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Abstract

Methods for Semantic Interoperability
in AutomationML-based Engineering

Industrial engineering is an interdisciplinary activity that involves human experts from
various technical backgrounds working with different engineering tools. In the era of
digitization, the engineering process generates a vast amount of data. To store and
exchange such data, dedicated international standards are developed, including the
XML-based data format AutomationML (AML). While AML provides a harmonized
syntax among engineering tools, the semantics of engineering data remains highly
heterogeneous. More specifically, the AML models of the same domain or entity can
vary dramatically among different tools that give rise to the so-called semantic
interoperability problem. In practice, manual implementation is often required for the
correct data interpretation, which is usually limited in reusability.

Efforts have been made for tackling the semantic interoperability problem. One
mainstream research direction has been focused on the semantic lifting of engineering
data using Semantic Web technologies. However, current results in this field lack the
study of building complex domain knowledge that requires a profound understanding of
the domain and sufficient skills in ontology building. This thesis contributes to this
research field in two aspects. First, machine learning algorithms are developed for
deriving complex ontological concepts from engineering data. The induced concepts
encode the relations between primitive ones and bridge the semantic gap between
engineering tools. Second, to involve domain experts more tightly into the process of
ontology building, this thesis proposes the AML concept model (ACM) for representing
ontological concepts in a native AML syntax, i.e., providing an AML-frontend for the
formal ontological semantics. ACM supports the bidirectional information flow between
the user and the learner, based on which the interactive machine learning framework
AMLLEARNER is developed.

Another rapidly growing research field devotes to develop methods and systems for
facilitating data access and exchange based on database theories and techniques. In
particular, the so-called Query By Example (QBE) allows the user to construct queries
using data examples. This thesis adopts the idea of QBE in AML-based engineering by
introducing the AML Query Template (AQT). The design of AQT has been focused on a
native AML syntax, which allows constructing queries with conventional AML tools.
This thesis studies the theoretical foundation of AQT and presents algorithms for the
automated generation of query programs. Comprehensive requirement analysis shows
that the proposed approach can solve the problem of semantic interoperability in
AutomationML-based engineering to a great extent.

Keywords: Interoperability, AutomationML, Concept Learning, Query By Example
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1. Introduction

Industrial engineering (or engineering in short) is an interdisciplinary task that comprises
“all activities required to design, test, and commission complex manufacturing lines or
process plants” [1]. One major challenge of engineering is the interoperability between
the engineering tools used by human experts from various technical backgrounds in
different activities [2]. The VDI/VDE guidelines 3695 [3] defines four interoperability
levels1 that could be achieved in engineering. Suppose a simple engineering environment
with two tools, that is, a source tool that generates data and a target tool that consumes
data, one could differentiate between the following cases:

Level 1 (electronic data) The source tool provides data electronically, such as PDF
documents or images, from which the necessary information for the target tool can
be extracted. However, because neither the syntax nor the semantics of the data is
formally defined for machine processing, a human expert is usually responsible for
the manual data extraction and transformation.

Level 2 (shared meta-model) In the next level, the source tool exports data into a
machine-readable format, e.g., Excel spreadsheets or XML files. For the correct
usage on the target side, a shared meta-model needs to be established for both
tools. First, the syntax for data representation and storage needs to be defined,
which could be a stable structure of the Excel tables or a schema of the XML files.
Second, the semantics of the meta-model must be agreed upon the tools, i.e., the
intended meaning of each table column or the XML schema elements. In this
level, data exchange or synchronization can be fully automated because the same
meta-model is used by both tools.

Level 3 (importer-based) Similar to level 2, the source data is exported and ready for
machine processing. Moreover, the target tool implements a data importer that
manifests the logic of data interpretation and provides functionalities to load or
transform the source data into the target tool. In contrast to level 2, a comprehensive
agreement of the meta-model is not necessary.

Level 4 (integrated tool-suite) In the highest level of interoperability, tools may use their
proprietary models, and no human intervention is required for ensuring consistency.
According to Drath et al. [2], the 4th level is only realized in integrated tool-suites.
Indeed, level 4 shares the same semantic foundation with level 3, and dedicated
software modules are provided for achieving interoperability inside the tool-suite.

For a heterogeneous engineering landscape consisting of tools from various software
providers, integrated tool-suites (level 4) are less flexible, while a common meta-model
(level 2) is hard to achieve [4]. Therefore, research on interoperability mainly focused on
level 3. In particular, standardization efforts have been undertaken worldwide.

1In the original formulation, they are called the goal status of interoperability.
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1. Introduction

One of the most remarkable progress during the last decade was the development of
the XML-based data format AutomationML2 (AML, IEC 627143). The motivation of
AML was to reduce the diversity of data formats employed in different engineering tasks
and environments, such as PDF documents, images, Excel tables, and proprietary XML
formats. Therefore, AML is designed as an intermediate layer between the engineering
tools. The core of AML is a neutral object-oriented meta-model that satisfies the
modeling needs of common engineering tasks. Driving by leading companies in the
manufacturing industry4, AML has become a de-facto standard for data modeling and
exchange in engineering. For example, the company Daimler AG has introduced the
integra Engineering Studio for company-wide data integration based on a common AML
model of the production lines [5]. The company ABB HVDC (High-Voltage Direct
Current) Sweden applied AML as a middleware to bridge various tools and platforms
that are used to engineer HVDC systems [1]. Ongoing work in other domains includes
the digitization of System Control Diagrams (SCDs) by the Norwegian company
Equinor in the Oil&Gas industry [6] and exchanging field-bus topology between the
German company Balluff and the Japanese company Mitsubishi Electric [7]. Numerous
results from the research community can also be observed. For example, a query with the
keyword “AutomationML” in Google Scholar5 retrieves more than 1800 articles, among
which more than 1100 ones are published since the year 2015. The advances of AML
also caught the attention of Platform Industry 4.06. For example, the Reference
Architecture Model Industrie 4.0 [8] and the Implementation Strategy Industrie 4.0 [9]
consider AML as an approach for implementing a functional and information layer in the
end-to-end engineering, while the German Standardization Roadmap Industrie 4.0 [10]
and the Details of the Asset Administration Shell [11] suggest using AML for the
description of automation systems and components.

In terms of the interoperability levels described above, AML provides a universal XML
schema as the underlying syntax for storing engineering data and proposes guidelines
for modeling engineering artifacts using this syntax. Essential parts of the guidelines
have become formal IEC specifications, while new features are first released as Best-
Practice Recommendations (BPR) or Application Recommendations (AR)7. Furthermore,
AML is characterized by its mixed model principle, which allows the coexistence of both
neutral and proprietary data in one document [12]. The motivation behind the mixed
model principle is the so-called “semantic standardization deadlock,” which claims that
a one-world model that satisfies the needs of all engineering disciplines and stakeholders
would not appear in the near future [12]. Consequently, data exchange with AML follows
the export-import methodology, as described in the interoperability level 3.

Fig. 1.1 illustrates the AML-based data exchange. One the one hand, neutral data of
the source tool is equipped with the standardized semantics and can be unambiguously
interpreted by the importer of the target tool (Source-Neutral and Neutral-Target). On
the other hand, private data of the source tool is wrapped into AML objects (Source-
Private) without commonly agreed semantics and cannot be understood by the importer.
Therefore, Private-Target mappings need to be established. These mappings bridge the

2https://www.automationml.org/
3https://webstore.iec.ch/publication/32339
4https://www.automationml.org/o.red.c/mitglieder.html
5https://scholar.google.de/scholar?q=automationml&hl=de&as_sdt=0,5
6www.plattform-i40.de
7https://www.automationml.org/o.red.c/publications.html
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1.1. Motivation

Figure 1.1.: Data exchange based on a mixed model [4].

semantic gap between the engineering tools and empower the tools with the so-called
semantic interoperability [13]. However, in practice, the potential complexity of these
mappings could lead to considerable implementation efforts that limit the applicability
of AML in a wider scope [1]. One evidence of this issue is the continuously increasing
endeavor of the AutomationML e.V. towards several comprehensive sub-standards (or
dialects). For example, the component working group aims at providing a general meta-
model for describing automation components [14], and the recently established toolchain
working group focuses on a meta-model for virtual commissioning.

1.1. Motivation

This thesis aims at providing methods to improve the semantic interoperability in AML-
based engineering, under the assumption that the participants in the engineering toolchain
maintain a private subset of the mixed model. Formally:

Definition 1.1 (semantic interoperability in AML-based engineering). Let A and B be
two engineering tools and suppose that B needs data from A, i.e., A is the source tool and
B is the target tool. Assume that both A and B have some private concepts. Given an
AML document S from A, semantic interoperability from A to B is the ability that

1. allows B to retrieve raw data (i.e., XML elements or values) from S that
semantically belongs to a private concept of B;

2. allows B to construct an AML document T using the raw data extracted from S.

In Definition 1.1, case 1 refers to the scenario of data access where the required data
can be semantically described with a private concept of B, and case 2 refers to data
exchange where B needs to materialize data instances from the extracted data of A. In
both cases, B needs to deal with private concepts of A using Private-Target mappings as
shown in Fig. 1.1. It is worth noting that the semantic interoperability from A to B does
not imply semantic interoperability in the opposite direction, which needs to be
additionally established by demand. However, the research results of the unidirectional
semantic interoperability can be applied to bidirectional use cases.

During the last decades, several research communities have shown great interest in
solutions towards semantic interoperability, including the Semantic Web, Industry 4.0,
database theory, and machine learning. In particular, the following two mainstream
research directions can be observed:

3



1. Introduction

RD1 Harmonization of various industrial standards using ontology languages from the
Semantic Web8, and transforming (lifting) engineering data into ontologies.

RD2 Theories, methods, and systems for facilitating data access, integration, and
exchange in engineering processes.

The motivation behind RD1 was that many industrial standards share a set of basic
technical concepts, which might be represented differently because of varying interests
or target applications [15]. For AML-based engineering, RD1 becomes even more
important since AML is a meta-format that incorporates other existing standards. RD1
thus devotes to solve the mismatch or resolve the overlap between those standards. In the
engineering domain, the majority of work in RD1 employs the ontology languages from
the Semantic Web, benefiting from their rich modeling features and the available
software tools. Representative results include the early work on the semantic lifting of
CAEX [16, 17, 18] and their extensions for AML [19, 20, 21, 15], which build the
foundation of ontology-based approaches for tackling concrete interoperability
problems in RD2 [22]. Most notably, the so-called ontology-based data access (OBDA)
and ontology-based data integration (OBDI) show promising results for accessing and
integrating engineering data [23][24].

Nevertheless, current results from RD1 mostly focus on simple domain knowledge
using primitive classes and relations. For more advanced use cases, such as the so-called
GAV (Global-as-View) OBDI [24], complex domain knowledge is necessary to encode
the relation between the primitive ones, which may lead to scalability problems in
practice [13, 25]. Recently, Hildebrandt et al. showed that ontology building should be
domain-expert-centric since the semantics expert might not be (effectively)
available [26]. To better involve domain experts into the knowledge engineering
procedure, Sabou et al. suggested to develop domain-specific knowledge acquisition
tools such as the Siemens-Oxford Model Manager [27], and Nilsson et al. consider
state-of-the-art machine learning methods for assisting ontology building [13].

In the scope of RD2, another related yet independently growing research field devotes
to develop database-based approaches for accessing and exchanging data in relational,
semi-structured (including XML), and graph databases [28, 29, 30]. In contrast to the
ontology-based approaches as described above, database-based approaches are based on
the foundation of database theory and work directly with the raw data using dedicated
query languages. Consequently, no additional data transformation routine is required.
One particularly interesting approach is the so-called Query By Example (QBE) that
facilitates query construction for users who are unskilled in programming [31, 32, 33].
Using a QBE system, the user only needs to supply examples for describing the intention
of the query, while an interpreter translates them into executable query programs.
Because AML is an XML-based data format, adopting these approaches into
AML-based engineering seems promising. However, several challenges arise due to the
conflicts in the problem setting. First, the objective of database-based approaches targets
at the interoperability between different database schemas, while AML-based
engineering relies on the common XML schema. Second, AML defines domain-specific
modeling rules which are not considered by general-purpose QBE systems. Finally, the
target user group of the thesis are the domain experts who are unfamiliar with the
concepts of databases.

8https://www.w3.org/2001/sw/wiki
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1.1. Motivation

The challenges in both ontology-based and database-based approaches encouraged the
study of the following two research questions:

RQ1: How to facilitate ontology building in industrial environments and incorporate
domain experts into the modeling procedure?

RQ2: How to adapt database-based approaches for AML-based engineering so that
they become AML-centric while adhering to the foundations of database theory?

To answer these research questions within a reasonable scope, this thesis restricts the
complexity of the semantic heterogeneity that may occur in engineering processes.
According to Kovalenko and Euzenat [34], seven classes of semantic relations can be
evidenced during the integration of engineering systems. The first four classes are
referred to as value processing relations that describe data transformation rules between
engineering tools. For example, one tool might store a date value as DD-MM-YYYY,
while the other one prefers YYYY:MM:DD. This thesis does not consider these
relations, but covers all the three structure relations as follows:

• Granularity: for example, one tool could use the class Robot for all kinds of
robots, while another tool additionally has the term LightWeightRobot to refer to
robots with limited weights and payload. This granularity difference can be
captured by stating conditions over the correspondences between concepts. In
database research, this refers to ambiguities that are caused by the class inheritance
in different tools [35, 36].

• Schematic differences: it is ubiquitous that one concept is represented differently
in two engineering tools. For example, one tool A might have a private class for
SaftySensor, while another tool B only contains the class Sensor, which has the
property hasSafetyCertification. Thus, a SafetySensor from tool A is
semantically equivalent to a Sensor in tool B with
hasSafetyCertification=true. In terms of database theory, this difference is
reported as context information or categorical attributes [37, 38].

• Grouping and aggregation: this relation is relevant for cases where the data
produced from a tool needs to be combined in another tool. For example, one tool
produces a list of automation components that are aggregated to compose an
automation system in another tool.

Under this restriction, the contributions of this thesis are threefold:

Contribution 1 (RQ1): Developing machine learning algorithms for inducing OWL
complex class expressions. While lifting primitive domain knowledge into an
ontology is well-studied, building sophisticated domain concepts remains
challenging. Concept learning algorithms can be adopted for assisting knowledge
engineering by inducing ontological concepts from labeled data [39]. This thesis
reveals the drawbacks of the state-of-the-art OWL learners and presents the novel
algorithm Rapid Restart Hill Climbing (RRHC). Furthermore, AML-specific
modeling constraints are utilized to accelerate learning from AML data.

5



1. Introduction

Contribution 2 (RQ1): Designing an AutomationML interface for representing OWL
complex classes. Since OWL class expressions are argued to be non-intuitive for
domain experts, this thesis proposes the AML concept model (ACM) that can
(partially) preserve ontological semantics in a native AML syntax. Therefore,
ACMs can be easily perceived, modified, and even generated by AML users. To
support the bidirectional information flow between the user and the OWL learner,
algorithms are developed for the translation between OWL complex classes and
ACMs. Finally, the interactive machine learning framework AMLLEARNER is
designed with a graphical user interface embedded in the conventional AML
editor.

Contribution 3 (RQ2): Developing a framework for semi-automated data access and
exchange in AML-based engineering. Inspired by the QBE paradigm, this thesis
introduces the AutomationML Query Template (AQT) for accessing and
exchanging AutomationML data using query templates. The motivation of AQT is
to facilitate query construction for domain experts who are familiar with
AutomationML but unskilled in programming. Therefore, AQT has an
AML-based syntax, which allows constructing queries with conventional
AutomationML tools. To utilize existing database technologies, the semantics of
AQT is defined based on the notion of tree pattern queries. Finally, algorithms are
presented for generating XPath [40] and XQuery [41] programs from AQTs.

The following summarizes the published papers that build the basis of the thesis:

1. Y. Hua and B. Hein. Concept Learning in AutomationML with Formal Semantics
and Inductive Logic Programming. In 2018 IEEE 14th International Conference
on Automation Science and Engineering (CASE), pages 1542–1547, August 2018.
doi: 10.1109/COASE.2018.8560541. © 2018 IEEE

2. Y. Hua and B. Hein. Concept learning in engineering based on refinement
operator. In Up-and-Coming and Short Papers of the 28th International
Conference on Inductive Logic Programming (UCS-ILP 2018) Ferrara, September
2-4, 2018, volume 2206 of CEUR Workshop Proceedings, pages 76–83. RWTH,
Aachen, 2018.

3. Y. Hua and B. Hein. Interactive Learning Engineering Concepts in AutomationML.
In 2019 24th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA), pages 1248–1251, September 2019. © 2019 IEEE

4. Y. Hua and B. Hein. Rapid Restart Hill Climbing for Learning Description Logic
Concepts. In 29th International Conference on Inductive Logic Programming (ILP
2019), Plovdiv, September 2019.

5. Y. Hua and B. Hein. Interpreting OWL Complex Classes in AutomationML based
on Bidirectional Translation. In 2019 24th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), pages 79–86, September
2019. © 2019 IEEE

6. Y. Hua and B. Hein. AQT - A Query Template for AutomationML. IEEE Transaction
on Industrial Informatics, April 2020. doi: 10.1109/TII.2020.2989125. © 2020
IEEE

6



1.2. Chapter Overview

1.2. Chapter Overview

The rest of the thesis is organized as follows. Chapter 2 introduces the basic notions of
AML and the detailed workflow of AML-based engineering. For describing the
challenges caused by the mixed-model principle, Section 2.2 presents a layered view of
the required semantic mappings (Private-Target mappings as shown in Fig. 1.1), based on
which related work towards semantic interoperability in AML is discussed.

The main part of the thesis begins with ontology-based approaches. In Chapter 3, a
brief introduction of Semantic Web languages is introduced, and the related work on the
semantic lifting of AML is discussed. This chapter continues with the foundations of
concept learning and describes the utility of concept learning in AML-based engineering.

After the basics, Chapter 4 first conducts a comparative study of the well-known
algorithm CELOE in Section 4.1 and then develops algorithms for concept learning in
OWL (Section 4.2) and AML (Section 4.3.1). In Section 4.4, experiments are carried out
for evaluating the performance of the proposed algorithms. For representing the learned
OWL class expressions in AML, Chapter 5 proposes the AML Concept Model (ACM)
and presents the bidirectional translation between ACM and OWL. Then, Section 5.3
introduces the AMLLEARNER framework, and Section 5.4 discusses the interactive
features of AMLLEARNER according to the literature of interactive machine learning
systems.

The second part of the thesis aims at developing a QBE-like approach for accessing and
exchanging AML data. Chapter 6 begins with the introduction of the standard XML Query
languages and tree patterns. Then, foundations of XML data exchange are described in
Section 6.3, and the related work on QBE-based approaches are discussed in Section 6.4.

Based on the notion of tree patterns, Chapter 7 proposes the AML Query Template
(AQT) for accessing engineering data stored in AML files and presents algorithms for
translating AQTs into XPath and XQuery programs. To enable semi-automated data
exchange, Chapter 8 extends the AQT-based approach for the materialization of a target
AML document. In particular, requirements and theoretical foundations for AML data
exchange are studied in Section 8.1 and 8.2, which provide the necessary notions and
guidelines for the extension of AQT. Section 8.5 compares AQT with general-purpose
QBE systems and shows that AQT is more suitable for data exchange with AML.

Finally, Chapter 9 concludes the thesis and outlines ideas for future work.
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2. AutomationML-based
Engineering

The development of AutomationML (AML) was driven by the strong need of a neutral,
cross-domain data format for seamless data exchange between engineering tools [42].
With the slogan “the glue for seamless automation engineering,” AML is designed as a
meta-format that integrates several existing standards. Syntactically, an AML document
is an XML file that adheres to the XML schema of the Computer-Aided Engineering
Exchange (CAEX, IEC 62424) [43]. To describe geometry and kinematic models, AML
provides an interface to the data format COLLADA (as ISO/PAS17506). For specifying
logic behavior of automation components and systems, PLCopen (as IEC 61131) models
can be referenced. Fig. 2.1 shows the relations between AML and those cooperating
standards. Recently, a joint working group with the OPC foundation extends the scope of
AML to model on-line information like process data and diagnostic information [44].
The integration of eCl@ss into AML enables the usage of the standardized object and
property semantics [45], e.g., the definition of the class ArticulatedRobot and the
attribute ManufacturerName.

Figure 2.1.: The relations between AutomationML and its cooperating standards [46].

2.1. AutomationML modeling facilities

For providing the basic understanding of data modeling in AML, the CAEX schema
elements are explained first. Fig. 2.2 shows the class diagram of the CAEX schema in
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CAEXBasicObject

CAEXObject

  ID : String [0...1]
    name : String [1...1]

AttributeValueRequirement

RefSemantic

RoleRequirements

SupportedRoleClass

ExternalReference

AttributeNameMapping

InterfaceNameMapping

AttributeType

  attribute : AttributeType [0...*]

InterfaceClass

  attribute : AttributeType [0...*]

RoleClass

 attribute : AttributeType [0...*]
 interface: ExternalInterface [0...*]

SystemUnitClass

 attribute  : AttributeType [0...*]
 interface : ExternalInterface [0...*]
  element  : InternalElement [0...*]

InternalLink

InterfaceClassLib

RoleClassLib

SystemUnitClassLib

InstanceHierarchy

ExternalInterface

  attribute : AttributeType [0...*]

InternalElement

 attribute  : AttributeType [0...*]
 interface : ExternalInterface [0...*]
  element  : InternalElement [0...*]

Legends

Esssential

Conditional

Organizational

Figure 2.2.: The class diagram of the CAEX schema V2.15. Essential concepts are
marked as blue, while conditional and organization ones are marked as
yellow and grey respectively.

version 2.15, while Fig. 2.3 illustrates the architecture of a typical AML document. One
can observe the following four modules that constitute an AML document:

Role Class Libraries: a role class library collects shared concepts in engineering. Each
concept is modeled as an AML role class, which can be extended with properties and
interfaces. AML supports the modeling of class-class relations (i.e., inheritance) using
the keyword RefBaseClassPath. The first part1 of IEC 62714 specifies the role class
library AutomationMLBaseRoleClassLib that contains abstract concepts in
engineering, such as Product, Process, Resource, etc. This base library is refined into
a series of domain-specific ones in the second part2 of IEC 62714. For example, the
AutomationMLDMIRoleClassLib comprises concepts for discrete manufacturing, e.g.,
Robot and Tool, and the AutomationCSRoleClassLib contains basic object types for
control systems, e.g., Controller and Sensor. Fig. 2.4a shows the inheritance
hierarchy of some standardized AML role classes. Finally, private role classes can be
derived from standardized ones.

Interface Class Libraries: an interface class library is a collection of shared concepts
about interfaces. Each concept is modeled as an interface class between which

1https://webstore.iec.ch/publication/32339
2https://webstore.iec.ch/publication/22030
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2.1. AutomationML modeling facilities

Figure 2.3.: The architecture of an AutomationML document [47]. For sake of brevity,
instance hierarchy is written as IH, internal element is written as IE, system
unit class is written as SUC, role class is written as Role, and librariy is
written as LIB.

11
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AutomationMLBaseRole

Product Process Resource

DiscManufacturingEquipment

Robot Tool Machine

(a) Examples of standardized AML role classes.

AutomationMLBaseInterface

PPRConnector ExternalDataConnector Communication

COLLADAInterface PLCopenXMLInterface

(b) Examples of standardized AML interface classes.

Figure 2.4.: The inheritance hierarchy of some AML role and interface classes.

inheritance relations can be specified. Again, a basic set of interface classes has been
standardized (cf. Fig. 2.4b). For example, COLLADAInterface is designed for
connecting geometry or kinematics description in COLLADA files and is modeled as a
subclass of ExternalDataConnector, and the class Communication stands for
communication interfaces between automation objects. Similar to the role classes,
interface classes can be refined by the user for covering specific modeling requirements.

System Unit Class Libraries: while the previous two modules are used for shared
domain concepts, a system unit class library includes tool-specific models of engineering
components or systems. Those models are referred to as system unit classes and may
comprise subordinated object structures and interfaces that are represented as nested
AML internal elements and external interfaces, respectively. The semantics of a
system unit class or an internal element is defined by the associated role classes using
class-instance relations. AML provides two mechanisms for this purpose: the
SupportedRoleClass can be used for both system unit classes and internal elements, and
the RoleRequirements is only applicable to internal elements but allows a more
comprehensive description of the requirements of the referenced role class. An external
interface represents logical or physical connection points on automation objects. The
semantics of an external interface can be specified with a class-instance relation to an
interface class. Connections between external interfaces can be modeled as
instance-instance relations using AML InternalLinks. Finally, internal elements and
external interfaces are uniquely identified by their universally unique identifiers (UUID).

Instance Hierarchies: an AML instance hierarchy represents the topological structure
of a plant or an automation system, where individual objects and interfaces are modeled as
internal elements and external interfaces, respectively. An internal element can either be

12
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constructed from scratch or instantiated from system unit classes using a copy operation.
However, the copy operation distinguishes the conventional instantiation in the object-
oriented paradigm, since the internal element can modify, add, or delete data from the
original system unit class.

