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a b s t r a c t

Fog computing, combined with traditional cloud computing, offers an inherently distributed infrastruc-
ture – referred to as the cloud-to-edge continuum – that can be used for the execution of low-latency
and location-aware IoT services. The management of such an infrastructure is complex: resources in
multiple domains need to be accessed by several tenants, while an adequate level of isolation and
performance has to be guaranteed. This paper proposes the dynamic allocation of end-to-end slices
to perform the orchestration of resources and services in such a scenario. These end-to-end slices
require a unified resource management approach that encompasses both data centre and network
resources. Currently, fog orchestration is mainly focused on the management of compute resources,
likewise, the slicing domain is specifically centred solely on the creation of isolated network partitions.
A unified resource orchestration strategy, able to integrate the selection, configuration and man-
agement of compute and network resources, as part of a single abstracted object, is missing. This
work aims to minimise the silo-effect, and proposes end-to-end slices as the foundation for the
comprehensive orchestration of compute resources, network resources, and services in the cloud-
to-edge continuum, as well acting as the basis for a system implementation. The concept of the
end-to-end slice is formally described via a graph-based model that allows for dynamic resource
discovery, selection and mapping via different algorithms and optimisation goals; and a working
system is presented as the way to build slices across multiple domains dynamically, based on that
model. These are independently accessible objects that abstract resources of various providers –
traded via a Marketplace – with compute slices, allocated using the bare-metal cloud approach, being
interconnected to each other via the connectivity of network slices. Experiments, carried out on a real
testbed, demonstrate three features of the end-to-end slices: resources can be selected, allocated and
controlled in a softwarised fashion; tenants can instantiate distributed IoT services on those resources
transparently; the performance of a service is absolutely not affected by the status of other slices that
share the same resource infrastructure.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The continuous growth and evolution of pervasive services,
biquitously accessible by their users over the Internet, has
ushed the mobile network’s capacity and capabilities to the
imits. The Internet of Things (IoT) is playing a major role in
his, as the number of IoT devices, and the amount of data
hey produce, have been increasing exponentially. It is expected
here will be 36 billion IoT devices generating 79.4 ZB of data
y 2025 [1]. Harnessing the above IoT data can help organisa-
ions develop new business models and streamline operational
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processes, thus creating more innovative products and services
across various industries [2]. As this strategy is being pursued,
mobility support, geo-distribution, as well as location awareness
and low-latency have all become important requirements that the
resource infrastructure should support.

IoT devices are usually resource-constrained and not able to
perform data computation locally, hence, IoT data are commonly
offloaded to an external processing layer. Traditional cloud com-
puting would not be efficient in this context, as the large amount
of data that need to be transferred, from the data producers to the
centralised data centres, to perform the required computation,
would incur in large round-trip delays that could ultimately affect
the users’ experience [3]. Since IoT devices are deployed at the
edge of the network, the usage of resources located in proximity
of those data sources is considered a more viable solution [4]. The

data processing can happen primarily at the edge, while the cloud
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ould only be accessed when the edge resources do not suffice.
og computing builds on this idea and extends it by combining
nd using the different layers of compute, storage and network
esources distributed across the edge and the cloud, which are
ommonly referred to as the cloud-to-edge continuum [5].
Compared to the traditional sole management of either edge

r cloud resources, this combined scenario requires the seamless
interworking of various heterogeneous resource elements, belong-
ing to the different layers of a distributed infrastructure. Fog
nodes, such as resource-constrained devices, cloudlets and micro
data centres, become all part of a resource continuum that ex-
tends up to the central cloud, whose elements are interconnected
through various network resources. When a new IoT service
instance is activated, relevant resources need to be selected from
the cloud-to-edge continuum dynamically, in order to support the
requested service functionality and to ensure the expected service
performance.

The intrinsic heterogeneity of the cloud-to-edge continuum is
exacerbated by its potential extension through multiple adminis-
trative domains [6]. Services can be built by tenants on a dispersed
set of resources offered by multiple infrastructure providers. This
raises additional challenges, as federation agreements need to
be established between providers, and inter-domain interactions
may be required after a service has been activated [7]. Moreover,
various tenants can request the deployment of diverse types
of services, with potentially orthogonal Quality of Service (QoS)
requirements, on this shared federated infrastructure. Some IoT
use cases, such as Industrial Control, Real-time Analytics, and
Artificial Intelligence (AI), certainly have more demanding perfor-
mance needs compared to other use cases. This may introduce ad-
ditional complexity, as they would benefit from service execution
within fully-isolated and highly-secure compute and networking
environments, in order to achieve the best performance and min-
imise the potential interference with other running services [8].

From all of the above considerations, it can be observed that
automating the deployment of IoT services in the cloud-to-edge
continuum is a non-trivial task. It requires the orchestration of
heterogeneous resources, from potentially different administra-
tive domains, to support the instantiation of the required service
components. Then, the service components need to be activated
on those resources, and to be configured as part of a single work-
flow. Finally, multiple service instances, belonging to different
tenants, may co-exist on the same resource infrastructure and
their expected performance has to be guaranteed, regardless of
the status of the other running services. These are all different
aspects of a broad problem, currently being investigated by many
research studies [6], and it is also the main research question
considered in this paper.

The 5G was conceived to support multi-tenant infrastructures,
i.e., to enable the execution of services with demanding and
diverse requirements – such as ultra-low latency, massive data
rate, and high-reliability – on a shared pool of resources [9].
Network slicing is a 5G key technology that builds on both Net-
work Function Virtualisation (NFV) and Software Defined Networks
(SDNs) to provide isolated service execution, and to enable the
co-existence of use cases with diverse demanding requirements
on a shared physical infrastructure [10]. Many network slicing
solutions are specifically focused on the network management
and do not define cloud slicing mechanisms [7]. When a new
network slice is created for a tenant, the network infrastructure is
dynamically partitioned and assigned exclusively to that tenant,
however, the management of the compute resources does not
follow a similar pattern. The Virtual Machines (VMs) belonging to
all the different services and tenants often share the same physi-
cal compute elements. This poses security concerns and can lead
to the problem of services impacting each other’s performance,
regardless of being mapped and executed on separate slices [11].
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Whilst those may not be issues for all the tenants, many of the
IoT services mentioned earlier may perform data-intensive pro-
cessing tasks [3]. These may not run efficiently within virtualised
computing environments, and their execution may also affect the
resource utilisation of other services running on the same physi-
cal host. Bare-metal clouds can mitigate those issues by providing
single-tenant computing systems, provisioned on-demand and
billed via a pay-per-use approach, which may become a viable
way to create compute slices. Customers can benefit from stronger
isolation than multi-tenant clouds, and could also have the free-
dom to deploy their preferred (virtual) resource management
solution, allowing a trade-off between resource manageability
and performance. For instance, the overhead of the virtualisation
layer can be minimised for critical workloads, by either using
more lightweight containerisation techniques or accessing the
bare-metal resources directly [12].

A careful analysis of the state-of-the-art on orchestration in
the cloud-to-edge continuum, network slicing, and bare-metal
clouds, highlights that relevant advance was made in those ar-
eas by separate research communities. New solutions have been
proposed to automate the allocation of resources across the cloud
and the edge [6], and to allocate isolated groups of either net-
work [13] or compute (and storage) resources [14]. However,
to the best of our knowledge, a comprehensive unified resource
management approach that combines the benefits of all these
technologies is currently missing. In an attempt to bridge the
above gap, this paper proposes the usage of end-to-end slices as
the basis of a unified, multi-tenant strategy for the orchestra-
tion of resources across multiple providers, and the automated
activation of services, in the cloud-to-edge continuum.

In the context of network slicing, the term end-to-end refers to
the orchestration of the different segments of the network infras-
tructure (e.g., access network, transport network, core network,
etc.) [15]. In this paper, it is used in a broader sense to describe a
unified approach for the orchestration of heterogeneous compute,
storage and network resources, specifically selected from the
cloud-to-edge continuum and allocated for a tenant on-demand,
according to their specific service requirements. This ensures
the adequate level of isolation and security requested by that
tenant, and can prevent the likelihood of service performance
degradation.

This end-to-end slice concept allows a separation of concerns
between the resource orchestration and the service orchestration.
The former usually refers to the process of managing and coor-
dinating the physical computational resources provided by the
underlying infrastructure to serve the applications/services [16];
service orchestration indicates the management of the life-cycle
of one or more distributed components that together deliver a
service or functionality [17]. In this work, each slice is built as
a fully-isolated set of resources, and provides an abstraction on
top of its composing distributed resource elements. A tenant can
therefore activate the required service components on each slice
transparently, with the guarantee that the service performance
will be independent of the status of the services running on other
slices. This can be achieved by each tenant even without the need
of adapting the components of their existing service orchestration
layer.

