notion of group of symmetry associated with it) 

plays a major role in physics and other sciences (for a popular account see Weyl 1952).  

The above examples are so various that one might think that in fact all mathematical concepts 

are form-concepts. This view has been held by Plato who, however, made a distinction 

between mathematical forms and forms strictu sensu. In today’s philosophy of mathematics 

this view is known under the name of mathematical structuralism. Mathematical structuralism 

exists in a number of different versions but that structures are things determined up to 

isomorphism, seems to be a common assumption. Understandably Hilbert is often referred to 

as one of founding fathers of mathematical structuralism (Hellman, forthcoming).  

But the view according to which all mathematical concepts are form-concepts is obviously 

wrong. Think about the general concept of group - not any particular group like the group of 

Euclidean motions but the concept of group as such. There are certainly isomorphic groups 

but not all groups are isomorphic. So the general concept of group is not determined up to 

isomorphism. Hence it is not a form-concept. Similarly general concepts of set, natural 

number, etc. are not form-concepts.  

This sounds like a trivial point. However one may still argue that all mathematical objects are 

instances of form-concepts. However important the general concept of group might be one 

arguably doesn't need in mathematics anything like "general group" over and above all 

particular groups. Since these particular groups are all form-concepts the structuralist view 

remains plausible. But the situation can be seen differently. Notice that like in the case of any 

"particular" (that is, specified up to isomorphism) group there is a notion of transformation 

associated with the general concept of group. I mean the notion of group homomorphism (I 

shall explain it shortly). Homomorphisms are non-reversible (except when they are 
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isomorphisms!). One might say that the general concept of group is determined "up to 

homomorphism" like the group of plane Euclidean transformations (or any other particular 

group) is determined up to isomorphism. But a better way to put is this: groups with group 

homomorphisms make a category. The category of groups is evidently something "over and 

above" all particular groups that it comprises; it has properties, which cannot be detected 

through studying particular groups. Importantly the concept of category of groups is not a 

form-concept as we shall see. The same holds for the category of sets, etc.  

By analogy with form-concepts I shall speak about category-concepts. General concepts of 

sets, group, manifold, topological space or the general concept of category itself are category-

concepts. This means that items falling under such concepts and their associated 

transformations make categories (in particular all possible categories make the category of 

categories, see (Lawvere 1966)). The notion of category-concept is more general than that of 

form-concept: any form-concept is a special case of category-concept where all morphisms 

are isomorphisms.  

(Awodey 1996) and some other people argue that the notion of category is a typical example 

of structure, which appears to be a different name for (or at least a special case of) what I call 

here form. Since the general concept of category is instantiated by sets, groups, etc., etc., an 

abstract category can be colloquially called a "common conceptual form" of all these things . 

However this is misleading and, as far as one assumes the proposed understanding of the 

notion of form, simply wrong. For the categories in question are not isomorph. They can be 

mapped to each other by suitable functors but these functors are never reversible. So it is 

misleading to interpret the fact that sets, groups, etc. all make categories in the sense that all 

these thing share a "form of category". The erroneous thinking about categories as forms is, in 

my view, responsible for the infamous description of category theory as "abstract nonsense".  

 

6. Transformations Instead of Relations?  

The notion of transformation can be formulated in mathematics most easily in the case when 

transformed objects are construed a la Bourbaki as "structured sets". For "bare" ("non-

structured") sets we have the notion of set isomorphism as one-to-one correspondence 

between their elements and a more general notion of morphism between (or "transformation 

of") sets, which are called functions: each element of the domain is sent to a certain (unique) 

element of co-domain. Since two different elements of the domain can be sent to the same 

element of the codomain morphisms  (transformations) of sets are, generally speaking, non-

reversible. When a given set is equipped with a certain structure making it into a group or 
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something else the permissible transformations are those transformations of underlying sets 

(that is, functions), which are said to "preserve" the corresponding structure. For example the 

group structure on a given set is a binary operation defined for elements of this sets and 

verifying certain axioms. Given two groups G and G' construed as just explained with 

corresponding group operations + and * think about function f: G-->G'. It is said to preserve 

the group structure (and hence to be a group homomorphism) iff  

 

(GS):  f(x+y)=f(x)*f(y). 