The properties of classes, interfaces, and objects are described using CAEX
attributes. The adjective “CAEX” is necessary for attributes since the notion AML
attribute is reserved for all CAEX attributes that are standardized by the AML
association. For example, direction is an AML attribute that is defined for the
interface class Order. Syntactically, a CAEX attribute is a complex XML element that
may include the name, the data type, the unit, and the value or
AttributeValueRequirements. AML mainly supports two types of value requirements:
the nominal scaled type that contains a list of permitted values, and the ordinal scaled
type that specifies the minimum and maximum of the value. The semantics of a CAEX
attribute can be defined using AML RefSemantic. For example, an eClss property can be
linked to a CAEX attribute following the rules described in [45]. Finally, CAEX
attributes can be nested for representing complex data structures. For example, a
coordinate attribute can have three sub-attributes (x, y, z).

In addition to the CAEX schema elements, IEC 62424 standardizes a set of XML
attributes (not CAEX attributes) for the serialization of a CAEX document, most notably
including:

• Name: name of one object, interface, class, or attribute.

• ID: UUID of one object or interface.

• Unit and AttributeDataType: unit and data type of a CAEX attribute.

• RefBaseClassPath: the path of a role, interface, or system unit class w.r.t. its
super class.

• RefBaseRoleClassPath: the path of the referenced role class in role requirements.

• RefRoleClassPath: the path of the reference role class in a supported role class.

• RefPartnerSideA and RefPartnerSideB: the UUID of the connected external
interfaces in an internal link.

2.2. AutomationML-based Engineering

The CAEX schema, as described in the last section, defines the syntax of a valid AML
document. However, as reported by Hua et al. [48], AML only supports human-
interpretable semantics, which is described in its IEC and supplementary technical
specifications. For example, the XML attribute RefBaseClassPath is defined as “If
inheritance is required, the parent class shall be specified using the CAEX tag
“RefBaseClassPath” comprising the full path of the class according to IEC 62424:2008,
A.2.7.” This information declares the intended meaning of RefBaseClassPath, but only
for human interpretation. A machine could not process this information without
programming effort from human experts. One would argue that the role and interface
class concept is designed for machine interpretation since once the XML document is
parsed, each engineering object can be semantically identified by its role class. However,
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2. AutomationML-based Engineering

Figure 2.5.: The “standard” data exchange process between two engineering tools while
using AutomationML as an intermediate layer.

besides the standardized role classes, which are themselves too general, the mixed model
principle of AML allows private concepts that are defined by individual tools and are not
semantically interchangeable per se (cf. Fig. 1.1).

As a consequence, the standard data exchange pipeline suggested by the AutomationML
e.V. follows an exporter-importer-based approach [49]. Fig. 2.5 illustrates the data flow
from a source to a target engineering tool via the intermediate AML layer.

The first step in the process is the externalization of the proprietary models from each
engineering tool to AML system unit classes. These proprietary models are the abstraction
of the private data in each engineering tool.

The second step is called data export, which only happens on the source tool side. In this
step, proprietary data objects in the source tool are serialized to an AML-conform format,
following the modeling principles described in Section 2.1. The result of the export can
be one or several AML instance hierarchies that contain concrete data objects from the
source tool as AML internal elements. Ideally, each internal element is an instantiation of
a system unit class that emerges during the externalization step.

Next, mappings between the system unit classes of the source and target tool are defined.
Let S be a source system unit class, T be a target system unit class, and s be a source data
object (an internal element) that is instantiated from S. Let RS be the set of role classes
referenced in S and RT the set of role classes referenced in T . One distinguishes between
the following two scenarios for the mapping:

• In the simplest case, RS ✓ RT , which means that all data elements in s can be
directly transferred to the target tool.

• If RS � RT or RS � RT 6= ;, the mapping shall cover the part of s which has no
direct correspondence in T . In this case, either the remaining data is ignored, or it
has to be stored under additional strategies.

In the last step, the target tool imports the source instance hierarchies using the
mappings generated in the last step.
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2.2. AutomationML-based Engineering

Figure 2.6.: One tool might need dedicated AML importers for different source tools.

The key prerequisite of the standard data exchange pipeline is the agreement of a set
of shared role and interface classes between the tools3. This is a strong assumption in
practice, because,+ on the one hand, such an agreement requires intensive negotiations
between different stakeholders in an engineering project. Moreover, if RS ✓ RT , the
standard data exchange pipeline can be categorized to the second level of the VDI/VDE
guideline 3695, as described in Chapter 1. On the other hand, if RS � RT or RS�RT 6= ;,
private concepts of the source tool needs to be treated individually via class mappings,
which can be rather complex since semantic alignments between the tools need to be
established [34]. Fig. 2.6 illustrates this dilemma when a target tool needs data from
various source tools. For each source tool, a dedicated AML importer4 is required as
the class mappings may vary among different sources. To understand the scale of these
mappings, we compare AML-based engineering with the meta-model hierarchy proposed
by the Object Management Group (OMG5), which distinguishes between the following
four levels:

• M3: this level contains the meta-meta-models which serve as a language for
defining meta-models. Examples of M3 level languages include the OMG Meta
Object Facility (MOF6) and the EMF core (Ecore7) from the Eclipse framework.

• M2: this level defines the language, or the meta-models, for constructing models.
In model-driven engineering, meta-models are often referred to as a
platform-independent specification of a domain.

• M1: once the meta-model is defined, a platform-dependent model can be generated
that describes the concrete data.

• M0: this layer contains concrete instance data of a model.

The CAEX schema is a meta-model (M2) that specifics the engineering domain.
Nevertheless, the role and interface classes cannot be easily categorized because they use
the CAEX schema as their modeling language while being platform-independent.

3In reality, they also need to agree with the attributes, which are not the primary concern of this thesis.
4Or at least a dedicated extension of the basic AML importer if implemented properly.
5https://www.omg.org/
6https://www.omg.org/mof/
7https://www.eclipse.org/modeling/emf/
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CAEX Schema CAEX Schema
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Figure 2.7.: A layered view of the mappings between two tools that support AML-based
engineering. The blue layer denotes the fully standardized part of AML, the
yellow layer refers to the partially standardized part of AML, and the gray
layer represents non-standardized private data.

Therefore, a distinction is needed within the M2 level that separates the class definitions
in AML from the underlying schema, as illustrated in Fig. 2.7:

• The CAEX schema itself is called an abstract meta-model (M2). There is no
mapping required in this layer because tools use the same CAEX schema.

• The role and interface classes are called specific meta-models (M2). Since the
mixed-model principle allows deriving private domain concepts from the
standardized ones, mappings are required between the privately defined role and
interface classes.

• System unit classes and internal elements belong to the M1 level as they are
tool-specific. Because their associated role and interface classes can be partially
standardized, mappings are also required within the M1 level.

• The proprietary data of each engineering tool belong to the M0 level. It is difficult
to formulate mappings at this level because there is no agreement on the syntax.
In practice, human experts are responsible for transferring data from one tool to
another (cf. interoperability level 1 in Chapter 1).

In conclusion, mappings are required in the layers M1 and M2. Currently, these
mappings are often embedded into the AML importer of the target tool. From a
model-based engineering perspective, the complexity of the importer can be significantly
reduced if the mapping specification is separated from its implementation. However,
while AML has a rich vocabulary to model relations between engineering model
artifacts [47], the standard provides no guidelines for describing these mappings.

Recently, researches have been conducted to tackle this problem. Bigvant et al. first
introduced the semantic data hub concept that manages the mappings in an intermediate
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mapping library [50]. This approach mainly focuses on the aspects of the novel
engineering process and system architectures and is less concerned about the
implementation. Bihani and Drath proposed to embed 1-1 mappings between CAEX
attributes into the AML file of the source tool [1]. Each mapping consists of the source
tool attribute, the desired target tool, and the identifier of the target tool attribute. This
work is extended in [51] by allowing more complex mapping types, e.g., mathematical
functions, between the values of CAEX attributes. These approaches, however, do not
provide sufficient expressiveness for complex data exchange scenarios, e.g., class and
object structure mappings. In the field of semantic technologies, several studies have
attempted to transform AML data into ontologies and describe the mappings using
expressive ontology languages. These approaches will be discussed in Section 3.1.4.
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3. Preliminaries and Related Work

This chapter gives a brief introduction to Semantic Web technologies and discusses the
related work on inductive learning in description logics.

3.1. Semantic Web Languages

In 2001, Tim Berners-Lee and others envisioned the future of the World Wide Web in the
article “The Semantic Web” [52]. The main emphasis of this article was to bring
machine-understandable meaning to the documents in the world wide web and to
represent knowledge using tools from artificial intelligence, e.g., ontologies and rules.
The Semantic Web thus brings logical structures to the web content and fosters
automated inference that can answer complex questions or help decision making. Since
then, various working groups are established within the World Wide Web Consortium
(W3C), which have led to a set of standards. The most notable ones include the Resource
Description Framework (RDF) and its schema language (RDFS)1, the SPARQL query
language, and the Web Ontology Language (OWL). In addition, numerous
implementations emerged, e.g., inference engines, open-source libraries, and ontology
editors. These efforts promoted the usage of Semantic Web technologies in other fields,
including engineering in the industrial context [53].

3.1.1. RDF(S) and SPARQL

This section gives a brief overview of RDF(S) and SPARQL that is necessary for
understanding the thesis. For more details about these languages, the readers are referred
to the corresponding W3C specifications and the book “Foundations of Semantic Web
Technologies” [54].

The Resource Description Framework (RDF) is a language for expressing information
about resources. Each statement in RDF is a triple in the form of
subject-predicate-object, and an RDF document is a collection of such triples.
Informally, a triple describes the relation, denoted by the predicate, between two
resources denoted by the subject and object. RDF employs the Uniform Resource
Identifiers (URI) for the global identification of resources or relations and uses literals
for concrete values. Syntactically, URIs can present at any position in a triple, while
literals can only appear as an object. If a resource does not require a global identification,
it is represented as a black node. An RDF document is also called an RDF graph, where
subjects and objects correspond to the graph nodes, and each predicate connects a pair of
subject and object. A resource with a URI is illustrated by an ellipse, and a literal is

1In the literature, they are often written together as RDF(S).
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aml:suc_UR5

Universal Robots

SystemUnitClass

aml:ie_e1342328-2cf3-4b11-a19a-4d63b2d8dee9
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aml:hasPayload

rdf:type
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aml:hasCAEXType

aml:Resource

rdf:type

Figure 3.1.: The RDF graph of the robot UR5.

shown as a box. Fig. 3.1 shows the RDF graph of the robot UR5 that is originally
modeled in AML as a system unit class. A URI, e.g., aml:suc_UR5, consists of the
namespace aml, defined as xmlns:aml=“http://www.ipr.kit.edu/aml#”,
and the resource identifier suc_UR5.

RDF supports several serialization formats. The RDF/XML format2 was introduced in
2004 to store RDF data in XML. The following XML code describes the robot UR5 in
Fig. 3.1:

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:aml="http://www.ipr.kit.edu/aml#"

<aml:Resource rdf:about="aml:suc_UR5">
<aml:hasCAEXType>SystemUnitClass</aml:hasCAEXType>
<aml:hasManufacturer>Universal Robots</aml:hasManufacturer>
<aml:hasIE rdf:resource="aml:ie_e1342328-2cf3-4b11-a19a-4d63b2d8dee9"/>

</aml:Resource>

<aml:Robot rdf:about="aml:ie_e1342328-2cf3-4b11-a19a-4d63b2d8dee9">
<aml:hasCAEXType>InternalElement</aml:hasCAEXType>
<aml:hasPayload>5</aml:hasPayload>

</aml:Robot>
</rdf:RDF>

While RDF can describe the relations between resources, RDF Schema (RDFS) is
used to model the so-called terminological knowledge. The essential part of the
terminological knowledge is a vocabulary that specifies the concepts and their relations
in a domain of interest. For example, aml:Resource in Fig. 3.1 is a concept in the
engineering domain that refers to the class of all engineering resources. RDFS is capable
of building a hierarchy of such domain concepts by means of subclass relations. For
example, aml:Actuator can be modeled as a subclass of aml:Resource, which
denotes that all instances of aml:Actuator is also an instance of aml:Resource.
This modeling capability makes RDFS a (lightweight) ontology language.

2https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
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With data stored in an RDF document or a triple store, one might be interested in
extracting knowledge from it. SPARQL is a query language designed for retrieving data
from RDF graphs. Each SPARQL query contains a set of triple patterns, in which
subjects, objects, or relations can be replaced by variables (represented by a leading ?).
A SPARQL query thus looks for parts from the RDF graph which match the triple
patterns and returns the data in the place of variables. For example, one could ask for all
robots from the manufacturer Universal Robots with a limited payload as follows:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
PREFIX aml: <http://www.ipr.kit.edu/aml#> .
SELECT ?robot
WHERE {

?robot aml:hasManufacturer "Universal Robots" .
?robot aml:hasIE ?arm .
?arm rdf:type aml:Robot .
?arm aml:hasPayload ?payload .
FILTER (?payload < 10)

}

3.1.2. Description Logics

The expressivity of RDF(S) is rather limited for modeling complex domain knowledge,
which leads to the development of the Web Ontology Language (OWL). While the design
of OWL was subject to several influences [55], its mathematical foundation is primarily
based on a family of knowledge representation languages called Description Logics (DL).

Historically, DLs originate in the study of the so-called network-based structures [56],
e.g., semantic networks [57] and frames [58], that are attempts for representing
knowledge similar to how humans perceive meaning. The reasoning services of these
attempts, however, produce different results since no precise machine-interpretable
semantics was given. In contrast to these predecessors, DLs are equipped with a formal
semantics grounded on the classical first-order logic.

Knowledge representation with DLs starts with the modeling of terminologies in the
domain of interest, i.e., concepts and roles. A concept represents a set of individuals
that share some common properties, and a role represents the binary relation between
two individuals. For example, in the family relation domain, one can define several DL
concepts, including Person,Male, and Female, and state that all Males and Females are
also Persons using concept inclusion axioms as:

Male @ Person, Female @ Person (3.1)

To describe the parent-child relationship between two persons, one can define the DL
roles hasChild and hasParent. From the basic DL concepts and roles, more
comprehensive knowledge can be built using concept constructors. For example, the
following equivalence axiom gives a concept definition for the concept name Father:

Father ⌘ Male u 9hasChild.> (3.2)

The symbol “⌘” stands for the logical equivalence. The symbol “u” (reads “and”)
corresponds to the classical logic operator AND, the symbol “9” (reads “exists”) is the
existential quantifier, and “>” (reads “top”) means any individual in the domain. The
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expression 9hasChild.> describes all individuals which have at least one filler of the role
hasChild that belongs to the concept >. Therefore, axiom 3.2 characterizes the concept
Father as Male with at least a child.

In addition to the terminological knowledge, one could make assertions about the
individuals in the domain. In the family case, one could add individuals of Persons using
concept assertions, and describe their parent-child relationships with role assertions. For
example, the following axioms state that ALICE is a female, YINGBING is a male, and
ALICE is a child of YINGBING:

Female(ALICE),Male(YINGBING)

hasChild(YINGBING,ALICE)
(3.3)

This thesis adopts the conventional writing style in the DL literature, namely, the first
letter of a concept name (for example Person) is written in uppercase, the individual
names (for example ALICE) are always in uppercase, and the role names (for example
hasChild) are written in camel-case notations. Furthermore, a, b, c are used to denote
arbitrary individual names, r, s are used to denote arbitrary role names, and A,B are
used to denote arbitrary concept names. Finally, C,D are used to refer to (possibly)
complex concept descriptions, for example, the right-hand side of axiom 3.2.

DLs can be distinguished regarding their expressivity, that is, what kind of concept
constructors are supported and which assertions can be made. The most basic DL
considered in this thesis is the attributive concept descriptions with complements, or
ALC, developed by Schmidt and Smolka in 1991 [59]. The concept constructors of ALC
can be defined as follows [60]:

Definition 3.1 (ALC Concepts). Let C be a set of concept names and R be a set of role
names with C \R = ;. The set of ALC concepts is inductively defined as follows:

• Each concept name A 2 C is an ALC concept.

• The top concept > that refers to all individuals in the domain, and the bottom
concept ? that refers to none individuals are ALC concepts.

• Let C and D be ALC concepts, and r a role name in R, then the following are also
ALC concepts:

– C uD (conjunction), C tD (disjunction), ¬C (negation)

– 9r.C (existential restriction), 8r.C (universal restriction)

Two kinds of ALC concepts can be constructed: the atomic concepts are elements
from C [ {>,?}, and the complex concepts are built by compounding atomic concepts
and roles with the operators u,t,¬, 9, 8. Recall the family example above. The set C
contains the concept names {Person, Female,Male}, and the set R contains the role
name {hasChild}.

A DL knowledge base K = (T ,A) consists of a TBox T that contains the terminological
knowledge and an ABox A that includes the assertional knowledge.
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Example 3.1 (ALC knowledge base). The ALC knowledge base of the family example
can be defined with:

the TBox T :
Femalev Person

Malev Person

Father ⌘ Male u 9hasChild.>
(3.4)

and the ABox A:

Male(YINGBING)

Female(WEI)

Female(ALICE)

hasChild(YINGBING,ALICE)

(3.5)

Much effort has been spent to investigate the trade-off between the expressive power
and the reasoning complexity of various DLs. Meanwhile, more efficient algorithms are
developed to support the computation of inference. The DL research community favors
some special letters for particular modeling features, and names DLs by combining such
letters. This thesis follows this consensus and uses the following letters as described in
the literature:

S (ALC with transitive roles): A transitive role r can model indirect relations between
individuals. For example, the role hasChild is a direct relationship between two
persons, while the role hasDescendant can be specified as transitive to state that, if
hasDescendant(a, b) and hasDescendant(b, c), then hasDescendant(a, c).

H (role hierarchies): similar to the concept inclusion axioms, a hierarchy between roles
can be specified using role inclusions. For example, the role hasChild can be defined
as a sub-role of hasDescendant, written hasChild @ hasDescendant, which indicates
that, if hasChild(a, b) then hasDescendant(a, b).

R (complex role inclusions): the composition of two roles r and s, represented by r � s,
can appear on the left-hand side of role inclusion axioms, which formulate
complex role inclusions. For example, hasBrother � hasChild v hasCousin states
that, if hasBrother(a, b) and hasChild(b, c), then hasCousin(a, c). Complex role
inclusion is an expressive modeling feature whose usage shall obey several
restrictions to ensure the decidability of inference [54].

I (inverse roles): an inverse role is defined as the inverse of another role. For example,
the following axiom denotes that if hasParent(a, b) then hasChild(b, a).

hasParent = hasChild� (3.6)

Axioms that make use of the features above are sometimes referred to as the RBox
of a DL knowledge base. RBox can also contain equivalence and disjointness relations
between roles. More expressive DLs support the following modeling features:
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O (nominals): in addition to DL concepts, which represent a set of individuals, nominals
are used to build a singleton set that contains only one individual, e.g.,
{YINGBING}. Nominals can be combined with the union operator t to enumerate
a set of individuals. For example, {YINGBING} t {ALICE} t {WEI} enumerates
the family members of {YINGBING}.

Q (qualified number restrictions): they restrict the cardinality of individuals that can be
reached via a role. For example, a complex concept “father with more than two
female children” can be modeled as Maleu > 2hasChild.Female.

D (data types): some DLs explicitly support primitive data types, e.g., integer and string,
to model the property of some individuals. Data types are realized with concrete
domains and are used together with concrete roles. For example, the age of a person
is a concrete role, and the value of age is an integer.

Until now, the syntax and meaning of DL axioms are described informally.
Nevertheless, formal, machine-interpretable semantics is required to foster automated
reasoning. For example, the concept assertion hasParent(ALICE,YINGBING) is expected
if the knowledge base in Example 3.1 is extended with the axiom 3.6.

DLs are usually equipped with a model-theoretical semantics that is defined by means
of interpretations. For a DL with a set of concept names C, a set of role names R, and
a set of individual names I, where C,R, I are pairwise disjoint, an interpretation can be
defined as follows [60]:

Definition 3.2 (Interpretation). An interpretation I = (�
I , ·I) consists of a non-empty

set �I , and a mapping ·I which maps:

• each concept name A 2 C to a set AI ✓ �
I , and

• the top concept > to �
I and the bottom concept ? to ;, and

• each role name r 2 R to a binary relation rI ✓ �
I ⇥�

I , and

• each individual name a 2 I to an element aI 2 �
I .

The set �
I is called the interpretation domain, and the mapping ·I is called the

interpretation function. The following shows a possible interpretation of the knowledge
base in Example 3.1:

Example 3.2 (Interpretation).

�I
= {YINGBING,ALICE,WEI,BOB}

YINGBINGI
= {YINGBING}

ALICEI
= {ALICE}

WEII = {WEI}
PersonI = {YINGBING,ALICE,WEI,BOB}
MaleI = {YINGBING,BOB}

FemaleI = {WEI,ALICE}
hasChildI = {(WEI,ALICE), (YINGBING,ALICE)}

(3.7)
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In this example, the interpretation domain has one more element (BOB) than the
individuals in Example 3.1. In fact, the interpretation domain can have an arbitrary
cardinality (at least one) and may even be infinite. Furthermore, the labels of the
elements in the domain have no significance. They are named identically to the
individual names only for convenience. The interpretation of a complex concept follows
from the interpretation of each component that constitutes it. Table 3.1 shows the
semantics of complex concepts expressible in the language SROIQ.

Table 3.1.: Semantics of SROIQ constructors.
DL Syntax Semantics

intersection C uD CI \DI

union C tD CI [DI

complement ¬C �
I\CI

nominal {a} {aI}
existential restriction 9r.C {x|9y.(x, y) 2 rI ^ y 2 CI}
universal restriction 8r.C {x|8y.(x, y) 2 rI ! y 2 CI}
at-least restriction � nr.C {x | |{ y|(x, y) 2 rI ^ y 2 CI }| � n}
at-most restriction  nr.C {x | |{ y|(x, y) 2 rI ^ y 2 CI }|  n}

fills restriction 9r.{a} {x|(x, aI) 2 rI}
local reflexivity 9r.Self {x | (x, x) 2 rI}
transitive role r transitive rI transitive
role inclusion r v s rI ✓ sI

inverse role r� {(b, a)|(a, b) 2 rI}
complex role inclusion r1 � · · · � rn v s rI1 � · · · � rIn ✓ s

The semantics of a DL knowledge base K = (T ,A) is defined by models, which are
interpretations that satisfy both T and A, written as I |= K. Generally, the TBox T
contains only concept inclusions axioms because concept equivalences can be seen as
abbreviations of concept inclusions in both directions, i.e., C ⌘ D is the same as
{C v D,D v C}. Therefore, an interpretation I satisfies T if for each axiom C v D,
CI ✓ DI holds. For the ABox A, I satisfies a concept assertion C(a) if aI 2 CI and
satisfies a role assertion r(a, b) if (aI , bI) 2 rI . Under this definition, the interpretation
in Example 3.2 is a model of the knowledge base in Example 3.1. This interpretation,
however, contains more information than needed to justify the knowledge base. For
example, it states that WEI has the child ALICE and BOB is a Male. These additional
statements are allowed due to the open-world assumption (OWA) of DLs. OWA
indicates that some information might be missing from the current ABox. In other
words, new facts are acceptable if they do not contradict the current knowledge.

The reasoning services of DLs are mainly concerned about the following
problems [60]3:

Definition 3.3 (Reasoning problems in DL). Let K = (T ,A) be a DL knowledge base,
C and D be concepts, and I be the set of individual names in K.

(i) Satisfiability: C is satisfiable with respect to T if there is a model I of T and
CI 6= ;.

3Note that some notions used here are taken from [39], which are more compact that the ones in [60].
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(ii) Consistency: K is consistent if K has a model.

(iii) Subsumption: C is subsumed by D with respect to T , written C vT D, if CI ✓
DI for every model I of T .

(iv) Equivalence: C and D are equivalent with respect to T , written as C ⌘T D, if
CI

= DI for every model I of T .

(v) Instance Check: an individual a 2 I is an instance of C with respect to K, written
K |= C(a), if aI 2 CI for every model I of K.

(vi) Instance Retrieval: an individual a belongs to the retrieval RA(C) with respect to
K if a 2 I and K |= C(a).

The reasoning problems (i) to (iv) are called terminological reasoning that focuses on
concepts. On the contrary, the problems (v) and (vi) are referred to as assertional
reasoning that cares about individuals. Assertional reasoning plays a vital role in this
thesis since it can be used to pose questions to the knowledge base. For example, if the
knowledge base in Example 3.1 is extended with the axiom 3.6, one can ask for the
children of Yingbing by retrieving all instances that belong to the new concept
ChildOfYingbing, which is defined as follows:

ChildOfYingbing ⌘ Person u 9hasParent.{YINGBING} (3.8)

An inference engine would answer the instance retrieval with the individual ALICE,
although there is no explicit information expressed as hasParent(ALICE,YINGBING).

