An Aspect—Oriented Approach based on Multiparty Inte@dito
Specifying the Behaviour of a System

Antonio Ruiz, Rafael Corchuelo, José A. Pérez, Amadorddwand Miguel Toro
Departamento de Lenguajes y Sistemas Informaticos, sided de Sevilla
Avda. Reina Mercedes s/n, Sevilla 41012, Spain
Tel/Fax: +34 95 4557139, e—-mad#r ui z@ si . us. es

Abstract

Isolating computation and coordination concerns into spgure computation and pure coordination
enhances modularity, understandability and reusabilitpayallel and/or distributed software. This can
be achieved by moving interaction primitives, which are nmwnmonly scattered in programs, into sep-
arate modules written in a language aimed at coordinatifgctdband expressing how information flows
among them. The usual model for coordination is the cliemtesr model, but it is not adequate when
several objects need to collaborate simultaneously inrdmsolve a problem because natural multiparty
interactions need to be decomposed into a set of low—leiwerpinteractions.

In this paper, we introduce CAL, an IP-based language fod#seription of the coordination aspect of
a system. We show that it can be successfully describedrimstef simple multiparty interactions that can
be animated and are also amenable to formal reasoning.

Key words: Aspect—oriented specification, coordination, multipamtgractions, distributed systems.

1 Introduction

There are several object—oriented specification languagepecifying the behaviour of a system that incorpor-
ate multiparty interactions: TROLL [7], LCM [3], TESORO [J,’&and so on are good examples. Unfortunately,
finding a mapping to transform such specification languageséfficient programs gets more and more diffi-
cult as their level of abstraction increases. As a resuly arfew relatively low—level specification languages
have bridged the gap between specification and implementafimong them, IP [4] stands out because it is
equipped with sound semantics that turn it into a languagenaivie to formal reasoning, but it is also a viable
implementation tool one can use to express abstract sofuti@mt can be compiled and animated in an efficient
way. Nevertheless, we agree with the authors of IP in that itot intended to replace current programming
languages because they rarely fade away. On the contragyhtipe to see IP incorporated into such languages
to describe cooperation among objects.

We think that the new aspect-oriented approach is the keyctwrporate it [8]. Figure 1 depicts the general
framework we need to specify a system following this apphodgrst of all, the behaviour of the system needs
to be decomposed into orthogonal aspects that can be sgdaifen independent way by means of specific
languages. Several important aspects are coordinatisimifdition, security and computation, which are ortho-
gonal and representative enough. Isolating such aspduseas modularity, reusability and understandability
of software, but the key here is that each aspect should legilded in terms of a specific language that should
be intended to deal only with the details concerning it. Tiag, it can be kept small and yet amenable to formal
reasoning. Another important feature is that these langsi@gn be usually translated into programming lan-
guages such as Java or C++, so that the translations carked Imto a piece of code that can then be compiled

*This work is funded by the CICYT project "MENHIR”. TIC 97-089C05-01, Ministry of Education and Science (Spain)

to produce an efficient program. This task is usually done bams of a tool callesveaver[8], which is the
backbone of the aspect—oriented approach. Many referamctss topic can be found, and [10] describes the
state—of—the—art weaver. Unfortunately, it deals onljhwitent/server interaction and distribution.

Coordination Distribution Security | Computation
Specification Specification Specification Specification

Event-Driven
Program

Figure 1: A general framework for Aspect Oriented Speciforat

This paper aims at presenting CAL (Coordination Aspect lagg), an IP-based language for specifying
the coordination aspect of a distributed system. Its maatufe is that it is based on multiparty interactions
as the sole means of object synchronization and communicatius providing an adequate framework for
describing problems where several objects need to collésimultaneously to solve a problem. Itis organized
as follows: section 2 shows the aspect—oriented paradighttannotion of multiparty interactions by means
of the well-known debit—card system; section 3 offers amaga of our implementation; section 4 glances at
other authors’ work, and section 5 shows our conclusionstl@avork we are planning on doing.

2 Aspect—Oriented specification and multiparty interactians

In this section, we introduce the main ideas of the aspeieriad approach and CAL by means of the well—
known debit—card system. We shall also illustrate how rpatty synchronization and communication work.