 

When f is reversible groups G and G' are called isomorphic or "identical up to isomorphism". 

Such groups cannot be distinguished by their group-theoretic properties. However (GS) may 

hold in the non-reversible case as well. Then the colloquial talk of "preservation of structure" 

becomes rather misleading. Consider the case when G' consists of only one element 1 (such 

that 1+1=1). In this case homomorphism f "destroys" the structure of G rather than preserves 

it! A better way to put (GS) into words is to say that in the general case homomorphisms 

respect the group structure (even if they destroy it).   

Things work similarly with all "structured sets" (with different conditions amounting to 

"preservation" or "respect" of the corresponding structure). This points to an important link 

between category theory and the notion of mathematical structure (and hence with 

Mathematical Structuralism). However I see this link as historical rather than theoretic. For 

the notion of transformation in fact doesn't depend of the set-theoretic background involved in 

definitions of morphisms of groups, topological spaces and other concepts construed as 

structured sets. This is true in the case when transformations are conceived "naively" as well 

as in the case when the notion of transformation acquires a technical definition other than set-

theoretic. The notion of geometrical transformation came about long before set theory; in 

particular the notion of geometrical motion is implicit already in Euclid's Elements (think 

about Euclid's notion of congruence).  Klein in his Erlangen Program made geometrical 

transformations into foundations and treated them algebraically using the notion of (algebraic) 

group. In this latter context the notion of transformation could be hardly called naive any 

longer. Finally the notion of transformation or morphism became a basic notion of category 

theory. Although in the early days of category theory all important examples of morphisms 

were morphisms of structured sets MacLane and Eilenberg realised it from the very beginning 

that certain morphisms are not "structural" in this sense. Two basic examples of "non-

structural" categories which immediately suggest themselves are the following: (1) group 
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construed as a category with just one object and such that all its morphisms are isomorphisms; 

(2) preorder construed as a category having no more than one morphism between any 

(ordered) pair of its objects. The categories just mentioned shouldn't be confused with 

categories of "all" groups and "all" preorders correspondingly since (1) is an "individual" 

group and (2) is an "individual" preorders. But category of "all" groups and category of "all" 

preorders could be construed by taking, correspondingly, (1) and (2) as their objects.  Groups 

and preorders, of course, "are" structured sets in the sense that they can be construed as such 

things. However as we have just seen they can be also construed "purely categorically", so 

their morphisms are not supposed to "preserve" or "respect" any structure.  However trivial 

may be the translation of notions of group and preorder from the set-theoretic into the 

categorical language it clearly shows that the notion of morphism is more general than that of 

structure-preserving morphism. 

Let's now go back to formal axiomatic method. Its basic idea can be expressed by this slogan: 

describe mathematical objects in terms of formal properties of their relations. The slogan of 

categorical method reads slightly differently: describe mathematical objects in terms of 

categorical properties of their transformations. The principle assumption behind the 

categorical approach is that transformations of mathematical objects (including both 

isomorphisms and non-reversible transformations) indeed essentially characterise these 

objects.  

A comparison between the two methods suggests an analogy between relations and 

morphisms. One can say indeed that morphisms "relate" objects to each other in a way. As far 

as this claim is taken in the general philosophical sense it sounds reasonable. But it is in odds 

with the standard technical notion of relation as function sending tuples of  individuals (relata) 

to truth values. For morphism f:A-->B sending object A to object B is just another 

mathematical object, which prima facie has nothing to do with truth values. Further, in a 

given binary relation R(x,y) arguments (relata) x,y can be, generally speaking, replaced by 

some other arguments x',y' so that R(x',y') again makes sense (i.e. is true or false). This allows 

for thinking about R  as "structural relationships" (between its relata) appearing in Hellmann's 

official definition of structuralism as  

 

a view about the subject matter of mathematics according to which what matters are structural 

relationships in abstraction from the intrinsic nature of the related objects  
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But for morphism f:A-->B nothing similar is possible. The fact that object A is domain of f and 

object B is codomain of f characterises f  essentially: there is no sense in which f may survive 

replacement of A, B by some other objects A', B'. 