1.1. Contribution overview

The main contribution of this work is the formal definition,
the design and the implementation of the notion of end-to-end
slice, whose suitability to answer themain research question stated
earlier is assessed in this paper through a qualitative evaluation.
The slice concept presented here unifies the management of com-
pute, storage and network resources by creating on-demand, and
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nder software control, a per-tenant resource partition across the
loud-to-edge continuum, whose elements can be orchestrated
s a single abstracted entity, for the instantiation of distributed
ervices. This section will briefly explain how this resource or-
hestration approach compares to related existing solutions in the
tate-of-the-art. The discussion will be driven by the presentation
f the three features that underpin the devised idea of end-to-end

slice.
Existing work on orchestration in the cloud-to-edge contin-

uum is limited to the definition of reference architectures, with
a limited number of contributions discussing system implemen-
tations, validated via either simulations or the usage of real
testbeds [6]. Many of these systems are built via extending
existing cloud orchestration solutions towards the edge, rather
than implementing a new unified orchestration strategy. Also,
they do not consider the federation of resources between multiple
providers for the delivery of IoT services, as it usually happens
for cloud infrastructures. In this paper, a real system based on a
comprehensive orchestration technique, able to work seamlessly
across the different layers of the cloud-to-edge continuum, is pro-
posed. Resources for the slices are traded between providers us-
ing a marketplace inspired approach. Moreover, a unified model
for resources and slices, based on undirected graphs, allows
dynamic resource discovery, selection and mapping via differ-
ent algorithms, according to the desired optimisation goals. The
on-demand, software-enabled and programmable allocation of
groups of compute, storage, and network resources, selected from
the cloud-to-edge continuum, is the first feature of our slicing
approach.

Multi-tenancy capabilities are provided in multi-domain sce-
narios by many of the existing (network) slicing solutions. The
management of the various resource elements that form a slice
is delegated to each of the providers that own those resources,
via their (centralised) resource management systems. Whilst this
preserves the confidentiality and security of those providers, it
makes the overall slice management more complex, due to multi-
domain interactions required after a slice has been put in place.
As result, a slice resembles a loosely coupled set of resources
rather than a fully-manageable abstract object.

Our end-to-end slice encompasses several compute slices and
storage slices, along with network slices, as its internal constituting
elements. Each of those resource slices is built from resources,
offered by a given provider, that can be managed independently
and in full isolation of other resource slices. This is achieved
by allocating on-demand a separate instance of a Virtual Infras-
ructure Manager (VIM) for a compute (or storage) slice [11],
and an instance of a WAN Infrastructure Manager (WIM) for a
etwork slice [18]. By following this approach, the multi-domain
nterplay is somehow simplified, as the provider that initiates the
lice creation workflow will have direct management access to
he sliced resources – as if they were locally available – thanks
o the created abstractions and the dedicated management and
ontrol points. Finally, the allocated resources are all aggregated
nd exposed to a tenant as a single manageable object, which
ides the distributed nature of the underlying multi-layered fog
nfrastructure. Such transparent usage of sliced resources, offered
o a tenant via a dedicated set of abstractions, is the second
eature of our slicing solution.

Likewise bare-metal clouds, the slice-based orchestration so-
ution proposed here allows fully-isolated data centre resources
o be allocated and utilised as part of an end-to-end slice. Those
loud resources can then be combined with other types of re-
ources from different layers of the multi-provider cloud-to-edge
ontinuum. This allows the seamless interwork of private and
ublic infrastructures and can ultimately reduce the issues associ-

ted to vendor lock-in. The tenants are also allowed finer-grained
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customisation capabilities on the slice’s resources and, differently
from traditional multi-tenant clouds, are not restricted to the
usage of solutions pre-defined by a provider. Each tenant can
choose the most suitable VIM/WIM technologies for the delivery
of their services and the achievement of the desired performance.
This enables a high degree of resource isolation and can also min-
imise the likelihood of service performance degradation. Ensuring
high isolation between resources allocated to different tenants,
to support use-cases with demanding security and performance
requirements – such as large-scale compute-intensive distributed
services – is the third feature of our slicing concept.

The design and implementation of a system that supports
the setup of cloud-network slices was presented in our previ-
ous work [19]. However, the problem of ensuring full isolation
between different slices, and enabling mechanisms to map the
tenants’ service components onto the created slices automati-
cally, were not investigated there, especially in the context of the
cloud-to-edge continuum. Beyond our previous work, this paper
addresses those open challenges and makes the following novel
contributions:

• it introduces the notion of end-to-end slice and its formal
definition via a graph-based model, which is used to select
resources across the cloud-to-edge continuum (Section 3);

• it thoroughly discusses a system architecture that supports
the on-demand creation of end-to-end slices (Section 4);

• it describes the above system’s implementation and a work-
flow to allocate services transparently within fully-isolated
end-to-end slices (Section 5);

• it demonstrates the effectiveness of the proposed solution
in orchestrating resources in the cloud-to-edge continuum,
and supporting the setup of IoT services, through a new set
of experiments (Section 6).

A qualitative functional evaluation of our system shows that
end-to-end slices can be allocated on-demand, and under soft-
ware control – in a matter of seconds – on a real testbed, with
resources located across Europe and Brazil. Distributed services
can be instantiated on the slices transparently, as the tenant’s
software systems need not be aware of any of the details of
the underlying slicing, and are able to work without substantial
modification. When end-to-end slices are utilised for the deploy-
ment of compute-intensive IoT services at large-scale, our slicing
approach proves to be effective in ensuring resource isolation
and preserving the level of service performance expected by the
tenants.

2. Related work

Different research communities, standardisation groups and
vendors have worked independently on the topics of orchestration
in the cloud-to-edge continuum, network slicing and bare-metal
clouds for the past few years. Although relevant progress has been
made in each of those areas, a unified orchestration approach
that considers the intersection between these topics has not
been proposed yet, and it is the main contribution of this paper.
Existing work, related to the ideas presented in our paper, has
been reviewed and it is discussed in this section.

2.1. Cloud-to-edge continuum orchestration

The authors of [6] present a recent comprehensive investi-
gation of the current challenges and solutions in the area of
fog orchestration. According to the survey, a few papers only
present work that goes beyond the mere architectural design,
and evaluate their proposals in a simulated environment; even
less contributions describe implementations deployed on real
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estbeds. The authors of [20] describe a reference architecture of
Fog Computing Platform that targets Industrial IoT Applications.
his solution provides both service and resource orchestration; it
s based on deterministic virtualisation and networking to ensure
afety and security along with interoperability. The work [21]
s based on a centralised approach focused on resource orches-
ration, which uses deep-learning in a simulated environment
n order to adjust the resource allocation at run-time. The au-
hors of [22] discuss an approach to orchestrate the initiation of
pplications in the cloud-to-edge continuum, however, the re-
ource orchestration is somehow abstracted, as a pool of infinite
esources is considered for the cloud domains.

Differently from the actual system described in this paper,
he work in [20,21] has not produced real implementations, and
oes not consider the usage of slicing and bare-metal clouds as
art of the proposed solutions. A real solution was built and
ested as part of the work [22] but, likewise other related work
entioned above, it is different from our approach as it does not
upport the unified orchestration of network and cloud resources
cross the cloud-to-edge continuum. Even though the concept
f federation between public and private cloud providers is a
ell-known concept, a similar approach is not adopted in fog
omputing, as found from the previous analysis of the state-of-
he-art. Therefore, further investigation on the topic is desirable,
n order to achieve unified orchestration strategies able to ensure
he seamless execution of services in a federated cloud-to-edge
ontinuum of resources.

.2. Network slicing

Network slicing has gained popularity with the 5G, as it is con-
idered a key technology to facilitate the co-existence of multiple
ogical self-contained networks on a common physical infrastruc-
ure. Many standardisation activities in this area provide their
etwork slicing definitions, as it is widely discussed in recent
urveys [23–25]. The 3GPP SA2 defined a system architecture
hereby a network slice can provide on-demand customised 5G
etwork services by selecting specific control plane and user
lane network functions [26]. The ETSI ZSM ISG worked on the 5G
nd-to-end network slicing management issues, and recognised
DN and NFV as enablers for multi-tenant and multi-domain
nvironments in 5G infrastructures [27]. The IETF published the
‘Network Slicing – Revised Problem Statement’’ [28]. The ITU-T
efined slices as isolated network partitions, each represent-
ng a unit of programmable network, computation and stor-
ge resources [29]. Finally, NGMN considered a network slice
s an isolated, manageable and programmable entity that en-
bles multi-service and multi-tenancy via the combination Ser-
ice Instance Layer, Network Slice Instance Layer, and Resource
ayer [10].
The slicing initiatives related to collaborative research

rojects have been extensively analysed in [23]. They have mainly
riven the design and implementation of systems that support
ulti-service and multi-tenancy, either considering specific
egments of the network or the end-to-end multi-domain net-
ork infrastructure. Focusing on QoS management in the 5G
rchitecture, the PPP FP7 FIWARE [30], 5G-NORMA [13] and MIUR
LATINO project [31] have been working specifically towards
he realisation of orchestration algorithms for control decisions,
nd different mechanisms for subjective QoS personalisation/
ifferentiation. Projects such as 5G-Xhaul [32] and SELFNET [33]
onsidered self-healing, self-configuration and self-optimisation
apabilities of slicing for 5G networks. The work done in [34]
nd [15] defines models for the end-to-end mobile network in-
rastructure, which are used to determine the optimal placement
f network slices, using either game theory or MILP. This is similar
476
to the slice mapping problem discussed in this paper, although
our model uses compute, storage and network slices as the
building blocks of the end-to-end slices, instead of network slices
only. Moreover, our framework does not prescribe the usage of a
particular mapping algorithm, and was deployed on a real testbed
rather than in a simulated environment.