2.1 Aspect—Orientation in short

Object—oriented languages such as Java or C++ are not ddeznaugh to model distributed systems because
aspects such as coordination, distribution, communicatioreplication do not usually fit into the scope of a
class. Infact, much of the complexity and brittleness iséxg systems stems from the way the implementation
of these aspects ends upspaghetti cod¢hat is plenty of problems such as expensive maintenantfeudti
understanding, dependence on the libraries we use to ingplethese aspects, and so on. However, spaghetti
code is not a real problem unless it needs to be written anglostgrl manually.

In order to deal with these cross—cutting aspects, a numbesearchers began working on several ap-
proaches to this problem that allow programmers to exprasf @spect in a separate module that can be
described by means @id hoclanguages. These languages incorporate only those cotsstreeded to deal
with the details concerning an orthogonal aspect, and theuld be designed so that they can be translated
into an efficient programming language and combined withHdhguages we use to describe other aspects of
the same system. This approaches are usually cApdct—Oriente@dnd several interesting proposals may be
found in the literature [8]. We shall glance at them in setdo

Figure 2 sketches our aspect-oriented proposal for spegitye behaviour of a distributed system. The
coordination aspect is specified in CAL, computations arscidleed in Java, and a weaver combines both
sources into a piece of code that can then be compiled andtexkon top of a CORBA layer that we describe
in section 3. Notice that CAL, is only intended to describerdination, i.e., how objects interact in order to
solve a problem and how data flows among them. In doing so, we teecall methods that are described in
Java, our computation language, but what we must point dbiisthose methods are written without taking
coordination details into account. Decomposing a systémtirese two layers that deal with computation and

Weaver

Computation
Description
(JAVA)

Application Application
Object Object
< ORB-CORBA >
Coordination

Aspect I I

@ @ (JAVA) MultiParty Other

Services

CORBA Service
[(MPCS)

Coordination CAL

Compiler

Aspect
(CAL)

Figure 2: Our proposal to specifying coordination by medrasspects

coordination separately enhances modularity, reusglaifitl understandability.

2.2 The Debit—Card System

The debit—card system can be viewed as the basic behavitterrpan a distributed electronic commercial
system. It is composed of a setropoint—of—sales terminals, and a number of computers tHdtrha@ustomer
accounts angh merchant accounts. This is a problem that can be clearlyridesicby means of multiparty
interactions because a three—party interaction needs tauied out when a clerk inserts a debit card into a
terminal in order to transfer funds from a customer’s ac¢doia merchant’s account. We say that these objects
need to reach an agreement so that funds can be correctsfearaed. This problem is usually described in
terms of client/server primitives, but we shall show that thultiparty interaction approach makes our solution
simpler.

The key concept isultiparty interaction poin{MIP). An MIP is a shared event that several objects must
engage simultaneously so that it can occur. In additionh &4k® can be equipped with a number of slots
that the objects that synchronize on it can use to excharigeriation. Figure 3 depicts several MIPs called
Trans fer; ; , thatTerminal;, Customer; andMerchant, use to transfer funds. When a clerk insert a debit
card into terminaf to transfer funds from the account 6fustomer; to the account o erchanty, it engages
Trans fer; jx, Which is a three—party MIP and cannot be fired u@tilstomer; and Merchant; also engage
it. When this happens, we say that this MIP is enabled anddéwuse fired. Therefore, MIPs can be viewed as
shared events that can only occur as long as all of theirgiaatits have engaged them.

Transferu‘k

Terminal, Customerj

Merchant,

Figure 3: Information exchange through multiparty intéi@c point7'rans fer; ; i

Nonetheless, multiparty synchronization is not enoughegcdbe this problem. We also need multiparty
communication so that the objects that have synchronizedams fer; ;; can exchange information and
really transfer funds. This can be done by using the slotsns fer; ; , has. Each slot is a piece of data an
object can read and/or write. For example, wiens f er; ; 1, is fired, T'erminal; stores the amount of money

MerChanl

‘ Customer | |
2

Customer

Figure 4: Multiparty interaction points needed in a pataciDCS.

to be transferred in slatmnt, so thatC'ustomer; can read it and decide whether it can afford that purchase or
not. It stores the result in slapproval so thatT'erminal; and M erchant; can then decide what to do then.
Obviously, a MIP delays an object’s trying to read a slot tieg not been initialized yet. Thus, they can also
be viewed as critical regions where no race conditions odide&s can occur.