These observations point to a gap between the general philosophical intuition behind the 

concept of relation and the standard logical notion of relation just mentioned. The intuition 

says that morphisms are relation-like while within the standard logical formalism they should 

be treated as objects. This can be seen in Lawvere's early papers of 1964 and 1966 already 

mentioned where categories are treated as classes of morphisms with relations "domain of", 

"codomain of" and "composition of". Let me now provide a further argument showing that 

doing category theory formally (i.e. using formal axiomatic method) is not a good idea.       

    

7. Categories and Categoricity.  

As the above quote from Hilbert clearly shows he thinks of a formal theory as construed up to 

isomorphism of its interpretations. But what guaranties that a given theory like that of 

Grundlagen is indeed formal in this sense, i.e. that all its models are in fact isomorphic? The 

desired property has been called by Veblen (1904) categoricity. This term has nothing to do 

with category theory.  

When Hilbert was preparing his Grundlagen for publication he apparently didn't yet see the 

problem. He discovered it about the time of the first publication of Grundlagen. In his lecture 

Ueber den Zahlbegriff delivered in 1899 and published in 1900 Hilbert first introduced an 

"axiom of completeness" (Vollstandigkeitsaxiom) requiring from any model of a given theory 

(this time it was arithmetic) this maximal property: given model M satisfying the rest of the 

axioms one cannot obtain another model satisfying the same axioms by extending M with new 

elements. In the second and following editions of Grundlagen Hilbert used a similar axiom 

under the same name. Hilbert's Vollstandigkeitsaxiom implies categoricity (although the 

converse is obviously not the case). From the point of view of today's model theory this 

axiom looks very dubios if not plainly "wrong": Hilbert's account doesn't provide any reason 

why a model with the desired property should exist (in any appropriate sense of "exist") but 

apparently relies onto the intuition which suggests that the intended model (i.e. "usual" 

geometrical space) has this property. This is a very shaky ground indeed. The standard 

Tarskian model theory doesn't allow for a model with the required maximal property (because 

of "upward" Skolem-Lowenheim's theorem: given that a theory has an infinite model it has 

other models in higher cardinalities). So the Vollstandigkeitsaxiom turned to be incompatible 
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with later model theory. Since the notion of categoricity has been formulated by Veblen the 

idea that this property can be stipulated by a fiat has been largely abandoned. 

For the reason just explained categoricity is commonly viewed as a desired property of formal 

theories. However in 20-th century people have learnt to be tolerant to the lack of categoricity. 

For Zermelo-Frenskel axiomatic set theory (ZF), Peano Arithmetic (PA) and some other 

theories commonly viewed as important turned to be non-categorical. To preclude the right of 

these theories to be qualified as formal on this ground would apparently mean to go too far. 

To save the situation philosophers invented the notion of "intended model", that is of model 

chosen among others on an intuitive basis. Isn't this ironic that such a blunt appeal to intuition 

is made in the core of formal axiomatic method? I'm agree with F. Davey who recently argued 

that "no-one has ever been able to explain exactly what they mean by intended model". 

(FOM, 13 Oct 2006). Other people question the categoricity requirement. Asks R. Lindauer: 

"Why rule out non-standard models of 1st-Order PA? What's wrong with having other 

models? Why should we be making our model-world smaller and not larger?" (FOM, 27 Oct 

2006).  