Our previous paper [7] provides a qualitative comparison of
existing work done on network slicing. Whilst the slicing as-
pects specifically related to networking and connectivity have
been extensively investigated, few of those initiatives addressed
cloud slicing and its combined usage with network slicing, espe-
cially across multiple administrative domains. The same work [7]
also identified the existence of four slicing operational modes,
and highlighted that the ordinary approach for sharing sliced
resources is based on peer-to-peer interactions between orches-
trators belonging to different providers. In contrast to the slicing
approach presented in this work, as there is no obvious concept of
slice abstraction, a slice becomes closer to a set of data structures
and APIs, rather than an end-to-end isolated, fully-manageable
object. Peer-to-peer also requires standardised interfaces and/or
adaptations to the APIs between the tenant’s OSS/BSS and the
(slice-ready) orchestrator. Finally, due to the way the sliced re-
sources are managed and exposed, this model does not allow
for the selection of the technologies underpinning a slice. This
limitation is addressed in our work by allowing the tenants to
select those technologies that allow higher resource isolation and
performance.

2.3. Bare-metal clouds

The multi-tenant nature of the VM-based clouds, raises sub-
stantial concerns for both security and performance. Since VMs
from different users share the same physical servers, interference
can be exploited to infer confidential information. Conflicts can
also lead to unpredictable performance fluctuations on top of the
already existing virtualisation overhead. With bare-metal clouds,
single-tenant dedicated physical servers can be rented, in their
entirety, to one user at a time. The user has exclusive, full access
to the hardware and the complete freedom to run the OS of
choice. This ensures the same level of security, performance and
isolation as the physical server, as well as the elasticity of the
cloud.

Bare-metal clouds are offered today as a service by some of
the most popular public cloud providers. Amazon launched a new
bare-metal option for its EC2 C5 server instances [35], which are
commonly used for running compute-heavy workloads like batch
processing, distributed analytics, and high-performance comput-
ing. Alibaba’s ECS Bare Metal Instance [36] offers both the elastic-
ity benefits of virtualisation and the performance advantages of
physical servers via a next-generation virtualisation technology.
IBM positions its Cloud Bare Metal Servers offering [37] as a more
affordable alternative to AWS in many cloud computing scenarios,
and runs more than 60 cloud data centres across 19 countries.

Private infrastructures can support bare-metal clouds through
the usage of open source tools. Metal-stack is a software that pro-
vides an API for provisioning and managing physical servers in the
data centre [38]. Likewise conventional cloud providers, users can
manage their resources (servers, networks, etc.) by themselves,
which effectively turns a data centre into an elastic cloud infras-
tructure. RackHD provides free, open source development tools
and APIs that developers can use to automate hardware man-
agement and orchestration [39]. It serves as an abstraction layer
between other management layers and the underlying, vendor-
specific physical hardware. OpenStack Ironic aims to provision
bare-metal machines instead of virtual machines, forked from
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he Nova bare-metal driver [40]. It is best thought of as a bare-
etal hypervisor API and a set of plugins, which interact with the
are-metal hypervisors.
Bare-metal cloud offerings are publicly available, and private

ata centre can also support this model via the usage of open
ource tools. However, the integration of those resources as part
f a unified infrastructure would be challenging, due to the lack
f standardised interfaces and the potential issues associated to
endor lock-in. Even more complicated would be the usage of
hose resources as part of the continuum that includes various fog
ayers and the centralised cloud, because of the diverse underly-
ng technologies involved. The end-to-end slice idea of this paper
tilises compute slices built from data centre resources via a bare-
etal-like approach. Thanks to the usage of resource partitioning
echanisms, and of the VIM on-demand model, the well-known
rawbacks of bare-metal clouds are somehow ameliorated via
nforcing mechanisms to adjust the amount of physical resources
ssigned to a compute slice at run-time, in order to trade-off ten-
nts’ QoS requirements with resource providers’ policies (i.e., user
ensity, resource costs, etc.). Most importantly, the allocated
ompute slices can be orchestrated via a unified approach thanks
o the provided abstractions. This allows the interwork of het-
rogeneous types of compute resources in different fog layers
nd clouds, and their seamless integration with the connectivity
rovided by the network slices.

.4. Discussion

The analysis of the state-of-the-art on fog orchestration high-
ighted the lack of actual systems able to seamlessly integrate
arious resources across the cloud-to-edge continuum. Existing
ork in this area, considered in this section, produced either
eference architectures or systems tested in simulated environ-
ents, whose main focus was on the management of compute

esources. Research conducted in the area of network slicing, on
he other hand, was mainly focused on the network management
spects and allows compute resources, assigned to different ten-
nts, to share the same physical hosts, hence jeopardising the
erformance of the compute-intensive services assigned to those
lices.
These observations provide evidence of the lack of a uni-

ied resource orchestration strategy, able to integrate the selec-
ion, configuration and management of compute and network
esources, as part of a single abstracted object exclusively as-
igned to a tenant. Our work attempts to bridge this gap by
evising and implementing the notion of end-to-end slice. The
onstituting compute (and storage) building blocks of those slices
re allocated on-demand, and under software control, via a bare-
etal-like approach; then, they are linked together via the ded-

cated connectivity resources provided by network slices. This
reates an abstraction on top of the distributed resources of the
loud-to-edge continuum, and allows the tenants to use their
ervice orchestration tools transparently. Thanks to their inherent
igh-level of isolation, end-to-end slices ensure that the ser-
ices assigned to them are executed according to the level of
erformance expected by the tenants.

. End-to-end slicing model

The main concepts of the end-to-end slicing solution, and of
he associated business ecosystem, are presented in this section.
fter an introductory overview, a formal definition of our slicing
pproach is provided using a graph-based model.
The setup of and end-to-end slice involves three separate

ayers: (i) the Resource Substrate, (ii) the Slice Substrate, and (iii)

he Service Substrate, represented on the right-hand side in Fig. 1.
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he figure also depicts how the various actors of the business
cosystem participate in the creation, delivery, and utilisation of
he slices, and highlights how their roles are related to the three
ayers. The Slice Provider creates slices on-demand according to
he Tenants’ requests. Based on the requirements for those slices
nd/or service requests (e.g., resource availability, business strat-
gy, etc.), the Slice Provider acts as a broker for resources offered
y the Resource Providers. These expose (a share of) their available
nfrastructure and hand out the building blocks (e.g., compute,
torage, and network resources) utilised by the Slice Providers
or setting up the different end-to-end slices. We define those
uilding blocks as the Resource Slices; where each Resource Slice
as an associated management and control point, i.e., either a VIM
or compute and storage slices, or a WIM for network slices.

A slice of the infrastructure’s resources, distributed across
he cloud-to-edge continuum, is delivered to the Tenant that
riginally asked for it. The Tenant will then be able to fulfil the
nstantiation of the services requested by the End-users. In this
cosystem, as well as dynamic creation, an end-to-end slice can
lso be adjusted (namely it can grow or shrink) and deleted
t run-time by considering the Tenant’s demands, the require-
ents of the services, together with the status of the whole
istributed infrastructure. The end-to-end slicing approach to
hich the above actors are pertained is now formally described
ia a graph-based model.

.1. Resource Substrate

The Resource Substrate is a federated infrastructure that in-
ludes different types of resource domains (from the edge to the
loud), from various providers, as shown in the bottom layer
f Fig. 1. By defining NR

c as the set whose elements are all the
ompute domains, and NR

s as the set formed of all the storage
omains, the Resource Substrate can be modelled as a weighted
ndirected graph GR

= (NR, ER), where NR
= NR

c ∪ NR
s , and

R includes the (physical) network resources between the com-
ute and storage domains of NR.
A compute domain nR

c ∈ NR
c consists of a number of com-

ute resource elements (i.e., physical servers) and has c (nR
c )

PU capacity and m (nR
c ) Memory capacity. Likewise, a storage

omain nR
s ∈ NR

s includes a set of storage resources (i.e., storage
evices) and s (nR

s ) describes the associated storage capacity.
inally, eR(i, j) ∈ ER represents network resources (i.e., physical
ink) between two resource domains i and j. It has an associated
andwidth capacity b (eR) and delay d (eR), which are modelled
n the graph GR as attributes of the corresponding edge. Multiple
inks of ER constitute a network path P . PR refers to the set of all
ubstrate paths, and PR (u, v) denotes the set of substrate paths
etween two resource domains u and v.

.2. Slice Substrate

The Slice Substrate is represented as the middle layer of Fig. 1.
t is a group of (heterogeneous) resources from domains of the
esource Substrate that have been logically aggregated by a Slice
rovider. In our model, a Slice Substrate is built on compute slices,
torage slices and network slices, provisioned by various Resource
roviders via reserving a dedicated amount of resource in specific
omains. Those Resource Slices are combined and utilised in a
omplementary way, becoming the building blocks of a single
lice Substrate. Similar to the Resource Substrate, a Slice Sub-
trate is modelled as a weighted undirected graph GS

= (NS, ES),
here NS

= NS
c ∪ NS

s is the set that includes all the compute (NS
c )

nd storage (NS
s ) slices; E

S is the set of network slices that inter-
onnect them. This model assumes that a VIM instance is created
or each compute slice nS

∈ NS and storage slice nS
∈ NS , in order
c c s s



F. Tusa and S. Clayman Future Generation Computer Systems 141 (2023) 473–488

t

a
s
e
t

m
m
d
t

R

R

Fig. 1. Slicing model and business ecosystem.
m

T
b
t
s
t
R

a
m
s
s

M

T
s
f
G
r

n

w
d
a
p
m
e

o manage and control the related resources. Given a network
slice eS(mS, nS), which interconnects two compute (or storage)
slices mS and nS , a separate WIM instance is created, allowing
similar management and control functions to be performed on
the associated network resources. A compute slice nS

c has some
ssociated CPU c (nS

c ) and Memory requirements m (nS
c ), while a

torage slice nS
s demands s (nS

s ) storage resources; a network slice
S has an associated bandwidth constraint b (eS) and maximum
olerable delay d (eS) between its end-points.

