
An Aspect–Oriented Approach based on Multiparty Interactions to
Specifying the Behaviour of a System�

Antonio Ruiz, Rafael Corchuelo, José A. Pérez, Amador Durán and Miguel Toro
Departamento de Lenguajes y Sistemas Informáticos, Universidad de Sevilla

Avda. Reina Mercedes s/n, Sevilla 41012, Spain
Tel/Fax: +34 95 4557139, e–mail:aruiz@lsi.us.es

Abstract

Isolating computation and coordination concerns into separate pure computation and pure coordination
enhances modularity, understandability and reusability of parallel and/or distributed software. This can
be achieved by moving interaction primitives, which are nowcommonly scattered in programs, into sep-
arate modules written in a language aimed at coordinating objects and expressing how information flows
among them. The usual model for coordination is the client/server model, but it is not adequate when
several objects need to collaborate simultaneously in order to solve a problem because natural multiparty
interactions need to be decomposed into a set of low–level, binary interactions.

In this paper, we introduce CAL, an IP–based language for thedescription of the coordination aspect of
a system. We show that it can be successfully described in terms of simple multiparty interactions that can
be animated and are also amenable to formal reasoning.

Key words: Aspect–oriented specification, coordination, multipartyinteractions, distributed systems.

1 Introduction

There are several object–oriented specification languagesfor specifying the behaviour of a system that incorpor-
ate multiparty interactions: TROLL [7], LCM [3], TESORO [17], and so on are good examples. Unfortunately,
finding a mapping to transform such specification languages into efficient programs gets more and more diffi-
cult as their level of abstraction increases. As a result, only a few relatively low–level specification languages
have bridged the gap between specification and implementation. Among them, IP [4] stands out because it is
equipped with sound semantics that turn it into a language amenable to formal reasoning, but it is also a viable
implementation tool one can use to express abstract solutions that can be compiled and animated in an efficient
way. Nevertheless, we agree with the authors of IP in that it is not intended to replace current programming
languages because they rarely fade away. On the contrary, they hope to see IP incorporated into such languages
to describe cooperation among objects.

We think that the new aspect-oriented approach is the key to incorporate it [8]. Figure 1 depicts the general
framework we need to specify a system following this approach. First of all, the behaviour of the system needs
to be decomposed into orthogonal aspects that can be specified in an independent way by means of specific
languages. Several important aspects are coordination, distribution, security and computation, which are ortho-
gonal and representative enough. Isolating such aspects enhances modularity, reusability and understandability
of software, but the key here is that each aspect should be described in terms of a specific language that should
be intended to deal only with the details concerning it. Thisway, it can be kept small and yet amenable to formal
reasoning. Another important feature is that these languages can be usually translated into programming lan-
guages such as Java or C++, so that the translations can be linked into a piece of code that can then be compiled�This work is funded by the CICYT project ”MENHIR”. TIC 97–0593–C05–01, Ministry of Education and Science (Spain)

1



to produce an efficient program. This task is usually done by means of a tool calledweaver[8], which is the
backbone of the aspect–oriented approach. Many referenceson this topic can be found, and [10] describes the
state–of–the–art weaver. Unfortunately, it deals only with client/server interaction and distribution.

Weaver

Coordination

Specification

Distribution

Specification

Security

Specification

Computation

Specification
...

Event-Driven

Program

Figure 1: A general framework for Aspect Oriented Specification

This paper aims at presenting CAL (Coordination Aspect Language), an IP–based language for specifying
the coordination aspect of a distributed system. Its main feature is that it is based on multiparty interactions
as the sole means of object synchronization and communication, thus providing an adequate framework for
describing problems where several objects need to collaborate simultaneously to solve a problem. It is organized
as follows: section 2 shows the aspect–oriented paradigm and the notion of multiparty interactions by means
of the well–known debit–card system; section 3 offers an overview of our implementation; section 4 glances at
other authors’ work, and section 5 shows our conclusions andthe work we are planning on doing.

2 Aspect–Oriented specification and multiparty interactions

In this section, we introduce the main ideas of the aspect–oriented approach and CAL by means of the well–
known debit–card system. We shall also illustrate how multiparty synchronization and communication work.

