436 research outputs found

    Reasoning & Querying – State of the Art

    Get PDF
    Various query languages for Web and Semantic Web data, both for practical use and as an area of research in the scientific community, have emerged in recent years. At the same time, the broad adoption of the internet where keyword search is used in many applications, e.g. search engines, has familiarized casual users with using keyword queries to retrieve information on the internet. Unlike this easy-to-use querying, traditional query languages require knowledge of the language itself as well as of the data to be queried. Keyword-based query languages for XML and RDF bridge the gap between the two, aiming at enabling simple querying of semi-structured data, which is relevant e.g. in the context of the emerging Semantic Web. This article presents an overview of the field of keyword querying for XML and RDF

    Methods for Semantic Interoperability in AutomationML-based Engineering

    Get PDF
    Industrial engineering is an interdisciplinary activity that involves human experts from various technical backgrounds working with different engineering tools. In the era of digitization, the engineering process generates a vast amount of data. To store and exchange such data, dedicated international standards are developed, including the XML-based data format AutomationML (AML). While AML provides a harmonized syntax among engineering tools, the semantics of engineering data remains highly heterogeneous. More specifically, the AML models of the same domain or entity can vary dramatically among different tools that give rise to the so-called semantic interoperability problem. In practice, manual implementation is often required for the correct data interpretation, which is usually limited in reusability. Efforts have been made for tackling the semantic interoperability problem. One mainstream research direction has been focused on the semantic lifting of engineering data using Semantic Web technologies. However, current results in this field lack the study of building complex domain knowledge that requires a profound understanding of the domain and sufficient skills in ontology building. This thesis contributes to this research field in two aspects. First, machine learning algorithms are developed for deriving complex ontological concepts from engineering data. The induced concepts encode the relations between primitive ones and bridge the semantic gap between engineering tools. Second, to involve domain experts more tightly into the process of ontology building, this thesis proposes the AML concept model (ACM) for representing ontological concepts in a native AML syntax, i.e., providing an AML-frontend for the formal ontological semantics. ACM supports the bidirectional information flow between the user and the learner, based on which the interactive machine learning framework AMLLEARNER is developed. Another rapidly growing research field devotes to develop methods and systems for facilitating data access and exchange based on database theories and techniques. In particular, the so-called Query By Example (QBE) allows the user to construct queries using data examples. This thesis adopts the idea of QBE in AML-based engineering by introducing the AML Query Template (AQT). The design of AQT has been focused on a native AML syntax, which allows constructing queries with conventional AML tools. This thesis studies the theoretical foundation of AQT and presents algorithms for the automated generation of query programs. Comprehensive requirement analysis shows that the proposed approach can solve the problem of semantic interoperability in AutomationML-based engineering to a great extent

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks

    The XPSL Query component: a framework for pattern searches in code

    Get PDF
    This thesis describes the tool support for the query component of the eXtensible Pattern Specification Language (XPSL). The XPSL framework is a part of the Knowledge-Centric Software (KCS) platform of tools for software analysis and transformation. XPSL provides a language for the specification of patterns. Currently, there is no tool support to perform software analysis and transformation patterns specified through XPSL. The objective of this research is to provide tool support for analysis. An analysis task is viewed by the tool as a query that can be executed to produce the appropriate results. The goal is to produce a tool which is extensible and easily maintainable. This thesis outlines the framework design of the query component of XPSL, wherein it is presented as a library of basic queries on patterns in code, together with a composition mechanism for writing queries of greater sophistication. The tool is implemented as a translator which takes an XPSL specification as input, and converts it into an equivalent query in a target language of choice. We consider XQuery and XSLT as possible target languages. We discuss the comparative merits and demerits of XSLT and XQuery as the target languages, and explain why our choice of XQuery as the target language is desirable. The pattern search is then done by an XQuery engine. The translation mechanism precisely defines of the semantics of execution of the query, and chooses the various data formats and the technologies for its stages. These are discussed in the thesis. We also do an empirical study of the efficacy and efficiency of the approach taken. Some queries which were executed demonstrate the fact that queries composed in XPSL and executed using the tool can go beyond what is possible in the current Aspect-Oriented Languages. We discuss the applicability of the tool to various software engineering paradigms. We also explore future extensions to the querying mechanism, and discuss the issues that may arise in adding a transformation component to the current framework