Considering the capabilities of the Resource Substrate’s do-
ains, and the demands associated to the Slice Substrate’s ele-
ents, the following expressions can be introduced in order to
escribe the residual capacity of a resource domain. In particular,
he CPU capacity of a compute domain nR

c is

C (nR
c ) = c (nR

c ) −

∑
∀nSc∈nRc

c (nS
c ) , (1)

where ∀nS
c ∈ nR

c are the compute slices hosted by the domain
nR
c . A similar expression can be formulated for a domain’s resid-

ual Memory capacity RM (nR
c ). The residual capacity of a storage

domain nR
s is defined as

RS (nR
s ) = s (nR

s ) −

∑
∀nSs ∈nRs

s (nS
s ) . (2)

Finally, the residual bandwidth capacity associated to the net-
work resources eR(i, j), between domains i and j, is defined as

B (eR) = b (eR) −

∑
∀eS∈eR

b (eS) , (3)

where ∀eS ∈ eR are all the network slices that use the resources
of eR. From the previous expression, the available bandwidth
capacity of a Resource Substrate’s path P ∈ PR can be expressed
as

RB (P) = min
ER∈P

RB (ER) . (4)

3.2.1. Slice mapping
Based on the previously presented resource model, we define

the slice mapping as the problem of finding a suitable assign-
ment for the compute, storage and network elements of a Slice
Substrate onto the available domains of the Resource Substrate.
Referring to the previously introduced graph notation, the prob-
lem can be seen as two steps: the node assignment, i.e., mapping
compute and storage slices on resources of selected compute and

storage domains; the link assignment, i.e., mapping the network
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slices on network domains’ paths that interconnect the compute
and storage domains.

Each resource slice from a given Slice Substrate is assigned
to a different resource domain by a mapping function. More
specifically, MC : NS

c → NR
c assigns compute slices to compute

resources (domains) such that ∀nS
c ,m

S
c ∈ NS

c ,

MC (nS
c ) ∈ NR

c (5)

MC (mS
c ) = MC (nS

c ), ⇔ mS
c = nS

c (6)

subject to

c (nS
c ) ≤ RC (MC (NS

c )) (7)

(nS
c ) ≤ RM (MC (NS

c )) (8)

he mapping function first identifies a compute domain n̂R
c ∈ NR

c
ased on the residual CPU (RC ) and Memory (RM ) capacities of all
he available compute domains. Then a subset of n̂R

c resources are
pecifically assigned to nS

c . We use the notation n̂R
c (n

S
c ) to indicate

he resources of domain n̂R
c allocated to nS

c . The residual capacities
C (n̂R

c ) and RM (n̂R
c ) are finally updated.

A similar mapping function MS : NS
s → NR

s can be defined for
ssigning storage slices to available storage domains. Lastly, the
apping function ME : ES

→ PR assigns a network slice to a sub-
trate path between the domains that host the compute/storage
lices to be linked, ∀eS(mS, nS) ∈ ES ,

E (mS, nS) = P (9)

P ∈ PR (MC (mS),MC (nS)) (10)

P from Eq. (10) is chosen such that

b (eS) ≤ RB (P) (11)

d (eS) ≤ D (P) = max
eR∈P

d (eR) (12)

he slicing model here revolves around the principle of exclu-
ively assigning dedicated partitionable resource elements to dif-
erent Slice Substrates. More formally, given two Slice Substrates
Si and GSk , the following expression holds for the compute
esources
R
c (n

S
c ) ∩ nR

c (m
S
c ) = ∅ , (13)

ith nS
c ∈ NSi

c ,mS
c ∈ NSk

c , ∀i ̸= k. Similar expressions can be
efined for the storage slices and network slices. These mech-
nisms can be applied according to the resource isolation and
erformance requirements expressed by the Tenants. For bare-
etal compute slices, physical machines are considered as the
lements of a compute domain nS , whereas the elements of a
c
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torage domain nS
s can either be whole discs or disc partitions.

Two different network slices can share the same physical path of
a network domain and, thanks to state-of-the-art SDN techniques,
separate virtual networks can be created for different network
slices by the control plane. This is achieved by defining packet-
handling rules that are then propagated to the data plane devices
of that network domain for execution. Such a dynamic approach
ensures a full separation between the involved network flows and
good performance, without the need to rely on separate physical
network devices.

Once created, a Slice Substrate GS can dynamically be adapted,
at run-time, according to the Tenant’s demands (such as tar-
get KPIs, QoS constraints, etc.) and the status of the underlying
resource infrastructure. More specifically, each of the resource
slices belonging to the sets NS

c , N
S
s and ES can be adjusted by

adding (scale up) or removing (scale down) individual elements
(such as servers, discs, VMs, disc partitions, overlay networks,
etc.) selected from the respective resource domains; more re-
source slices (from other resource domains) can also be added
(scale out) or the removed (scale in) to/from those sets at run-
time, throughout the Slice Substrate’s lifetime, in order to comply
with the requirements specified by a Tenant [19].

3.3. Service Substrate

The Service Substrate is represented by the top layer of Fig. 1.
It includes different Service Functions associated with a Tenant’s
service instance, as well as the Service Links that interconnect
them. Although this substrate does not represent a constituting
part of the slice, it can be seen as the reason that triggered
its creation in first instance. In the cloud-to-edge continuum
context considered in this paper, a service is a topology of vir-
tual compute and storage entities (i.e., VMs, Containers, Virtual
Storage Blocks, etc.), interconnected via virtual links, that need
to be distributed across different geographical locations in order
to serve certain users and/or minimise the perceived (IoT) data
processing latency [41].

The layered approach to slicing presented in this section pro-
vides a Tenant with an abstracted partition of resources of the
cloud-to-edge continuum. Whilst this may look the same as a
centralised set of resources, the underlying resource elements are
in fact geographically distributed. Moreover, from a management
and control perspective, the composing resource slices are not
much different from a whole resource domain, except from the
fact that they are formed of a smaller set of resources. By design-
ing such an architectural abstraction and the run-time elements,
the problem of instantiating a Service Substrate can be performed
transparently by a Tenant using their existing software systems,
regardless of the underlying (slicing) resource management ap-
proach.

4. System design

A system architecture that utilises the end-to-end slicing
model discussed in Section 3, is described here. The architecture
includes four main subsystems, namely: the Tenant, the Slice
Provider, the Resource Provider, and the Resource Marketplace.
ow these subsystems are related to the three substrates of
ig. 1 is shown in Fig. 2. The description of the functionalities
f this slicing system is the main subject of this section, together
ith some of the research into end-to-end slicing conducted by
he NECOS project [42]. Then Section 5 will present a detailed
escription of its prototype implementation.
479
4.1. Tenant

The Tenant subsystem provides the mechanisms whereby
a Tenant can request the dynamic instantiation of end-to-end
slices. A new slice instance is created from a blueprint, which
defines the desired Slice Substrate according to one of the fol-
lowing options: (i) the amount of resources to be allocated in
the compute, storage, and network slice parts; or (ii) a list of
desired slice requirements (e.g. resource facing KPIs, geographic
locations, etc.); or (iii) the type of services that will run on the
slice. The Tenant triggers the slice creation by sending the above
blueprint to a Slice Provider (in Fig. 2) chosen according to partic-
ular constraints, e.g., locality, business relationships, contractual
obligations, etc.

A Tenant utilises the reference to a newly allocated Slice
Substrate in order to deploy the Service Substrate (i.e., the Service
Functions and Service Links), requested by the End-user, onto the
allocated sliced resources. Thanks to the abstractions created by
the Slice Provider, the implementation details of a Slice Substrate
are not directly exposed to the Tenant, who is rather offered
access to an abstracted topological representation of that slice of
the cloud-to-edge continuum.

4.2. Slice Provider

The Slice Provider subsystem includes the functionalities for
managing and orchestrating end-to-end slices, namely: (i) re-
ceiving and processing the Slice Substrate blueprints sent by the
Tenants; (ii) searching and selecting slice resource availability
among different Resource Providers; (iii) requesting the allocation
of resource slices to Resource Providers based on such avail-
ability; (iv) abstracting all of the allocated resource slices as a
single Slice Substrate; (v) performing the allocation of the Service
Substrate’s elements on the slice resources, based on the service
placement information requested by a Tenant; and (vi) ensur-
ing that the slice performance is compliant with the run-time
requirements expressed by a Tenant.

Fig. 2 shows that the Slice Provider can interact with the
Resource Marketplace via the corresponding Marketplace Interface.
The Marketplace takes care of finding a set of Resource Providers
able to offer resources for the compute, storage, and network
slices specified in the slice blueprint. The Slice Provider utilises
the Instantiation and Runtime Interface to contact those particular
Resource Providers and to request the allocation of resources for
the above slices.