I believe that the lack of categoricity of theories like ZF and PA is indeed a serious flaw 

because the lack of categoricity undermines the very idea of formal theory. At the same time I 

agree with Lindauer and other people who think that the pursuit of categoricity is misleading. 

These two claims might seem to contradict each other but they don't: instead of forcing 

categoricity or looking for a philosophical excuse of the lack of categoricity of formal theories 

I suggest to change the method of theory-building and the corresponding notion of theory. As 

far as non-reversible morphisms are treated on the same footing with isomorphisms the 

pursuit of categoricity has no sense any longer. Trying to describe a model of a given theory 

"up to arbitrary morphism" rather than up to isomorphism one may get a category of models 

which has "good" categorical properties making it "well-manageable". In the following 

paragraph I provide some details of how this can be achieved. As we shall see the categorical 

approach undermines the usual distinction between a (formal) theory and its models: in the 

new context a theory can be naturally seen as one of the models having this specific property 

that it "generates" all the others. This is hardly surprising given that the notion of formal 

theory (as distinguished from its models) requires categoricity in Veblen's sense.   

A great advantage of formal axiomatic method is that it provides a clear idea about the role 

and the place of logic of in theories built by this method (albeit details can always be a subject 

of philosophical discussion). Talking about categorical method as an alternative to formal 

method we cannot avoid this important issue either. In the next paragraph I shall briefly 
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review classical and formal notions of logic, and then develop a notion of categorical logic 

and show its role in categorical method of theory-building.      

 

8. Formalising Logic 

Traditionally logic is conceived as a general theory of reasoning independent of any particular 

subject matter one may reason about. On Aristotle's account logic is closely related to 

ontology. In particular, Aristotle treats the logical law of non-contradiction as a fundamental 

ontological principle, and his so-called perfect syllogism reflects the structure of entity (as 

Aristotle understands it). Logical truths are grounded upon ontological truths even if the 

former do not coincide with the latter. There is, of course, a sense in which Aristotle's logic 

could be called formal. For it captures and studies common forms shared by various 

reasonings about different matters. These forms are called logical forms; perfect syllogism is 

a typical example. However other sciences like biology proceed similarly: biology captures 

forms shared by different organisms and so brings about the notion of biological form 

(differently called "form of life" or "living form"). However biology can be hardly called a 

formal science on this ground. This shows that the notion of being formal relevant to modern 

logic is different. 

The Hilbertian notion of formal theory is that of  "framework or schema of concepts together 

with their necessary relations to one another" taken in abstraction from its possible "basic 

elements", that is, technically speaking, from its possible interpretations. Formal logic in the 

usual today's understanding of this expression is formal in the same sense. This gives the idea 

of distinction between logical syntax and logical semantics which is not found in the 

traditional logic. "Formal" means here "syntactic". As Carnap puts this 

 

The task of formalisation of any theory ... belongs to syntax, not to semantics. (1947, Preface) 

  

However there is a problem here, which make it difficult to apply the notion of formal theory 

to logic. Remind that not all terms used in axioms of Hibert's Grundlagen have variable 

meanings. Meanings of terms "and", "or", "exist" and of some others are fixed; such terms 

form the logical vocabulary of the given theory, and the (maximal) fragment of the theory 

which involves no other terms but logical can be identified with logic. So unlike geometrical 

theories themselves their underlying logic is fixed and doesn't allow for different 

interpretations. But this means that one cannot distinguish here between formal and 
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interpreted logic or between logical syntax and logical semantics. However with this latter 

distinction we  loose the modern notion of formal logic.   