2.1 Aspect–Orientation in short

Object–oriented languages such as Java or C++ are not adequate enough to model distributed systems because
aspects such as coordination, distribution, communication or replication do not usually fit into the scope of a
class. In fact, much of the complexity and brittleness in existing systems stems from the way the implementation
of these aspects ends up inspaghetti codethat is plenty of problems such as expensive maintenance, difficult
understanding, dependence on the libraries we use to implement these aspects, and so on. However, spaghetti
code is not a real problem unless it needs to be written and supported manually.

In order to deal with these cross–cutting aspects, a number of researchers began working on several ap-
proaches to this problem that allow programmers to express each aspect in a separate module that can be
described by means ofad hoclanguages. These languages incorporate only those constructs needed to deal
with the details concerning an orthogonal aspect, and they should be designed so that they can be translated
into an efficient programming language and combined with thelanguages we use to describe other aspects of
the same system. This approaches are usually calledAspect–Orientedand several interesting proposals may be
found in the literature [8]. We shall glance at them in section 4.

Figure 2 sketches our aspect-oriented proposal for specifying the behaviour of a distributed system. The
coordination aspect is specified in CAL, computations are described in Java, and a weaver combines both
sources into a piece of code that can then be compiled and executed on top of a CORBA layer that we describe
in section 3. Notice that CAL, is only intended to describe coordination, i.e., how objects interact in order to
solve a problem and how data flows among them. In doing so, we need to call methods that are described in
Java, our computation language, but what we must point out isthat those methods are written without taking
coordination details into account. Decomposing a system into these two layers that deal with computation and



Coordination

Aspect

(CAL)

CAL

Compiler

Coordination

Aspect

(JAVA)

Computation

Description

(JAVA)

Weaver

Application

Object

Application

Object

ORB-CORBA

MultiParty

CORBA Service

(MPCS)

Other

Services

description

of operation
1

description

of operation
n

call

operation
1

call

operation
n

Figure 2: Our proposal to specifying coordination by means of aspects

coordination separately enhances modularity, reusability and understandability.

2.2 The Debit–Card System

The debit–card system can be viewed as the basic behaviour pattern in a distributed electronic commercial
system. It is composed of a set ofn point–of–sales terminals, and a number of computers that hold m customer
accounts andp merchant accounts. This is a problem that can be clearly described by means of multiparty
interactions because a three–party interaction needs to becarried out when a clerk inserts a debit card into a
terminal in order to transfer funds from a customer’s account to a merchant’s account. We say that these objects
need to reach an agreement so that funds can be correctly transferred. This problem is usually described in
terms of client/server primitives, but we shall show that the multiparty interaction approach makes our solution
simpler.

The key concept ismultiparty interaction point(MIP). An MIP is a shared event that several objects must
engage simultaneously so that it can occur. In addition, each MIP can be equipped with a number of slots
that the objects that synchronize on it can use to exchange information. Figure 3 depicts several MIPs calledTransferi;j;k thatTerminali,Customerj andMerchantk use to transfer funds. When a clerk insert a debit
card into terminali to transfer funds from the account ofCustomerj to the account ofMerchantk, it engagesTransferi;j;k, which is a three–party MIP and cannot be fired untilCustomerj andMerchantk also engage
it. When this happens, we say that this MIP is enabled and thuscan be fired. Therefore, MIPs can be viewed as
shared events that can only occur as long as all of their participants have engaged them.

amnt1

4

2

3

54

approval

Transfer
i,j,k

Terminal
i

Customer
j

Merchant
k

Figure 3: Information exchange through multiparty interaction pointTransferi;j;k
Nonetheless, multiparty synchronization is not enough to describe this problem. We also need multiparty

communication so that the objects that have synchronized onTransferi;j;k can exchange information and
really transfer funds. This can be done by using the slotsTransferi;j;k has. Each slot is a piece of data an
object can read and/or write. For example, whenTransferi;j;k is fired,Terminali stores the amount of money



Transfer
1,2,1

Terminal
1

Terminal
2

Merchant
1

Customer
1

Customer
2

Transfer
2,2,1

Transfer
1,1,1

Transfer
2,1,1

Figure 4: Multiparty interaction points needed in a particular DCS.

to be transferred in slotamnt, so thatCustomerj can read it and decide whether it can afford that purchase or
not. It stores the result in slotapproval so thatTerminali andMerchantk can then decide what to do then.
Obviously, a MIP delays an object’s trying to read a slot thathas not been initialized yet. Thus, they can also
be viewed as critical regions where no race conditions or deadlocks can occur.