The Slice Provider is responsible for aggregating resource slices
from different Resource Providers as a single end-to-end slice
object. This process is performed by collecting the handles to
the allocated VIM/WIM instances for the various resource slices,
followed by the registration of the new Slice Substrate, and by its
delivery to the Tenant. These functionalities, whereby an end-to-
end slice is created by the Slice Provider via interworking with
the other subsystems, is consistent with the first of the three
features of our slicing solution (presented in Section 1.1), i.e., it
is performed in an on-demand, software-based fashion.

After an entry-point to the end-to-end slice is allocated, the
Tenant can utilise it to retrieve the topology of the Slice Substrate
and specify how the Service Substrate should be mapped onto
the slice resources. The implementation details of the Resource
Substrate are not exposed by the Slice Provider to the Tenant,
who only sees the slice abstract topology. The Service Substrate
mapping information is specified by the Tenant via a descrip-
tor, and the Slice Provider is then responsible for its translation
into the actual entities (e.g., Virtual Machines, Containers, Virtual
Links, etc.) that need to be deployed on the underlying compute,
storage, and network slices. These abstraction mechanisms are
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paramount, as they allow the decoupling of the Tenant’s com-
ponents that deal with the instantiation of services from the
technologies that underpin a slice. This concept is related to the
second feature of our slicing approach, namely transparency: the
Tenant’s functionalities should work regardless of both the under-
lying resource management strategies and whether the resources
have been sliced or not.

The runtime management of the Slice Substrates is the last
function performed by the Slice Provider. It is enforced by adjust-
ing either the number of elements within the existing resources
slices (vertical slice scaling) or the number of resource slices of
a given Slice Substrate (horizontal slice scaling). These scaling
operations can both be performed by interacting with relevant
Resource Providers, and by requesting changes to the current
resources allocation via the Instantiation and Runtime Interface,
ccording to the runtime performance requirements expressed by
he Tenants.

.3. Resource Marketplace

The Resource Marketplace represents the rendezvous point
etween Resource Providers and Slice Providers that wish to trade
esources and build end-to-end slices on-demand. This market-
nspired mechanism for sharing resource information fits per-
ectly with the dynamic nature of an end-to-end slice, as opposed
o the usage of a-priori federation agreements between providers,
hich are difficult to change in relatively short time frames. Re-
ource Providers can dynamically join the slicing ecosystem and
hare information about their resource availability. Similarly, Slice
roviders can gather that information and use it to request the
llocation of relevant resource slices, based on specific Tenants’
onstraints [43].
The above dynamic trading scenario is facilitated by the in-

erent resource partitioning and isolation of the slices, and by the
sage of the VIM/WIM on-demand approach. These allow sharing
esources among different providers more easily when compared
o traditional peer-to-peer federation models. Resources can be
anaged and controlled by a Slice Provider as if they were locally
vailable, without the burden of interacting with a shared do-
ain’s management system once a slice has been setup. This con-
iderably simplifies the management of the distributed resources,
inimises the establishment of inter-provider federation mecha-
isms, and can ultimately ensure a stronger level of isolation and
ecurity [7].
The Resource Marketplace is built as a dynamic Pub/Sub sys-

em, whereby Resource Providers and Slice Providers can trade
he resources required for the setup and delivery of the de-

ired Slice Substrates to the Tenants. In each Resource Provider, b

480
dedicated Slice Agents publish information about the availability
of resources in their pertaining compute, storage and network
domains. This includes an abstracted topological view of the do-
mains’ interconnections [44], together with the latest measured
residual capacity expressed by Eqs. (1)–(3). The price charged for
the allocation of those resources can also be conveyed as part of
the published information [45].

On the Slice Provider side, a Slice Broker gathers and filters this
information by subscribing to updates for resources that match
desired features only. In other words, a Slice Provider can request
updates for resource domains that are, e.g., specifically avail-
able in a particular geographical area (or equivalently fulfil some
specific delay constraints) and/or have a minimum amount of
residual compute (CPU and Memory), storage or network (band-
width and delay) capacity. The domains topological information,
and the associated resources availability, are finally used by a
Slice Provider in order to build the Resource Substrate graph GR,
nd to perform the Slice mapping process initially introduced in
ection 3.2. A preliminary discussion of the Resource Marketplace
as also presented in [45], however, further slice mapping ap-
roaches are investigated in this paper considering the proposed
raph-based resource model, as will be detailed in Section 5.2.2.

.4. Resource Provider

The Resource Provider includes the functionalities for the al-
ocation of slices of resources from the cloud-to-edge continuum,
long with their associated management and control points. This
s performed by partitioning compute/storage resources, and by
nterconnecting them via dedicated network resources. A DC Slice
Control function is in charge of allocating resources for either
compute slices or storage slices, and similarly, a Net Slice Control
function partitions the connectivity resources of a network do-
main and assigns them to different network slices, as shown in
Fig. 2.

The DC Slice Control creates a compute slice (storage slice) by
electing a subset of computational (storage) resources from a
omain of the cloud-to-edge continuum, according to the perfor-
ance requirement expressed by a Tenant. For bare-metal slices,
hysical resources of a given resource domain (e.g., a group of
esource-constrained devices, a cloudlet, a data centre, etc.) are
ijectively assigned to a compute (storage) slice, in order to dy-
amically create a ‘‘smaller’’ resource domain on-demand. A VIM
nstance is also created and activated on-the-fly for a compute
storage) slice as requested by the Tenant, allowing a fine-grained
anagement and control of the associated resources during the
llocation of the service functions. Different types of VIM can

e requested in order to trade off resource manageability versus
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erformance overhead (e.g., from full virtualisation to bare-metal
esource access). Additional details and discussion about this
ata centre slicing model can be found in [11]. Nonetheless, this
ubsystem may also deliver different flavours of resource slices
o Tenants that do not require such a high level of isolation and
erformance. This can be achieved, for instance, by creating a
him onto a shared instance of an existing VIM.
In a similar way, the Net Slice Control partitions and assigns re-

ources of a network domain to a network slice. More specifically,
t enables the dynamic activation of virtualised network paths
such as, MPLS LSPs, GRE tunnels, VxLAN connections, optical
ambdas, etc.) on a domain’s physical networking resources. Sym-
etrically to the data centre slicing, an on-demand instance of a
IM is created, allowing in-depth management and control over

he sliced network resources. The WIM performs the mapping of
ifferent network flows, associated to the service instances, on
he sliced resources. It also supports the collection of performance
nd fault information, facilitating monitoring and alarm manage-
ent of those interconnections. According to those data, further
ontrol can be exerted on the elements of a network slice, in order
o adjust its capacity in an on-demand fashion. As for the compute
lices, some Tenants may not require a separate WIM instance.
n this case, a WIM agent may be allocated and configured to
nteract with an already available shared WIM. Further details
n this network slice management model, and on the usage of
he WIM on-demand, can be found in [18]. Examples of how the
IM on-demand has been used by Telco operators as an enabler

or network softwarisation can be found in [46,47].
In the context of the system architecture shown in Fig. 2, the

ain purpose of the Resource Provider is to support function-
lities and mechanisms related to the third feature of our slic-
ng solution, namely guaranteeing full resource isolation among
ifferent end-to-end slices.

.5. Summary

The system architecture here was designed around the actors
f the business ecosystem presented in Section 3: the Tenant,
he Slice Provider, and the Resource Provider. The functionalities
f its composing subsystems deal with realising the end-to-end
licing model, whereby resources of the cloud-to-edge continuum
an be traded by different providers via a Resource Marketplace,
nd different Slice Substrates can be created and delivered to

the Tenants for the instantiation of the required distributed ser-
vices. Considering the three features of our slicing approach, it
has been discussed (i) how those subsystems provide mecha-
nisms to allocate resources dynamically; (ii) how those resources
can be accessed transparently by a Tenant via a dedicated set
of abstractions; and (iii) how full isolation is enforced. A soft-
ware implementation of this system, and its evaluation, will be
presented in the next two sections.

5. System implementation

The details of an experimentation environment, built via a
prototype implementation of the system described in Section 4,
is presented here. This prototype supports the main features of
the Tenant, of the Slice Provider, and of the Resource Provider
subsystems; it also includes the implementation of a Slice map-
ping algorithm for the Resource Marketplace. Fig. 3 highlights
these software components, and shows how each of them is
related to the Resource Substrate, to the Slice Substrate, and to
the Service Substrate, as well as the way they interwork once
deployed on the testbed. As this system was designed to facilitate
the orchestration of resources in the cloud-to-edge continuum,
the infrastructure on which it was deployed is fully distributed,
with computation and network resources located both in Europe
and Brazil.
481
5.1. Testbed setup

Three resource-constrained compute domains were created
from resources located at University College London (UCL), in the
UK. Each of those cloudlets, featured three physical servers with
4x Intel Xeon E5520 (16 cores) running at 2.27 GHz and 32 GB
of memory. An existing 1 Gbps LAN interconnection between
these mini DCs mimicked the function of multiple network do-
mains. These were partitioned during the execution of the tests,
when overlay connections were created for different network
slices, as it is shown in Fig. 3. An additional data centre, with
similar resources, was located at the Federal University of Pará
(UFPA), in north Brazil. In order to build a cloud-to-edge con-
tinuum scenario, and demonstrate the distributed nature of the
slicing approach, these resources were used as a cloud domain,
inter-connected to the 3 mini DCs in the UK through the Internet.