Actually this notion is apparently absent in Hilbert. The idea behind his Grundlagen is to base 

mathematics in general and geometry in particular on logical rather than intuitive or other 

grounds. Discovery of non-Euclidean geometries and some other developments in 

mathematics led many people to the belief that since the traditional mathematical intuition 

proved unreliable logic remained the only firm foundations available for mathematics. (Nagel 

1939) provides a thorough historical analysis of mathematics of 19th century showing where 

this logicist view on mathematics stems from (Note 2). Hilbert's Grundlagen showed how this 

general approach can be realised in practice.  A formal theory in Hilbert's sense is a "logical 

skeleton" (or "logical form" liberally understood) shared by a class of traditional so-called 

"naive" mathematical theories. But logic itself on this account is not formal in anything like 

the same sense. Applying the notion of formal theory just given to logic one would need to 

speak of "logical skeleton of logic" which is at least unclear and at most senseless.  

Carnap and other promoters of the idea of formal (or "formalised" logic) largely disregarded 

this philosophical difficulty and applied formal or "syntactic" method to logic itself, 

introducing the nowadays standard distinction between logical syntax and logical semantics. 

Instead of saying that in formal theories of the type of Grundlagen logic is not a subject of 

interpretation these people would say that logical terms get interpreted together with non-

logical terms but unlike the latter they are always interpreted in the same way (i.e. logical 

terms are invariant under all possible interpretations). Unless the class of "all interpretations" 

is precisely determined this move seems me purely rhetorical, and if such a class is 

determined then the notion of logicicity becomes relational (dependent of the given class of 

interpretations). Anyway this doesn't solve the problem, which is the following.  

The initial hope that logic unlike geometry will always be rigidly fixed on the pain of 

absurdity turned to be futile and logic ramified into multiple systems just like earlier did 

geometry. Formalisation of logic played an important role in this development because it 

allowed one to treat systems of logic on equal footing with systems of geometry or algebraic 

systems. However since the assumption about rigidity of logic is given up the whole idea of 

formal approach (at least in Hilbert's sense) is shaken, so it becomes rather unclear what is 

meant by "formal" logic except that this kind of logic is symbolic and mathematical. What 

kind of new philosophy of logic is needed to replace Hilbert's (or Frege's) logicism in order to 

cope with these developments remains an open question. Most philosophers working today in 

logic share Hilbert's weak logicism according to which logic has to do with foundations of 
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mathematics and of other sciences. At the same time only few of them if any hold the old-

fashioned view according to which there is only one "true" system of logic. As the above 

analysis shows the two parts of the popular view are hardly compatible with each other.  

Categorical logic suggests a solution of this problem through a revision of formal axiomatic 

method and more broadly - of formal approach. In order to show this solution I shall first 

develop a speculative notion of categorical logic as a generalisation of formal logic, and then 

point to some technical developments supporting this speculative notion. 

 

9. Categorical Logic 

Both traditional Aristotelian logic and modern formal logic hinge on the notion of logical 

form. What kind of forms are logical forms is a difficult question, which I shall not now try to 

answer here. Let's see instead what happens to logic when the notion of form is upgraded to 

that of category. Remind that categories unlike forms, generally speaking, don't allow for a 

straightforward abstraction: given a class of balls one may think about them "up to 

isomorphism" and stipulate The Ball as their shared abstract form but nothing similar works 

when objects of a given class make a category. So a categorical system of logic unlike formal 

logic cannot be anything like a self-standing structure occasionally applied in this or that 

particular context. Instead it must be "internal" or "intrinsic" with respect to a given category 

playing the role of such context. This rises the question of universality of categorical logic: Is 

this indeed appropriate to give the title of logic to something, which applies to a particular 

category rather than to everything? Let me make three remarks concerning this question. First, 

nothing prevents one to conceive of "everything" as a category (rather than as a class). This 

idea is behind (Lawvere 1966) "The Category of Categories" approach. Personally I'm not 

sympathetic with this idea. Actually I consider the "local" character of categorical logic as its 

advantage rather than otherwise. The second remark is that the idea of "local" or "regional" 

logic as a notion of a system of logic designed for some specific purposes has been around 

already during few decades, and it better fits today's technical developments in logic than the 

traditional idea of the universal logic.  The third remark is that in the categorical setting the 

notion of "regional" or "local" logic can better cope with the following important objection: 