3.1.3. OWL

DLs provide the formal means to model knowledge and are adopted for the development
of the ontology language OWL. There have been two versions of OWL: the first one was
standardized in 2004, and the second one, OWL 2, was released in 2012. The design of
OWL was also influenced by RDF(S), which led to the RDF-based semantics4. However,
it has been shown that the reasoning problems in Definition 3.3 are, in general, not
decidable for OWL ontologies under the RDF-based semantics. In other words, there is
no algorithm that guarantees to terminate while solving reasoning problems. The OWL 2
standard also specifies the direct semantics of OWL, which is compatible with the DL
SROIQ(D). Therefore, OWL 2 ontologies interpreted under direct semantics are also
called OWL 2 DL ontologies.

Besides the compatible semantics, there are slight differences in the terminology
between OWL and DL: a DL concept is called a class in OWL, and a DL role is called a
property in OWL. Because of the support of data types, one distinguishes between OWL
object properties and data properties, and the latter corresponds to the concrete roles in
DL.

OWL 2 specifies several serialization formats. The RDF/XML syntax is based on the
mapping between OWL 2 and RDF graphs5 and is mandatory for all OWL 2 tools. The

4OWL ontologies under RDF-based semantics are also called OWL (2) Full.
5https://www.w3.org/TR/2012/REC-owl2-mapping-to-rdf-20121211/
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Figure 3.2.: Semantic lifting and enrichment of AML data.

functional-style syntax is used to define OWL 2 in its W3C specifications and provides
foundations for the implementation of OWL 2 APIs and tools. Essentially, most parts
of OWL 2 are a syntactic variant of SROIQ(D). Table 3.2 summarizes some OWL
2 constructors and axioms in the functional-style syntax and shows the mapping from
OWL 2 to DL. OWL 2 also provides some non-DL features. For example, annotations
are introduced for adding comments to OWL classes, properties, and individuals. For
convenience, the remaining of the thesis uses the term “OWL" for OWL 2 DL and the
term “OWL ontology” for “OWL 2 DL ontology”, if it is not otherwise stated explicitly.

3.1.4. Semantic lifting of AutomationML

In contrast to the formal model-theoretical semantics provided by OWL, Section 2.2
showed that AML only supports human-interpretable semantics. During the last decade,
several studies have investigated the possibility of lifting AML data into an OWL
ontology. The motivation of the semantic lifting is the potential of the automated
inference that can be exploited in various applications, including model-driven software
engineering [21], plant fault analysis [18], knowledge integration for robotics [61], and
ontology-based data integration [62]. Fig. 3.2 shows the procedure of semantic lifting
and enrichment of AML. The enriched ontology contains additional semantic
information about the data, which is usually added by ontology experts for specific
engineering purposes.

The first result of converting AML to OWL appeared in 2009 by Runde et al. in their
German paper [16]. Two approaches were proposed and discussed. The abstract
approach represents the CAEX vocabulary directly as OWL classes in the ontology and
transforms CAEX classes, objects, and attributes as individuals of these OWL classes.
The concrete approach generates an OWL class for each CAEX class with an annotation
about its original type in the CAEX schema. For example, an AML role class Robot will
be converted to an OWL class with the annotation RoleClass. Subsequent researches
generally follow either the abstract or the concrete approach. For example, Kovalenko et
al. proposed a lightweight ontology for covering core concepts of CAEX using the
abstract approach [20], while Hua et al. followed the concrete approach for describing
robotic components and systems [21].

The backward transformation from OWL to AML is less studied, although the first
approach was already published in 2010 [17]. In this work, atomic OWL classes are
mapped to appropriate CAEX classes using the CAEX type annotation of each OWL
class. Then individuals of the top-level OWL classes are transformed into proper CAEX
objects. Finally, the transformation handles each property associated with the individuals
until all information in OWL is processed.

The existing approaches only target “simple” knowledge types, that is, atomic classes,
objects, and properties. For handling complex ontological knowledge, e.g., OWL complex
classes, one challenge arises that no regular AML model can preserve complex ontological
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Table 3.2.: Mapping between the OWL 2 functional-style syntax and the DL syntax.
OWL 2 Functional-Style Syntax DL Syntax

OWL 2
class constructors

owl : Thing >
owl : Nothing ?

ObjectIntersectionOf(C1 · · ·Cn) C1 u · · · u Cn

ObjectUnionOf(C1 · · ·Cn) C1 t · · · t Cn

ObjectComplementOf(C) ¬C
ObjectOneOf{a, b, ...} {a} t {b} t · · ·

ObjectSomeValuesFrom(r C) 9r.C
ObjectAllValuesFrom(r C) 8r.C

ObjectMinCardinality(n r C) � nr.C
ObjectMaxCardinality(n r C)  nr.C
ObjectExactCardinality(n r C) = nr.C

ObjectHasValue(r a) 9r.{a}
ObjectHasSelf(r) 9r.Self

OWL 2 data property
class constructors

DataSomeValuesFrom(r DR) 9r.(DR)

DataAllValuesFrom(r DR) 8r.(DR)

DataMinCardinality(n r DR) � nr.(DR)

DataMaxCardinality(n r DR)  nr.(DR)

DataExactCardinality(n r DR) = nr.(DR)

DataHasValue(r lt) 9r.{lt}

OWL 2
property axioms

SubObjectPropertyOf(r s) r v s
ObjectPropertyDomain(r C) 9r.> v C
ObjectPropertyRange(r C) > v 8r.>

EquivalentObjectProperties(r1, · · · , rn) [i 6=j{ri v rj}
InverseObjectProperties(r s) r ⌘ s�

TransitiveObjectProperty(r) r transitive
FunctionalObjectProperty(r) > v ( 1r)

OWL 2 class axioms
and assertions

SubClassOf(C D) C v D
EquivalentClasses(C1 · · ·Cn) [i 6=j{Ci v Cj}
DisJointClasses(C1 · · ·Cn) [i 6=j{Ci v ¬Cj}
SameIndividual(a1 · · · an) [i 6=j{ai = aj}

DifferentIndividuals(a1 · · · an) [i 6=j{ai 6= aj}
ClassAssertion(C a) C(a)

ObjectPropertyAssertion(r a b) r(a, b)
DataPropertyAssertion(r a lt) r(a, lt)
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semantics. In Section 5.1, an approach is proposed for the translation between OWL
complex classes and AML models.

3.2. Foundations of Concept Learning

The research area of concept learning devotes to develop supervised machine learning
algorithms for inducing concept definitions from labeled data. In DL (OWL), such
concept definitions are complex concept descriptions (class expressions). For each
concept C of interest, positive data examples represent members of C while negative
ones do not. The goal of a learning algorithm is to find a concept definition that correctly
classifies the data examples while being as simple as possible. Formally, the learning
problem in DL is defined as follows [39]:

Definition 3.4 (concept learning in description logics). Let Target be a concept name
and K be a knowledge base (not containing Target). Let E = E+ [ E� be a set of
examples, where E+ are the positives examples and E� are the negative examples and
E+ \ E�

= ;. The learning problem is to find a concept C ⌘ Target with K [ C |= E+

and K [ C 6|= E�.

In Definition 3.4, a learned concept C is called a hypothesis of Target. A learned
concept C covers an example e 2 E if e is an instance of C with respect to the
knowledge base K, i.e. K |= C(e). A hypothesis C is complete if it covers all positive
examples e 2 E+, is consistent if it does not cover any negative example e 2 E�, and is
correct if it is both complete and consistent. Besides the correctness, another criteria of
the solution is the length of the concept hypothesis. For concepts in ALC, the length is
defined as follows:

Definition 3.5 (length of an ALC concept). Let A be an atomic concept, r be a role, and
D,E be concepts in ALC, the length operator | · | is defined as:

|A| = |>| = |?| = 1

|¬D| = |D|+ 1

|D t E| = |D u E| = 1 + |D|+ |E|
|9r.D| = |8r.D| = 2 + |D|

3.2.1. Refinement Operators

Refinement operators formulate the theoretical foundation of concept learning in DL.
One can distinguish between downward and upward refinement operators that either
specialize the most general concept > or generalize the most specific one ?. Following a
learning-by-searching paradigm, concept learning algorithms use the refinement operator
to traverse the concept space and generate suitable hypotheses for the current learning
problem. In the literature of learning in DL, the subsumption relation v is usually taken
as a quasi-ordering of the search space. Based on v, a downward (upward) refinement
operator specializes (generalizes) a concept C to C 0 with C 0 v C (C v C 0), respectively.
This thesis focuses on top-down learning algorithms, which can be characterized as
follows:
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Definition 3.6 (properties of downward refinement operators). A refinement operator ⇢
for a DL language L is called:

• complete if for all concepts C,D with C @ D, there is a concept E with E 2 ⇢(D)

and E ⌘ C.

• weakly complete if for all concepts C @ >, there is a concept E with E 2 ⇢(>)
and E ⌘ C.

• (locally) finite if for all concepts C, ⇢(C) is finite.

• proper if for all concepts C,D with D 2 ⇢(C), C 6⌘ D.

Among all the properties, completeness is the most critical one since it guarantees that
given enough time, all possible subsuming concepts C can be reached from D. In contrast,
incomplete refinement operators may fail to find the solution at all. Fig. 3.3 shows the
definition of the first complete refinement operator ⇢ for ALC, proposed by Lehmann and
Hitzler in [63]. Additionally, ⇢ does not reduce the length of a concept, i.e. 8D 2 ⇢(C) :

|D| � |C|. In the same paper, the authors extended ⇢ to the proper refinement operator
⇢cl, which in turn, is extended to cover qualified number restrictions and concrete domains
in OWL ontologies.

3.2.2. Learning Algorithms and Systems

The most related work on top-down concept learning in description logics is the
DL-Learner framework [64], which, to the best of the author’s knowledge, represents the
state-of-the-art in non-parallelized concept learning algorithms in description logics.
Besides other practical features e.g., knowledge fragment segmentation and approximate
coverage test, DL-Learner implements two algorithms OCEL [63] and CELOE [65] for
learning concepts in OWL. In particular, CELOE is a top-down learning algorithm using
the operator ⇢cl, as described in the last section. CELOE employs a heuristic to evaluate
the quality of concept hypotheses and iteratively searches for a better solution. To handle
the infiniteness of ⇢cl, CELOE follows the iterative widening [66] approach to span a
search tree of concept hypotheses and adopts a simple greedy strategy to select the most
promising tree node for expansion. The expansion is controlled by a length upper bound
of new refinements that is increased successively during a revisit of the same tree node.
However, this simple greedy selection strategy does not utilize the structure of the search
tree well and may rapidly lead to a local optimum. Another problem of CELOE is the
number of parameters used to implement the heuristic. Section 4.1 elaborates more
details of CELOE, especially on the procedure of search tree construction. Because
instance checks under the Open-World Assumption (OWA) are costly, DL-Learner
adopts a partially closed world assumption (CWA) and implements a reasoner for the
approximation of the coverage of hypotheses. Moreover, Lehmann showed that only
CWA allows learning universal restrictions, negations, and cardinality restrictions [39].

Further approaches that make explicit use of refinement operators exist. Badea et al.
proposed a refinement operator for top-down concept learning in the language ALER
and showed a basic learning procedure based on this operator [67]. YINGYANG is a
learning system for ALC [68, 69, 70]. In contrast to a standard refinement-based
approach as DL-Learner, YINGYANG uses an upward refinement operator to generalize
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Figure 3.3.: The definition of the top-down refinement operator ⇢ proposed by Lehmann
and Hitzler. Initially, ⇢ delegates to an operator ⇢B with B = >. The
subscript B is used to filter out concepts during the refinements of existential
and universal restrictions (case 5 and 6). For more details of the operator,
please refer to [63].
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Figure 3.4.: Concept Learning for AutomationML.

approximated MSCs (most specific concepts). Afterwards, the so-called counterfactuals
and a non-deterministic downward refinement operator are used to remove overly
generalized hypotheses. Because MSCs need to be approximated for ALC and more
expressive DL languages, YINGYANG tends to produce unnecessarily long concepts [39].

PArCEL and SPArCEL are recent works on learning in OWL and are built on top of
DL-Learner [71, 72]. More specifically, both algorithms are parallelized by adopting a
separate-and-conquer strategy. While both PArCEL and SPArCEL show the great
advantage of parallelism, they use DL-Learner as a subroutine for the top-down
refinement.

DL-FOIL is another DL learning system that adopts the separate-and-conquer strategy
[73, 74]. As opposed to PArCEL and SPArCEL, DL-FOIL is a DL variant of the FOIL
algorithm [75]. The inner loop of DL-FOIL uses a refinement operator for specializing
partial solutions of the learning problem, while the outer loop combines the partial
solutions with disjunctions. The specialization procedure acts as a hill climbing search
with a predefined upper bound of refinement steps. Therefore it does not construct a
search tree as with CELOE.

3.2.3. Relevance to AutomationML

Concept learning can be seen as an approach for ontology engineering [39], where the
task is to find a definition for a new concept using the vocabulary of an existing ontology.
Consider the AML ontology as illustrated in Fig. 3.2 and suppose that the AML ontology
contains the data property hasWeight, the object property hasInternalElement, and
the atomic class Robot. For a new concept, LightWeightRobot, a possible definition
based on the AML ontology is illustrated in Fig. 3.4. Suppose that the AML ontology
is generated from the data of a source engineering tool A and LightWeightRobot is a
private role class within the target engineering B, then the concept definition in Fig. 3.4
bridges the semantic gap between A and B. This kind of semantic information is crucial in
ontology-based data access or integration, and is usually modeled by an ontology expert.
However, ontology experts are often not effectively available in practice and are argued
to be inefficient for building industry-scale heavyweight ontologies because they lack
domain-specific knowledge [76]. Therefore, one aim of the thesis is to develop a machine
learning system that supports the domain experts for finding such concept definitions.
Nevertheless, several research questions arise while applying concept learning for AML.

First, what kind of semantic lifting is appropriate for the learning task? This question
is not only a design choice but also strongly related to the trade-off between learning
performance and the expressiveness of concept definition. Section 4.3 presents an
approach that is dedicated to achieving a balance between efficiency and quality.
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Second, because AML imposes certain modeling constraints, as described in
Section 2.1, the existing general-purpose learning algorithm may not scale well as the
size of the AML data increases. To this end, Section 4.3.1 introduces an AML-specific
refinement operator that can significantly increase the learning performance by
exploiting the modeling constraints of AML. In addition to that, Section 4.2 proposes the
Rapid Restart Hill Climbing (RRHC) algorithm that outperforms the CELOE algorithm
in general learning tasks.

Finally, to better involve the domain experts in the learning procedure, Chapter 5
presents the AMLLEARNER framework that allows the user to communicate with the
learner by representing the learned OWL class in AML. The user can edit such AML
models while AMLLEARNER is able to react to the changes made by the user and restart
the learning using the AML model as an initial guess.
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This chapter presents algorithms for concept learning in OWL and AML. Section 4.1
conducts an in-depth study of CELOE, which reveals several drawbacks of the
well-known algorithm, including its traversing strategy, usability, and performance. The
results of the study inspired the design of the novel learning algorithm Rapid Restart Hill
Climbing (RRHC), which is presented in Section 4.2. Afterward, Section 4.3 shows how
to perform concept learning in AML, and proposes a new refinement operator ⇢aml that
utilizes the modeling constraints of AML for improving the performance. Finally,
Section 4.4 shows the experimental results of RRHC and ⇢aml by comparing them with
the CELOE algorithm and the original refinement operator ⇢cl.

4.1. A Comparative study of CELOE

CELOE is a top-down learning algorithm that employs the refinement operator ⇢cl, as
described in Section 3.2.1. Because ⇢cl is infinite, it is impossible to evaluate all
hypotheses at once. Therefore, CELOE follows the iterative widening [66] approach to
span a search tree of concept hypotheses successively. In each iteration, the following
steps are performed:

1. Selection: Find a tree node n with the maximum heuristic score in the search tree.
CELOE implements this by using a global priority queue of all tree nodes, sorted
by their score.

2. Refinement: Invoke ⇢cl to generate new refinements of the node n. Since ⇢cl is
infinite, CELOE restricts the number of refinements per step using a length upper
bound, which is increased by one for each revisit of n. This length upper bound is
called the horizontal expansion of n. Note that because the horizontal expansion
limits the length of refinements, there might be no refinement for a certain iteration.

3. Expansion: New refinements generated in the last step are tested against
redundancy and completeness. A refinement C is ignored if the search tree already
contains a concept C 0 which is weakly equal to C (redundant), or C does not cover
all positive examples E+ (too weak). Refinements that are neither redundant nor
too weak are added as child nodes to the current node n, and CELOE starts over
with the selection step.

The basic form of the heuristic employed for assessing the quality of a node n was first
proposed in [39] as follows:

score(n) = accuracy(C) + ↵ · acc_gain(n)� � · he (↵ � 0, � � 0) (4.1)

In Equation 4.1, C is the concept hypothesis of node n, acc_gain is the accuracy gain
compared with n’s parent, and he is the horizontal expansion. The two parameters ↵, �
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control the expansion behavior of the search tree: larger ↵ tends to exploit better
hypotheses while larger � favors less explored areas. The accuracy of a hypothesis can
be defined in several ways. Equation 4.2 shows the formula of predictive accuracy,
where fp and fn stand for false positives and false negatives, respectively. Equation 4.3
shows the well known F-measure (or F1 score) that is based on precision and recall.

pred_acc(C) = 1� fp+ fn

|E| (4.2)

F1(C) = 2 · precision · recall
percision+ recall

(4.3)

One major drawback of CELOE is that the selection phase handles the search tree as a
single priority queue, and the global best tree node is always selected for further
refinement. The term global shall be emphasized since CELOE does not traverse the
search tree in any form, but keeps tracking the best node in the queue. While this simple
greedy approach is fast, it neglects the structure of the search tree and may rapidly lead
to a local optimum in the lower part of the tree. Unfortunately, there are often many
more nodes in the lower part of the tree, so that significant effort is required to regret
previous radical decisions.

The concrete implementation of CELOE tries to handle this problem by using two
additional parameters in the heuristic. One is the start node bonus that gives extra value
to the start node > for a hopefully sufficient exploration in the upper part of the tree, and
another one is the refinement penalty that penalizes tree nodes proportionally to the
number of their child nodes. Nevertheless, consider the combination with the gain bonus
and expansion penalty, finding a proper setting of these parameters is laborious in
practice. More importantly, different learning problems do not share these parameters.
Consider the Uncle example from the family benchmark provided by DL-Learner. With
the default configuration, CELOE was able to find the following solution in 4s 301ms.

Uncle ⌘ ((9hasSibling.(9hasChild.>))t
(9married.(9hasSibling.(9hasChild.>)))) u (¬Female)

(4.4)

This solution is correct and reads, “An uncle is not a female and has a sibling who has a
child or is married to someone that has a sibling who has a child.” To better illustrate the
learning process, an ID is assigned for each node in the search tree as follows.

Definition 4.1 (ID of a tree node). An ID of a tree node n describes its position in the
search tree. It is a sequence of position numbers connected by the hyphen as
P0-P1-P2- · · · . Each position number Pi represents the index of the branch located at the
depth level i that contains n as a descendant node.

For example, the solution in Equation 4.4 has the ID 0-2-52-9-17-9, which means
that it is the 9th child of its parent 0-2-52-9-17. The latter in turn, is the 17th child of
its parent 0-2-52-9.

Fig. 4.1 shows the tree depth of expanded nodes for learning the concept of Uncle with
CELOE. First, it can be observed that most expansions occurred at a level lower than
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(a) Iterations up to 5000.

(b) Iterations from 5000.

Figure 4.1.: The tree depth of expanded nodes for learning the concept of Uncle with the
default setting of CELOE.

3 (depth larger than 3). In particular, from the iteration 1000 to 9150, CELOE visited
level 2 very rarely and put much effort to search from level 3 to 6. After this extensive
searching of lower levels, the algorithm realized that a better solution originated in the less
explored areas from the upper part of the tree and therefore started to explore level 2 from
the iteration 9150. Indeed, a good seed for the solution was the tree node 0-2-52 with
the hypothesis (9hasSibling.> t 9married.>) u (¬Female). As the ID indicates, 0-2-52
was the 52nd child of the level 1 hypothesis ¬Female, while ¬Female itself was the second
child of >. CELOE came back to 0-2-52 in the iteration 9303 and was able to find the
solution within 40 further iterations.

To demonstrate the effects of different parameter settings, Table 4.1 compares the
performance of various CELOE configurations for the Uncle example. The configuration
ori is the default setting provided by DL-Learner. ori has different expansion penalty
for individual learning problems and is set to 0.02 for the Uncle problem. The
configuration spa is suggested by Tran et al. in [72]. Table 4.1 also contains three
variants of ori: ori_v1 and ori_v3 are intended to test the influence of the
refinement penalty and the start bonus, while ori_v2 slightly modifies the expansion
and refinement penalty.

For each of these configurations, Table 4.2 summarizes measurements collected until the
first correct solution was found. On the one hand, while ori, ori_v1 and ori_v3
had comparatively good performance, they still differ in the number of tested expressions
and in the tree depth. In particular, the results of ori_v1 and ori_v3 indicated that
the refinement penalty and the start bonus were unnecessary for learning the definition of
Uncle. However, as shown later in Section 4.4, it is not always the case for other learning
problems. More importantly, ori_v1 and ori_v3 found a slightly better solution than
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configuration exp. penalty gain bonus ref. penalty start bonus
ori 0.02/0.1 0.3 0.0001 0.1
spa 0.05 0.2 0.0001 0.1
ori_v1 0.02/0.1 0.3 0 0
ori_v2 0.03 0.3 0.00005 0.1
ori_v3 0.02 0.2 0 0
rrhc-default 0.02 0.2 0 0

Table 4.1.: The configurations of learning algorithms used for comparison. Note that both
ori_v3 and rrhc-default do not use the parameters refinement penalty
and start bonus by setting them to 0.

time(s) #iterations #expressions #tree nodes tree depth length
ori 4.301 9342 16584 6655 9 16
spa 177.863 429207 526022 322902 12 15

ori_v1 4.550 9346 10912 7088 10 15
ori_v2 42.808 55206 115141 46546 11 16
ori_v3 4.325 9342 10457 6655 10 15

Table 4.2.: The learning performance of five different CELOE configurations for the
Uncle example. All statistics are collected until the first correct solution is
found.

ori that replaced ¬Female in Equation 4.4 with Male. On the other hand, the terrible
performance of both ori_v2 and spa suggested that the (slightly) higher expansion
penalty is fatal in the Uncle example.

4.2. Rapid Restart Hill Climbing

For tackling the problems of CELOE, this section presents the Rapid Restart Hill
Climbing (RRHC) algorithm that selects a node for expansion by traversing the search
tree in a hill climbing fashion. RRHC uses the same heuristic as CELOE, and the default
parameter setting is depicted by the configuration rrhc-default in Table 4.1, which
does not use the start node bonus and the refinement penalty. For the expansion, RRHC
commits to the iterative widening approach for producing a finite set of refinements.
Unlike conventional hill climbing techniques used in Inductive Logic Programming
(ILP) [75], RRHC rapidly restarts with one-step backtracking after the expansion.

Algorithm 4.1 illustrates the skeleton of RRHC that has two nested loops. For a current
node n, the inner loop selects a tree node for expansion in a hill-climbing manner (line
4-11) while the outer loop expands the selected node n using the refinement operator ⇢cl.
The horizontal expansion of the node n is increased by one after the refinement (line 18),
so that a revisit of n could generate new refinements. Because the heuristic in Equation
4.1 depends on the horizontal expansion, the score of n drops after each refinement such
that n might not be the best one among its siblings. Therefore, the algorithm backtracks
to n’s parent (line 20) and rapidly restarts without checking the new refinements.

Fig. 4.2 compares the tree construction process of RRHC and CELOE. For the sake of
simplicity, the Mother example from the family benchmark is used. The numbers on the
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Algorithm 4.1 Rapid Restart Hill Climbing (RRHC)
Input: background knowledge K, positive examples E+, negative examples E�

Output: best concept found
1: initialize a search tree ST with the root node (>, |>|)
2: let the current node n = (C, he) be the root node with C = >, he = |>|
3: while Solution not found or timeout not triggered do
4: while size(n.children) 6= 0 do
5: select a node child with the best score among n.children
6: if score(child) > score(n) then
7: n child
8: else
9: break

10: end if
11: end while
12: let refinements = {D |D 2 ⇢cl(C), |D|  he}
13: for D 2 refinements do
14: if D is complete and D is not redundant then
15: add (D, |D|) as a child of n
16: end if
17: end for
18: increase the horizontal expansion of n by 1

19: if n 6= root then
20: n n.parent
21: end if
22: end while
23: return concept with best accuracy

upper left corner of each tree node illustrate the sequence of refinement generation. The
tree node marked as green depicts the solution found by the algorithms.