Instances of the Tenant, of the Slice Provider, and of the Re-
source Provider components were deployed on a portion of such
infrastructure specifically reserved to host the control plane. Us-
ing separate geographical locations for those components proved
that the exchange of management and control information, re-
quired to setup and keep the slices up and running, was not
impacted by any intrinsic delay in the communication between
the entities of the testbed. Moreover, the inherent dispersed
nature of the control plane allows the system to minimise the
likelihood of introducing bottlenecks and central points of failure
into the system. Considering the current system implementation,
the compute resource utilisation of the associated control plane
components was negligible, and it never impacted the execution
of the workflow that is presented in this section.

This experimentation environment was devised to validate the
concept of end-to-end slice, whose composing elements are allo-
cated via the bare-metal model with on-demand VIM instances.
The experiments are based on the lightweight VLSP VIM [48]
for managing sliced compute resources, together with a newly
devised lightweight WIM prototype for the management of sliced
network resources. Thanks to their small footprint, these manage-
ment and control points could easily be instantiated on-demand,
in a matter of seconds, during the setup of the resource slices.
Moreover, they suit the setup of service components in resource-
constrained domains. The VLSP VIM allows for the allocation of
lightweight virtual Service Functions, implemented as indepen-
dent Java containers. These are, in turn, interconnected via virtual
Service Links based on a modified version of the UDP protocol,
called USR [48]. The WIM utilised in this experimental environ-
ment complements the features of the VLSP VIM, and allows
the mapping of USR-based virtual links on its own managed set
of sliced network resources. It also provides basic management
and control mechanisms, such as retrieving the slice endpoints,
collecting relevant network utilisation KPIs, etc.

5.2. End-to-end slice creation workflow

The implementation details and the role of the components of
the system in Fig. 3 are now discussed. This description includes
the way the Tenant and the Slice Provider inter-play when a new
end-to-end slice is requested, as well as the details of how the
required resources are allocated via the Resource Providers. Each
of the steps, 1 to 15, is labelled on Fig. 3, and highlighted in the
description.

5.2.1. Slice request submission
A new end-to-end slice is defined by a Tenant, via a blueprint,

using a YAML Slice Descriptor. The descriptor specifies the com-
pute, storage, and network slices, the amount of required re-
sources and the desired types of VIMs and WIMs. Additional



F. Tusa and S. Clayman Future Generation Computer Systems 141 (2023) 473–488

r
s
f
e
e
t
a
v
c
a
a
P
b

5

A
[
n
t
R
M
r
w
A
f
G
S

p
p
s
m
a
i
b
a

Fig. 3. Slicing system implementation: workflow and deployment on the testbed.
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equirements may include geographical location, or delay con-
traints, for some of those resources slices; these would be de-
ined according to the potential distribution across the cloud-to-
dge continuum of users, data sources, data processing functions,
tc. Finally, any runtime requirements that the Tenant may wish
o be fulfilled throughout the lifetime of the Slice Substrate can
lso be included to the descriptor. The Slice Activator module pro-
ides a REST interface that an administrator (or external software
omponent) can use to upload and submit to the system the
bove Slice Descriptor [step 1]. The Slice Activator acts like an
gent of the Tenant as it passes on the slice requests to the Slice
rovider, and keeps track of the status of all the slices requested
y that Tenant.

.2.2. Slice Substrate mapping
Once the Slice Descriptor is received and validated by the Slice

ctivator, it is sent to the Slice Builder module of the Slice Provider
step 2]. This parses the descriptor’s content, which includes the
umber of resource slices and the associated demands, and builds
he graph GS for that Slice Substrate. This is then forwarded to the
esource Marketplace shown earlier in Fig. 2. Inside the Resource
arketplace, the Slice Broker holds an up to date view of the

esources available in several domains, i.e., the graph GR, which
as built through the information pushed by the associated Slice
gents. (Please note that these entities are not included in Fig. 3
or the sake of simplification.) Based on the above graphs GS and
R, the Slice Broker performs the Slice mapping first presented in
ection 3.
Many algorithms to embed virtual network requests into a

hysical resource infrastructure [49] exist and may also be ap-
lied to this problem. Our approach builds on the solution pre-
ented in [50], and proposes a slightly different version of the
apping algorithm, in order to place resource slices onto avail-
ble compute, storage and network domains. The algorithm takes
nto account the fact that heterogeneous types of resources can
e considered during the mapping, and that network slices may

lso have a maximum associated delay [51], as expressed by

482
q. (12). Similar to [50], this solution uses a one-stage backtrack-
ng placement algorithm, based on breadth-first search (BFS), and
aps compute slices, storage slices and network slices at the
ame stage. The algorithm also computes a topological ranking
f the nodes in GS and GR, similar to the PageRank used by
oogle’s search engine [52]. In the long-term, this approach can
otentially increase the overall number of (slice) request that are
uccessfully mapped, and can ultimately lead to higher revenues
or the Resource Providers [50]. Moreover, the proposed one-
tage mapping can reduce the utilisation of network resources
ompared to uncoordinated node-link mapping approaches [49].
onetheless, alternative algorithms may be selected and utilised
y our framework to support several types of constraints and
ptimisation goals.
The Slice mapping algorithm starts by creating a BFS tree for

he nodes in NS , where the root is the node with the highest
ank. For each resource slice in the above tree, a list of candidate
esource domains is built considering the slice type (compute or
torage) and the domain’s residual capacities described by either
q. (1) or Eq. (2). More specifically, the list will include only those
omains whose available residual compute RC and RM (or storage

resources RS), and the sum of available bandwidth resources
RB (Eq. (3)) from the adjacent network domains, are greater than
those demanded by the slice. For a compute slice, this can be
expressed by the constraints of Eqs. (7) and (8). Hence, domains
that are not compatible with the geographical constraints asso-
ciated to a slice (note that this can also be expressed in terms
of delay from a given location) will not be added to the list.
Each of the candidate lists is finally sorted by domain ranking in
non-increasing order.

The mapping of the slices onto the available resource domains
is performed by traversing the above BFS tree starting from its
root, which is assigned to the domain with the highest ranking.
Subsequent slices in the tree are then mapped one by one by
considering the following criteria. We assume that a slice to be
mapped at the current algorithm’s iteration, nS , has an associated
parent slice mS in the tree, which was mapped on a domain mR

during the previous iteration. The candidate domains list of nS
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s further restricted by computing the shortest path from those
omains tomR, and selecting only the graph nodes that are within
hops (initially h = 1).
The domains are further sorted based on their distance from

R. Starting from the first domain in the list, the k-shortest paths
rom mR are calculated using the algorithm described in [53].
hen, it is checked whether the network slices attached to nS can
e mapped on those paths considering the bandwidth demands
nd delay constraints described by Eqs. (11) and (12). If none
f those path fulfils the specified network slices’ constraints,
hen the next domain in the candidate list is selected, and the
ssociated k-shortest paths are evaluated.
If all the candidate domains in the list have been considered,

nd no suitable mapping has been found, then h is incremented
y one and a new list of candidate domains is created. This can
e iterated up to h = maxHops times, and if the mapping is
till unsuccessful at that point, then the algorithm backtracks to
he previous stage, and a different mapping solution is searched
or the parent node mS . As in [50], the maximum number of
llowed backtrack steps is bounded by a parameter θ , which can
e selected in order to limit the overall computational complexity
f the Slice mapping procedure and make it almost comparable
ith polynomial-time algorithms.

.2.3. Slice Substrate instantiation
After a suitable mapping for the composing slices of GS is

etermined by the Resource Marketplace, as described in the
revious subsection, a list with the resource domains selected
rom GR is returned to the Slice Builder. We assume GS consisted
f three compute slices and two network slices (storage slices are
ot considered in order to simplify the discussion); also, three
ompute domains, among those available in the cloud-to-edge
ontinuum, were chosen by the mapping algorithm according
o the specified compute and network constraints, namely Clay,
as and Edu, together with the network domains Clay-Gas and
as-Edu.
The Slice Builder is now informed by the Resource Marketplace

bout the entry-points of all the above resource domains to be
ontacted. First, this information is used to interact with the
ssociated DC Slice Controllers, and to request the allocation of
esources for the compute slices [step 3]. The required resources
re reserved on those domains, and an instance of the VLSP VIM
s created on-demand for each compute slice. In this example
orkflow, we assume bare-metal slices have been requested,
ence physical resource elements in each domain are exclu-
ively assigned to the resource slices; moreover, as expressed by
q. (13), a given resource element will never be shared between
ompute slices of different Slice Substrates. Once all of the above
ompute slices have been allocated [step 4], a handle to each
f the dynamically instantiated VIMs is passed back to the Slice
uilder [step 5]. (The arrows related to step 5 have been drawn
or the Edu domain only, but they also apply to the Clay and Gas
omains.)
A symmetric approach is performed for the allocation of the

etwork slices, namely the setup of the connectivity across the
ominated network domains considering the requested band-
idth and delay constraints. As our framework was designed to
e independent of the particular data plane technology of each re-
ource domain, it can seamlessly interwork with different types of
etwork resources. For this workflow description, we assume that
he data plane of each network domain is managed by a central
ontroller, and the setup of the connectivity between different
ompute (or storage) domains is performed via a distributed
eer-to-peer approach.
Based on the (network) domains’ entry-points returned by the

esource Marketplace, the Slice Builder starts the allocation of
483
the required network slices by sending separate requests to the
designated Net Slice Controllers. An instance of a WIM is created
on-demand for all the network slices, and the handles to those
WIMs are returned to the Slice Builder. More specifically, to link
the compute slices in the Gas and Edu domains via the Gas-Edu
network slice, the Slice Builder first sends a request to the Edu Net
Slice Controller [step 6a], which contains the information about
the Gas destination domain. The Net Slice Controller identifies
the (physical) ingress/egress points to be used in order to reach
the nominated destination — this is represented in Fig. 3 by the
diamond shape at the left edge of the Edu resource domain. The
network resources inside the Edu domain are now configured:
a path from the selected ingress/egress point towards the pre-
viously allocated compute slice is calculated by the Net Slice
Controller considering the given network slice constraints (see
Eqs. (11) and (12)).