Ramification of logic brakes the rational thought into a number of incompatible domains and 

this contradicts the whole idea of rationality. The usual response to this problem is the 

suggestion to find a weak system U of universal logic such that regional logics could be seen 

as specifications of U in corresponding local contexts. Alternatively one may challenge the 

assumption about the unity of rationality on philosophical grounds. Categorical logic allows 
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for a different solution, namely it provides means for translation between different local 

logics. Such translation doesn't intervene here as a new external principle since what I call 

here local or regional logic is construed in the categorical setting in terms of morphisms, 

which can be naturally viewed as translations. One would still need, of course, some universal 

principles, namely the general principles of category theory. What makes the difference is 

this: in the categorical setting universal principles of rationality are principles of translation 

rather than formal principles imposing universal forms of reasoning indifferent to its content. 

One may argue that general principles of translation I'm talking about are themselves formal 

but this is, in my view, an abuse of the language. As far as one tries to be precise about the 

meaning of "formal" it becomes clear that the argument is wrong. Importantly categorical 

logic assumes the possibility of multiple local logics to begin with, so that no counterpart of 

the aforementioned problem about formalisation of logic arises in the categorical context.  

Let's now see how this speculative notion of categorical logic can be realised technically. 

There are several different ways to "do logic" with categories but the most relevant in the 

present context is apparently the so-called topos logic. The notion of topos is of a geometrical 

origin; it was a discovery of Lawvere that this notion can be introduced axiomatically through 

an appropriate specification of the abstract notion of category. It turns out that given a topos 

one may associate with it a logical calculus called "internal language". Then the given topos 

can be viewed as a geometric model of this calculus. However a more suggestive view on this 

situation is the converse one: the given topos has certain specific "logical properties" which 

determine its "internal logic".  This gives the idea of "reasoning in a topos"; reasonings in 

different toposes can be always compared through morphisms (functors) between these 

toposes (which can be of different sorts). Remark that the view just mentioned (colloquially 

known as "toposophy") is in odds with the usual (weak) logicism which requires to "fix logic 

first". For according to toposophy logic is an element (or perhaps an aspect) of the overall 

construction of topos, which doesn't have an epistemic priority with respect to the rest of this 

construction.  This rises anew the traditional philosophical issue about first principles. But let 

me now turn this discussion in a more technical mode.  

Technically speaking the problem is that the general idea of categorical logic doesn't provide 

by itself any clue of how it could be used for theory-building. Even if one refuses the idea of 

logical foundations of theories and tries to recover logic afterwards the problem of 

foundations still persists at least as a pedagogical problem. For no theory can be grasped at 

once but needs certain guiding mechanisms allowing one to explore it piece by piece. In 

addition any theory needs an entry (or multiple entries).  
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Let me briefly describe the idea of functorial semantics put forward in (Lawvere 1963), which 

serves these purposes. It can be viewed as a simulation of formal axiomatic method by 

categorical means. This view on functorial semantics is helpful for comparing formal and 

categorical methods.  

Instead of writing axioms with usual strings of formulas one encodes axioms into a special 

"syntactic" category T which plays the role of "formal theory". Then like in the case of 

standard semantics one takes for granted a "background category" B, which is usually taken to 

be the category of sets but can be chosen differently. Models of T are functors of the form F: 

T-->B. This construction is that it allows for different notions of model dependent one 

specific properties of functors of form F. Another remarkable fact is that under rather general 

conditions T can be embedded into a category M(T,B) of its functorial models. This 

definitely changes the whole idea of theory as a structure over and above all its possible 

models and suggests the view on a theory as "generic model" (Lawvere 1963-2004, p.19) 

which generates other models like circles and straight lines generate further constructions in 

Euclid's Elements. The functorial semantics makes it clear that the requirement of categoricity 

(in the old Veblen's sense) is as much unrealistic as unnecessary: although "good" categorical 

properties of M(T,B) are much desirable there is no good reason to require that this category 

reduces to a single object. 