Two major differences can be observed between Fig. 4.2a and 4.2b. The first one is that
CELOE committed to the refinement chain > Person Mother · · · while RRHC
preferred ¬Male rather than Person (the symbol  reads “is refined to” and refers to a
refinement step). In fact, RRHC also generated Female in the early phase but decided
to go back to the upper layer instead of exploiting the high score of Female, because the
score of Person decreased after one refinement and did not show any advantage against
the root node. After discovering the node ¬Male, RRHC insisted on refining it since its
score is higher than Person, even after three times of expansion (step 5 to 7). One reason
is that ¬Male has the same individuals (instances) as Female, although their semantic
equivalence is not explicitly stated in the knowledge base. As a result, the tree constructed
by RRHC is shallower than the one of CELOE. Indeed, RRHC often generates a much
smaller tree than CELOE, which also indicates that RRHC is more efficient than CELOE
(see the experiments in Section 4.4).

The second difference is that CELOE found a better solution than RRHC regarding the
concept length. However, as shown in Table 4.2, the solution found by CELOE depends
on its parameter setting. In fact, with the configurations spa and ori_v2, CELOE
generated the same solution as RRHC.
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(a) Search tree of the Mother example by CELOE.

(b) Search tree of the Mother example by RRHC.

Figure 4.2.: The search tree constructed for learning the concept of Mother with the
default setting of CELOE and RRHC.

After explaining the learning procedure of RRHC, its theoretical properties needs to be
analyzed. Proposition 4.1 shows that RRHC is correct in ALC.

Proposition 4.1 (Correctness in ALC). If a learning problem has a solution in ALC, then
Algorithm 4.1 terminates and finds a correct solution.

Proof 4.1. The proof first repeats the correctness proof for OCEL/CELOE in [77], and
then extends it for Algorithm 4.1.

Suppose that the learning problem has a solution D in ALC, then the weak
completeness of the refinement operator ⇢cl guarantees a refinement path in the form of
>  D1  D2  · · ·  Dn = D. The basic heuristic in Equation 4.1 has the property
that score(D) � �|D| for � 2 [0, 1], since the first two terms in Equation 4.1 are
positive, and the horizontal expansion of D is initialized to |D|. Moreover,
score(Di) � �|D|, since ⇢cl does not reduce the length of a refined hypothesis. On the
other hand, because � > 0, a hypothesis D0 with a sufficiently high horizontal expansion
would have a score lower than �|D| and would not exist in the chain above. As
OCEL/CELOE greedily selects the global best node from the tree, D0 would never be
selected until all concepts in the chain above are sufficiently refined. Thus, either D or
another solution will be found.

The proof above needs to be extended for Algorithm 4.1, since RRHC employs a
different selection strategy. Essentially, it is sufficient to show that RRHC would not
select a node D0 that has no chance to refine to D, i.e. score(D0

) < �|D|. This can be
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Figure 4.3.: Comparison of RRHC (orange) and CELOE (blue) regarding the expanded
nodes in the Uncle example. Iterations from 5001 are omitted since RRHC
found a solution in iteration 2418. Note that CELOE continues after iteration
5000 as shown in Fig. 4.1.

done by deriving a contradiction. Suppose that D0 would be selected, then
�|D| > score(D0

) � score(D⇤
) for each D⇤ that is a sibling of D0. In other words, no

sibling node of D0 can be refined to the concept D. Furthermore, let D0
p be the parent of

D0, then �|D| > score(D0
) > score(D0

p), since otherwise Algorithm 4.1 would choose
D0

p and restart. Consider the layers above D0, it is evident that the score of all
predecessors of D0 and the siblings of those are lower than score(D0

) and therefore
lower than �|D|, including the root node >. As a consequence, even with sufficiently
high horizontal expansion, ⇢cl can not generate D from >, which leads to a contradiction
of the weak completeness of ⇢cl.

Recall the Uncle example from the family benchmark. Fig. 4.3 shows the comparison
of RRHC (orange) and CELOE (blue) regarding the tree depth of expanded nodes.
Besides that RRHC tended to explore the upper part of the tree, its behavior was also
more stable than CELOE regarding depth changes. However, it is worth noting that
RRHC is fundamentally different to a breadth-first search, as an exhaustive expansion of
any tree node is not viable due to the infiniteness of the refinement operator. Principally,
the heuristic still guides the search. However, the restart mechanism requires a sequence
of good candidates from the root node > to the selected one. Consequently, RRHC also
spent quite much time in level 3 and 4, since the score of the node 0-2-52 was lower
than its siblings. However, because the upper part of the tree has much fewer nodes than
the lower part, RRHC was able to expand 0-2-52 in iteration 2382, compared with
iteration 9303 in the case of CELOE.

4.3. Concept Learning in AutomationML

As described in Section 3.2.3, concept learning can be used to build the semantic
mapping between a target-specific engineering concept and the vocabulary of a source
engineering tool. Fig. 4.4 illustrates the main idea of learning in AML. The users Alice
(expert of tool A), and Bob (expert of tool B) have their proprietary role class libraries
that are not aligned beforehand. Alice generates AML system unit classes (hexagons)
from the source system and Bob wants to align them with the target concepts. In
practice, Bob often recognizes the desired engineering objects (or at least some of them)
from Alice’s system unit classes, for example, some products from a certain component
supplier, and Bob knows their semantic definitions (ellipses) in the target system. Given
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Figure 4.4.: Mapping system unit classes from source system to concepts in the target
system. Same color between source and target system represents the
semantic correspondence.

this information, concept learning can derive a formal representation of Bob’s concepts
using the terminology from Alice, thus close the semantic gap between them. Note that,
because the concrete engineering data of Alice will be stored as AML internal elements
which are supposed to be instances of the external interfaces, this approach also
generalizes to the learning from internal elements.

A prerequisite for the learning is an ontological representation of the data from the
source system, that is, the semantic lifting from the source AML file to an AML
ontology. From the existing methods as described in Section 3.1.4, the concrete approach
from [16] is adopted since it is of great importance that domain concepts, e.g., Robot and
ConveyorBelt, are treated as terminological classes to enable inference over the
subsumption hierarchy. Table 4.3 shows an overview of the mappings from AML to
OWL models. In the terminological layer (T-Box), AML role classes and interface
classes, as well as their inheritance structures are transformed into OWL class
hierarchies. In the axiomatic layer (A-Box), AML internal elements and external
interfaces are transformed into OWL individuals. The major difference to [16] is that
AML system unit classes are also converted to OWL individuals, which might seem to be
inconsistent with the object-oriented paradigm of CAEX. Nevertheless, this is necessary
to cope with the supervised setting of concept learning, since system unit classes are the
labeled data instances for the learning from which a class definition shall be generated.

In the relational layer (R-Box), on the one hand, the relationships between system unit
classes, internal elements, and external interfaces are transformed into OWL object
properties, i.e., hasIE and hasEI. On the other hand, CAEX attributes are quite
sophisticated since they possess a whole data structure, including the data type, unit, and
default values, etc. Hua et al. [21] presented a way to represent this structure as an RDF
graph completely, but it would be overwhelming for concept learning. Because the
essential semantics of a CAEX attribute can be captured by its name, data type, and
value, each distinct CAEX attribute is transformed to an OWL data property with its data
type, and concrete attribute values are associated to the corresponding OWL individuals.

Consider the system unit class kr5 shown in Fig. 4.5. The system unit class has two
CAEX attributes manufacturer and weight, an external interface of the interface class
DigitalIOInterface, and an internal element of the role class Robot. The semantic lifting
of kr5 generates the following assertions:
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AM models OWL models Example
role class class Robot

interface class class DigitalIOInterface
system unit class individual KR5
internal element individual KR5_ARM
external interface individual KR5_DIGITALIN1
object relationship object property hasIE, hasEI

CAEX attribute data property hasWeight

Table 4.3.: Overview of the conceptual mapping from AML to OWL.

Figure 4.5.: The simplified system unit class of the robot kr5 in the AML editor.

hasManufacturer(KR5, ”KUKA”)

hasWeight(KR5, 127)

hasEI(KR5,KR5_DIGITALIN1)
hasIE(KR5,KR5_ARM)

DigitalIOInterface(KR5_DIGITALIN1)
Robot(KR5_ARM)

The workflow for concept learning in AML is illustrated in Fig. 4.6. First, the source
system generates the system unit classes following the externalization approach proposed
in [49]. For each concept from the target system, some system unit classes are selected
as positive examples and some others as negative examples. After the semantic lifting of
the AML file, the learning procedure is carried out with custom configurations, including
the selected examples and the parameters of the learning algorithm. Finally, the results
are presented and ordered by their simplicity (in length), as shown in Fig. 4.7. Note
that because the learned class expressions are intended to be used in data integration and
exchange tasks, only 100% correct solutions are considered in this thesis.
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Figure 4.6.: Workflow for concept learning of AML system unit classes.

Figure 4.7.: The output of a learning task.

4.3.1. A Refinement Operator for AutomationML

Until now, the refinement operator ⇢cl is used in all the learning problems. However,
because ⇢cl is designed generally, it does not take into account the syntactic constraints
defined in the CAEX schema and can be inefficient for learning in AML. Fig. 4.8 shows
the interaction between different CAEX schema elements. Obviously, only external
interfaces can reference interface classes, and each external interface can only reference
one interface class. These constraints can be integrated into the refinement operator to
improve the performance of learning, especially for a large T-Box. Therefore, the set of
named concepts NC is separated into two subsets, i.e., the set Nar for all AML role
classes and the set Nai for all AML interface classes.

Recall the definition of ⇢ in Fig. 3.3. The idea is to adapt the refinements in place of
role fillers, because it is desired to handle fillers of hasIE and hasEI differently. To this

SystemUnit
+ Name: String

ExternalInterface
+ Name: String

*

Attribute
+ Name: String

* *

hasInterface 

hasAttribute hasAttribute 

references

InterfaceClass
+ Name: String

+ RefBaseClassPath: String

references

hasInternalElement 

Role
+ Name: String

+ RefBaseClassPath: String

*

Figure 4.8.: The XML schema of AML. Some details are omitted for brevity.
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end, several auxiliary sets are defined as follows:

Mop = {9hasIE.>, 9hasEI.>, 8hasIE.>, 8hasEI.>}
Mie = {A |A 2 Nar, @A0 2 Nar : A @ A0}
Mei = {A |A 2 Nai, @A0 2 Nai : A @ A0}

Mop is the set of all existential and universal restrictions with the filler >, Mie is the
set of top level AML role classes, and Mei is the set of top level AML interface classes.
Further, let Uie = {C1 tC2 t ... |Ci 2Mie [Mop}, Uei = {C1 tC2 t ... |Ci 2Mei} and
sh#(C) be the set of direct sub classes of a named concept C 2 NC , then ⇢ is adapted in
the following cases:

(i) ⇢(C) = Uei, if C = > and C is a filler of hasEI

(ii) ⇢(C) = Uie, if C = > and C is not a filler of hasEI

(iii) ⇢(C) = sh#(C), if C 2 NC is a filler of hasEI

(iv) ⇢(C) = sh#(C) [ {C uD|D 2 ⇢(>)}, if C 2 NC is not a filler of hasEI

Cases (i) and (ii) refines the top concept > and are complementary to each other. If
> is a filler of an object property hasEI (case (i)), then only elements from the set Uei is
used for the refinement, because external interfaces can only refer to interface classes and
cannot have nested object structures. For example, the following refinements cannot be
produced in case (i):

⇥ 9hasEI.> 9hasEI.AutomationMLBaseRole

⇥ 9hasEI.> 9hasEI.(9hasEI.>)
⇥ 9hasEI.> 9hasEI.(9hasIE.>)

If> is not a filler of hasEI (case (ii)), elements from Uie are candidates for the refinement
because an AML system unit class and internal element can refer to role classes and have
nested internal elements or external interfaces. In the following examples, the first two
refinements are valid, but the third one cannot be produced in case (ii).

X 9hasIE.> 9hasIE.AutomationMLBaseRole

X 9hasIE.> 9hasIE.(9hasIE.>)
⇥ 9hasIE.> 9hasEI.AutomationMLBaseInterface

Similarly, case (iii) and (iv) are complementary to each other for refining an atomic
concept C. If C is a filler of hasEI, then only direct subclasses of C can be used for
refinement because external interfaces can only refer to one interface class. In other
words, conjunctions are not allowed as the filler of hasEI. For example, the following
refinement cannot be produced in case (iii):

⇥ 9hasEI.AutomationMLBaseInterface

 9hasEI.(PPRConnector u Communication)

If C is not a filler of hasEI (case (iv)), then C can be refined to either one of its direct
subclasses or the conjunction with ⇢(>), since system unit classes and internal elements
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benchmark language #class #ind #op #dp #axiom category
arch ALC 8 19 5 0 80 simple

carcinogenesis ALC(D) 142 22372 4 15 74566 hard
family AL 4 202 4 0 1343 simp./med.
forte ALIF 3 86 3 0 347 medium

lymphography AL 53 148 0 0 2197 simp./hard
moral ALC/ALC 41/44 43/202 0/0 0/0 1047/4710 simple

mutagenesis AL(D) 86 14145 5 6 62066 hard
poker AL/AL 2/2 311/347 6/6 0/0 1334/1418 simple
bible SHOIN (D) 49 724 29 9 4434 simple
trains ALC 10 50 5 0 288 simple

yinyang ALI 3 31 3 0 157 simple

Table 4.4.: Statistics of used benchmarks. Moral and poker have two different versions
which are shown with two values in each column.

can refer to several role classes. For example, the following refinement chain is possible
in case (iv):

X 9hasIE.DiscManufacturingEquipment

 9hasIE.(Robot u AutomationMLBaseRole)

 9hasIE.(Robot u DiscManufacturingEquipment)

 9hasIE.(Robot uMachine)

In other cases, ⇢ is kept as it was in Fig. 3.3. The new refinement operator is called ⇢aml

and is implemented based on ⇢. Note that negated atomic concepts such as ¬A are ignored
in both Mie and Mei since negations are not preferred in engineering and are not used in
practice. Compared with ⇢ and ⇢cl, ⇢aml would generate far less unnecessary refinements
for learning with AML data.

4.4. Results and Discussions

This section demonstrates the effectiveness of RRHC and ⇢aml by conducting extensive
comparisons with DL-Learner using both standard DL learning benchmarks and AML-
specific learning tasks.

4.4.1. RRHC vs. CELOE

For the comparison between the learning algorithms RRHC and CELOE, the benchmarks
provided by DL-Learner is used. Table 4.4 enumerates the ontologies of these benchmarks
with the statistics1 of their classes (#class), individuals (#ind), object properties (#op), data
properties (#dp), and axioms (#axiom).

For each benchmark, there can be several learning problems, such as Mother and Uncle
in the family benchmark. These learning problems are categorized by the learning time

1The statistics are obtained using the Protégé editor.
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required to find the first correct solution: simple problems can be solved by both
algorithms within 3 seconds, medium problems require more than 3 seconds by at least
one algorithm, and hard problems can not be solved within 300 seconds (timeout) by at
least one algorithm. The last column of Table 4.4 shows the difficulty of each
benchmark. Note that some benchmarks have mixed difficulties, such as family. To
assess the performance of the algorithms more fairly, different evaluation criteria are
chosen for individual categories as follows:

• simple: since both algorithms found the solution very fast, the size of the search tree
is used to compare the learning efficiency in order to avoid the impact of oscillations
of the computing power.

• medium: in this case, the time required for the first solution is used.

• hard: in all hard cases, the accuracy of the best concept found are compared
between the algorithms.

One important intention of the experiments was to show that RRHC is easier to use
than CELOE in terms of parameter tuning. Therefore, only the default configuration
rrhc-default was chosen for RRHC (last row in Table 4.1) for all benchmarks. It is
worth noting that rrhc-default is not always the best one for all learning problems,
but it performed statistically well throughout all benchmarks. For CELOE, all
configurations that are summarized in Table 4.1 are taken into account. Note that
ori_v3 has exactly the same setting as rrhc-default.

The experiments are run on a machine with a 2.6 GHz CPU and 16 GB memory. The
timeout for all learning problems is 300 seconds. Moreover, noise percentage is
disallowed in all experiments. Therefore only complete concept hypotheses are
considered as potential solutions. For both algorithms, predictive accuracy is used to
compute the accuracy of hypotheses. Fig. 4.9 and 4.10 show the comparisons of RRHC
and CELOE using all positive and negative examples provided in the corresponding
datasets. In all plots, the blue line or bar depicts the value of RRHC, while the others
represent different CELOE configurations.

For the simple learning problems, Fig. 4.9 shows the number of tree nodes when the
first solution is found. Besides some trivial ones in which both algorithms had very
similar results, RRHC generally performed better than CELOE. One exception is the
arch benchmark, which strongly prefers large expansion penalty, such as 0.1 from ori
and ori_v1 and 0.05 from spa. In contrast, the expansion penalty of both ori_v3
and rrhc-default is set to 0.02, which lead to almost 500 tree nodes in Fig. 4.9b. To
show the effects of different parameters, consider the learning problems in the family

benchmark (the first 15 problems in the x-axis). On the one hand, rrhc-default
worked better than both ori and spa in Fig. 4.9a. On the other hand, the difference
between rrhc-default and ori_v3 is minimal in Fig. 4.9b. This observation might
indicate that ori_v3 is also a better configuration for CELOE, which does not even
utilize the start node bonus and the refinement penalty. However, for the learning
problems bible-hasvalue and poker-straight, ori_v3 was worse than other
configurations, such as ori and ori_v1.

For the medium learning problems, Fig. 4.10a shows the time required (in seconds) for
constructing the first solution, and RRHC was always the best one. One can also notice
the huge difference between the various configurations of CELOE. For example, spa was
extremely slow in the learning problem Uncle, but faster than ori and ori_v2 in Cousin.
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(a) Tree size of rrhc-default, ori, spa for simple learning problems.

(b) Tree size of rrhc-default, ori_v1, ori_v2, ori_v3 for simple learning
problems.

Figure 4.9.: Comparison of RRHC and CELOE in simple learning problems.
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(a) Time required of all configurations for medium learning problems.

(b) Best accuracy obtained from all configurations for hard learning problems.

Figure 4.10.: Comparison of RRHC and CELOE in medium and hard learning problems.
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Learning Problem CELOE-ori CELOE-ori_v3 RRHC-default
Computing time of simple learning problems (sec)

arch 0.021 ± 0 .008 0.059 ± 0 .03 0.037 ± 0 .02
Grandfather 0.109 ± 0 .032 0.03 ± 0 .004 0.027 ± 0 .005
Grandgrandson 0.66 ± 0 .164 0.061 ± 0 .01 0.026 ± 0 .005
bible-hasValue 0.505 ± 0 .205 1.318 ± 0 .98 0.335 ± 0 .168
moral-43-complex 0.742 ± 0 .321 0.042 ± 0 .004 0.062 ± 0 .009
poker-pair 0.105 ± 0 .031 0.073 ± 0 .019 0.059 ± 0 .009
poker-straight 0.207 ± 0 .036 2.494 ± 1 .727 0.47 ± 0 .228

Computing time of medium learning problems (sec)
Uncle 10.454 ± 9 .237 6.078 ± 1 .743 4.697 ± 0 .903
Aunt 82.984 ± 83 .206 19.997 ± 7 .942 7.877 ± 1 .052
Cousin 15.626 ± 1 .779 1.725 ± 0 .538 1.4 ± 0 .082
forte-uncle-large 7.52 ± 2 .357 45.743 ± 83 .427 3.141 ± 4 .658

Accuracy of hard learning problems (%)
carcinogenesis 70.325 ± 2 .32 69.804 ± 2 .384 70.581 ± 1 .989
lymphograhy-Class2 86.61 ± 7 .785 84.998 ± 7 .325 85.063 ± 8 .138
lymphograhy-Class3 65.142 ± 4 .484 68.729 ± 10 .039 72.12 ± 5 .877
mutagenesis-train1 91.92 ± 2 .764 93.868 ± 3 .319 92.95 ± 3 .085
mutagenesis-train2 18.547 ± 11 .077 18.722 ± 14 .166 19.359 ± 6 .014

Table 4.5.: Comparison of CELOE and RRHC in a 10-fold cross validation. For simple
and medium learning problems, the time required for producing the first
solution is used for comparison (the lesser the better). For hard learning
problems, because no algorithm could find a solution within 300 seconds,
the accuracy of the best solution found within 300 seconds is used for
comparison (the greater the better). Bold values are the best among all three
configurations. Italic values represent the standard deviation.

For the hard cases, Fig. 4.10b shows the accuracy of the best solution found within
300 seconds. Apparently, the performance of RRHC was either comparable to or better
than the best CELOE configuration. One extremely hard benchmark is carcinogenesis,
which is very noisy, so that both algorithms had poor results because the noise percentage
is always set to zero. Among the CELOE configurations, it is evident that no single setting
was significantly better than the others.

Because ori and ori_v3 had comparatively good results when using CELOE, they
are compared again with rrhc-default in a 10-fold cross-validation. Table. 4.5
shows the means and standard deviations of the measurements for some representative
learning problems. In 11 out of 16 cases, rrhc-default performed the best, while in
the remaining 5 cases, the result of RRHC was between the two CELOE configurations.
In terms of stability, the standard deviation of RRHC is much smaller in 3 out of 4
medium learning problems and is comparable with CELOE in simple and hard learning
problems.
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4.4.2. ⇢aml vs. ⇢cl

This section compares the performance between the refinement operators ⇢cl and ⇢aml

for learning engineering concepts from AML data. Similar to Section 4.4, only 100%
accurate solutions are taken into account, and no noise percentage is allowed. The raw
AML document comes from the research project ReApp, which was originally used for
the modeling of industrial robot systems [21]. The lifted AML ontology comprises of
224 classes, 625 individuals, 75 data properties, and a total amount of 3794 axioms. The
experiments are carried out for 12 synthetic learning problems with the following ground
truths:

C1 ⌘ 9hasIE.(8hasIE.ServoMotor)

C2 ⌘ 9hasIE.(9hasNumAxis.(>= 5))

C3 ⌘ 9hasIE.(9hasIE.EthernetPhysicalDevice)
C4 ⌘ 9hasIE.(9hasIE.(9hasEI.DigitalIOInterface))
C5 ⌘ 9hasIE.(8hasIE.ServoMotor u 9hasNumAxis.(>= 5))

C6 ⌘ 9hasIE.(9hasIE.ServoMotor) u 9hasIE.(9hasIE.EthernetPhysicalDevice)
C7 ⌘ 9hasIE.(9hasNumAxis.(>= 5)) u 9hasIE.(9hasIE.EthernetPhysicalDevice)
C8 ⌘ 9hasIE.(9hasNumAxis.(>= 5)) u 9hasIE.RC
C9 ⌘ 9hasIE.(Robot u 9hasEI.Communication u 9hasnumAxes.(� 5))

C10 ⌘ 8hasIE.(ArticulatedRobot t (RC u 9hasIE.EthernetPhysicalDevice))
C11 ⌘ 9hasIE.((9hasIE.ServoMotor) u 9hasNumAxis.(>= 5))

u 9hasIE.(9hasIE.EthernetPhysicalDevice)
C12 ⌘ 9hasIE.(Robot u 9hasIE.ServoMotor u 9hasNumAxis.(>= 5))

u 9hasIE.(RC u 9hasIE.EthernetPhysicalDevice)

For all learning problems, each refinement operator ⇢cl and ⇢aml is evaluated with both
learning algorithms CELOE and RRHC. In other words, the following 4 test cases are
taken into account: (i) (CELOE, ⇢cl) (ii) (CELOE, ⇢aml) (iii) (RRHC, ⇢cl) (iv) (RRHC,
⇢aml). The parameters of CELOE and RRHC may vary across different target concepts
but remain the same in one learning problem. Because the aim of ⇢aml is to restrict the
space of hypotheses by eliminating refinements that would violate the schema definition
of AML, we are interested in the number of tested OWL class expressions until the first
correct solution is found. Table 4.6 shows the results that are recorded for the individual
test cases. ⇢aml outperformed ⇢cl in all learning problems (the value of ⇢aml/⇢cl is always
smaller than 100%), independent whether the learning algorithm is CELOE or RRHC.
Moreover, in many hard problems, e.g., C6-C12, the ratio between ⇢aml and ⇢cl is smaller
than 30%. The bold values also indicate that RRHC with ⇢aml performed better than
CELOE in 8 out of 12 learning problems.
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4. Concept Learning

Learning Problem CELOE RRHC
⇢cl ⇢aml ⇢aml/⇢cl ⇢cl ⇢aml ⇢aml/⇢cl

C1 626 384 61% 694 555 79%
C2 3930 2504 63% 3004 1657 55%
C3 1780 1538 86% 8731 2297 26%
C4 1288181 862531 66% 521670 139819 26%
C5 35857 31510 87% 55610 46204 83%
C6 1703464 62133 3% 317266 60015 18%
C7 1151476 63266 5% 378537 102432 27%
C8 967173 26580 2% 595538 9308 1%
C9 1000555 57961 5% 400673 48590 12%

C10 961610 26504 2% 95009 13591 14%
C11 2351609 63725 2% 356543 61410 17%
C12 1768393 27564 1% 43108 2363 5%

Table 4.6.: Number of tested OWL class expressions until the first correct solution is
found. Bold values are the best (lowest) within each row. ⇢aml/⇢cl is the ratio
between the values of ⇢aml and ⇢cl. Because ⇢aml/⇢cl < 100% for all learning
problems, ⇢aml is more suitable for learning from AML data. Furthermore, the
combination (RRHC, ⇢aml) outperformed the combination (CELOE, ⇢aml) in
8 out of 12 learning problems.
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The concept learning work flow illustrated in Fig. 4.6 is designed based on the
architecture of the DL-Learner framework [78], which can be unintuitive for domain
experts because they are unfamiliar with OWL. Therefore, this chapter proposes the
interactive machine learning (IML) framework AMLLEARNER that involves domain
experts more tightly into the learning procedure. The core idea of AMLLEARNER is the
bidirectional communication between the user and the learner based on the intermediate
AML Concept Model (ACM). ACMs are native AML models that can represent OWL
complex class expressions. That means the user can review the outputs of the learner and
modify them by demand. AMLLEARNER is able to react upon changes over the
previous results and restart with the modified ones as an initial guess. This chapter is
organized as follows. Section 5.1 introduces the ACM, and Section 5.2 describes the
bidirectional translation between ACMs and OWL class expressions. Then, Section 5.3
presents AMLLEARNER and shows the workflow of interactive learning. Finally,
Section 5.4 discusses the interactive features of AMLLEARNER according to the
literature of IML systems.

