467 research outputs found

    MARVELO: Wireless Virtual Network Embedding for Overlay Graphs with Loops

    Full text link
    When deploying resource-intensive signal processing applications in wireless sensor or mesh networks, distributing processing blocks over multiple nodes becomes promising. Such distributed applications need to solve the placement problem (which block to run on which node), the routing problem (which link between blocks to map on which path between nodes), and the scheduling problem (which transmission is active when). We investigate a variant where the application graph may contain feedback loops and we exploit wireless networks? inherent multicast advantage. Thus, we propose Multicast-Aware Routing for Virtual network Embedding with Loops in Overlays (MARVELO) to find efficient solutions for scheduling and routing under a detailed interference model. We cast this as a mixed integer quadratically constrained optimisation problem and provide an efficient heuristic. Simulations show that our approach handles complex scenarios quickly.Comment: 6 page

    SQPR: Stream Query Planning with Reuse

    Get PDF
    When users submit new queries to a distributed stream processing system (DSPS), a query planner must allocate physical resources, such as CPU cores, memory and network bandwidth, from a set of hosts to queries. Allocation decisions must provide the correct mix of resources required by queries, while achieving an efficient overall allocation to scale in the number of admitted queries. By exploiting overlap between queries and reusing partial results, a query planner can conserve resources but has to carry out more complex planning decisions. In this paper, we describe SQPR, a query planner that targets DSPSs in data centre environments with heterogeneous resources. SQPR models query admission, allocation and reuse as a single constrained optimisation problem and solves an approximate version to achieve scalability. It prevents individual resources from becoming bottlenecks by re-planning past allocation decisions and supports different allocation objectives. As our experimental evaluation in comparison with a state-of-the-art planner shows SQPR makes efficient resource allocation decisions, even with a high utilisation of resources, with acceptable overheads

    A Game-Theoretic Based QoS-Aware Capacity Management for Real-Time EdgeIoT Applications

    Get PDF
    More and more real-time IoT applications such as smart cities or autonomous vehicles require big data analytics with reduced latencies. However, data streams produced from distributed sensing devices may not suffice to be processed traditionally in the remote cloud due to: (i) longer Wide Area Network (WAN) latencies and (ii) limited resources held by a single Cloud. To solve this problem, a novel Software-Defined Network (SDN) based InterCloud architecture is presented for mobile edge computing environments, known as EdgeIoT. An adaptive resource capacity management approach is proposed to employ a policy-based QoS control framework using principles in coalition games with externalities. To optimise resource capacity policy, the proposed QoS management technique solves, adaptively, a lexicographic ordering bi-criteria Coalition Structure Generation (CSG) problem. It is an onerous task to guarantee in a deterministic way that a real-time EdgeIoT application satisfies low latency requirement specified in Service Level Agreements (SLA). CloudSim 4.0 toolkit is used to simulate an SDN-based InterCloud scenario, and the empirical results suggest that the proposed approach can adapt, from an operational perspective, to ensure low latency QoS for real-time EdgeIoT application instances

    Managing Distributed Cloud Applications and Infrastructure

    Get PDF
    The emergence of the Internet of Things (IoT), combined with greater heterogeneity not only online in cloud computing architectures but across the cloud-to-edge continuum, is introducing new challenges for managing applications and infrastructure across this continuum. The scale and complexity is simply so complex that it is no longer realistic for IT teams to manually foresee the potential issues and manage the dynamism and dependencies across an increasing inter-dependent chain of service provision. This Open Access Pivot explores these challenges and offers a solution for the intelligent and reliable management of physical infrastructure and the optimal placement of applications for the provision of services on distributed clouds. This book provides a conceptual reference model for reliable capacity provisioning for distributed clouds and discusses how data analytics and machine learning, application and infrastructure optimization, and simulation can deliver quality of service requirements cost-efficiently in this complex feature space. These are illustrated through a series of case studies in cloud computing, telecommunications, big data analytics, and smart cities

    Managing Distributed Cloud Applications and Infrastructure

    Get PDF
    The emergence of the Internet of Things (IoT), combined with greater heterogeneity not only online in cloud computing architectures but across the cloud-to-edge continuum, is introducing new challenges for managing applications and infrastructure across this continuum. The scale and complexity is simply so complex that it is no longer realistic for IT teams to manually foresee the potential issues and manage the dynamism and dependencies across an increasing inter-dependent chain of service provision. This Open Access Pivot explores these challenges and offers a solution for the intelligent and reliable management of physical infrastructure and the optimal placement of applications for the provision of services on distributed clouds. This book provides a conceptual reference model for reliable capacity provisioning for distributed clouds and discusses how data analytics and machine learning, application and infrastructure optimization, and simulation can deliver quality of service requirements cost-efficiently in this complex feature space. These are illustrated through a series of case studies in cloud computing, telecommunications, big data analytics, and smart cities

    On the placement of security-related Virtualised Network Functions over data center networks