Likewise, the setup of the other end of the Gas-Edu network
slice is driven by the Slice Builder via interaction with the Gas
Net Slice Controller [step 6b]. Finally, an overlay connection that
fulfils the requested network bandwidth constraints is created on
a path P between the ingress/egress points of the Gas and Edu
omains. The handle to a WIM instance, allocated on-demand by
ne of the Net Slice Controllers [step 7] is finally sent back to
he Slice Builder [step 8]. This WIM handle is passed on by the
lice Builder to the Slice Resource Orchestrator [step 9], where it
ill be utilised in order to control and monitor the network slice
etween the Edu and Gas domains. The WIM will also be used, at
ervice instantiation time, to map network flows on the reserved
etwork slice’s resources. The end-to-end allocation of the Slice
ubstrate terminates when the above steps 6–9 are reiterated for
he setup of the Clay-Gas network slice.

The Slice Resource Orchestrator is now aware of all the com-
onents of the Slice Substrate GS . The topology of this newly

allocated end-to-end slice, which includes the references to the
composing resource slices and to the allocated VIMs/WIMs (in the
relevant domains), is finally ready to be registered in an internal
database of the Slice Provider.

5.2.4. Service Substrate instantiation
The Tenant is notified, and provided with the handle to the

allocated end-to-end slice GS . This is represented in Fig. 3 by the
thin dotted line that connects the Slice Resource Orchestrator to
the Slice Activator through the Slice Builder [step 10]. The Service
Orchestrator is informed by the Slice Activator about the avail-
ability of GS . The slice handle is passed to the Service Orchestrator
[step 11], who will now be able to trigger the allocation of a
Service Substrate on the available sliced resources. The Service
Orchestrator utilises the received Slice Substrate’s handle to re-
trieve the abstract topological view of GS , and then determining
the placement of the service functions and links onto the available
Slice Substrate. The discussion of the particular mechanisms and
algorithms utilised by the Service Orchestrator is out of the scope
of this paper, but it can be assumed their execution to be similar
to [54]. It should be noted that these functions can be performed
transparently by the Service Orchestrator, thanks to the way the
selected resources of the cloud-to-edge continuum have been
sliced, aggregated and finally exposed to the Tenant, as a single
Slice Substrate.

The placement decision made by the Service Orchestrator
is now forwarded to the Slice Resource Orchestrator [step 12].
The instantiation of the required Service Elements (both Func-
tions and Links) is driven by the Slice Resource Orchestrator
by interacting with the VIM/WIM entry-points associated to the
resource slices of GS . An adaptation layer, implemented by the
Infrastructure Adaptor module, provides an abstraction over the
mechanisms to perform the Service Elements instantiation and
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onitoring, and makes the process independent from the under-
ying type of VIMs/WIMs [step 13].

In this experimental environment, the Service Substrate is
eployed onto the Slice Substrate as a set of VLSP Virtual Service
unctions and Links [48]. The Slice Resource Orchestrator deals
ith the instantiation of such service components on the under-

ying resource slices, based on the received service placement
nformation. In particular, Service Functions are allocated inside
he nominated compute slices via the associated VIM handles
step 14]. Service Links between Service Elements within the
ame compute slice are also created via interacting with the
ssociated VIM. This is shown in Fig. 3, for instance, for the link
etween Service Functions C and D inside the Gas domain.
Service Links between Service Functions deployed in different

ompute domains are instantiated by the Slice Resource Orches-
rator via interacting with the WIM of the connecting network
lice. The WIM takes care of mapping a new network flow, asso-
iated to the Service Link, onto the overlay connection that was
reviously allocated for that network slice. This is shown in Fig. 3,
.g., for the Service Link between the Service Functions D and E in
he Gas-Edu network slice [step 15]. After all those 15 steps have
een performed, both the Slice and the Service are instantiated
nd deployed, hence the runtime phase commences.

.2.5. Slice Substrate runtime management
The Slice Resource Orchestrator holds a list of runtime con-

traints associated to the newly allocated Slice Substrate GS , as
t was initially specified by the Tenant inside the associated
lice Descriptor. These constraints are utilised to derive a set
f performance requirements that have to be maintained dur-
ng the whole lifetime of the slice. Through the Infrastructure
daptor, the Slice Resource Orchestrator is able to collect the
urrent status and performance of each resource slice. Hence, it
an use this information to check what rules match the expected
untime requirements and trigger actions accordingly, based on
he execution of vertical/horizontal slice scaling.

As an example, if one of the received runtime constraints was
ax CPU% usage of nS

c = 80%, and the measured value has
een 100% for the past 60 s, then the Slice Resource Orchestrator
ay trigger vertical slice scaling on nS

c , and request the alloca-
ion of additional compute resources to the DC Slice Controller
here that slice was allocated. Similarly, when horizontal slice
caling is to be performed to deal with similar conditions, the
lice Resource Orchestrator will contact the Slice Builder, ask for
dditional compute, storage and/or network slices to be allocated
n the available resource domains, and finally attach them to the
xisting Slice Substrate’s topology.
It should be noted that the runtime management of the ser-

ice, performed by the Service Orchestrator, may in turn impact
he status of the hosting slice and lead to the execution of the
bove scaling operations. Additional details on this can be found
n [19].

. Experimental results

A qualitative assessment of the three features of the end-to-
nd slicing concept is now discussed. This is based on the system
mplementation and the workflow deployed onto the experimen-
al testbed, described in the previous section. Three types of
xperiments were carried out, namely:

1. allocation of Slice Substrates of different size, in an on-
demand softwarised fashion;

2. deployment of Service Substrates, with a variable number
of Service Entities, on those Slice Substrates; and

3. evaluation of how the execution of those services impacts
the slice resource utilisation.
484
Fig. 4. Timings for the allocation of a Slice Substrate.

In addition to these three experiments, a fourth experiment
as carried out in order to evaluate the execution of the slice
apping procedure. This specific aspect of the slice creation
orkflow was tested on a large-scale as a separate experiment.
For these experiments, it is assumed that resources of the

loud-to-edge continuum are sliced and orchestrated to deliver
ata-intensive processing services to the Tenants. More specifi-
ally, as in our previous work [55], massive streams of data are
enerated via software IoT devices and processed in different
tages, according to some latency constraints. The first processing
tage requires the lowest available latency, hence it is performed
s close as possible to the data sources. Next stages, with less
tringent real-time processing requirements but a growing de-
and for computational resources, are carried out in the available

og layers and, eventually, in the central cloud. Using our proto-
ype implementation, end-to-end slices are setup to include (up
o) three compute domains and two network domains. IoT data
re then generated, and the processing elements are deployed
s a Service Substrate on the created end-to-end slice. As pre-
iously introduced in Section 5, these service components are
mplemented as VLSP virtual Service Functions, each running as a
eparate Java container. They are also interconnected via virtual
ervice Links based on the UDP-like USR transport protocol [48].

.1. Experiment 1: Slice Substrate allocation

This experiment was devised to validate the first feature of
he slicing approach, i.e., the Tenant’s ability to allocate slices
cross the cloud-to-edge continuum on-demand, in a software-
nabled fashion. Fig. 4 shows the execution timings of the tasks
equired for the allocation of a Slice Substrate in our real testbed
nvironment. As bare-metal compute slices are allocated during
he experiment, the graph shows on the x-axis the total number
f involved physical servers. The number of compute slices con-
idered in this experiment was as follows: 1 compute slice when
sing a single server, 2 compute slices when using 2 servers, and
compute slice when using 3 or more servers. The y-points of

he graph represent a mean value calculated over a set of 30
xecutions of the same experiment. Confidence intervals (95%)
re also reported.
From the graph, it can be noticed that the allocation time

or the computing resources (in brown) does not vary with the
verall number of compute slices. As the current Slice Builder’s
mplementation asynchronously contacts all the nominated do-
ains, the allocation of the required resource slices can be per-

ormed in parallel. Furthermore, when three compute slices are
onsidered, the resource allocation time does not increase with
he number of resource elements within each slice. This result
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Fig. 5. Timings for the allocation of a Service Substrate.

s linked to the way the DC Slice Controller allocates bare-metal
ompute slices and performs the on-demand instantiation of a
ew VLSP VIM instance [11]. A similar system behaviour is shown
n the graph for the deployment of the VIMs/WIMs Infrastructure
daptors (in blue) [56]. (This was only briefly mentioned in the
revious section to simplify the workflow.)
On the other hand, the setup of the Slice Substrate’s connec-

ivity grows linearly with the number of involved network slices,
s it is shown in Fig. 4 (in violet). This is due to the way the
llocation of a new network slice is currently performed by this
rototype, namely by sequentially and synchronously iterating
hrough each of network slices of the GS graph. Future versions of
he prototype will look at how these operations can be performed
ore efficiently and in a parallel fashion.