5.1. The AML Concept Model

Recall the translation between AML and OWL described in Section 3.1.4. It is evident
that while AML role and interface classes can be mapped from/to OWL atomic classes,
most OWL class constructors, as shown in Table 3.2, have no correspondence in AML.
Because the outputs of the concept learner are complex OWL class expressions, which
consist of several (nested) class constructors, they are not immediately representable as
AML models.

Formula 5.1 shows some examples of OWL complex classes. Note that while an AML
ontology only contains two object properties hasIE and hasEI, it is beneficial to take into
account the following inverse properties for describing “part-of" relations:

isIEOf ⌘ hasIE�, isEIOf ⌘ hasEI�

Class A refers to Robots without any internal element of the type ¬IOController. Class
B denotes internal elements of a Robot from the manufacturer KUKA. Class C describes
Robots with an IOController that has at least three IOInterfaces. Class D corresponds to
IOInterfaces from objects that have at least three IOInterfaces. Class E stands for Robots
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with either an IOController or an IODevice. Apparently, as the complexity grows, the
intended meaning of an OWL complex class becomes more difficult to understand.

A ⌘ Robot u ¬9hasIE.(¬IOController)
B ⌘ 9isIEOf.(Robot u hasManufacturer.”KUKA”)

C ⌘ Robot u 9hasIE.(IOController u � 3hasEI.IOInterface)

D ⌘ IOInterface u 9isEIOf.(� 3hasEI.IOInterface)

E ⌘ Robot u 9hasIE.(IOController t IODevice)

(5.1)

For representing such OWL complex classes in AML, a modeling approach is required
for mapping individual OWL class constructors to appropriate AML artifacts. This
mapping, however, does not need to cover DataExactCardinality,
DataAllValuesFrom, DataMinCardinality, DataMaxCardinality, and
ObjectHasSelf. The first four are not relevant for AML since data properties are
mapped from CAEX attributes, which are assigned to each distinct AML object only
once. Similarly, ObjectHasSelf cannot appear in an AML ontology, because the object
properties hasIE, hasEI, isIEOf and isEIOf can never be reflexive. For all other OWL class
constructors, the mapping is defined as follows:

Atomic class: similar to [17], an atomic class is represented by a CAEX role or interface
class. A class reference in CAEX is therefore equivalent to a class assertion in OWL. For
example, an internal element a of the role class A is represented as A(a).

Thing: Thing is the most general concept in OWL and contains all individuals. Depends
on its CAEX annotation, Thing is represented by a corresponding CAEX schema element
with no specific configurations.

Nothing: Nothing is the most specific concept in OWL and contains no individual.
Nothing is handled as the complement of Thing (see the complement case below).

Intersection: an intersection C u D contains individuals that are instances of all the
operands C and D in the intersection. Therefore, an intersection is represented by the
composition of several AML models that correspond to each of the operands, including
CAEX class references, attributes, and subordinate object structures.

Union: a union C tD contains individuals that are instances of at least one operand C
or D of the union. Because XML does not support unions in general, each operand of a
union generates one AML model individually.

Nominal: a nominal {a, b, ...} enumerates all individuals that an OWL class shall
contain. Similar to the union constructor, nominals cannot be directly represented in
XML, and one AML model is generated for each element inside a nominal.

Existential restriction: an existential restriction 9R.C or 9R.(DR) states the existence
of the relation R with the filler C or the data range DR. If R is an object property,
the existential restriction is represented by a child object (internal element or external
interface) while the filler C is represented by the model of the child object. If R is a
data property, the existential restriction is represented by a CAEX attribute while the data
range DR is represented by the configuration of the CAEX attribute, e.g. data type and
value requirements.

Object cardinality restrictions: an object cardinality restriction, i.e. an exact
restriction = nR.C, an at-least restriction � nR.C, or an at-most restriction  nR.C,
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defines the number of child objects of the class C w.r.t. the relation R. The CAEX
attributes minCardinality and maxCardinality are added to the child objects to represent
the minimum and maximum number respectively. The exact cardinality of n is
represented by minCardinality = maxCardinality = n.

Fills restriction: a fills restriction 9R.{a} or 9R.{lt} corresponds to an existential
restriction with a Singleton filler, i.e. a single object a or a literal value lt. If R is an
object property, the CAEX attribute identifiedByID is used to restrict the ID of the child
object a, as ID is unique in AML. If R is a data property, lt is set as the required value of
the corresponding CAEX attribute.

Universal restriction: a universal restriction 8R.C forces all child objects w.r.t. the
relation R to be instances of the class C. For example, 8hasIE.C describes things that
have internal elements of type C only. While universal restrictions can not be directly
represented in XML, it can be simulated by disallowing child objects that are instances of
the class ¬C [79] using the exact cardinality = 0R.(¬C).

Complement: a complement ¬C contains all individuals that are not instances of C.
Since an OWL class can have arbitrarily nested complements, its negation normal form
(NNF) is first computed where the complements are only bound to atomic classes [54].
For example, the NNF of the OWL class A in Formula 5.1 is:

NNF(A) ⌘ Robot u 8hasIE.IOController

Obviously, NNF(A) does not contain any complements. In fact, complements can only
appear in the following three cases in the NNF of an OWL class:

(a) A complement can be bound to an atomic class as ¬A or a data range as ¬DR, and
is not part of any restrictions. In this case, a CAEX attribute negated=true is added
to the AML model. Note that intersections of a mixture of positive and negative
atomic classes, e.g. ¬A1 u A2, cannot be modeled in AML.

(b) A complement can be the filler of an existential restriction, i.e. 9R.(¬A) or
9R.(¬DR). As with the existential restriction, a child CAEX object or CAEX
attribute is first generated. Then the CAEX attribute negated=true is added to the
child model.

(c) A complement can be the filler of a universal restriction as 8R.(¬A) (recall that
universal restrictions on data properties are ignored). In this case, child objects of
the class A are disallowed w.r.t. the relation R, which can be expressed using the
exact cardinality = 0R.A.

Table 5.1 summarizes the introduced CAEX attributes that are used to capture the
semantics of OWL constructors mentioned above. The attribute primary is a helper flag
to indicate which element in an AML model is described by the OWL class. These
CAEX attributes are called concept attributes, and an AML model with concept
attributes is called an AML Concept Model (ACM). Note that ACMs are merely an
illustration of the corresponding OWL complex class. In other words, they are not part of
an AML ontology and do not influence the semantics and the inference of an AML
ontology. For example, the ACM of an existential restriction does not refer to any
concrete individual and does not contradict with the open-world assumption of DL.

Table 5.2 enumerates the values of concept attributes based on possible forms of NNF.
Note that intersections, unions, and nominals are omitted in the mapping since each
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Table 5.1.: The AML concept attributes for capturing ontological semantics.
Name Type Default Semantics in OWL

negated bool false complement
minCardinality integer 1 minCardinality
maxCardinality integer unlimited maxCardinality
identifiedByID bool false nominal

primary bool false target individuals

Table 5.2.: Mapping between OWL constructors and AML concept attributes.
OWL Class Expression Negated minCard. maxCard.

simple complement ¬C or ¬DR true 1 unlimited
existential restriction 9R.C or 9R.DR false 1 unlimited

existential restriction 9R.(¬C) or 9R.(¬DR) true 1 unlimited
universal restriction 8R.C true 0 0

universal restriction 8R.¬C false 0 0
at-least restriction � nR.C false n unlimited
at-most restriction  nR.C false 0 n

operand (element) of them is handled individually. Intuitively, ACMs can be nested to
represent nested OWL class expressions. An ACM is proper if it has exactly one primary
element.

Fig. 5.1 illustrates the ACMs of the NNF of the OWL classes A, B, C and D in Formula
5.1 as tree structures (we handle the OWL class E later in Section 5.2.1). Internal elements
(IE) and external interfaces (EI) are represented by tree nodes, and their class references
and attributes are depicted as labels on the top right corner. A negated object is marked as
red. The primary object is marked as bold with an underline. Numbers in square brackets
are the min and max cardinality of the object, while a value �1 means that it is unlimited.
Note that for the classes B and D, the primary object is not the root node since XML
cannot describe "part-of" relations (i.e. isIEOf, isEIOf). Therefore, each inverse property
is simulated by a corresponding predecessor node in the XML tree.

5.2. Translation between OWL and ACM

The core idea of the translation is to exploit the tree structure of OWL class expressions.
More concretely, the so-called AML concept trees are used to depict OWL complex classes
in a tree structure similar to ACMs. The forward translation from OWL to ACM, i.e.,
TransF : OWL 7! ACM, is defined based on AML concept trees. The opposite direction,
i.e., the backward translation TransB : ACM 7! OWL can be directly carried out using
the mappings in Table 5.2.

5.2.1. From OWL to AND-tree

A tree is defined conventionally as a directed graph G = (V , E) where V is a finite set of
nodes and E is a finite set of edges, to which the following rules apply:
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IE
RC: Robot

IE
RC: IOController
[0,0]

(a) Class A

IE

RC: Robot 

manufacturer: KUKA 

IE

(b) Class B

EI

IC: IOInterface 

[3, -1] 

IE
RC: Robot

IE
RC: IOController

(c) Class C

EI
IC: IOInterface 

EI

IC: IOInterface 

[3, -1] 

IE

(d) Class D

Figure 5.1.: The ACMs for the OWL classes in Formula 5.1.

• A tree G has a unique root node that has no predecessor.

• Each node n 2 V has a unique predecessor.

In a tree G, leaf nodes are the tree nodes with no successor, i.e. at the bottom of the
tree. Furthermore, a branching node is an inner tree node that has a unique predecessor
and arbitrarily many successors. Based on these notions, an AND-tree is a tree with the
following properties:

• The root of an AND-tree represents the expression of an OWL complex class.

• Each branching node of an AND-tree represents either an intersection or a
restriction in OWL.

• Each leaf node of an AND-tree represents either OWL Thing, OWL Nothing or an
atomic class.

For each OWL complex class without unions and inverse properties, an AND-tree can
be constructed by making a successor node for each operand of an intersection and the
filler of a restriction, as shown in Algorithm 5.1. Fig. 5.2 illustrates the construction of
the AND-tree for the OWL class D in Formula 5.1. Each box represents a tree node, and
the number on the upper left corner of each box shows the sequence of node construction.
The root node of the AND-tree corresponds to the expression of class D. Since the root
is an intersection, the algorithm will handle each operand of it individually through line
4 to 6. The atomic operand IOInterface is returned directly and added as a child to the
root in line 7. For the complex operand 9isIEOf.(� 3hasEI.IOInterface), the algorithm
recursively generates sub-nodes until the final atomic filler IOInterface is reached in line
10. Note that all nodes are generated immediately in line 1 when ConstructAndTree is
called.

It becomes more involved if the input OWL class contains any disjunctions (unions
or nominals) because XML does not support or statements generally. The solution is to
construct m AND-trees for a disjunction with m elements. However, since disjunctions
can appear in any nested part inside an OWL class expression, a traverse of the logical
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Algorithm 5.1 ConstructAndTree

Input: The class expression ce of an OWL class C
Output: A tree node root

1: make a tree node root for ce
2: if ce is an atomic class then
3: return root
4: else if (ce is an intersection) then
5: for operand 2 ce do
6: let child = ConstructAndTree(operand)
7: add child as a successor to root
8: end for
9: else if (ce is a restriction) then

10: let child = ConstructAndTree(ce.filler)
11: add child as a successor to root
12: end if
13: return root

Algorithm 5.2 ConstructAndTreeD

Input: The class expression ce of an OWL class C
Output: A set of tree nodes roots

1: initialize roots = {}
2: if ce is an union or a nominal then
3: for each element in ce do
4: add ConstructAndTreeD(element) to roots
5: end for
6: else
7: make a tree node n for ce, add n to roots
8: if ce is an atomic class then
9: return roots

10: else if (ce is an intersection) then
11: for operand 2 ce do
12: let nestedTrees = ConstructAndTreeD(operand)
13: for root in roots do
14: copy root nestedTrees.size� 1 times
15: add the root of each tree 2 nestedTrees as a successor to exactly one copy

of root
16: end for
17: end for
18: else if (ce is a restriction) then
19: let nestedTrees = ConstructAndTreeD(ce.filler)
20: for root in roots do
21: copy root nestedTrees.size� 1 times
22: add the root of each tree 2 nestedTrees as a successor to exactly one copy

of root
23: end for
24: end if
25: end if
26: return roots
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Figure 5.2.: The AND-tree constructed from the OWL class D in Formula 5.1. The
numbers in the tree nodes show the sequence of node construction.

1

2 3

5

6

copy

47

7

copy

Figure 5.3.: The tree construction process of the OWL class E in Formula 5.1. The
numbers in the tree nodes show the sequence of node construction.

structure of the class expression is required to produce a set of AND-trees that is logically
equivalent to the OWL class.

Algorithm 5.2 shows the AND-tree construction process for classes involving
disjunctions. If the input class expression ce is a disjunction, then a set of tree nodes are
generated for the elements of the disjunction (line 4). In case the input is an intersection,
the recursive call of ConstructAndTreeD in line 12 will handle possible nested
disjunction in each element and produce a set of nested trees. These nested trees need to
be multiplexed with the existing trees in roots through line 13 to 15. The algorithm
treats restrictions similarly to intersections despite that the filler of a restriction is used to
produce nested trees in line 19. It is worth noting that only m � 1 copies of root are
made in line 14 and 21 since the original root also counts during the construction.

Fig. 5.3 illustrates the tree construction process of the OWL class E in Formula 5.1. In
the first step, a root node is generated that contains the complete class expression (line 7).
Then, for each operand of the intersection, a child node is generated in step 2 and 3 (line
12). Since the Robot node is atomic, no further construction is required in the recursive
call (line 9). On the other hand, the restriction node 9hasIE.(IOController t IODevice)

61



5. Interactive Concept Learning in AutomationML

is copied in step 4 (line 21), since its filler is a union and produces two atomic nodes
IOController and IODevice (line 19). In step 5 and 6, the atomic nodes are added to the
original and copied restriction nodes (line 22). Finally, the root node is copied once to
accept the two distinct restriction nodes in step 7 (line 14-15).

5.2.2. Working with Inverse Properties

For OWL classes that describe objects in the instance hierarchy, inverse properties might
appear for gathering information about their ancestors or siblings (see the OWL classes B
and D in Formula 5.1). Due to structural restrictions in AML, following conditions apply
when an inverse property R� 2 {isIEOf, isEIOf} appear:

C1: R� does not appear in the filler of any restriction that has R as property, e.g.
9R.(9R�.C)

C2: R� does not appear in the filler of cardinality restrictions, e.g. � n R�.C.

C3: R� does not appear in the filler of any restriction that has a different property
R0 6= R, e.g. 9R0.(9R�.C).

C4: isEIOf does not appear in the filler of any restrictions that has an inverse property,
e.g. 9R�.(9isEIOf.C)

The conditions C1 and C2 avoid modeling redundancies in OWL, since AML data has
a tree structure, and each node in the tree has a unique predecessor. A class expression
9R.9R�.C is therefore logically equivalent to C, and a cardinality restriction is redundant
to an existential restriction. The condition C3 avoids modeling errors in OWL since the
set of internal elements is disjoint with the set of external interfaces. The condition C4
holds since external interfaces have no child object in AML. An OWL class that meets the
conditions C1-C4 is called a proper AML class.

The inverse properties of a proper AML class always appear continuously at the
outermost layer of the class expression. In other words, the AND-tree of a proper AML
class has all inverse properties in the upper part of the tree. Therefore, Algorithm 5.3
iteratively removes the inverse properties from the root of an AND-tree. We call an
AND-tree that contains no disjunctions nor inverse properties an AML concept tree.

Fig. 5.4 shows how the inverse property in the root of class D’s AND-tree (i.e., isEIOf
in Fig. 5.2) is removed. Since the original root node is an intersection, the algorithm
first constructs a template node for the new root (line 11). Then a new child node is
constructed for the previous child IOInterface by formulating an existential restriction in
step 2 (line 14 to 15). To keep the consistency of the tree, the expression of the new
child node is added to the new root node in the third step (line 16). For the previous
child 9isEIOf.(� 3hasEI.IOInterface), the filler of its inverse property isEIOf, i.e., the
expression � 3hasEI.IOInterface is added to the new root node as a conjunctive term in
step 4 (line 18), and the corresponding grandchild with its sub-tree is added as a child to
the new root in step 5 (line 19).

It is obvious that the inverse property isEIOf is now removed. Note that the OWL class
expression of the new root node is different from the original one. Informally, the original
root describes the primary object in an arbitrary position of a CAEX instance hierarchy
(marked as yellow), while the new root describes the predecessor of the primary object.
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Algorithm 5.3 removeInverseProperty

Input: The root of an AND-tree root
Output: The root of a new AND-tree newRoot

1: let ce = class expression in root
2: if ce contains no (nested) inverse property then
3: return root
4: else
5: if ce is a restriction then
6: construct a new node newRoot for ce.filler
7: change the filler of root to owl:Thing
8: add root as a successor of newRoot
9: move root.children as successors of newRoot

10: else if ce is an intersection then
11: construct a template node newRoot
12: let inv be successors of root with inverse property
13: let normal be other successors of root
14: construct a new node normalChild as an existential restriction with normal

being its filler
15: add normalChild as a successor to newRoot
16: add the expression of normalChild to newRoot
17: for node 2 inv do
18: add the filler of node to newRoot conjunctively
19: move node.child as a successor of newRoot
20: end for
21: end if
22: removeInverseProperty(newRoot)
23: end if

3

5

5

41

2

2

3. extend new root 4. extend new root
5. add inv children

1. construct new root
2. add normal children

Figure 5.4.: The construction of the AML concept tree of class D. The numbers in the
tree nodes show the sequence of node construction.
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IC: IOInterface
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Figure 5.5.: The forward translation for class D.

5.2.3. The Forward Translation: from OWL to ACM

Until now, the algorithms to transform a proper AML class into an AML concept tree
have been presented. The forward translation TransF : OWL 7! AML can be
implemented by traversing AML concept trees in a depth-first manner. For every tree
node, a corresponding ACM is generated whose concept attributes are configured based
on the mappings in Table 5.2. The CAEX type of the target ACM is determined either by
the object property being used in case of a restriction or by the CAEX type annotation of
the OWL class in case of an intersection in the root node. The orange dashed lines in
Fig. 5.5 show the translation from the AML concept tree of class D to its ACM illustrated
in Fig. 5.1d. Note that OWL atomic classes are mapped to CAEX class references.

5.2.4. The Backward Translation: from ACM to OWL

If an ACM is proper, i.e. it has exactly one primary element (see section 5.1), then the
backward translation TransB : AML 7! OWL can be directly carried out using the
mappings in Table 5.2. First, a traverse of the ACM is necessary to localize the primary
object. Afterwards, successors of the primary object are translated to restrictions with
normal properties while the predecessors are translated to restrictions with inverse
properties. If Algorithm 5.2 would have generated several ACMs during the forward
translation, they are translated independently to several OWL classes and combined
disjunctively as a union. In this case, an original OWL class with nested unions will be
reproduced as a union of expressions, e.g. 9r.(C t D)! 9r.C t 9r.D. Although the
syntax of the reproduced OWL class differs from the original one, their semantics are the
same.

It is worth noting that the mappings in Table 5.2 are used for both TransF and TransB.
Therefore, the forward and backward translations are inverse functions of each other in
terms of semantic equivalence. That means, for an OWL class C and an ACM M , the
following relations hold:

TransB(TransF(C)) ⌘ C

TransF(TransB(M)) ⌘M
(5.2)

5.2.5. ACM in ontology engineering

To show the utility of ACM, consider ontology engineering for cyber-physical
systems [26] where a so-called lightweight ontology is already modeled in AML.
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Figure 5.6.: The work flow for ontology engineering using bidirectional translation.

Fig. 5.6 shows two typical scenarios where OWL complex classes need to be either
constructed or adapted.

The first scenario (orange arrows in Fig. 5.6) refers to the standard ontology building,
in which a new OWL complex class needs to be constructed. Instead of manually creating
the OWL class in the ontology, the domain expert (the user) constructs an ACM and
translates it to OWL as follows:

1. The user generates the primary ACM for the target concept, i.e. a CAEX role class,
system unit class, interface class, internal element or external interface with class
reference and concept attributes.

2. The user adds CAEX attributes and sub-elements with sufficient constraints to the
model. This process repeats recursively for nested attributes and sub-elements.

3. If the primary ACM shall be further restricted by the properties of its predecessor
or siblings, a parent ACM is generated. This process repeats recursively for further
predecessors and siblings.

4. The user generates the OWL class using the backward translation and adds it to the
AML ontology.

The second scenario (blue arrows in Fig. 5.6) refers to ontology evolution where an
existing OWL complex class needs to be adapted according to new requirements. In this
case, the user might want to inspect and modify it by demand. First, the target OWL
class is translated into ACMs via its AML concept trees. Then, the user can inspect the
generated ACMs by browsing their XML structure. If any modification is necessary, the
user can edit the ACMs as described above and export the new one to an OWL class.

In both scenarios, ACMs can be inspected and modified using a conventional AML
editor, while the forward and backward translations are transparent to the user. By
comparing the OWL complex classes in Formula 5.1 and their corresponding ACMs in
Fig. 5.1, it is evident that ACMs are more intuitive for domain experts. Moreover,
because the forward and backward translations are inverse functions of each other (see
Formula 5.2 in Section 5.2.4), a round-trip engineering of OWL complex classes is also
enabled by following the workflow of both scenarios successively. For various
knowledge-driven industrial applications using AML, e.g., plant model validation [80],
model-driven software engineering [21], and engineering of cyber-physical systems [81],
ACMs can facilitate the modeling of sophisticated domain knowledge in OWL.
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Figure 5.7.: The software architecture of the AMLLEARNER framework. Yellow boxes
are modules/components implemented in AMLLEARNER while the green
boxes are the used software libraries.

5.3. The AMLLEARNER Framework

The advantage of the ontology building scenarios, as described above, is that no ontology
expert is required. However, the domain expert still needs to create the ACMs for the
desired engineering concepts manually. To further facilitate ontology building, this
section presents the AMLLEARNER framework that allows the semi-automated creation
of OWL complex classes by following the interactive machine learning (IML)
approach [82]. Because formal semantics builds the foundation of concept learning
algorithms, the behavior and results of the learning algorithms are inherently
self-explainable. In fact, the main gap between the learner and the user is the
non-intuitive syntax and semantics of OWL class expressions. Therefore,
AMLLEARNER uses the concept learning algorithm presented in Chapter 4 as a
subroutine and interacts with the user with the ACMs of the learned OWL classes.

Fig. 5.7 shows the software architecture of AMLLEARNER, which consists of the
following three main modules:

• The Learning module is an extension of the DLLearner framework and contains the
implementation of the RRHC algorithm and the refinement operator ⇢aml.

• The Modeling module comprises all components related to reading, writing, and
transforming different data formats. Based on the OWL API1, the XML DOM,
and the Eclipse Modeling framework (EMF2), the modeling module supports the
semantic lifting of AML and the forward and backward translations of ACMs.

• The GUI module realizes a server-client architecture in which the functionalities of
AMLLEARNER are wrapped into a Java backend while a plugin of the AML Editor
is provided as a C# client. The communication between the server and the client is
based on JSON messages passed over a TCP channel.