We think that this approach is suitable to describe problesnsre several objects need to agree and col-
laborate simultaneously in order to solve a problem becaweselo not need to design a specific protocol to
transfer information so that no deadlock or race conditian arise. On the contrary, it is implicitly included in
our multiparty interaction mechanism.

2.3 Aglance at CAL

CAL has evolved from IP, being the main difference that a MHR bave a number of slots objects synchronizing

on it can use to exchange information. In CAL, systems arerstdod as collections of co—operating objects

whose relationships are based on multiparty interactiblusetheless, CAL does only provide a basic notation

for describing cooperation among objects, thus their cdatmnal aspects need to be described in another
language such as Java or C++.

CAL offers a small set of statements, being the most intergshe interaction statements. They are of the
form a[com], wherea is referred to as the name of the interaction point in whidh #iatement is interested,
andcom is an optional sequence of assignments or method invosatedarred to as the communication part.
CAL also provides guarded non—deterministic choice statemof the form[]”_,G; — S;], guarded non—
deterministic loops[[]i~;G; — S;] and dummy statements denoted by the key warih. Guards are of the
form B&alcom], whereB is a boolean expression and the rest is an usual interadtitemnsent.

Figure 5 sketches a specification of the debit—card syst&vin We have stated that a system is composed
of n objects of clas§’erminal, m of classCustomer andp of classM erchant. They interact simultaneously
by means of then « n x k MIPs that we have depicted in figure 4 when= 2, n = 2 andp = 1. They have
two natural slots:amnt, which is the amount of money to be transferred, apgroval, which denotes if a
customer has enough money in his/her account to afford dnpsec We have also stated tatrminal; is re-
sponsible for initializing slotimnt, Customer; is responsible for initializingipproval, whereasM erchanty,
just synchronizes in this interaction point and reads tf@rmation the other objects store in its slots.

The behaviour of these objects is quite simpgl&rminal; reads the amount of money a sale has cost by
calling routinenext_sale(), which is described in the computation aspect by using Jaftarwards, it tries
to engage interactio'rans fer; ; together withCustomer; and M erchant,. When this MIP is fired, the
communication part begins to execute, and it leads to trermdtion exchange showed in figure 3: firstly,
Terminal; initializes slotamnt (amnt := s); afterwards C'ustomer; initializes approval by calling method
get_approval(); next, Customer; and Merchant; update their balance and, finallferminal; reads slot
approval in order to tell the clerk whether the purchase was approvewmb

Notice that this mechanism is very flexible and allows for anber of processes to exchange inform-
ation simultaneously. This is a new approach to commumicgativhich has been traditionally broken into

send/receive statements where an object sends a piec@whatfon to another that just waits for it.

3 Implementation issues

We have implemented a CAL compiler, and the target languageselected was JAVA. The compiler uses
several transformation schemes based on the multiparty B2O$ervice we describe in this section. This
details are clearly beyond the scope of this paper, but wé twashow that our approach works quite well. The
reader is referred to [15] for further details about our iempentation.

3.1 The overall picture

The need to simplify distributed application developmeas thed to distributed object environments called
middlewares. They provide the benefits of object—orieatatiseparation of the interface of an object from
its implementation, inheritance, sub—typing, and so o) aminiform method for calling remote procedures
(RPC). They rely on amterface description languag@DL) for defining the interfaces of an object, and there
are IDL compilers that can translate those interfaces irdogs of code that provide RPC support. Interfaces
may be implemented using any of the languages for which anc@npiler has been developed.

We have chosen CORBA [12] as the middleware we use to imple@&h because it is ale factostand-
ard and there are many commercial or public domain impleatemts. This way, objects are translated into
CORBA objects that can synchronise and exchange informdtyomeans of théultiParty CORBA Service
(MPCS) we have implemented. In general, we should have &sdor implementing each aspects of a system.
In order to simplify the weaver, CAL specifications are tlatesd into JAVA so that the it needs to deal only
with one language.

Our implementation is based on an multiparty distributedcbyonization algorithm that we have designed
for this purpose. This algorithm is an evolution of the onegented in [2] and is fully described in [15].
Roughly speaking, it is based on having one interaction gemnper interaction point and a scheduler that
decides which interaction should be fired when multiple rextdons are enabled at the same time. Every
process which needs to participate in one or more intenagtioses a proxy that manages its coordination
aspects.