.2. Experiment 2: Service Substrate allocation

This experiment was performed to assess the second feature
f the proposed slicing solution, i.e., the Tenant’s functionalities
hould work independently of how the underlying resources are
anaged, and whether they have been sliced or not. Hence,
y using the same Service Orchestrator presented in [54], this
xperiment demonstrates that a Tenant is able to attach a newly
reated Slice Substrate to their existing systems, without the need
f applying any changes to them, and can ultimately perform
he deployment of specific services onto the allocated sliced
esources in a transparent way.

A Slice Substrate formed of three bare-metal compute slices
with four servers each) and two network slices was first allo-
ated, as discussed in the previous subsection. Then a Service
ubstrate, representing an IoT data processing service distributed
cross the cloud-to-edge continuum, was deployed on the al-
ocated end-to-end slice. The size of the Service Substrate is
haracterised by the number Nf of Service Functions, namely the
ervice components that perform the data computation, and the
umber Nl = Nf − 1 of Service Links that interconnect them.
he graph of Fig. 5 shows on the x-axis the values related to
f , which for this experiment were selected as follows: Nf ∈

{10, 180, 360, 540, 700, 1000, 2000}.
Two datasets for Nf , related to the Service Substrate instan-

tiation are plotted on the same figure. The service placement
(in pink) is the time required for determining where the differ-
ent Service Functions and Service Links have to be deployed on
the Slice Substrate’s topology. The service deployment (in blue)
is the time spent by the Slice Resource Orchestrator to acti-
vate those Service Substrate’s elements onto the resource slices,
via interacting with the available VIMs and WIMs therein. The
y-points of the graph represent a mean value calculated over a
 m

485
Fig. 6. CPU utilisation of two different end-to-end slices.

set of 30 executions of the same experiment. Confidence intervals
(95%) are also reported. The time required for the execution of
the service placement grows linearly with the number of Service
Functions (and Service Links). The service deployment time also
increases linearly. These results are specifically linked to this
specific prototype implementation, the Service Orchestrator used,
and the lightweight VLSP VIM and WIMs selected for the resource
management of the slices.

6.3. Experiment 3: End-to-end slice resource isolation

The evaluation of the third feature of our slicing approach,
amely the full resource isolation between different end-to-end
lices, is the objective of this last experiment. Two Slice Substrates
Slice1 and Slice2), formed of different interconnected bare-metal
ompute slices, were first instantiated as explained for the previ-
us experiments. A Service Substrate, consisting of a distributed
oT data processing service similar to Experiment 2, was then
ubmitted and placed onto Slice1, in order to generate load on
he associated resources. For this particular experiment, the total
umber of Service Functions that performed various types of IoT
ata processing [55] was Nf = 2000; therefore the number of
ervice Links was Nl = 1999 and overall size of the Service
ubstrate was 3999. Slice2 had a similar service deployment but
he associated Service Functions were left in idle state throughout
he duration of the experiment.

The graph of Fig. 6 shows the average CPU utilisation (per-
entage) of the bare-metal compute slices allocated for the above
lice1 and Slice2 (over a time period of 140 s). When the IoT
ata processing service was activated on Slice1 at elapsed time
= 55 s, the related CPU load started to show a series of spikes
in green). Conversely, the average Slice2’s CPU utilisation (in
range) was not impacted by the load exerted by the service in-
tance running on Slice1. Therefore, in general, end-to-end slices
reated according to our slicing model (with resource elements
elected as per Eq. (13)) can be considered as fully independent
undles of resources. They are not affected by the security and
solation problems seen in traditional multi-tenant clouds where,
.g., highly loaded VMs can take over all of the available physical
esources and impact the performance of other tenant’s VMs.

.4. Slice Substrate mapping experiment

The execution of the slice mapping procedure – required to
elect suitable resources prior to the Slice Substrate allocation
involved a small number of available Resource Providers. Due

o the relatively small size of the real distributed testbed, the
apping was rather simple.
To enhance the results, the algorithm detailed in Section 5.2.2

as implemented and tested on a large-scale artificial environ-

ent using the tool [57], deployed on one of the machines of our
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estbed. Topologies of different size were generated for the GS and
R graphs, according to the BRITE-based Waxman methodology
with α = 0.5 and β = 0.5) [58]. The domains’ residual ca-
acities, expressed by Eqs. (1)–(3), were real numbers uniformly
istributed between 30 and 300, whereas the corresponding re-
ource slice demands were generated in the range 10 − 100.
esource domains have indeed a larger (aggregated) amount of
vailable resources compared to individual resource slices’ de-
ands, even though some of the resources in their pools may
ave already been reserved to other previously allocated slices.
ome management resource is temporarily needed for the pro-
essing of the mapping requests. As these requests may be inde-
endent, they can be processed in parallel if needed, which can
cale horizontally across many servers [59].
Each experiment consisted of 30 individual runs based on the

bove settings, where the time required to perform the map-
ing procedure was measured considering a fixed size for the
R and GS graphs. In order to represent a large-scale cloud-to-
dge continuum scenario, both 100 and 200 nodes were consid-
red as the size of the GR graph [15]. On average, it took about
s to map a Slice Substrate graph of 10 nodes on a Resource

ubstrate graph of 100 nodes, and 90 s to map a Slice Substrate
raph of 20 nodes on a Resource Substrate graph of 200 nodes.
uring these runs, the measured CPU utilisation for running the
apping algorithm was approximately 70% of one CPU core.
This is a reasonable overhead, considering the scenario’s scale

nd the fact that the lifetime of these slices can be measured in
ither hours or days. Nonetheless, alternative algorithms can be
mplemented if different requirements become more important,
.g., in case more stringent performance is needed, as opposed
o the objective of maximising the total number of successfully
apped Slice Substrates [49].

.5. Discussion

The results of the experiments discussed in this section con-
irm the effectiveness of our slicing solution in enabling auto-
ated orchestration of resources of the cloud-to-edge continuum,
ccording to a set of specified Tenant’s requirements. Slices are
reated, via a softwarised approach, using federated (geograph-
cally) distributed resources — selected dynamically from many
ifferent domains through the proposed Marketplace. Service
nstances (i.e., Service Substrates) can be activated on the sliced
esources by the Tenants transparently, through their existing
oftware systems. In our testbed, the Slice Substrate creation
rocess took (on average) up to 20 s, depending on the number
f involved resource slices. The Service Substrate’s activation
lso varied according to the number of involved elements and
equired up to 15 min. Finally, our experiments highlighted suc-
essful results in terms of performance and quality of experience:
he workload associated to a specific slice was never affected by
he resource utilisation of slices belonging to other Tenants.

. Conclusions and future work

As today’s highly distributed Internet services are reshaping
he current cloud and network infrastructure, Fog Computing
s emerging as an effective way to enable the execution of IoT
ervices with demanding latency and compute requirements. The
og is inherently distributed over different layers, which can span
rom the edge to the centralised cloud, creating a spectrum of
ompute, storage and network resources known as the cloud-
o-edge continuum. The management of the above resources, to
llow the execution of distributed services, is not trivial. Being
ighly dispersed by nature, this infrastructure can span multiple

dministrative domains. Moreover, several tenants can access the t

486
hared pool of resources and request the execution of services
ith diverse performance requirements. This calls for innovative
echniques that can facilitate the orchestration of the resource
ayer and the co-existence of the different services requested by
hose tenants.

This paper answers the above research question by proposing
unified approach for the orchestration of the compute, storage
nd network resources of the cloud-to-edge continuum, based
n the concept of end-to-end slice. It goes beyond the state-of-
he-art on the areas of fog orchestration and network slicing, as
t attempts to bring together some of the research conducted
ndependently on those topics. The design and implementation
f a system able to integrate the selection, configuration and
anagement of compute, storage and network resources, as part
f a single abstracted object exclusively assigned to a tenant to
atisfy specific service requirements, is the main contribution of
his work.

The slicing approach is grounded on three features, which
ave been extensively described and validated in this paper via
set of experiments performed on a real tested, with resources

ocated in Europe and Brazil. The results show that resources for
he slices can effectively be traded between providers using the
esource Marketplace. A graph-based model for those resources,
nd for the slices, allows dynamic resource discovery, selection,
nd mapping via different algorithms and optimisation goals;
lices can be built on-demand and under software control (first
eature). The usage of bare-metal compute slices, together with
he VIM/WIM on-demand, allows to trade-off performance and
esource manageability, while it also simplifies the inter-provider
ommunication required after a slice has been created. The allo-
ated resources are aggregated and exposed to a tenant as a single
bject that abstracts the distributed nature of the underlying
nfrastructure; minimal changes to the tenants’ service orches-
ration tools are needed (second feature). The devised resource
llocation model provides the tenants with fine-grained customi-
ation capabilities to support the desired level of isolation and
erformance, and to prevent the likelihood of service performance
egradation (third feature).
These encouraging results can pave the way towards the usage

f our end-to-end slice concept in new emerging and demand-
ng applications areas such as real-time IoT analytics, Digital
wins, and AI. As future work, we plan to perform further per-
ormance evaluation and testing in the above areas, using alter-
ative VIM/WIMs implementations and additional geographically
istributed resource domains that span the whole spectrum of
og resources, up to resource-constrained end-user devices. This
ould allow the collection of additional results that could lead to

urther refinement of some of the concepts and mechanisms al-
eady described in this paper, as well as providing a more detailed
iew of the overheads of the management and orchestration
ystems.
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