The main window of the AMLLEARNER plugin is shown in Fig. 5.8. The left column
is the viewer of AML instance hierarchies provided by the AML Editor. The right column
is the GUI of the AMLLEARNER plugin, which contains two panels for the positive
and negative examples, a text area for showing log and server responses, and two sets

1https://github.com/owlcs/owlapi
2https://www.eclipse.org/modeling/emf/
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Figure 5.8.: The main window of the AMLLEARNER plugin in the AML editor.

of control buttons. The first set of control buttons (top right part) is used for editing the
positive and negative examples and the configuration of learning algorithms. In particular,
the store and load config buttons are used for storing the current configuration to a JSON
file or loading an existing configuration to the plugin. The second set of control buttons
(bottom part) is used for the interaction with the AMLLEARNER server. The user can
stop the learning process at any time using the stop learning button and load the current
outputs as ACMs using the load ACMs button.

Fig. 5.9 shows the ACM editing window of the AMLLEARNER plugin. Again, the
left column is the view of instance hierarchies in the AML editor, and the right column
contains the UI elements for showing and editing ACMs. For explaining the ACMs,
the checkboxes and slides underneath the ACM window show the values of the concept
attributes of the currently selected object. Moreover, the user can review the features used
by the ACM in the active features panel. If any feature is not satisfied by the user, it can be
removed by clicking the button remove active acm feature. The removed features of the
currently selected ACM will be shown in the ignored features panel. The control buttons
below the slides are designed for loading, removing, and storing ACMs. In particular, if
the currently selected ACM shall be used as the initial guess for the next learning cycle,
the user can click the button set acm and restart the learning in the main window of
AMLLEARNER.

5.4. Results and Discussions

Recall the workflow for concept learning in AML, as described in Section 4.3. This
standard workflow allows basic interactions between the user and the learner as follows:
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Figure 5.9.: The ACM editing window of the AMLLEARNER plugin in the AML editor.

(F1): at the beginning, the user selects data examples.

(F2): at the beginning, the user can configure the parameters of the learning algorithm
to control its behavior. Two major types of parameters are supported: a) parameters
of the heuristic function that controls exploration vs. exploitation during search space
traversal; b) language features of OWL that shall or shall not be used for constructing the
solution, which can be certain class constructors or particular OWL classes and properties
in the ontology. Note that the AMLLEARNER framework has a default setting for these
parameters, and this type of interaction is an advanced feature for experts of OWL.

(F3): the learner communicates the learning result to the user when a solution is found,
or it timed out. The result contains the accuracy and heuristic score of the best n solutions.
The user can also ask for the coverage of data examples of each solution.

Fig. 5.10 shows the workflow of AMLLEARNER. The blue dashed lines illustrate the
information flow from AMLLEARNER to the user using the forward translation (i.e.,
from OWL to ACM), while the orange dashed lines depict feedback from the user to
AMLLEARNER using the backward translation (i.e., from ACM to OWL). Based on this
paradigm, AMLLEARNER additionally provides the following features for interaction:

(F4): At any time point, the user can stop the learning and ask the system to show the
current status.

(F5): If the response of the system would be rather complicated for human
understanding, e.g., the class expressions in Formula 5.1, the user can request a
translation of the concept into an ACM and inspect it in a conventional AML editor. If
the solution is not satisfactory, the user can modify the ACM by demand and reinitialize
AMLLEARNER with the modified ACM. Note that the modified ACM is firstly checked
against semantic consistency concerning the user-supplied data examples. That means,
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Figure 5.10.: The workflow for interactive concept learning in AML.

any user modified ACM that does not cover all positive examples are invalid for the
learning and will trigger a warning. In this case, the user can either reconfigure the
learner with different data examples or parameters, or withdraw the modifications of the
ACM.

(F6): Often, the user has some ideas about the target concept. For example, not all
robots are of interest, but only the ones produced by the manufacturer KUKA. Then the
user would initialize AMLLEARNER with an ACM that contains such information.
Again, the user will be notified if the supplied model is inconsistent with previously
selected data examples.

(F7): When the learning terminates and the user is satisfied with the solution, the
constructed OWL class expression can be saved both as part of the existing knowledge
base and as an ACM for XML-level data integration.

Recently, Dudley and Kristensson discussed the interface design of IML systems and
revealed the following four key challenges[83]:

(C1): Users can be imprecise and inconsistent. Users may introduce errors and
inappropriate biases in the learning process.

(C2): There is a gap between user input and intent. For example, a data example that is
not chosen as positive is not necessarily negative for the target concept.

(C3): Machine learning systems work with internal models, which may not be
intuitively perceivable by the user. Furthermore, the system reaction of user inputs might
not be understandable by the user.

(C4): Learning is often open-ended. In most cases, there exists more than one solution,
and the user might want to discover more useful or interesting results.

The fundamental problem behind these challenges is the unpredictable behavior of both
the user and the learner. To systematically overcome these challenges, the authors of [83]
proposed a generalized workflow for designing comprehensive IML processes:

Feature selection (W1): the user shall be able to select features that are used in the
machine learning algorithm. Amershi et al. also reported that people naturally want to
provide more instructions to the learner for improving performance, including suggesting
alternative features or denying currently employed ones [82]. For concept learning in
AML, available features stem from the underlying ontology, i.e., the atomic classes, data
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properties, and object properties, which in turn, are transformed from classes and
relations in AML. For example, the learned OWL class expression
Robot u hasManufacturer.“KUKA” contains the features Robot and hasManufacturer.
Allowing the user to select features have two significant outcomes. First, a prior domain
knowledge can be incorporated into the learning, which shall improve the performance.
Second, because the learner may overfit to the current data examples, undesired features
can be removed by the user.

Model selection (W2): the user can configure model parameters or select alternative
models used in learning. Models, in general, refer to the component of a machine learning
system that maps inputs to outputs of the learner, e.g., the structure of a neural network
or the configuration of a support vector machine. For most concept learning systems, the
model is the search tree constructed by traversing the concept space. In this context, model
selection refers to the traversing strategy and the associated configuration parameters, as
shown in Section 4.2.

Model steering (W3): the user can inspect, modify, and create data examples to guide
the learning process. In general, model steering is the main activity performed by the user
and costs the most time. The situation is slightly different in concept learning because
often a small set of data examples is enough. However, an efficient selection of data
examples will improve the usability of a concept learning framework.

Quality assessment (W4): the user can evaluate the solutions (temporal or final)
found by the learner. Usually, a machine learning system does not seek for perfect
solutions but an acceptable one according to some evaluation metric. In contrast, as
described in Section 4.3, concept learning in AML devotes to find the 100% correct
solution for the current data set. Inevitably, this setting can cause overfitting that shall be
avoided in general. Therefore, it is important to assess the quality of the learned results.
More concretely, the user needs to understand why the solution is correct by reviewing
the used features and decide whether these features are appropriate. For example, if the
manufacturer is not important for the target concept, the user can prohibit the learner
from using hasManufacturer for the learning task.

Termination assessment (W5):. The user can decide when to terminate the learning
based on the learner’s current performance and boundary conditions of the learning task.
This activity is crucial because concept learning systems often suffer from relatively long
learning time, which can exceed 5 minutes, as described in Section 4.4. Moreover, the
performance may vary dramatically upon a minor change of the learning parameters or
the data examples. Although both DL-Learner and AMLLEARNER provide a global
parameter for setting the time upper-bound, termination assessment will further improve
the usability of the learning system. In particular, if the user is able to inspect the
intermediate solutions and resume the learning by exploiting the efforts that have been
made, e.g., restart the learning using an intermediate result as the initial guess.

Transfer (W6): a learned model shall be appropriately deployed for use. In concept
learning, this activity is straightforward because the learned OWL classes can be directly
added to the ontology. For AML-based engineering, one needs to consider additional
efforts that are required for model translation between OWL and AML.

The challenges and workflow proposed by Dudely and Kristensson can be used as a
metric for assessing the usability AMLLEARNER, as shown in Table 5.3. It is evident
that AMLLEARNER takes care of most activities in the workflow above. In particular,
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Table 5.3.: Comparisons of the interactive features provided by AMLLEARNER and the
metric proposed by Dudely and Kristensson [83].

Challenges Features
C1 F5, F6
C2 none
C3 F4, F5
C4 F3

Workflow Features
W1 F2, F5
W2 F2, F6
W3 F1, F5
W4 F3, F4, F5
W5 F4
W6 F7

ACMs and the demonstration of their associated features contribute to the transparency of
AMLLearner, which is helpful for increasing the user’s confidence and even improving
the labeling quality [82]. Based on ACMs, the features F5 and F6 become the key for
the communication between the learner and the user. Nevertheless, the challenge C2 is
not tackled by AMLLEARNER since the employed learning algorithm explicitly requires
negative examples. Moreover, AMLLEARNER currently only supports the stop and restart
mechanism for reusing the intermediate results. In the future, it is also considered to reuse
the search tree constructed in the previous learning cycle.
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6. Preliminaries and Related Work

In the first part of the thesis, methods are presented for building complex ontological
knowledge from AML data. Although the learned OWL classes bridge the semantic gap
between concepts in heterogeneous engineering systems, the ontology itself is often
insufficient for data access and exchange tasks. One could argue that an OWL class
describes an engineering concept and can be used for extracting data from this particular
concept. Indeed, OWL class expressions can be translated to the so-called Description
Logic Rules (DL Rules) [84], which in turn, are closely related to conjunctive
queries [54] and can be used for data retrieval. However, DL Rules are designed for tight
integration with DL ontologies, which enjoys the decidability of reasoning but suffers
from its limited expressiveness. More specifically, DL Rules can only express tree-like
interdependencies between variables. In other words, for any two distinct variables x and
y, there is at most a single path between x and y in the body of the rule [54]. For
example, it is impossible to state “get all robots with two connected interfaces”, which
can be formulated as the following rule:

8x8y8z. (Robot(x) ^ hasEI(x, y) ^ hasEI(x, z) ^ connected(y, z)! Q(x)) (6.1)

In rule 6.1, the left-hand side is called the rule body, and the right-hand side is called
the rule head. More specifically, the predicate Q in the rule head indicates the answer to
the query. This rule is not expressible in DL, because there are two dependency paths
from x to z: one given by the atom hasEI(x, z) and the other one through the atoms
hasEI(x, z) and hasEI(y, z). One way to work around with this problem is the integration
of DL and Datalog, from which the so-called DL-safe rules and the SWRL1 rule
language emerge. However, to guarantee decidability, DL-safe rules need to satisfy the
DL-safety by binding all variables in the rule to known individuals in the ontology.
While this restriction might not be critical for data access, it limits the applicability of
DL-safe rules in data exchange tasks, where the rule head often needs to invent new
values using existential quantifications [28]. For example, the following rule states that
“for each pair of connected interfaces inside a robot, construct a connection object that
comprises both interfaces”:

8x8y8z.(Robot(x) ^ hasEI(x, y) ^ hasEI(x, z) ^ connected(y, z)!
9o.(Connection(o) ^ hasEI(o, y) ^ hasEI(o, z)))

(6.2)

In rule 6.2, the variable o is existentially quantified and only exists in the rule head. That
means, this rule requires the invention of a Connection object in the target AutomationML
file, which can not be expressed using DL-safe rules.

In the literature, OBDA and OBDI approaches developed for engineering often require
the manual implementation of the data access and exchange logic, e.g., using the SPARQL

1https://www.w3.org/Submission/SWRL/
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(a) The universal XML query framework.

(b) The QBE-based XML query framework

Figure 6.1.: Comparison of conventional and QBE-based XML query frameworks.

query language [24]. However, SPARQL is not a standard programming language in
industry and requires extra efforts for transforming data between its original formalism
(e.g., AML) and the RDF graph [85].

The second part of the thesis aims at providing practical solutions for data access and
exchange in AML-based engineering. Because AML is an XML-based data format, it is
worth investigating whether any existing XML-driven technologies can be adopted for
handling AML data. Indeed, the W3C has standardized several query languages for
XML, including the XML Path Language (XPath) and the XML Query Language
(XQuery). While XPath is primarily designed for addressing fragments of an XML
document by navigating its tree structure, XQuery is a fully-fledged programming
language for accessing and transforming XML data. Several XQuery engines exist on
almost all mainstream operating systems and can either be used as stand-alone software
or integrated as a library into existing engineering tools.

Fig. 6.1a shows the universal XML query framework employing a query engine.
Besides the source XML data file (Data.xml), the user needs to implement the query
program manually using e.g., XQuery. Nevertheless, XQuery is designed for
experienced database developers and thus has a quite different programming style as the
conventional ones, e.g., C# and Java. To support unskilled users by query construction,
the so-called Query By Example (QBE) paradigm has been proposed [31, 32]. In contrast
to the ontology-based approach, QBE does not require data transformation from XML to
an ontology, but directly works with the inherent tree-structure of XML data. The core
idea of QBE is to replace the manual implementation of the query programs with
user-supplied query examples. Fig. 6.1b shows the QBE-based XML query framework.
The only difference to Fig. 6.1a is that the query program is now automatically translated
from the query examples.

This chapter first gives a brief introduction to XPath and XQuery in Section 6.1 for
covering the notions and principles that are necessary for this thesis. Afterward,
Section 6.2 discusses tree patterns, which are a fundamental tool for accessing
tree-structured data and closely related to XPath. Tree patterns also inspired the
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theoretical research of XML data exchange, as described in Section 6.3. Finally,
Section 6.4 discusses the related work on QBE-based approaches in the context of XML
and AML.

6.1. XML Query Languages

In this thesis, an XML document is considered as an unordered2 node-labeled tree T =

(V, F ), where V is the set of nodes containing all XML elements and F the set of edges,
i.e., the parent-child relationship between the nodes. The node with no parent is the root
of the tree, and the nodes with no child are the leaf nodes. Each node v 2 V is a triple
(id, tag, A) where id is the identifier, and tag is the related XML tag. Note that for AML,
the set of possible values for tag stems from the vocabulary of the CAEX schema, which is
partially shown in Fig. 2.2. Finally, A is a set of XML attributes associated with v. Again,
for AML, A is a subset of the standardized XML attributes in IEC 62424, as described in
Section 2.1.

Given an XML document tree T = (V, F ) as defined above, the basic utility of an XML
programming language, such as XPath and XQuery, is to extract data in T , which can be
XML elements, i.e., v 2 V , and the associated XML attributes v.A. In addition, XQuery
also supports the construction of a new XML document based on the extracted data.

6.1.1. XPath

The XML Path Language (XPath) is primarily designed for navigating an XML
document. The term “path” refers to the ability to describe a route between nodes in the
XML document. There have been three major revisions of XPath, the last being version
3.1 in 2017 [40]. In the following, the main features of XPath are introduced, which are
already contained in the specification of XPath 1.0 [88].

The syntax of XPath contains three fragments: a) the Core XPath that contains the
logical core of the language; b) the arithmetic features that include arithmetic and
relational operations; c) the string manipulation features that provide string operations.
This section does not elaborate on the details of XPath but discusses the fragment
XP /,//,[ ] which can be defined by the following subset of the XPath’s grammar [89]:

locpath ::= ‘/’ locpath | locpath ‘/’ locpath | locstep.
locstep ::= axis ‘ :: ’ ntst ‘[’ bexpr ‘]’...‘[’ bexpr ‘]’.
bexpr ::= bexpr ‘and’ bexpr | bexpr ‘or’ bexpr |

‘not(’ bexpr ‘)’ | locpath.
axis ::= ‘self’ | ‘child’ | ‘descendant-or-self’ | ‘attribute’

XPath uses a location path (locpath) to navigate from a context node to another in the
XML tree. A location path consists of a set of location steps (locstep) that are sequentially
connected by the operator ‘/’. Each location step comprises the following three parts.

2In general, the sequence of elements appearing in an XML document is critical. However, because CAEX
does not impose the ordering of its elements, this thesis disregards the ordering of XML elements
inside an AML document. This specific setting is also often adopted in the literature on XML data
access [86, 87].
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An axis specifies the relationship between the nodes selected by the location step and the
context node. A self axis, for example, selects the context node, and a child axis selects
children of the context node. A descendant-or-self axis3, which is defined as the transitive
closure of the child axis, selects the context node and its descendants. An attribute axis
selects the XML attributes of the context node.

A node test (ntst) denotes either a specific XML tag, e.g., InternalElement, or all
tags using the wildcard symbol ⇤.

A predicate is a boolean expression (bexpr) enclosed by a pair of square brackets that
adds conditions to the selected nodes. Boolean expressions can be connected using the
operators {and, or, not}. For example, the XPath expression in Formula 6.3 evaluates to
true only if the selected InternalElement nodes have a child InternalElement node
and a child ExternalInterface node.

InternalElement[child :: InternalElement and

child :: ExternalInterface]
(6.3)

XPath also provides the following relation operators (relop) for describing value
constraints inside the predicates:

relop ::= ‘ = ’ | ‘! = ’ | ‘ < ’ | ‘ <= ’ | ‘ > ’ | ‘ >= ’.

For example, the XPath expression in Formula 6.4 is a two-step location path starting
from the node InstanceHierarchy. The first step navigates to all descendant nodes
from InstanceHierarchy which have the tag InternalElement. The second step
navigates from those InternalElements to their ExternalInterface children whose
XML attribute RefBaseClassPath has the value “Communication”.

InstanceHierarchy/descendant-or-self :: InternalElement/

child :: ExternalInterface[

attribute :: RefBaseClassPath = “Communication”]

(6.4)

For brevity, XPath provides an abbreviated syntax, where child:: can be omitted from
a location step, /descendant-or-self:: can be shortened as //, and attribute:: can be
written as @. To further increase the readability of XPath expressions in this thesis, the
following abbreviations are used to replace the full name of CAEX schema elements:

• IH for InstanceHierarchy;

• IE for InternalElement;

• EI for ExternalInterface;

• Attr for CAEX Attribute;

• RR for RoleRequirements;

• SRC for SupportedRoleClass;

• IL for InternalLink;
3In the literature of XML data access, the descendant-or-self axis is often referred to as the descendant

axis for convenience.
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Finally, ref is used for all kinds of references in AML, e.g., RefBaseRoleClassPath and
RefRoleClassPath. With the abbreviated syntax, Formula 6.3 can be rewritten as:

IE[IE and EI]

and Formula 6.4 can be simplified to:

IH//IE/EI[@ref = “Communication”]

6.1.2. XQuery

The XML Query Language (XQuery) is a strict superset of XPath. Therefore, every legal
XPath program is also a valid XQuery program, but not vice versa. XQuery provides the
so-called FLWOR expressions for building complex queries, i.e. for, let, where, order by,
and return. Also, XQuery supports user-defined variables and functions. The latter one
can be organized within library modules and can be called outside the modules. Since
XQuery 3.0 [41], higher-order functions are also supported that can be used to build
custom transitive closures. Note that the descendant axis of XPath is only the transitive
closure of the child axis.

Listing 6.1 shows an example of an XQuery higher-order function that retrieves all
descendant role classes of a given AML role class. Line 1 declares the function with
its desired inputs, including the name and the library of an AML role class. Line 2 is
an XQuery let clause that binds the child role classes of the input one to an XQuery
variable children by calling another XQuery function getChildRC. The return clause in
line 3 comprises an inner XQuery program and evaluates it for the children that have
been found. Line 4 is an XQuery for clause that iterates over each individual child in
children, while line 5 and 6 parse the name and the library tokens from the current child.
Finally, line 8 returns the current child, and line 9 computes the descendants of child by
a recursive call.

Consider the role class inheritance hierarchy in Fig. 2.4a. For the following input:

roleName = “Resource”,

libName = “AutomationMLBaseRoleClassLib”

The function getDescendantRC will return DiscmanufacturingEquipment, Robot,
Tool, and Machine.

Listing 6.1 Retrieving all descendant role classes of a given AML role class
1 declare function caex:getDescendantRC($roleName as xs:string,

$libName as xs:string) as item()*{
2 let $children := caex:getChildRC($roleName, $libName)
3 return

4 for $child in $children
5 let $clib := caex215:getLibFromPath($child)
6 let $cname := caex215:getNameFromPath($child)
7 return

8 $child,
9 caex215:getDescendantRC($cname, $clib)

10 };
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6.2. Tree Patterns

Tree patterns are a well-known concept for describing queries over a tree-structured data
and are thus extensively studied in the field of XML databases. Historically, Chen et al.
first coined out the term twig query as a node-labeled tree, which only has parent-child
relationships between the connected tree nodes [90]. Afterward, twig query is extended
to support the ancestor-descendant relationship in [91]. The general formalism of tree
patterns4 is proposed by Jagadish et al. in [92], which enriches twig queries with node
predicates, i.e., constraints on the value of the nodes (XML elements) and their attributes.
The following gives the definition of a tree pattern with some modifications to [92] that
are necessary for this thesis:

Definition 6.1 (Tree Pattern). A tree pattern is a node-labeled rooted tree Q = (N,E),
where:

• N is the set of nodes, E is the set of edges, and the root of the tree is the node with
no parent;

• Each node x 2 N is represented as a triple (id, tag, C), where id is the identity of
the node, tag is the related XML tag (the label) or the wildcard symbol ⇤, and C is
a set of constraints on x. Each constraint in C has the following form:

(x.value | x.attr) ✓ c

where value is the text content of x, attr is the name of an XML attribute, c is a
constant, and ✓ 2 {=, 6=, >,�, <,}.

• An edge in E is a triple (x, y, type), where x and y are identifiers of the connected
nodes and type 2 {pc, ad} determines whether the edge describes a parent-child
(pc) or an ancestor-descendant (ad) relationship from x to y.

The semantics of tree patterns is given via embeddings [86], which is defined as follows:

Definition 6.2 (Embedding). Let Q = (N,E) be a tree pattern and T = (V, F ) be an
XML document tree. An embedding from Q to T is a function embedding : N ! V that
satisfies:

• for each x 2 N with x.tag 6= ⇤ : x.tag = embedding(x).tag.

• for each (x, y, pc) 2 E : (embedding(x), embedding(y)) 2 F .

• for each (x, y, ad) 2 E : (embedding(x), embedding(y)) 2 F+. The symbol F+

stands for the transitive closure of all edges in F .

• for each x 2 N : all value constraints in x.C are satisfied by embedding(x).

The meaning of a tree pattern Q = (N,E) w.r.t. an XML document T = (V, F ) is thus
given as the set of all embeddings. That is:

Q(T ) := {e | e is an embedding from Q to T}

Based on the Definition 6.1, a tree pattern query (TPQ) is a node-labeled rooted tree
Q = (N,E) where each node n 2 N is a 4-tuple (id, tag, r, C,D), in which r is a boolean
flag that indicates whether n is returned or not, and D is a set of additional conditions5

4It was called Pattern Tree in [92].
5This is an extension of the standard definition of TPQs in the literature for incorporating rich query

constraints.
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attached to n. A returned node corresponds to the answer to the query. The meaning of id,
tag, and C remains the same as in Definition 6.1. Consequently, the meaning of a TPQ
Q = (N,E) w.r.t. an XML document T = (V, F ) and a returned node x 2 N is the set
of all embeddings of x in F . That is:

Q(T, x) := {e(x) | e is an embedding from Q to T}

The theoretical study of TPQs showed that TPQs are closely related to XPath. As
mentioned in [93], tree patterns with a single returned node capture the XPath fragment
XP /,//,[ ], where child and descendant edges correspond to the XPath axes / and //
respectively. Hence, two tree pattern nodes connected by an edge represent a single
location step in XPath, and the full path from the root to the returned node of a tree
pattern constitutes a location path. Note that in tree patterns, the boolean operators
{or, not} are only used for value constraints, while XPath supports the general notion of
boolean expressions.

6.3. Foundations of XML Data Exchange

The pioneering work on the general data exchange problem was the Clio project6, which
appeared in 1999 [94]. Since then, data exchange has been extensively studied for
relational databases [28]. The results from the Clio project were integrated into several
IBM products, including the IBM Relational Data Architect and the IBM InfoSphere
FastTrack [29]. Advances of relational data exchange encouraged the study on
XML-based data exchange problems [95, 96], where essential principles are adopted
from the relational domain.

The theory of data exchange is grounded on the concept called schema mapping [28].
The first comprehensive work on XML schema mapping was reported by Arenas and
Libkin [95], which was extended by Amano et al. for covering features including join
relations and Skolem functions [96]. The basic ingredient of XML schema mapping is the
so-called tree-pattern formulae, defined as follows:

Definition 6.3 (Tree-pattern formulae (TPF)). Tree-pattern formulae are given by the
grammar:

' := l(a1 = t1, · · · , an = tn)[�]

� := ✏ | ' | //' | �,�

where:

• ✏ is the empty string;

• l is a label (an XML tag) or the wildcard ⇤;

• a1, · · · , an are XML attributes;

• t1, · · · , tn is a set of terms. Terms are defined inductively: each variable is a term;
for a function symbol f of arity k, f(t1, · · · , tk) is also a term if t1, . . . , tn are terms;

6http://dblab.cs.toronto.edu/project/clio/index.php
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• [ ] correspond to the XPath predicate and // correspond to the XPath descendant
axis.

The original formulation in [96] allows sequences (orders of the sub-patterns) and
inequalities between terms, which are not required for AML data exchange and are
neglected in this definition. Furthermore, equality between terms is represented by using
the same term in place of different attributes. For example, l(a1 = t1, a2 = t1) means
that the attributes a1 and a2 shall have the same value. If the context is clear, then ~t is
used in the place of the equations (a1 = t1, · · · , an = tn), such that the formula
l(a1 = t1, · · · , an = tn)[✏] is written as l(~t).