We think that this approach is suitable to describe problemswhere several objects need to agree and col-
laborate simultaneously in order to solve a problem becausewe do not need to design a specific protocol to
transfer information so that no deadlock or race condition can arise. On the contrary, it is implicitly included in
our multiparty interaction mechanism.

2.3 A glance at CAL

CAL has evolved from IP, being the main difference that a MIP can have a number of slots objects synchronizing
on it can use to exchange information. In CAL, systems are understood as collections of co–operating objects
whose relationships are based on multiparty interactions.Nonetheless, CAL does only provide a basic notation
for describing cooperation among objects, thus their computational aspects need to be described in another
language such as Java or C++.

CAL offers a small set of statements, being the most interesting the interaction statements. They are of the
form a[com], wherea is referred to as the name of the interaction point in which this statement is interested,
andcom is an optional sequence of assignments or method invocations referred to as the communication part.
CAL also provides guarded non–deterministic choice statements of the form[[]ni=1Gi ! Si], guarded non–
deterministic loops�[[]ni=1Gi ! Si] and dummy statements denoted by the key wordskip. Guards are of the
form B&a[com], whereB is a boolean expression and the rest is an usual interaction statement.

Figure 5 sketches a specification of the debit–card system inCAL. We have stated that a system is composed
of n objects of classTerminal,m of classCustomer andp of classMerchant. They interact simultaneously
by means of them � n � k MIPs that we have depicted in figure 4 whenm = 2, n = 2 andp = 1. They have
two natural slots:amnt, which is the amount of money to be transferred, andapproval, which denotes if a
customer has enough money in his/her account to afford a purchase. We have also stated thatTerminali is re-
sponsible for initializing slotamnt,Customerj is responsible for initializingapproval, whereasMerchantk
just synchronizes in this interaction point and reads the information the other objects store in its slots.

The behaviour of these objects is quite simple:Terminali reads the amount of money a sale has cost by
calling routinenext sale(), which is described in the computation aspect by using Java;afterwards, it tries
to engage interactionTransferi;j;k together withCustomerj andMerchantk. When this MIP is fired, the
communication part begins to execute, and it leads to the information exchange showed in figure 3: firstly,Terminali initializes slotamnt (amnt := s); afterwards,Customerj initializesapproval by calling methodget approval(); next,Customerj andMerchantk update their balance and, finally,Terminali reads slotapproval in order to tell the clerk whether the purchase was approved or not.

Notice that this mechanism is very flexible and allows for a number of processes to exchange inform-
ation simultaneously. This is a new approach to communication, which has been traditionally broken into



send/receive statements where an object sends a piece of information to another that just waits for it.

3 Implementation issues

We have implemented a CAL compiler, and the target language we selected was JAVA. The compiler uses
several transformation schemes based on the multiparty CORBA service we describe in this section. This
details are clearly beyond the scope of this paper, but we want to show that our approach works quite well. The
reader is referred to [15] for further details about our implementation.

3.1 The overall picture

The need to simplify distributed application development has led to distributed object environments called
middlewares. They provide the benefits of object–orientation (separation of the interface of an object from
its implementation, inheritance, sub–typing, and so on) and a uniform method for calling remote procedures
(RPC). They rely on aninterface description language(IDL) for defining the interfaces of an object, and there
are IDL compilers that can translate those interfaces into pieces of code that provide RPC support. Interfaces
may be implemented using any of the languages for which an IDLcompiler has been developed.

We have chosen CORBA [12] as the middleware we use to implement CAL because it is ade factostand-
ard and there are many commercial or public domain implementations. This way, objects are translated into
CORBA objects that can synchronise and exchange information by means of theMultiParty CORBA Service
(MPCS) we have implemented. In general, we should have a service for implementing each aspects of a system.
In order to simplify the weaver, CAL specifications are translated into JAVA so that the it needs to deal only
with one language.

Our implementation is based on an multiparty distributed synchronization algorithm that we have designed
for this purpose. This algorithm is an evolution of the one presented in [2] and is fully described in [15].
Roughly speaking, it is based on having one interaction manager per interaction point and a scheduler that
decides which interaction should be fired when multiple interactions are enabled at the same time. Every
process which needs to participate in one or more interactions, uses a proxy that manages its coordination
aspects.