3.2 Experimental results

We have carried out a performance analysis on our algorithtwo different ways: (a) carrying out an analysis
of performance versus the number of interaction points iystesn, (b) carrying out an analysis of performance
versus the number of participants per interaction (i.eeraattion cardinality). The results of the first analysis
are very complex, since performance depends on many vasiablich as the number of participants versus
the number of interactions, average cardinality of inteoas, average number of shared participants among
interactions (this may be the most influential factor on perfance). A discussion on these results is beyond
the scope of this paper, but the reader interested is refféorfl5]. The results of the second analysis are quite
more simple, since our algorithm is designed to behave flinéa the worst case) with respect to the number
of participants per interaction.

In order to prove our theoretical results, we have carriedasuempirical test. We have built a system
consisting on one interaction point, and two processestwdiie always ready to participate in it. After each
synchronization, one process (writer) stores a value ir& ah the other process (reader) reads it. The total
time elapsed to complete 1.000 interactions was measunddha experiment was then repeated adding more
readers, increasing the interaction cardinality to thfeer, an so on.

/* Coordination Aspect */

DCS ::||i., Termina} |72, Customey ||7_, Merchanj
through
Transfer ; x(i=1,2,....n)(j=1,2.....m)(k=1,2,...,p) [@Mnt: float,approval: booleaajmong
Terminal writes amnt; Customerwrites approval; Merchant
where
Terminal_; .,
{ s: float; ok: boolean
s := nextsale();
*[] ;”;ﬁ’ﬁkleransfef,M[amnt .= s, ok:= approval}» showresult(ok); s := nexsale()].
Customej—i ...,
*[] ;‘:7’17 «—1 Transfef ; [approval := getapproval(amnt); updatealance(amnt, approvab} skip;].

Merchanf—; >,
*[0327 ;= Transfer ; x[updatebalance(amnt, approvah} skip; |..
/* Computation Aspect */

public classTerminal{
private static DatalnputStream stdin rew DatalnputStream(System.in);

public float nextsale(){
System.out.println (“Price: ")return stdin.readFloat();

}

public void showresultpooleanstatus){
if (status) System.out.printin(“Funds transferred”);
elseSystem.out.printin(“Customer’s account can't affordsthiirchase!”);

}
}

public classCustomer
public float balance;

public booleangetapprovalfloat amount){ return amount<= balance;}

public void updatebalancefloat amountbooleanapproved)
if (approved) balance -= amount;

}

public classMerchant{
public float balance;

public void updatebalancefloat amountbooleanapproved)
if (approved) balance += amount;

}
}

Figure 5: A specification the debit—card system in CAL

Elapsed time while executing 1000 interactions

1
40 o

30 76
20 19,1

10 104

©“ o B 0 0 o Wwn
9\
~

Cardinality

Figure 6: Performance test with one only interaction

The results of our test are shown in figure 6, where we can saehk time our implementation takes
increases linearly as the number of participants incredsdedct, the resulting points can be approximated with
the linear functiony = 4,2217x+6, 3917 with R? = 0, 9996, which denotes a very good linear approximation.

4 Related work

Our work tries to narrow the problem of system specificatigrstating one aspect at a time. This is essentially
the approach “divide—and—conquer” that Edsger Dijkstrd gaars ago: “Treat hard problems by dividing then

into several smaller problems that you can solve.” Howews,approach has two important problems: finding
a suitable decomposition it is not easy at all, as well as aming the parts. There is a lot of work about

this topic in others phases of the software developmentiregents engineering, design and implementation.
Next, we summarize different approaches to similar proklamthese phases.

The ViewPoints project [13] is an approach to requirementgreeering which has some common similar-
ities with our proposal. ViewPoints facilitates the paotit of a problem domain into loosely coupled, distrib-
utable objects that encapsulate partial specificationsritbesl in different notations, and locally developed and
managed according to different work plans. Although repmnéstion, development and specification knowledge
are all bundled into the same object to facilitate local nge@maent and distribution, they are separated within a
single ViewPoint into slots to facilitate their individuadanipulation and enhance their tailorability and reusab-
ility. Tolerating the coexistence of multiple heterogengdiewPoint to specify system requirements brings to
the fore the problems of integration. These include thegiatiion of specification fragments described using
different notations, and the integration of methods andstased to develop such descriptions.