Recall Definition 6.1. It can be observed that TPFs are basically the same as tree
patterns, besides the following three differences in terms of value constraints. First, TPFs
do not consider text content of XML test nodes. Second, while tree patterns allow value
comparisons using various operators, including {>,�, <,}, TPFs for schema mapping
only supports equality and inequality. Finally, TPFs use terms instead of constants to
collect values from the source XML.

Let ' be a TPF. The set of all variables occurring in a tree pattern formula is denoted
as Var', while '(~x) indicates that ~x are the variables in Var'. The semantics of a TPF
w.r.t. an XML document tree is defined as follows:

Definition 6.4 (Semantics of Tree-pattern Formulae). Let T = (V, F ) be an XML
document tree, '(~x) be a TPF, and F a valuation function that assigns to each
f(t1 = b1, · · · , tk = bk) a value (where bi is the concrete value of ti). Let ~a be an
interpretation of ~x (i.e., xi = ai), then '(~a) is satisfiable in a node n of T , written as
(T, n, F ) |= '(~a), when one of the following case is satisfied (each case handles one
possible form of the TPF '(~x) in Definition 6.3):

1. (T, n, F ) |= l(~t), if n.tag = l or l = ⇤, and ~t interpreted under F and ~a correspond
to the attributes of n. Note that if ~t does not contain any function symbol, i.e., each
ti is one element of ~x, then the interpretation of ~t only depends on ~a.

2. (T, n, F ) |= l(~t)['0
], if (T, n, F ) |= l(~t) and (T, n0, F ) |= '0 for some child node n0

of n;

3. (T, n, F ) |= l(~t)[//'0
], if (T, n, F ) |= l(~t) and (T, n0, F ) |= '0 for some descendant

node n0 of n;

4. (T, n, F ) |= l(~t)[�1,�2], if (T, n, F ) |= l(~t)[�1] and (T, n, F ) |= l(~t)[�2].

Finally, if '(~a) is satisfiable in the root node of T , then (T, F ) |= '(~a).

Based on TPF, an XML data exchange setting can be defined in terms of source-to-target
dependencies as follows:

Definition 6.5 (Source-to-Target Dependencies (STD)). A STD has the form:

'(~x, ~y)!  (~x, ~z) (6.5)

where:
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• ~x, ~y, ~z are vectors of variables, and ~y and ~z are disjoint. The variables ~x are called
the bound variables in the STD.

• '(~x, ~y) and  (~x, ~z) are TPFs over the source and the target XML schema
definitions, respectively. By viewing a STD as a logic rule, '(~x, ~y) is called the
rule body and  (~x, ~z) is called the rule head.

Let S and T be two XML document trees. The pair (S, T ) satisfies the above STD w.r.t. a
valuation function F , if for each possible interpretation ~a for ~x and~b for ~y with (S, F ) |=
'(~a,~b), there is a tuple of values ~c, such that (T, F ) |=  (~a,~c).

Definition 6.6 (Data Exchange Setting). An XML data exchange setting is a triple (DS,
DT,⌃), where DS and DT are the source and target XML schema definitions (or DTDs),
and ⌃ a set of STDs between DS and DT.

Let S be a source XML tree conforming to DS. A target XML tree T that conforms to
DT and satisfies all STDs in ⌃ is a solution for S.

Definition 6.6 provides a universal formalism for describing XML data exchange. In
particular, because function symbols are allowed, the right-hand side of an STD is capable
of expressing Skolem functions, which are necessary for grouping collected data from the
source XML document [97]. However, as discussed above, neither the data comparison
operators {>,�, <,} nor the content of XML text nodes is considered in Definition 6.3,
both of which are essential for the filtering of the source XML document. The latter is of
great importance in AML data exchange because the source and target data in AML-based
engineering have the same XML schema (c.f. Fig. 2.5). Therefore, in Chapter 8, a more
appropriate data exchange setting will be introduced for AML.

6.4. Query By Example

Zloof first introduced Query By Example (QBE) for querying relational databases using
a visual paradigm [31]. In this work, the user can directly formulate data examples in
appropriate database tables to describe the query result. Table 6.1 shows a query example
involving two database tables, each of which contains one query example. The syntax
of the query examples distinguishes between two kinds of entities: the underlined strings
represent variables, and the normal strings represent constant values. The letter P stands
for “print" and indicates the output of the query. Because the variable ROD appears in both
the SALES and the SUPPLY table, the query looks for all departments which have at
least one item from the supplier PARKER, or mathematically formulated as:

{x : 9y ((x, y) 2 SALES ^ (y, z) 2 SUPPLY)}

DEPARTMENT ITEM
P.TOY ROD

ITEM SUPPLIER
ROD PARKER

Table 6.1.: A query example in QBE [31]. The left table contains one entry for the relation
SALES and the right one contains one entry for the relation SUPPLY.
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Given a relational database, a user can formulate the desired query by means of the
above syntax, and an interpreter is responsible for translating the query example into
concrete database query programs. The result of the query contains data elements from
possibly different database tables. Therefore, QBE is primarily designed for data access.

Soon after the release of XQuery, a similar idea was adopted in [32] to develop the
graphical language XQBE (XQuery By Example) for querying XML data. Because the
general structure of an XML document is a tree, XQBE provides a tree-based syntax
for building the examples. Moreover, XQBE is designed for data exchange such that a
“target” XML document can be generated from the data in a “source” XML document.
To this end, XQBE supports two kinds of tree models: a source tree for defining what data
from the source XML file is needed and a construct tree for specifying the constitution of
the target XML file. Fig. 6.2 shows the query example Q5 in [32]. The example has two
parts, which are separated by the line in the middle. The left part represents the source tree
and the right part describes the target tree. Each box is a so-called E-Node that stands for
an XML element in the corresponding document. A target E-Node denotes a replication
of a source XML element, either by a binding edge to the corresponding source E-Node,
e.g., the two book E-Nodes in Fig. 6.2, or implied by an ancestor E-Node in the target tree
which has a binding edge, e.g., the title and author elements.

Figure 6.2.: The query example Q5 in XQBE [32].

The target tree can have single-tag Trapezoidal nodes (T-Nodes), represented with the
shorter edge on the bottom, and set-tag T-Nodes, represented with the shorter edge on
the top. A single-tag T-Node results into a new XML tag for each instance of its child
nodes, while a set-tag T-Node will be constructed only once for all the instances below it.
In Fig 6.2, both the results and the author elements are set-tag T-Nodes. Therefore,
the results element will be constructed only once for all books from the source XML
document. Similarly, one authors element will comprise all the authors of one book in
the source XML document.

Now consider the query example Q6 from [32], as shown in Fig. 6.3. Q6 contains
two single-tag T-Node aBook and by. Therefore, for each book from the source XML
document, an aBook element will be constructed, in which a by element is generated for
each author of the book.

One issue with single-tag T-Nodes is the computation of Cartesian products. Fig. 6.4
shows the query example Q7 from [32] that has two different E-Nodes author and
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Figure 6.3.: The query example Q6 in XQBE [32].

title under the single-tag T-Node result. The query constructs a result element for
each book, but only replicates the author and title of the book. For example, the book
Foundations of Semantic Web Technologies has three authors Pascal Hitzler, Markus
Krötzsch, and Sebastian Rudolph. Then three result elements will be constructed, each
of which contains the book title and one of the three authors.

Figure 6.4.: The query example Q7 in XQBE [32].

While XQBE is relatively expressive and covers a large subset of XQuery, the more
recent approach VXQ [33] focuses on the usability of the graphical language and
concerns about constructing more efficient queries. The authors of VXQ argued that
XQBE requires a large number of user interactions for composing a complex query,
which is partially due to the rather verbose graphical syntax. Furthermore, VXQ
employs query optimization techniques for improving run-time performance. Most
notably, VXQ utilizes XPath predicates for filtering the source XML document such that
the deep, nested XQuery programs will be evaluated over a smaller set of source XML
data objects.

It is worth noting that both XQBE and VXQ are general QBE approaches that can be
applied to all kinds of XML documents. However, these general-purpose approaches are
not well suited for AML, because (i) they employ dedicated graphical notions which
require additional learning efforts, and (ii) they cannot express AML-specific semantics.
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In particular, point (ii) is essential for querying AML data. For example, the user might
want to extract all internal elements referring to the role class Resource, while
considering all the subclasses of Resource. Such queries can not be expressed with
XQBE and VXQ.

Recently, there has been attempts towards a dedicated QBE framework for AML,
presented by Wimmer and Mazak [85]. The authors introduced the query language AQL
(Automation Query Language) and its two sub-languages AQDL (AML Query
Definition Language) and AQRL (AML Query Result Language) based on the Eclipse
Modeling Framework (EMF) 7. AQDL is used for creating a query model, and AQRL is
used to present query results with some meta-information. However, AQRL is not
comparable with the construct part of XQBE since it cannot specify data exchange rules,
such as projection, join, renaming, etc. Based on the AML engine developed in [98], the
main idea of AQL was to model queries using CAEX schema elements and to match
them with the source AML data using an interpreter. Compared with XQBE and VXQ,
AQL is more intuitive for AML users. Nevertheless, for constructing a query, extensive
knowledge about EMF is necessary, since both the syntax and the user interface are
based on EMF. Moreover, the semantics of AQDL is defined with informal notions
which do not cover advanced AML modeling features, e.g., the class inheritance
hierarchy and the connections between engineering objects. Finally, query execution is
not separated from query interpretation and depends on the underlying AML engine.

In conclusion, XQBE and similar general-purpose visual languages are not well suited
for AML, while AQL requires specific software. A better approach is to develop an AML-
specific query language while adhering to the standardized techniques from the XML
domain. To this end, Chapter 7 introduces the AutomationML Query Template (AQT) for
accessing AML data using AML itself as the modeling framework, and Chapter 8 presents
an extension of AQT to enable data exchange in AML-based engineering.

7https://www.eclipse.org/modeling/emf/
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7. By-example Data Access for
AutomationML

This chapter investigates the problem of accessing engineering data stored in AML
instance hierarchies, which represent the topology of real production plants and hold the
actual data values. Conventionally, extracting AML data makes use of an application
programming interface (API) provided by a dedicated AML engine, as shown in
Fig. 7.1a. The engine usually begins with a standard XML parser that parses a source
AML document into an XML Document Object Model (DOM), which is then processed
with an AML interpreter. The outputs of the interpreter are internal object models of the
engine. Although the semantics of these internal models need to reflect the meaning of
the AML terms as defined in the standard, the implementation depends on the employed
programming techniques. As a consequence, the API is usually distinct among AML
engines. For example, the “standard” C# implementation provided by the AML
Consortium is based on the .NET framework1, and the Java implementation published by
Mayerhofer et al. [98] is based on the Eclipse Modeling Framework (EMF)2, just to
name a few. Thus, in order to develop AML query facilities in the engineering toolchain,
the knowledge of AML, the knowledge of the internal object models, and the practical
experiences of the API are necessary.

(a) The conventional pipeline for accessing AML data.

(b) The AQT based pipeline for accessing AML data.

Figure 7.1.: The conventional and AQT-based pipelines for accessing AML data (green).
The blue components are provided by the user. The orange box in 7.1b
represents any standard-conform XQuery processor.

Inspired by the Query by Example (QBE) approach [31][32], this chapter introduces
the AutomationML Query Template (AQT) to foster efficient AML data queries for

1https://www.nuget.org/packages/Aml.Engine
2https://github.com/amlModeling/caex-workbench
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Figure 7.2.: An excerpt of the robot cell provided by the AML association. The object
ST030 is the top-level internal element.

domain experts. AQT has two essential design principles. First, AQT exploits the
modeling features of AML and employs the AML syntax for query construction.
Second, the semantics of AQT is defined based on the notion of tree pattern queries
(TPQ), as described in Section 6.2. Therefore, AQTs can be automatically translated to
XPath [40] and XQuery [41] programs.

Fig. 7.1b shows the AQT-based pipeline for querying AML data. Instead of providing
the query program as in Fig. 7.1a, the user supplies AQTs in an AML file while the
so-called AML Query Processor (AQP) generates the corresponding XPath or XQuery
program, that can be executed on any standard-conform XQuery processors. For
convenience, the AML files “Data.aml” and “AQT.aml” are called the source file and the
query file, respectively.

To exemplify the utilities of AQT, Fig. 7.2 shows an excerpt of a robot cell that is
publicly available on the website of the AML association3. The original AML file has
323 internal elements, 277 external interfaces, and 1829 attributes. Fig. 7.3a shows the
simplified XML serilization of the AML model. For the sake of brevity, the following
simplifications are undertaken:

(a) Objects names are changed to indices. For example, the internal element names
ST030, 030RB_100, 030RB_200, 030RB_300, and 030GST100 are simplified to
1, 2, 6, 10, and 13, respectively;

(b) Full paths of role classes are replaced by class names. For example, the role class
path AutomationMLDMIRoleClassLib/DiscManufacturingEquipment/Robot is
replaced by Robot;

(c) Some nested XML elements are omitted in Fig. 7.3a, e.g., the internal elements
under 030RB_100, 030RB_200, 030RB_300, and 030GST100.

Note that while engineering objects in AML are only enforced to be uniquely
identifiable by their own UUIDs, each object in this excerpt is also given a unique name.

3https://www.automationml.org/o.red/uploads/dateien/1506092067-
AML_RobotCell.pdf
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(a) The simplified XML serialization of the excerpt.

(b) A screenshot of the excerpt in the AML Editor.

Figure 7.3.: The simplified AML model of the excerpt represented in: (a) its raw XML
serialization (b) in the AML Editor.
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Table 7.1.: Modeling features for querying AutomationML data. The Examples column
contains examples of AQT that cover the corresponding modeling features
in the same row. The examples q1-q8 will be presented in Section 7.2.2,
and the handling of AutomationML advanced features will be presented in
Section 7.3.3.

Modeling Features Examples
AutomationML Structure Features

(S1) structurally nested objects and interfaces q1 - q8
(S2) class-instance relationship q1 - q8
(S3) object identification via UUID q2

AutomationML Property Features
(P1) attribute name q5 - q7
(P2) structurally nested attributes q5
(P3) explicit (default) attribute value q6
(P4) attribute unit q5
(P5) attribute data type q5, q6
(P6) attribute semantic reference q7
(P7) attribute value requirements (nominal and ordinal) q5

AutomationML Advanced Features
(A1) class inheritance hierarchy via class-class relations cf. Section 7.3.3
(A2) instance-instance relations (partner EI in the source file) cf. Section 7.3.3
(A3) instance-instance relations (partner EI in the query file) cf. Section 7.3.3

XML Data Query Features
(X1) retrieving objects at any position in the XML structure q1-q8
(X2) retrieving descendant objects in the XML structure q5, q7
(X3) querying related data simultaneously (multi-return) q4, q8
(X4) cardinality restrictions q8

Fig. 7.3b is a screenshot of the excerpt in the AML editor that shows the structure of the
instance hierarchy more compactly. For example, the labels {Role: Structure} in
Fig. 7.3b correspond to the role requirements with the class reference Structure in
Fig. 7.3a. Also, Fig. 7.3b does not explicitly contain any CAEX attributes. For
explaining the query examples later in Section 7.2.2, some CAEX attributes are shown as
dashed boxes with their names and value.

7.1. Requirements for querying AutomationML

Table 7.1 shows a categorization of the AML modeling features described in
Section 2.1. Apparently, all structure (S1-S3) and property (P1-P7) features are essential
for querying AML because they are used for storing the engineering data. For example,
the user may be interested in the value of a CAEX attribute (P3) or the internal elements
that refer to a particular role class (S2). Moreover, the class inheritance hierarchy (A1) is
an advanced semantic feature of AML, which goes beyond a single class-class relation
and allows the user to build a taxonomy of the domain concepts. Feature A1 thus allows
expressing the query “return all internal elements of the role class Resource or any of
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Figure 7.4.: An AML model that can serve as a raw query template.

its descendant sub-classes". According to Fig. 2.4a, This query shall retrieve internal
elements that refer to at least one of the role classes Resource, Robot, Clamp.

With the advanced features A2 and A3, the connections between external interfaces are
determined, whereby a distinction is made whether the partner interface is located in the
source file (A2) or in the query file (A3). These two features will be discussed more
in Section 7.3.3. Finally, since AML is an XML-based data format, the common XML
query features shall be supported. Informally, X1 devotes to specify the position of the
data objects that shall be returned from the query, X2 supports the modeling of structural
relations between the data objects, X3 allows retrieving a set of co-existing data objects
simultaneously, and X4 supports counting the occurrence of data objects. More details
and examples of these features will be presented in Section 7.2.2.

7.2. The AutomationML Query Template

The objective of the AutomationML Query Template (AQT) is to describe queries using
AML models. Intuitively, a particular AML model can be used as a raw query template
to extract data of that kind. Consider the query q1 that “returns all internal elements that
refer to the role class Structure and contain at least a nested internal element". Fig. 7.4
shows the AML model that captures the structure of q1. However, the meaning of the raw
query template is ambiguous because it does not specify which internal element in the
template is the target of the query. In other words, while the raw query template can be
used for pattern matching against a source AML file, it is unclear what is returned from
the query: shall the outputs be source data objects that match to IE1 or IE2? Indeed, the
raw query template fails to capture the XML query features (X1-X4) and cannot be used
for querying AML data.

7.2.1. Syntax of AQT

To tackle the problems of the raw query template, AQT defines the following CAEX
attributes acting as query-specific configuration parameters.

• returned: whether the associated AML model belongs to the answer of the query.
Intuitively, only returned AQT nodes are handled as targets of the query, while the
others constitute the constraints of the query.

• descendant: whether the associated AML model is a descendant of its direct
predecessor in the XML tree structure.
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Table 7.2.: The configuration parameters of AQT.

Name Type Default Features
in Table 7.1

Implementation in
XPath/XQuery

returned bool false (X1, X3) return()

descendant bool false (X2) descendant axis //
identifiedById bool false (S3) @ID = id

identifiedByName bool false (P1) @Name = name

minCardinality integer 1 (X4) count() >=

maxCardinality integer �1 (X4) count() <=

• identifiedById: whether the associated AML model is uniquely identified by
its UUID. This is practical for querying AML data, since each engineering object
(internal element or external interface) in an AML file has a unique ID.

• identifiedByName: whether the associated AML model is uniquely identified by
its Name. According to the AML standard, a CAEX attribute is identified by its
name within the hierarchy level in a nested attribute structure.

• minCardinality: required minimum number of matches found for the associated
AML model.

• maxCardinality: required maximum number of matches found for the associated
AML model. Note that maxCardinality = 0 mimics a logical negation in query
modeling, where the associated AML model shall not be matched in the source file.

Table 7.2 enumerates these parameters with their data type, default value, and
implementation in XPath/XQuery. Now, reconsider the query q1 as described above. The
user can first construct the raw query template (cf. Fig. 7.4) with the AML editor. The
next step is to assign the configuration parameters to the raw query template. Because q1
aims to extract the outer internal element that refers to the role class Structure, the user
sets returned = true for IE1 and returned = false for IE2. Fig. 7.5 shows the
XML text of the resulting AQT. Now, both internal elements are equipped with a CAEX
attribute queryConfig, which comprises the configuration parameters as sub-attributes.
This AQT therefore enforces IE1 to be the answer of the query while the nested IE2
represents a structural constraint of IE1. Note that because q1 does not restrict the UUID
of the internal elements, the UUIDs in Fig. 7.5 are insignificant for the query and can be
automatically generated from the AML editor. Later in Section 7.2.2, a query example
that makes use of the UUID will be demonstrated.

Because AML has an XML-based syntax, each AQT can be formally represented by
a tree M = (V, F ) where V is the set of nodes containing all XML elements excluding
the queryConfig and its sub-elements, and F is the set of edges, i.e., the parent-child
relationship between the nodes. The node with no parent is the root of the tree. Each node
v 2 V is a 4-tuple (id, tag, A,B), where id is the identifier, and tag is the related XML
tag. Note that id is different from a UUID since the latter one only applies to an AML
IE or EI. A is the set of XML attributes (not the CAEX Attrs) and the XML text value
associated with v, e.g., Name and ID in Fig. 7.5. Finally, B is the set of configuration
parameters attached to v. Although these parameters are serialized as CAEX Attrs (cf.
Fig. 7.5), they are not treated as nodes in V .
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Figure 7.5.: The AQT for q1 in the AML syntax. The highlighted parts illustrate
the difference to the raw query template in Fig. 7.4. The configuration
parameters that take their default values are omitted for sake of brevity.

Moreover, B can be empty for some nodes in V , because CAEX Attrs can only be
assigned to ICs, RCs, SUCs, IEs, EIs, and Attrs. Therefore, other CAEXBasicObjects
(cf. Fig. 2.2), e.g., the RR element in Fig. 7.5, cannot carry these configuration
parameters and are called conditional CAEXBasicObjects. This design has several
consequences. First, conditional CAEXBasicObjects can not be returned from the
query. For example, the RR node in Fig. 7.5 cannot be defined as the answer to the query.
However, this is not a severe limitation since conditional CAEXBasicObjects are not
designed for storing engineering data but rather for stating constraints about the data.
Second, conditional CAEXBasicObjects can not be defined as a descendant object in
the XML structure. For example, queries that “return IEs with a descendant RR" are
inexpressible with AQT. Nevertheless, such queries are not meaningful for AML because
conditional CAEXBasicObjects are semantically bound to their direct parent in the
AML document. Similarly, the rest of the configuration parameters are not relevant for
conditional CAEXBasicObjects. Therefore, the applicability of AQT is not severely
restricted.

The formal representation M is called an AQT tree and each node in V is an AQT node.
For each AQT supplied by the user, an AQT tree will be constructed, which is the input
for the semantic interpretation. For the XML elements IH, IE1, IE2, and RR in Fig. 7.5,
Formula 7.1 shows their corresponding AQT nodes (each vi is only an auxiliary name for
a node). The order of the configuration parameters corresponds to Table 7.2.

v1 = ( id1, IH, {Name = “AQT”}, ; )
v2 = ( id2, IE, {Name = “IE1”, ID = “fec46504...”},

{true, false, false, false, 1,�1} )

v3 = ( id3, IE, {Name = “IE2”, ID = “3fb9fc26...”},
{false, false, false, false, 1,�1} )

v4 = ( id4,RR, {RefBaseRoleClassPath = “Structure”}, ; )

(7.1)
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Recall the structure and property features in Table 7.1. Since AQTs are essentially AML
models, the features (S1-S2) and (P2-P7) are inherently supported, while (S3) and (P1)
are covered by the parameters identifiedById and identifiedByName, respectively.
Finally, the “Features” column in Table 7.2 clarifies that AQT also supports the XML
query features (X1-X4) through the corresponding configuration parameters.

7.2.2. Semantics of AQT

Similar to XQBE [32], the semantics of AQT is defined based on the notion of TPQs (cf.
Section 6.2).

Let M = (V, F ) be an AQT tree, as described in Section 7.2.1. It is always possible
to construct a TPQ Q = (N,E) from M . Besides the AttributeValueRequirement (AVR)
nodes (see Section 2.1), each node v 2 V is mapped to a node n 2 N as follows (the dot
operator denotes the membership of variables):

• n.id = v.id, n.tag = v.tag, n.r = v.B.returned.

• The set n.C contains all constraints in v.A, except for ID and Name. The latter two
are determined by the configuration parameters v.B.identifiedById and
v.B.identifiedByName, respectively.

• The set n.D can either be empty or have two integer values {min,max}, which
correspond to the configuration parameters minCardinality and maxCardinality
in v.B, respectively.

Besides the edges between the Attr nodes and their AVR children, each edge f = (vi, vj)
in F is mapped to an edge e = (ni, nj) in E, where vi is mapped to ni and vj is mapped
to nj . If vj.B is empty or the value of vj.B.descendant is false, then e.type = pc.
Otherwise, e.type = ad.

Consider the AQT node v2 in Formula 7.1. Because both parameters identifiedById
and identifiedByName of v2 are set to false, the following TPQ node is generated
based on the above mapping:

(id2, IE, true, ;, {1,�1}) (7.2)

An AVR node with its descendant nodes in an AQT tree defines value constraints for the
superordinate Attr node. Fig. 7.6 shows an excerpt of an AQT with the AVR node named
xRequiredV alue. The mapping from the entire CAEX attribute to TPQ starts with The
following TPQ node of x:

nx = ( idx,Attr, false, {Name = “x”, Unit = “mm”,

AttributeDataType = “xs : double”}, {1,�1} )
(7.3)

To compile the value constraint into the TPQ, a new TPQ node nxv is generated from
the AVR node as follows:

nxv = (idxv, Value, false, {value � �5}, ;) (7.4)
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Figure 7.6.: An excerpt of an AQT that contains an AVR node.

Note that the two “values” in Formula 7.4 are semantically different: the XML tag
“Value” of the TPQ node nxv is defined by the CAEX schema for storing the value of
CAEX attributes (see the Value element of Frame.y in Fig. 7.3a), while “value � �5”
is a query constraint. Finally, the pc-edge (nx, nxv, pc) between nx and nxv is generated to
represent their parent-child relation. Informally, this mapping applies a value constraint
to the XML element Value of the embeddings of the CAEX attribute x.