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks

    The First Twente Data Management Workshop (TDM'04) on XML Databases and Information Retrieval. Proceedings

    Get PDF

    : Méthodes d'Inférence Symbolique pour les Bases de Données

    Get PDF
    This dissertation is a summary of a line of research, that I wasactively involved in, on learning in databases from examples. Thisresearch focused on traditional as well as novel database models andlanguages for querying, transforming, and describing the schema of adatabase. In case of schemas our contributions involve proposing anoriginal languages for the emerging data models of Unordered XML andRDF. We have studied learning from examples of schemas for UnorderedXML, schemas for RDF, twig queries for XML, join queries forrelational databases, and XML transformations defined with a novelmodel of tree-to-word transducers.Investigating learnability of the proposed languages required us toexamine closely a number of their fundamental properties, often ofindependent interest, including normal forms, minimization,containment and equivalence, consistency of a set of examples, andfinite characterizability. Good understanding of these propertiesallowed us to devise learning algorithms that explore a possibly largesearch space with the help of a diligently designed set ofgeneralization operations in search of an appropriate solution.Learning (or inference) is a problem that has two parameters: theprecise class of languages we wish to infer and the type of input thatthe user can provide. We focused on the setting where the user inputconsists of positive examples i.e., elements that belong to the goallanguage, and negative examples i.e., elements that do not belong tothe goal language. In general using both negative and positiveexamples allows to learn richer classes of goal languages than usingpositive examples alone. However, using negative examples is oftendifficult because together with positive examples they may cause thesearch space to take a very complex shape and its exploration may turnout to be computationally challenging.Ce mémoire est une courte présentation d’une direction de recherche, à laquelle j’ai activementparticipé, sur l’apprentissage pour les bases de données à partir d’exemples. Cette recherches’est concentrée sur les modèles et les langages, aussi bien traditionnels qu’émergents, pourl’interrogation, la transformation et la description du schéma d’une base de données. Concernantles schémas, nos contributions consistent en plusieurs langages de schémas pour les nouveaumodèles de bases de données que sont XML non-ordonné et RDF. Nous avons ainsi étudiél’apprentissage à partir d’exemples des schémas pour XML non-ordonné, des schémas pour RDF,des requêtes twig pour XML, les requêtes de jointure pour bases de données relationnelles et lestransformations XML définies par un nouveau modèle de transducteurs arbre-à-mot.Pour explorer si les langages proposés peuvent être appris, nous avons été obligés d’examinerde près un certain nombre de leurs propriétés fondamentales, souvent souvent intéressantespar elles-mêmes, y compris les formes normales, la minimisation, l’inclusion et l’équivalence, lacohérence d’un ensemble d’exemples et la caractérisation finie. Une bonne compréhension de cespropriétés nous a permis de concevoir des algorithmes d’apprentissage qui explorent un espace derecherche potentiellement très vaste grâce à un ensemble d’opérations de généralisation adapté àla recherche d’une solution appropriée.L’apprentissage (ou l’inférence) est un problème à deux paramètres : la classe précise delangage que nous souhaitons inférer et le type d’informations que l’utilisateur peut fournir. Nousnous sommes placés dans le cas où l’utilisateur fournit des exemples positifs, c’est-à-dire deséléments qui appartiennent au langage cible, ainsi que des exemples négatifs, c’est-à-dire qui n’enfont pas partie. En général l’utilisation à la fois d’exemples positifs et négatifs permet d’apprendredes classes de langages plus riches que l’utilisation uniquement d’exemples positifs. Toutefois,l’utilisation des exemples négatifs est souvent difficile parce que les exemples positifs et négatifspeuvent rendre la forme de l’espace de recherche très complexe, et par conséquent, son explorationinfaisable
    • …
    corecore