With respect to programming, there are several lines veogelto the aspect—oriented programming.
Subject—oriented programmirn§, 14] arose before aspect—oriented programming. Bdgicgistems are built
as compositions of subjects each of which is a class higrarddeling its domain from a particular point of
view. In the model of contracts [6], systems are built by gsiompositions of contracts where each contract
specifies a set of participant objects and their interasti@xpressed as obligations. Next, these interactions
and obligations are encapsulated, so that they are clegprated from other interactions involving the same
objects. A single object can participate in multiple coatsaand, in this case, it must satisfy all their obliga-
tions. The model describes several combination rules fotraots, which correspond with the aspects in our
approach, cutting across classes that describe objeatsilyi-iadaptive programming9, 11] is another ap-
proach to providing modules other than classes within db@ented systems. A class graph describes some
classes and their relationships, from a particular pointi@fv. Class graphs do not contain code; instead, code
is written in separate propagation patterns. Propagataiteqms can be used with any collection of concrete
classes that conform to the class graph against which they @efined. Adaptive programs are transformed
into standard object—oriented programs by specific toolish Y&spect to this generated program, each propaga-
tion pattern is an aspect, since it contains method codecthatacross classes. The composition is performed

by a specific tool in which matching is based on specificatmfridass graph conformance.

Regarding architectural design, current Architecturab@wption Languages (ADLs) such as Wright and
Rapide emphasize modular specification of components amdniteraction. While this emphasis has demon-
strated advantages for system development, in genersipdied systems entail more complicated behavior.
In particular, heterogeneity, failure, and the potentia @inpredictable interactions yield evolving systems
which require complex management policies. Note that sotibips are not isolated into interactions between
components (in [1], some examples of this situation are showWhile it is possible to embed such policies
within components and connectors, doing so sacrifices madatuin the same way that embedding interaction
mechanisms within objects sacrifices object modularity[1ln it is described a new model of components
and connectors which exposes architectural features ssichsaurce usage and locality that provides new
abstractions for asserting policies over these features.

5 Conclusions and future work

A number of important problems in software engineering hagtsted a general solution, including problems
related to software understanding, maintenance, evoluaod reuse. We think that these problems share a
common cause: failure of modern formalisms to satisfy thgasgtion of concerns adequately. Numerous
reasons exist to separate and integrate software, and rb@sens may result in different structures [16]. In
addition, many concerns may be relevant simultaneoustytla entire set of concerns may evolve over time.
Despite this observation, formalisms include weak decaitipm and composition mechanisms that allow
only for a small, “dominant” set of concerns to be separatédis leads directly to our inability to achieve
many of the goals of software engineering as a discipline d3pect—oriented approach to specifying helps to
overcome these limitations in the specification field. lbal for several kinds of separation of concerns that
may not be separable in the current object—oriented motlalsd promotes reuse, improves comprehension,
and eases maintenance and evolution. Thus, the approagssaes some fundamental limitations in software
engineering. Still, a considerable body of experience atated research now exists to support the claim that
aspect—oriented specification is one of the key specificaimineering issues today. The model presented is
just a starting point. It must be refined, stretched and mexdlifand it must be instantiated for a variety of
formalisms to explore issues that arise for different mdthogies and at different aspects. These instantiations
must be used for real development in order to evaluate them.

In this paper, we have introduced the notion of aspect—@ikespecification (AOS) and a new language
that allows for specifying the coordination aspect of aritbsted system. This new technique is quite interest-
ing in the field of distributed—system specification langegmfecause it offers a new perspective to deal with
distribution, coordination, fault tolerance, and so onsiBally, AOS allows the modeler to specify every aspect
by means of a different formalism or language. Thus, it issgae to specify only those aspects for which we
have tools able to animate them in an efficient way and desthié rest with a programming language. The
main advantages of our proposal consists of a frameworkdecifying the behaviour of a distributed system
in a flexible way, so that formal methods can be used in an tndugnvironment, and a better reusability of
the computation specification, since this one is indepenfdem the coordination aspects.