3.2 Experimental results

We have carried out a performance analysis on our algorithm in two different ways: (a) carrying out an analysis
of performance versus the number of interaction points in a system, (b) carrying out an analysis of performance
versus the number of participants per interaction (i.e. interaction cardinality). The results of the first analysis
are very complex, since performance depends on many variables, such as the number of participants versus
the number of interactions, average cardinality of interactions, average number of shared participants among
interactions (this may be the most influential factor on performance). A discussion on these results is beyond
the scope of this paper, but the reader interested is referred to [15]. The results of the second analysis are quite
more simple, since our algorithm is designed to behave linearly (in the worst case) with respect to the number
of participants per interaction.

In order to prove our theoretical results, we have carried out an empirical test. We have built a system
consisting on one interaction point, and two processes which are always ready to participate in it. After each
synchronization, one process (writer) stores a value in a slot, an the other process (reader) reads it. The total
time elapsed to complete 1.000 interactions was measured, and the experiment was then repeated adding more
readers, increasing the interaction cardinality to three,four, an so on.



/* Coordination Aspect */

DCS ::kni=1 Terminali kmj=1 Customerj kpk=1 Merchantk
through

Transferi;j;k(i=1;2;:::;n)(j=1;2;:::;m)(k=1;2;:::;p) [amnt: float,approval: boolean]among
Terminali writes amnt; Customerj writes approval; Merchant

where
Terminali=1;2:::n ::f s: float; ok: booleang

s := nextsale();
*[ [] m;pj=1;k=1Transferi;j;k[amnt := s, ok:= approval]! showresult(ok); s := nextsale()].

Customerj=1;2:::m ::
*[ [] n;pi=1;k=1Transferi;j;k [approval := getapproval(amnt); updatebalance(amnt, approval)]! skip; ].

Merchantk=1;2:::p ::
*[ [] n;mi=1;j=1Transferi;j;k[updatebalance(amnt, approval)]! skip; ]..

/* Computation Aspect */

public classTerminalf
private static DataInputStream stdin =newDataInputStream(System.in);

public float next sale()f
System.out.println (“Price: ”);return stdin.readFloat();g

public void showresult(booleanstatus)f
if (status) System.out.println(“Funds transferred”);
elseSystem.out.println(“Customer’s account can’t afford this purchase!”);gg

public classCustomerf
public float balance;

public booleanget approval(float amount)f return amount<= balance;g
public void updatebalance(float amount,booleanapproved)f

if (approved) balance -= amount;gg
public classMerchantf

public float balance;

public void updatebalance(float amount,booleanapproved)f
if (approved) balance += amount;gg

Figure 5: A specification the debit–card system in CAL



Elapsed time while executing 1000 interactions

10,4
14,6

19,1
23,7

27,6
31,9

36
40,1

44,1

0

10

20

30

40

50

2 3 4 5 6 7 8 9 10

Cardinality

S

e

c

o

n

d

s

Figure 6: Performance test with one only interaction

The results of our test are shown in figure 6, where we can see that the time our implementation takes
increases linearly as the number of participants increased. In fact, the resulting points can be approximated with
the linear functiony = 4; 2217x+6; 3917 withR2 = 0; 9996, which denotes a very good linear approximation.

4 Related work

Our work tries to narrow the problem of system specification by stating one aspect at a time. This is essentially
the approach “divide–and–conquer” that Edsger Dijkstra said years ago: “Treat hard problems by dividing then
into several smaller problems that you can solve.” However,this approach has two important problems: finding
a suitable decomposition it is not easy at all, as well as composing the parts. There is a lot of work about
this topic in others phases of the software development: requirements engineering, design and implementation.
Next, we summarize different approaches to similar problems in these phases.

The ViewPoints project [13] is an approach to requirements engineering which has some common similar-
ities with our proposal. ViewPoints facilitates the partition of a problem domain into loosely coupled, distrib-
utable objects that encapsulate partial specifications described in different notations, and locally developed and
managed according to different work plans. Although representation, development and specification knowledge
are all bundled into the same object to facilitate local management and distribution, they are separated within a
single ViewPoint into slots to facilitate their individualmanipulation and enhance their tailorability and reusab-
ility. Tolerating the coexistence of multiple heterogeneous ViewPoint to specify system requirements brings to
the fore the problems of integration. These include the integration of specification fragments described using
different notations, and the integration of methods and tools used to develop such descriptions.