    Get PDF
    Middleboxes are typically hardware-accelerated appliances such as firewalls, proxies, WAN optimizers, and NATs that play an important role in service provisioning over today's data centers. Reports show that the number of middleboxes is on par with the number of routers, and consequently represent a significant commitment from an operator's capital and operational expenditure budgets. Over the past few years, software middleboxes known as Virtual Network Functions (VNFs) are replacing the hardware appliances to reduce cost, improve the flexibility of deployment, and allow for extending network functionality in short timescales. This dissertation aims at identifying the unique characteristics of security modules implementation as VNFs in virtualised environments. We focus on the placement of the security VNFs to minimise resource usage without violating the security imposed constraints as a challenge faced by operators today who want to increase the usable capacity of their infrastructures. The work presented here, focuses on the multi-tenant environment where customised security services are provided to tenants. The services are implemented as a software module deployed as a VNF collocated with network switches to reduce overhead. Furthermore, the thesis presents a formalisation for the resource-aware placement of security VNFs and provides a constraint programming solution along with examining heuristic, meta-heuristic and near-optimal/subset-sum solutions to solve larger size problems in reduced time. The results of this work identify the unique and vital constraints of the placement of security functions. They demonstrate that the granularity of the traffic required by the security functions imposes traffic constraints that increase the resource overhead of the deployment. The work identifies the north-south traffic in data centers as the traffic designed for processing for security functions rather than east-west traffic. It asserts that the non-sharing strategy of security modules will reduce the complexity in case of the multi-tenant environment. Furthermore, the work adopts on-path deployment of security VNF traffic strategy, which is shown to reduce resources overhead compared to previous approaches

    End-to-end slices to orchestrate resources and services in the cloud-to-edge continuum

    Get PDF
    Fog computing, combined with traditional cloud computing, offers an inherently distributed infrastructure – referred to as the cloud-to-edge continuum – that can be used for the execution of low-latency and location-aware IoT services. The management of such an infrastructure is complex: resources in multiple domains need to be accessed by several tenants, while an adequate level of isolation and performance has to be guaranteed. This paper proposes the dynamic allocation of end-to-end slices to perform the orchestration of resources and services in such a scenario. These end-to-end slices require a unified resource management approach that encompasses both data centre and network resources. Currently, fog orchestration is mainly focused on the management of compute resources, likewise, the slicing domain is specifically centred solely on the creation of isolated network partitions. A unified resource orchestration strategy, able to integrate the selection, configuration and management of compute and network resources, as part of a single abstracted object, is missing. This work aims to minimise the silo-effect, and proposes end-to-end slices as the foundation for the comprehensive orchestration of compute resources, network resources, and services in the cloud-to-edge continuum, as well acting as the basis for a system implementation. The concept of the end-to-end slice is formally described via a graph-based model that allows for dynamic resource discovery, selection and mapping via different algorithms and optimisation goals; and a working system is presented as the way to build slices across multiple domains dynamically, based on that model. These are independently accessible objects that abstract resources of various providers – traded via a Marketplace – with compute slices, allocated using the bare-metal cloud approach, being interconnected to each other via the connectivity of network slices. Experiments, carried out on a real testbed, demonstrate three features of the end-to-end slices: resources can be selected, allocated and controlled in a softwarised fashion; tenants can instantiate distributed IoT services on those resources transparently; the performance of a service is absolutely not affected by the status of other slices that share the same resource infrastructure

    End-to-end slices to orchestrate resources and services in the cloud-to-edge continuum

    Get PDF
    Fog computing, combined with traditional cloud computing, offers an inherently distributed infrastructure – referred to as the cloud-to-edge continuum – that can be used for the execution of low-latency and location-aware IoT services. The management of such an infrastructure is complex: resources in multiple domains need to be accessed by several tenants, while an adequate level of isolation and performance has to be guaranteed. This paper proposes the dynamic allocation of end-to-end slices to perform the orchestration of resources and services in such a scenario. These end-to-end slices require a unified resource management approach that encompasses both data centre and network resources. Currently, fog orchestration is mainly focussed on the management of compute resources, likewise, the slicing domain is specifically centred solely on the creation of isolated network partitions. A unified resource orchestration strategy, able to integrate the selection, configuration and management of compute and network resources, as part of a single abstracted object, is missing. This work aims to minimise the silo-effect, and proposes end-to-end slices as the foundation for the comprehensive orchestration of compute resources, network resources, and services in the cloud-to-edge continuum, as well acting as the basis for a system implementation. The concept of the end-to-end slice is formally described via a graph-based model that allows for dynamic resource discovery, selection and mapping via different algorithms and optimisation goals; and a working system is presented as the way to build slices across multiple domains dynamically, based on that model. These are independently accessible objects that abstract resources of various providers – traded via a Marketplace – with compute slices, allocated using the bare-metal cloud approach, being interconnected to each other via the connectivity of network slices. Experiments, carried out on a real testbed, demonstrate three features of the end-to-end slices: resources can be selected, allocated and controlled in a softwarised fashion; tenants can instantiate distributed IoT services on those resources transparently; the performance of a service is absolutely not affected by the status of other slices that share the same resource infrastructure

    Secure Cloud-Edge Deployments, with Trust

    Get PDF
    Assessing the security level of IoT applications to be deployed to heterogeneous Cloud-Edge infrastructures operated by different providers is a non-trivial task. In this article, we present a methodology that permits to express security requirements for IoT applications, as well as infrastructure security capabilities, in a simple and declarative manner, and to automatically obtain an explainable assessment of the security level of the possible application deployments. The methodology also considers the impact of trust relations among different stakeholders using or managing Cloud-Edge infrastructures. A lifelike example is used to showcase the prototyped implementation of the methodology
    • …
    corecore