In the future, we are going to study how to incorporate ottsgreats: fault tolerance, confidentiality, and
distribution, so that our work can be used in real-world fpeots such as e-commerce or web—based applica-
tions. In this sense, we hope to keep the independence otattierm so that our work is not bound up with
a concrete language or middleware. In fact, at present, e/@varking on migrating our Multiparty CORBA
Services towards DCOM, so that it can be used in languagésamuisual Basic or Delphi.

References

[1] M. Astley and G. Agha. Customization and composition istributed objects: middleware abstractions
for policy management. IRroceedings of the V1 International Symposium on the Foundations of Soft-

ware Engineering (FSE-6, SIGSOFT '98)ovember 1998.

[2] R. Corchuelo, D. Ruiz, M. Toro, and A. Ruiz. Implementingiltiparty interactions on a network com-
puter. InProceedings of the XX¥ Euromicro Conference (Workshop on Network Computiivj)an
(Italy), September 1999.

[3] R. B. Feenstra and R. Wieringa. LCM 3.0: A language foratiééng conceptual models. Technical
Report IR-344, Faculty of Matematics and Computer Scievidgs Universiteit, Amsterdam, 1993.

[4] N. Francez and I. Forman.nteracting processes: A multiparty approach to coordethtdistributed
programming Addison—Wesley, 1996.

[5] W. Harrison and H. Ossher. Subject-oriented prograngm# critique of pure objects. IFProceedings of
the VIII** Conference on Object-Oriented Programming Systems, laaygguand Applications. OOPSLA’
93, pages 411-428, Washington DC, USA, October 1993. ACM.

[6] L.M. Holland. Specifying reusable components usingtcaets. InProceedings of the European Confer-
ence on Object-Oriented Programming. ECOOP, pages 287-308, Utrecht, June/July 1992. Springer-
Verlag. Lecture Notes in Computer Science, n. 615.

[7] R.Jungclaus, G. Saake, T. Hartmann, and C. SernadasL:RROanguage for object-oriented specific-
ation of information systemsACM Transactions on Information Systertid(2):157-211, April 1996.

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lop&sLoingtier, and J. Irwin. Aspect-
oriented programming. IECOOP’97 Proceedingpages 220-242. Lecture Notes in Comnputer Science,
Springer-Verlag, 1997.

[9] K. Lieberherr. Adaptive Object-Oriented Software: The Demeter Methott Wibpagation Patterns
PWS Publishing Company, Boston, 1996.

[10] C.V. Lopes. D: A Language Framework for Distributed Programmind?hD thesis, Xerox Palo Alto
Research Center, 1998.

[11] M. Mezini and K. Lieberherr. Adaptative plug-and-plagmponents for evolutionary software develop-
ment. InProceedings of the XHi Conference on Object-Oriented Programming Systems, laageguand
Applications. OOPSLA’ 9ages 97-116, Vancouver, British Columbia, Canada, @ctt®98. ACM.

[12] T. Mowbray and W. Ruhlnside CORBA: distributed object standards and applicatiomhe Addison-
Wesley Object Technolgy Series. Addison-Wesley, 1997.

[13] B. Nuseibeh, J. Kramer, and A. Finkelstein. A framewfokexpressing the relationships between mul-
tiple views in requirements specificationEEE Transactions on Software Engineeri2@(10):760-773,
October 199.

[14] H. Ossher, M. Kaplan, A. Katz, W. Harrison, and V. Krusk&pecifying subject-oriented composition.
TAPOS: Theory and Practice of Object Systef{8):179-202, 1996.

[15] J.A Pérez, A. Ruiz, and R. Corchuelo. Implementing tipatty interactions in the context of CORBA.
Technical Report CS-TR-03-1999, Dpto. Lenguajes y Sistemformaticos. Universidad de Sevilla,
1999.

[16] P. Tarr, H. Ossher, W. Harrison, and S. Sutton. N Degodeseparation: multi-dimensional separation
of concerns. IrProceedings of the XX¥International Conference on Software Engineering. ICSE’ 9
pages 107-119, Los Angeles, California, May 1999. ACM.

[17] J.A. Troyano, J. Torres, and M. Toro. TESORO: A techeidar distributed systems specfication. In
Proceedings of the I Euromicro Workshop on Parallel and Distributed Processipgges 563-570,
San Remo (Italy), January 1995.