With respect to programming, there are several lines very close to the aspect–oriented programming.
Subject–oriented programming[5, 14] arose before aspect–oriented programming. Basically, systems are built
as compositions of subjects each of which is a class hierarchy modeling its domain from a particular point of
view. In the model of contracts [6], systems are built by using compositions of contracts where each contract
specifies a set of participant objects and their interactions, expressed as obligations. Next, these interactions
and obligations are encapsulated, so that they are clearly separated from other interactions involving the same
objects. A single object can participate in multiple contracts, and, in this case, it must satisfy all their obliga-
tions. The model describes several combination rules for contracts, which correspond with the aspects in our
approach, cutting across classes that describe objects. Finally, adaptive programming[9, 11] is another ap-
proach to providing modules other than classes within object–oriented systems. A class graph describes some
classes and their relationships, from a particular point ofview. Class graphs do not contain code; instead, code
is written in separate propagation patterns. Propagation patterns can be used with any collection of concrete
classes that conform to the class graph against which they were defined. Adaptive programs are transformed
into standard object–oriented programs by specific tools. With respect to this generated program, each propaga-
tion pattern is an aspect, since it contains method code thatcuts across classes. The composition is performed



by a specific tool in which matching is based on specificationsof class graph conformance.

Regarding architectural design, current Architectural Description Languages (ADLs) such as Wright and
Rapide emphasize modular specification of components and their interaction. While this emphasis has demon-
strated advantages for system development, in general, distributed systems entail more complicated behavior.
In particular, heterogeneity, failure, and the potential for unpredictable interactions yield evolving systems
which require complex management policies. Note that such policies are not isolated into interactions between
components (in [1], some examples of this situation are shown). While it is possible to embed such policies
within components and connectors, doing so sacrifices modularity in the same way that embedding interaction
mechanisms within objects sacrifices object modularity. In[1], it is described a new model of components
and connectors which exposes architectural features such as resource usage and locality that provides new
abstractions for asserting policies over these features.

5 Conclusions and future work

A number of important problems in software engineering haveresisted a general solution, including problems
related to software understanding, maintenance, evolution, and reuse. We think that these problems share a
common cause: failure of modern formalisms to satisfy the separation of concerns adequately. Numerous
reasons exist to separate and integrate software, and thesereasons may result in different structures [16]. In
addition, many concerns may be relevant simultaneously, and the entire set of concerns may evolve over time.
Despite this observation, formalisms include weak decomposition and composition mechanisms that allow
only for a small, “dominant” set of concerns to be separated.This leads directly to our inability to achieve
many of the goals of software engineering as a discipline. The aspect–oriented approach to specifying helps to
overcome these limitations in the specification field. It allows for several kinds of separation of concerns that
may not be separable in the current object–oriented model. It also promotes reuse, improves comprehension,
and eases maintenance and evolution. Thus, the approach addresses some fundamental limitations in software
engineering. Still, a considerable body of experience and related research now exists to support the claim that
aspect–oriented specification is one of the key specification engineering issues today. The model presented is
just a starting point. It must be refined, stretched and modified, and it must be instantiated for a variety of
formalisms to explore issues that arise for different methodologies and at different aspects. These instantiations
must be used for real development in order to evaluate them.

In this paper, we have introduced the notion of aspect–oriented specification (AOS) and a new language
that allows for specifying the coordination aspect of a distributed system. This new technique is quite interest-
ing in the field of distributed–system specification languages because it offers a new perspective to deal with
distribution, coordination, fault tolerance, and so on. Basically, AOS allows the modeler to specify every aspect
by means of a different formalism or language. Thus, it is possible to specify only those aspects for which we
have tools able to animate them in an efficient way and describe the rest with a programming language. The
main advantages of our proposal consists of a framework for specifying the behaviour of a distributed system
in a flexible way, so that formal methods can be used in an industrial environment, and a better reusability of
the computation specification, since this one is independent from the coordination aspects.