 

10. Conclusion: Formalisation versus Categorification 

Lawvere's functorial semantics has been developed for a special case of algebraic theories and 

so it cannot be immediately used as a method of theory-building applicable in all areas of 

mathematics. Since then a lot of technical work have been done in related fields of categorical 

logic and categorical model theory. For a historical introduction and further references I refer 

the reader to (Bell 2005). The categorical method of theory-building is a work in progress, so 

to the date it doesn't exist in any standard form. The purpose of this non-technical paper is to 

provide this method with an appropriate epistemological background, which might motivate 

further technical work. So let me conclude with some general epistemological remarks. 

The categorical method outlined above suggests an epistemic strategy, which differs from that 

suggested by formal method. In the latter case the general epistemic strategy is to subsume 

different objects under a common form and then stipulate this form as a self-standing abstract 

object. This amounts to identifying of given objects "up to isomorphism". Here "objects" may 

stand for various mathematical constructions including whole mathematical theories, so the 

sense in which the obtained formal object is "abstract" is relational. This leads to a traditional 
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hierarchical structure of organisation of mathematical knowledge, where theories and 

concepts are subsumed under other theories and concepts, which are more abstract, more 

general and more formal. Apparently the same pattern applies at the interface between 

mathematics and the material world and is responsible for the usual qualification of 

mathematics as a formal science. This epistemic strategy I call formalisation.  

The alternative strategy of categorification is different. It is more general and in a sense more 

straightforward. Categorification amounts to taking into consideration all transformations, 

which can be described as categorical morphisms but not only reversible ones, i.e. not only 

isomorphisms. The requirement that objects and transformations in question make a category 

is much weaker than the requirement that these transformations are reversible (and so make a 

group). So formalisation is a special case of categorification. Unlike formalisation 

categorification in the general case doesn't subsume objects in question under a conceptual 

umbrella but simply links them (by mophisms) into into a whole, namely into a category. 

When objects are theories and morphisms are mutual interpretations of theories one gets a 

network of theories. Although this network might have no single "centre" it may be still 

coherent and well-manageable if it has "good" categorical properties.  

We see that categorification like formalisation serves for integration of mathematical 

knowledge. But categorification unlike formalisation doesn't bring about a hierarchical 

structure. Given that the very idea of foundations seems to imply a hierarchical structure of 

knowldge (which "starts with" foundations and then branches into various specific sub-

domains) one may wonder if categorification is compatible with it. I think that at least one 

version of the notion of foundations remains viable in a categorical context, namely the 

pedagogical one stressed by Lawvere in his (2003). I mean the notion of foundations as an 

"entry" into a theoretical network.  Such entry should exist for any theoretical network but it 

obviously needs not to be unique.  

I suggest that hierarchical structures cannot any longer serve as universal models of 

organisation of knowledge just like they cannot any longer serve as models of organisation of 

our societies. But the task of integration of knowledge into a manageable whole remains 

pertinent as ever. I believe that categorical method of theory building outlined in this paper 

can be helpful for this task. 
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Endnotes: 

(1) One might argue that I systematically confuse here two different notions of interpretation: 

(a) assignment of referents to primitive terms of a formal theory like "point" and "straight 

line"  (evaluation of logical variables) and (b) interpretation of one non-formal theory in terms 

of another non-formal theory like in the case when traditional geometrical points are 

represented by pairs of numbers. In fact in preceding paragraphs I'm talking only about (b) as 

also does Hilbert in the given quote. In the nutshell the argument, which I develop below in 

the main text is this: the idea of formal theory and of interpretation in the sense (a) assumes 

that all models of a given formal theory are mutually reversibly interpretable in the sense (b).  

But generally they are not. 

 

(2) This kind of logicism about mathematics should be distinguished from a stronger form of 

logicism aiming at reduction of mathematics to logic.  
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