116,595 research outputs found

    Run-time Spatial Mapping of Streaming Applications to Heterogeneous Multi-Processor Systems

    Get PDF
    In this paper, we define the problem of spatial mapping. We present reasons why performing spatial mappings at run-time is both necessary and desirable. We propose what is—to our knowledge—the first attempt at a formal description of spatial mappings for the embedded real-time streaming application domain. Thereby, we introduce criteria for a qualitative comparison of these spatial mappings. As an illustration of how our formalization relates to practice, we relate our own spatial mapping algorithm to the formal model

    Developing Tools for Networks of Processors

    Get PDF
    A great deal of research eort is currently being made in the realm of so called natural computing. Natural computing mainly focuses on the denition, formal description, analysis, simulation and programming of new models of computation (usually with the same expressive power as Turing Machines) inspired by Nature, which makes them particularly suitable for the simulation of complex systems.Some of the best known natural computers are Lindenmayer systems (Lsystems, a kind of grammar with parallel derivation), cellular automata, DNA computing, genetic and evolutionary algorithms, multi agent systems, arti- cial neural networks, P-systems (computation inspired by membranes) and NEPs (or networks of evolutionary processors). This chapter is devoted to this last model

    Multi-Threaded Actors

    Get PDF
    In this paper we introduce a new programming model of multi-threaded actors which feature the parallel processing of their messages. In this model an actor consists of a group of active objects which share a message queue. We provide a formal operational semantics, and a description of a Java-based implementation for the basic programming abstractions describing multi-threaded actors. Finally, we evaluate our proposal by means of an example application.Comment: In Proceedings ICE 2016, arXiv:1608.0313

    Verifying service continuity in a satellite reconfiguration procedure: application to a satellite

    Get PDF
    The paper discusses the use of the TURTLE UML profile to model and verify service continuity during dynamic reconfiguration of embedded software, and space-based telecommunication software in particular. TURTLE extends UML class diagrams with composition operators, and activity diagrams with temporal operators. Translating TURTLE to the formal description technique RT-LOTOS gives the profile a formal semantics and makes it possible to reuse verification techniques implemented by the RTL, the RT-LOTOS toolkit developed at LAAS-CNRS. The paper proposes a modeling and formal validation methodology based on TURTLE and RTL, and discusses its application to a payload software application in charge of an embedded packet switch. The paper demonstrates the benefits of using TURTLE to prove service continuity for dynamic reconfiguration of embedded software

    An Aspect–Oriented Approach based on Multiparty Interactions to Specifying the Behaviour of a System

    Get PDF
    Isolating computation and coordination concerns into separate pure computation and pure coordination enhances modularity, understandability and reusability of parallel and/or distributed software. This can be achieved by moving interaction primitives, which are now commonly scattered in programs, into separate modules written in a language aimed at coordinating objects and expressing how information flows among them. The usual model for coordination is the client/server model, but it is not adequate when several objects need to collaborate simultaneously in order to solve a problem because natural multiparty interactions need to be decomposed into a set of low–level, binary interactions. In this paper, we introduce CAL, an IP–based language for the description of the coordination aspect of a system. We show that it can be successfully described in terms of simple multiparty interactions that can be animated and are also amenable to formal reasoning.Comisión Interministerial de Ciencia y Tecnología (CICYT) MENHIR TIC 97–0593–C05–0

    QuantUM: Quantitative Safety Analysis of UML Models

    Full text link
    When developing a safety-critical system it is essential to obtain an assessment of different design alternatives. In particular, an early safety assessment of the architectural design of a system is desirable. In spite of the plethora of available formal quantitative analysis methods it is still difficult for software and system architects to integrate these techniques into their every day work. This is mainly due to the lack of methods that can be directly applied to architecture level models, for instance given as UML diagrams. Also, it is necessary that the description methods used do not require a profound knowledge of formal methods. Our approach bridges this gap and improves the integration of quantitative safety analysis methods into the development process. All inputs of the analysis are specified at the level of a UML model. This model is then automatically translated into the analysis model, and the results of the analysis are consequently represented on the level of the UML model. Thus the analysis model and the formal methods used during the analysis are hidden from the user. We illustrate the usefulness of our approach using an industrial strength case study.Comment: In Proceedings QAPL 2011, arXiv:1107.074

    Structural operational semantics for Kernel Andorra Prolog

    Get PDF
    Kernel Andorra Prolog is a framework for nondeterministic concurrent constraint logic programming languages. Many languages, such as Prolog, GHC, Parlog, and Atomic Herbrand, can be seen as instances of this framework, by adding specific constraint systems and constraint operations, and optionally by imposing further restrictions on the language and the control of the computation model. We systematically revisit the description in Haridi and Jarison [HJ90], adding the formal machinery which is necessary in order to completely formalize the control of the computation model. To this we add a formal description of the transformational semantics of Kernel Andorra Prolog. The semantics of Kernel Andorra Prolog is a set of or-trees which also captures infinite computations

    Rigorous Design of Fault-Tolerant Transactions for Replicated Database Systems using Event B

    No full text
    System availability is improved by the replication of data objects in a distributed database system. However, during updates, the complexity of keeping replicas identical arises due to failures of sites and race conditions among conflicting transactions. Fault tolerance and reliability are key issues to be addressed in the design and architecture of these systems. Event B is a formal technique which provides a framework for developing mathematical models of distributed systems by rigorous description of the problem, gradually introducing solutions in refinement steps, and verification of solutions by discharge of proof obligations. In this paper, we present a formal development of a distributed system using Event B that ensures atomic commitment of distributed transactions consisting of communicating transaction components at participating sites. This formal approach carries the development of the system from an initial abstract specification of transactional updates on a one copy database to a detailed design containing replicated databases in refinement. Through refinement we verify that the design of the replicated database confirms to the one copy database abstraction
    corecore