In the future, we are going to study how to incorporate other aspects: fault tolerance, confidentiality, and
distribution, so that our work can be used in real–world problems such as e–commerce or web–based applica-
tions. In this sense, we hope to keep the independence on the platform so that our work is not bound up with
a concrete language or middleware. In fact, at present, we are working on migrating our Multiparty CORBA
Services towards DCOM, so that it can be used in languages such as Visual Basic or Delphi.

References

[1] M. Astley and G. Agha. Customization and composition of distributed objects: middleware abstractions
for policy management. InProceedings of the VIth International Symposium on the Foundations of Soft-



ware Engineering (FSE-6, SIGSOFT ’98), November 1998.

[2] R. Corchuelo, D. Ruiz, M. Toro, and A. Ruiz. Implementingmultiparty interactions on a network com-
puter. InProceedings of the XXVth Euromicro Conference (Workshop on Network Computing), Milan
(Italy), September 1999.

[3] R. B. Feenstra and R. Wieringa. LCM 3.0: A language for describing conceptual models. Technical
Report IR–344, Faculty of Matematics and Computer Science,Vrije Universiteit, Amsterdam, 1993.

[4] N. Francez and I. Forman.Interacting processes: A multiparty approach to coordinated distributed
programming. Addison–Wesley, 1996.

[5] W. Harrison and H. Ossher. Subject-oriented programming: A critique of pure objects. InProceedings of
the VIIIst Conference on Object-Oriented Programming Systems, Languages and Applications. OOPSLA’
93, pages 411–428, Washington DC, USA, October 1993. ACM.

[6] L.M. Holland. Specifying reusable components using contracts. InProceedings of the European Confer-
ence on Object-Oriented Programming. ECOOP’ 92, pages 287–308, Utrecht, June/July 1992. Springer-
Verlag. Lecture Notes in Computer Science, n. 615.

[7] R. Jungclaus, G. Saake, T. Hartmann, and C. Sernadas. TROLL: A language for object-oriented specific-
ation of information systems.ACM Transactions on Information Systems, 14(2):157–211, April 1996.

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and J. Irwin. Aspect-
oriented programming. InECOOP’97 Proceedings, pages 220–242. Lecture Notes in Comnputer Science,
Springer-Verlag, 1997.

[9] K. Lieberherr. Adaptive Object-Oriented Software: The Demeter Method with Propagation Patterns.
PWS Publishing Company, Boston, 1996.

[10] C.V. Lopes. D: A Language Framework for Distributed Programming. PhD thesis, Xerox Palo Alto
Research Center, 1998.

[11] M. Mezini and K. Lieberherr. Adaptative plug-and-playcomponents for evolutionary software develop-
ment. InProceedings of the XIIIst Conference on Object-Oriented Programming Systems, Languages and
Applications. OOPSLA’ 98, pages 97–116, Vancouver, British Columbia, Canada, October 1998. ACM.

[12] T. Mowbray and W. Ruh.Inside CORBA: distributed object standards and applications. The Addison-
Wesley Object Technolgy Series. Addison-Wesley, 1997.

[13] B. Nuseibeh, J. Kramer, and A. Finkelstein. A frameworkfor expressing the relationships between mul-
tiple views in requirements specifications.IEEE Transactions on Software Engineering, 20(10):760–773,
October 199.

[14] H. Ossher, M. Kaplan, A. Katz, W. Harrison, and V. Kruskal. Specifying subject-oriented composition.
TAPOS: Theory and Practice of Object Systems, 2(3):179–202, 1996.

[15] J.A Pérez, A. Ruiz, and R. Corchuelo. Implementing multiparty interactions in the context of CORBA.
Technical Report CS-TR-03–1999, Dpto. Lenguajes y Sistemas Informáticos. Universidad de Sevilla,
1999.

[16] P. Tarr, H. Ossher, W. Harrison, and S. Sutton. N Degreesof separation: multi-dimensional separation
of concerns. InProceedings of the XXIstInternational Conference on Software Engineering. ICSE’ 99,
pages 107–119, Los Angeles, California, May 1999. ACM.

[17] J.A. Troyano, J. Torres, and M. Toro. TESORO: A technique for distributed systems specfication. In
Proceedings of the IIIrd Euromicro Workshop on Parallel and Distributed Processing, pages 563–570,
San Remo (Italy), January 1995.