There are two advantages of interpreting AQTs as TPQs. First, it fosters the automated
translation to XPath programs, since TPQ can be seen as an abstraction of XPath [86].
Second, it enables a tree-like visualization of AQTs, as shown in Fig. 7.7. However, this
visualization is neither used for query construction nor query translation. Instead, it is
used to demonstrate the conceptualization of a query because it is more compact than
the corresponding XML serializations (compare q1 with Fig. 7.5). For creating queries,
the user only needs to construct the AQTs in the AML editor. In Fig. 7.7, each tree
structure corresponds to one AQT that describes a distinct query for AML. For example,
q1 represents the AQT in Fig. 7.5.

As AQT is used to query engineering data stored in AML instance hierarchies, the root
of the tree is always an IH node. In the literature, TPQ nodes are usually represented by
their XML tags [86][99]. However, Fig. 7.7 shows the ID of each node, e.g., IH1 and IE1.
The reason for this adaptation is that AML allows recursively nested XML elements (e.g.,
the nested IEs), which make the query examples hard to explain. A single line between
two TPQ nodes depicts a pc-edge, and a double line represents an ad-edge. A returned
node is marked with a box. Constraints in the set C of each TPQ node are shown as labels
around the node. The term “ref” is used as a general name for all kinds of references in
AML.

Consider the source AML file as shown in Fig. 7.3. The query results are illustrated
by the numbers of the XML elements in the source AML file. For all the queries, the
XML query feature X1 is essential because it allows specifying any inner tree node as the
answer to the query.

Query q1 selects the IEs that refer to the class Structure and have at least one child
IE. It returns {1} by matching IE1 to the element 1 and IE2 to any of the elements 2, 6,
10, 13.
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Figure 7.7.: Visualization of the TPQ structures of AQTs. Numbers in the curly brackets
are the query results w.r.t. the AML instance hierarchy in Fig. 7.3.
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Query q2 navigates to IE2 through IE1 that refers to the class Structure and selects
IE2 if the UUID can be matched. It returns {13} by matching IE1 to the element 1.

Query q3 reads “from the descendant IE1 with at least one child IE2, select all COLLADA
interfaces (EI1)”. It returns {14} by matching IE1 to the element 13 and IE2 to the
element 15 or 16.

Query q4 makes use of the XML query feature X3 for specifying two returned nodes. It
states “from the descendant IE1 that has at least one child IE4 of the class Clamp, select all
IE children that either refer to the class Structure or Robot”. The result contains the set
{5,3} by matching IE1 to the element 2 and the set {9,7} by matching IE1 to the element
6. Note that the coexistence of all three IE children is necessary.

Query q5 attaches value constraints to the Attrs. It means “select the descendant IE1
that refers to the class Robot and has a nested CAEX attribute Frame.y  5”. The result
of q5 contains {7,11} because the value constraints can be satisfied, as shown by the
dashed boxes in Fig. 7.3b. This query employs the XML query feature X2 to select the
descendant node IE1.

Query q6 extends q3 and reads “from the descendant IE1 with at least one child IE2 of
the class Structure, select all COLLADA interfaces whose refURI attribute has the value
abc.dae”. The query returns {14} by matching IE1 and IE2 to the elements 13 and 16,
respectively.

Query q7 enforces the node Attr1 to have a semantic reference to some path ”abc”,
which has no evidence in the source data. Therefore, q7 returns an empty set. Similar to
q5, this query employs the XML query feature X2 to select the descendant node IE1.

Query q8 demonstrates the effect of cardinality restrictions (XML query feature X4),
which are illustrated as a pair of numbers in square brackets. In contrast to q3, at least two
matches are required for the class Clamp. The result of q8 is empty since no IE in Fig. 7.3
contains two distinct IE children of the class Clamp.

7.3. Translating AQTs to XPath and XQuery

Because AQTs are interpreted as TPQs, they can be translated into XPath and XQuery
programs. This section first handles AQTs with a single returned node, for which XPath
is sufficient to address the portion of the AML document that is described with the query.
Then, this section continues with the translation of AQTs with several returned nodes,
which requires the expressiveness of XQuery.

7.3.1. Translating AQTs with single returned node

Given an AQT tree M = (V, F ) with a single returned node, a TPQ Q = (N,E) is
first constructed according to the mapping in Section 7.2.2. Then Q is translated to XPath
with Algorithm 7.1. The input of the algorithm contains the node n 2 N that is currently
being visited and the XPath fragment e that is built so far. Initially, the parameter n is set
to the root node, and e is empty.
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Algorithm 7.1 TranslateToXPath

Input: Current node n, XPath fragment e
Output: XPath expression of the query

1: Let step be an empty XPath expression
2: if (n is the returned node, i.e., n.r == true) then
3: step = GetLocationStepRec(n)
4: append step to e
5: else
6: step = GetLocationStep(n)
7: Let cc be the critical child of n
8: Let ncc be all non-critical children of n
9: for child 2 ncc do

10: add GetLocationStepRec(child) to the predicate of step conjunctively
11: end for
12: append step to e
13: TranslateToXPath(cc, e)
14: end if
15: return e

The basic idea of the algorithm is to identify the so-called critical nodes in N . A critical
node is either the returned node or one of its ancestors. Intuitively, the root node is always
critical, and each inner-node has at most one critical child since only one returned node is
allowed. Finally, non-critical nodes do not have any critical descendants.

The inner function GetLocationStep(n) generates a one-step XPath location step for
the current TPQ node n. First, the axis is generated. If n is the root node or the type of
the edge that connects n with its parent is pc, then the axis is /. Otherwise, the axis is
//. Second, the XML tag is generated from n.tag. Finally, all value constraints in the
set n.C are translated into a conjunctive formula within the predicate of the location step.
For example, the result of GetLocationStep(EI1) on the EI1 node in q6 (Fig. 7.7) is:

/EI[@ref=“COLLADAInterface”] (7.5)

The inner function GetLocationStepRec(n) computes a nested XPath location step
for a node n by recursively translating its non-critical descendants into its predicate.
Note that because non-critical nodes do not have any critical descendants,
GetLocationStepRec(n) will traverse the entire sub-tree of n if n is non-critical. For the
EI1 node in q6, the function call GetLocationStepRec(EI1) extends Formula 7.5 by
adding the nested location steps for Attr1 and Value1 as:

/EI[@ref=“COLLADAInterface” and

child::Attr[@Name=“refURI” and

@AttributeDataType=“xs:anyURI” and

child::Value=“abc.dae”]]

(7.6)

If cardinality restrictions with non-default values present in the set n.D, then the XPath
built-in function count() is used. For example, the node IE4 in query q8 produces:

count(child::IE[child::RR[@ref=“Clamp”]]) � 2 (7.7)
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For the query q6 in Fig. 7.7, the translation starts with the initial values n=IH1 and
e=“”. Because IH1 is not returned, GetLocationStep(IH1) returns “/IH” in line 6. IH1
has only one critical child IE1. Therefore, e is extended to “/IH” in line 11 and
TranslateToXPath(IE1, “/IH”) is called in line 12. In the second iteration,
step=“//IE” is computed for the current node IE1 in line 6. Because IE1 has a
non-critical child IE2, line 10 adds GetLocationStepRec(IE2) to the predicate of step
as:

//IE[child::IE[child::RR[@ref=“Structure”]]] (7.8)

In line 11, e=“/IH” is extended with Formula 7.8 as:

/IH//IE[child::IE[child::RR[@ref=“Structure”]]] (7.9)

In line 12, the returned node EI1 becomes the first parameter of the next recursive call.
In the third iteration, Formula 7.6 is generated in line 3 and appended to the current XPath
fragment (Formula 7.9) in line 4. Finally, line 13 returns the following XPath program as
the result of the translation:

/IH//IE[child::IE[child::RR[@ref=“Structure”]]]/
EI[@ref=“COLLADAInterface” and

child::Attr[@Name=“refURI” and

@AttributeDataType=“xs:anyType” and

child::Value=“abc.dae”]]

(7.10)

7.3.2. Translating AQTs with multiple returned nodes

The translation of an AQT with multiple returned nodes needs to preserve the
structural dependencies between the TPQ nodes to avoid redundant computation.
Therefore, it is necessary to traverse the TPQ based on the hierarchical order of the
lowest common ancestors (LCA) of each pair of the returned nodes. For each LCA, an
XQuery variable is created and reused during the traversal. Syntactically, the translation
always produces a nested XQuery for-return-clause.

For example, query q4 in Fig. 7.7 has two returned nodes IE2 and IE3, whose LCA is
the node IE1. Hence, an XQuery variable $n0 is generated for IE1 using the following
XQuery for-clause:

for $n0 in /IH//IE[child::IE[
child::RR[@ref=“Clamp”]]]

(7.11)

Recall that a critical node is a returned node or an ancestor of a returned node. The
location path after the keyword “in” in Formula 7.11 is generated by appending the
result of GetLocationStepRec(IE1) to GetLocationStep(IH1) since IE1 has a
non-critical child IE4 and IH1 has no non-critical child. The translation proceeds with
the critical children of the LCA (IE1), which are the returned nodes IE2 and IE3. To
enforce their coexistence, the variables $n1 and $n2 are created for IE2 and IE3,
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respectively. Then, a combined XQuery for-clause is generated by appending
GetLocationStepRec(IE2) and GetLocationStepRec(IE3) to the variable $n0 as:

for $n1 in $n0/IE[child::RR[@ref=“Structure”]],
$n2 in $n0/IE[child::RR[@ref=“Robot”]]

(7.12)

The final XQuery program of q4 is constructed by nesting Formula 7.12 into Formula
7.11, and adding a return-clause for the variables $n1 and $n2:

for $n0 in /IH//IE[child::IE[child::RR[@ref=“Clamp”]]]
for $n1 in $n0/IE[child::RR[@ref=“Structure”]],

$n2 in $n0/IE[child::RR[@ref=“Robot”]]
return($n1, $n2)

(7.13)

7.3.3. Covering Advanced AML Modeling Features

The AutomationML advanced features (A1-A3) in Table 7.1 are not immediately
covered by the translation above. Instead, they are handled as a global setting that can be
switched on and off by the user.

For example, the user might want to consider subclasses in a query. To this end,
dedicated XQuery functions are provided for traversing the inheritance hierarchy of
AML classes (A1). Consider the query q8 in Fig. 7.7. If the node IE4 with the
cardinality restriction [2,�1] were referring to the class Resource, then q8 would return
{{5,3},{9,7}} as its result since the cardinality restriction is satisfied by the elements
{3,4} and {7,8} through the subclasses Robot and Clamp of Resource (see Fig. 2.4a).

Internal links are used to model connections between EIs. One internal link has two
endpoints A and B that contain the UUID of the connected interfaces. Recall that the
AQT-based query pipeline requires two AML files, one that contains the source AML
data (the source file) and another one that contains the AQTs (the query file). Depends
on where the UUIDs can be found, the following three cases are distinguished when an
internal link appears in the query file:

(a) If neither A nor B can be found in the query file, then a modeling error is discovered,
and the internal link is ignored.

(b) If A is found in the query file, and B is found in the source file, then the embeddings
of A shall be connected to the concrete source interface B (A2 in Table 7.1).

(c) If both A and B are found in the query file, then their embeddings shall be connected
to each other (A3 in Table 7.1).

Fig. 7.8 shows a query file that has two AQTs and two links. The AQT with the root
node IH1 contains a returned node and needs to be translated. Let EI1.ID, EI2.ID, and
EI4.ID be the UUID of EI1, EI2, and EI4, respectively. Then the following two internal
links are found for the query:

link1: (EI1.ID, “72B7...”)

link2: (EI2.ID, EI4.ID)
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IE1

EI1

IH1

EI2
ref="Attachment-
       Interface"

IH2

EI4

Attr1

Value1

name="refURI"

value="abc.dae"

link1 link2
Attachment
ID="72B7..."

Data.aml AQT.aml

Figure 7.8.: A query file that has two AQTs and two internal links.

Link1 corresponds to case (b) where the partner interface with the UUID “7287...” is
found in the source file. Link2 corresponds to case (c) where the partner interface EI4 is
found in the query file. For encoding the link constraints in both cases, the XQuery
function connectsTo($context, $partner) is provided. The first parameter stands for
the context EI, i.e., EI1 for link1 and EI2 for link 2. The second parameter is the XPath
expression of the partner EI, which is either determined by its UUID (link 1) or its
complete XPath location step (link 2). Given a query file with internal links, the AML
Query Processor (AQP) will determine to which case each internal link belongs to and
generates the corresponding XQuery code for it. Formula 7.14 and 7.15 show the XPath
conditions that are built for links 1 and 2, respectively. In both cases, the context EI is
represented using a dot “.” and the XQuery variable $root stands for the root of the
source file.

connectsTo(., $root//EI[@ID = “abc”]) (7.14)
connectsTo(., $root//EI[Attr[@Name = “refURI”

and Value = “abc.ade”]]) (7.15)

For the query in Fig. 7.8, Formula 7.16 shows the result of the query translation that
embeds Formula 7.14 and 7.15 into the XPath expression of node IE1.

IH//IE[EI[connectsTo(., $root//EI[@ID = “abc”])]

and EI[connectsTo(., $root//EI[Attr[@Name = “refURI”

and Value = “abc.ade”]])]] (7.16)

7.4. Results and Discussions

This thesis provides an implementation of AQT and AQP in a Java framework 4. While
every standard-conform XQuery processor can be employed for query execution, the
open-source library BaseX5 is used, which is available on all mainstream operating
systems and has an easy-to-use Java interface. The AutomationML advanced features
(A1-A3) are implemented in a stand-alone XQuery function module and can be switched
on and off by demand.

Fig. 7.9 shows the process of query translation and execution. The user can inspect the
AutomationML files and the generated XPath/XQuery programs while the AQT tree and

4https://github.com/kit-hua/aml
5http://basex.org/
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Figure 7.9.: An overview of query translation and execution.

Figure 7.10.: The query results of q4 (cf. Fig. 7.7d) regarding the source AML document
as shown in Fig. 7.3b.

the TPQ only exist in the memory of the computer. It can be observed that the AQTs
(models in AQT.aml) are simply the AutomationML representation of the TPQ and the
desired query. After query execution, the user can either take the raw query outputs (i.e.,
XML text) from the console or request an AutomationML document that stores the query
results in instance hierarchies. In the latter case, one AutomationML instance hierarchy is
generated for each query, and auxiliary AutomationML objects are created for grouping
query results if necessary. Fig. 7.10 illustrates the output AutomationML document for
q4 in Fig. 7.7d. The nodes {5, 3} and {9, 7} are grouped by the auxiliary objects r1 and
r2 respectively.

Table 7.3 shows the comparison of the expressive power between AQT and existing
QBE approaches as described in Section 6.4. On the one hand, XQBE [32] and similar
general-purposed approaches employ dedicated visual languages for query construction.
Because the AML structure and property features are essentially tree structures of XML
elements and attributes, (S1-S3) and (P1-P7) can be expressed with these visual
languages. Moreover, these approaches allow the modeling of data exchange rules for
the assembly of a target XML document, such as projection, join, and renaming. These
features are not covered by AQT because they require the modeling of explicit value
mapping and comparison (E1 in Table 7.3). For example, it is non-trivial to model
IE1.manufacturer = IE2.vendor in AML, where manufacturer and vendor are
Attrs, and IE1 and IE2 are arbitrary IEs. Value mapping is fundamental for data
exchange, where the value of IE1.manufacturer needs to be copied to IE2.vendor.

On the other hand, AQL [85] adopts a similar idea of using AML models to query
AML data. Nevertheless, AQL has a syntax defined within EMF and an informal notion
of semantics. In terms of expressive power, the AML structure and property features
(S1-S3) and (P1-P7) are supported since the meta-model of AQL is built on top of the
CAEX schema. Furthermore, AQL has a set of boolean flags that support the XML data
query features. For example, the negated and multi flag correspond to the cardinality
restrictions (X4), the returned flag can be used for specifying the position of the returned
data objects (X1, X3), and the transitive flag stands for the transitive closure of the XML
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Table 7.3.: Comparison of the expressive power between AQT and the related work. It
can be observed that AQT supports three AutomationML advanced features
which are not considered in the related work. Also note that AQL has only
proposed a modeling approach that was neither algorithmically investigated
nor concretely implemented.

Modeling Features XQBE
[32]

AQL
[85] AQT

AutomationML Structure Features
(S1) structurally nested objects and interfaces yes yes yes
(S2) class-instance relationship yes yes yes
(S3) object identification via UUID yes yes yes

AutomationML Property Features
(P1) attribute name yes yes yes
(P2) structurally nested attributes yes yes yes
(P3) explicit (default) attribute value yes yes yes
(P4) attribute unit yes yes yes
(P5) attribute data type yes yes yes
(P6) attribute semantic reference yes yes yes
(P7) attribute value requirements (nominal and ordinal) yes yes yes

AutomationML Advanced Features
(A1) class inheritance hierarchy via class-class relations no no yes
(A2) instance-instance relations (partner in the source file) no no yes
(A3) instance-instance relations (partner in the query file) no no yes

XML Data Query Features
(X1) retrieving objects at any position in the XML structure yes yes yes
(X2) retrieving descendant objects in the XML structure yes yes yes
(X3) querying related data simultaneously (multi-return) yes yes yes
(X4) cardinality restrictions yes yes yes

XML Data Exchange Features
(E1) explicit value mapping and comparison yes no no
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Figure 7.11.: Expressive power of AQT w.r.t. XPath and XQuery.

containment relation which is equivalent to the descendant axis in TPQ (X2).
Nevertheless, AQL neither covers the AutomationML advanced features (A1-A3) nor
supports the value mapping and comparison (E1).

In conclusion, AQT is designed to be intuitive for the AML users by exploiting the
modeling features of AML itself. The expressiveness of AQT is sufficient to fulfill the
requirements for querying AML data (cf. Section 7.1). Furthermore, the semantics of
AQT is defined based on the notion of tree pattern queries, which are well-established in
the field of XML and are closely related to XPath. Therefore, AQT can be automatically
translated to XPath or XQuery programs.

Fig. 7.11 shows an overview of the expressive power of AQT with respect to XPath
and XQuery. The subset called core AQT refers to queries with only one returned node
and no AML advanced features. Because the semantics of AQT is defined based on the
notion of TPQs, core AQTs also capture the XPath fragment XP /,//,[ ] (cf. Section 6.1.1),
while additionally supports cardinality restrictions. Note that arithmetic operations, e.g.
+,�, ⇤, /, mod, and string operations, e.g. contains, are neither supported by TPQ nor
AQT. However, these features do not belong to the logical core of queries and can be
considered as future work in the standardization of CAEX and AML.

In addition to core AQT, full AQT allows multiple returned nodes and supports AML
advanced features. The latter one requires the definition of higher-order XQuery functions
for traversing the inheritance hierarchy of AML class libraries, as shown in Listing 6.1.
However, as illustrated in Table 7.3, AQT does not support the modeling of value mapping
and comparison, which is a basis for more advanced data exchange features. In the next
chapter, an extension of AQT is proposed to cover value mappings and enable AML data
exchange.
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This chapter extends AQT for exchanging AML data between engineering tools. Again,
the design principle of the extension is to use AML itself for query modeling and to use
XQuery for query translation. However, while the semantics of data access can be
naturally defined based on the notion of tree pattern queries (cf. Section 7.2.2), a
theoretical foundation for AML data exchange is yet to be defined. To this end,
Section 8.1 first conducts a comprehensive analysis of functional requirements for AML
data exchange, with a focus on industrial use cases. Afterwards, Section 8.2 develops a
data exchange setting for AML, based on which the syntax and the semantics of the
extended AQT are defined in Section 8.3. Finally, Section 8.4 presents algorithms for
translating extended AQTs into XQuery programs.

8.1. Requirements for AML Data Exchange

To define the expressiveness of the extended AQT, this section reviews literature in three
relevant yet independently developed research domains, including: (i) common industrial
data exchange scenarios; (ii) semantic correspondence patterns; (iii) general XML data
exchange use cases.

8.1.1. Common Industrial Data Exchange Scenarios

Drath discussed three kinds of typical data exchange scenarios in industrial
engineering [100], including object mapping, structure mapping, and attribute mapping.

8.1.1.1. Object Mapping Scenarios

Object mapping (OM) refers to data transfer on the engineering object level, as shown in
Fig. 8.1:

(OM1) 1-1 mapping: one source object A1 is mapped to one target object B1. Because
this thesis does not consider value changes during the data exchange process, 1-1
mapping is simply a copy event that takes an object from the source to the target.

(OM2) 1-n mapping (decomposition): one source object A1 is mapped (decomposed) to
two target objects B1 and B2. In case that A1 contains some attributes, then the
1-n mapping may involve several attribute mappings that specify which attributes
of A1 shall be taken to B1 and B2, respectively.
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A1 B1

(a) 1-1 mapping
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(d) n-m mapping

Figure 8.1.: Object mapping scenarios in industrial data exchange.

(OM3) n-1 mapping (aggregation): two source objects A1 and A2 are mapped
(aggregated) to one target object B1.

(OM4) n-m mapping: the source object A1 is mapped to two target objects B1 and B2

(1-n mapping), and the source objects A2 and A3 are mapped to one target object
B3 (n-1 mapping). The complexity of n-m mapping is a mixture of the underlying
n-1 and 1-n mappings.

8.1.1.2. Structure Mapping Scenarios

Object mappings described in Section 8.1.1.1 do not take into account structural
dependencies between the objects. In the XML/AML context, data is organized as trees
(cf. Section 6.1), where each object represents a tree node. Fig. 8.2 illustrates use cases
in which the structural mappings (SM) of the objects need to be considered:

(SM1) Breadth projection1: the source object A1 is mapped to the target object B1 while
the child object A2 is ignored.

(SM2) Child-only breadth projection2: the source object A1 itself is ignored in the data
exchange. However, its child object A2 is mapped to the target object B1.

(SM3) Flattening3: the source object A1 is mapped to the target object B1, and the child
object A2 is mapped to the target object B2. Note that the parent-child relation
between A1 and A2 is resolved on the target side.

1It was called BreakIncludingMe in [100].
2It was called Ignore in [100].
3It was called IgnoreHierarchy in [100].
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(SM4) Flattening and decomposition: a mixture of (SM3) and (OM2).

(SM5) Offset path: the source object A1 and its child A2 are mapped to the target objects
B1 and B3, respectively. The parent-child relation between A1 and A2 is changed
to a predecessor-descendant relation in the target tool because an intermediate new
object B2 is required in the target.

8.1.1.3. Attribute Mapping Scenarios

Attribute mapping refers to relations between properties defined in the source and target
tool. For example, the source tool defines the frame attribute for the six-dimensional
pose of an object, while the target tool uses the coordinates attribute for the same
purpose. Because attributes are part of engineering objects, attribute mappings are
always subject to object mappings, which in turn, can be associated with structure
mappings. Drath described several common attribute mapping scenarios assuming that
theses attributes are modeled as primitive data elements, for example, as XML attributes
and thus shall be handled differently to the object mappings [100]. However, this thesis
does not consider attribute mappings as a first-class mapping scenario for two reasons.
First, as described in Section 1.1, this thesis does not cover value processing relations
between engineering tools. Second, the externalization step in AML-based data
exchange (cf. Fig. 2.5) transforms primitive data elements into complex XML elements,
i.e., the CAEX attributes, which are handled similarly to other XML elements in an
AML document, e.g., internal elements. Therefore, attribute mappings are treated as part
of the object and structure mappings.

8.1.2. Semantic Correspondence Patterns

Semantic correspondence patterns were originally introduced for ontology alignment in
Scharffe’s Ph.D. thesis [101]. Kovalenko and Euzenat showed that some of these patterns
represent typical semantic matching issues in multi-disciplinary engineering [34]. The
term semantic matching (or ontology matching [102]) refers to finding relations between
entities (i.e., objects, attributes, and classes) in different engineering systems. Although
the original formulation of correspondence patterns was based on ontologies and thus
semantically inconsistent with the XML setting, they provide guidelines for modeling
complex relations between engineering systems and contribute to the design of query
modeling. However, not all correspondence patterns are relevant for AML data
exchange. For example, the equivalent relation correspondence, which states that one
object relation is equivalent to another, is unnecessary, because both the source and the
target tool use the same CAEX schema definition such that all object relations are
predefined and homogeneous among the tools. In the following, the relevant
correspondence patterns (CP) are summarized and adapted for AML data exchange:

(CP1) Equivalent class: a target AML class D is equivalent to a source AML class C,
although they might be modeled differently.

(CP2) Superclass: a target AML class D is a superclass of a source AML class C, i.e.
D � C. Semantically, each internal element x that refers to C shall then be
interpreted as an object of class D in the target tool, since C(x)! D(x).
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Figure 8.2.: Structure mapping scenarios in industrial data exchange.
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(CP3) Subclass: a target AML class D is a subclass of a source AML class C, i.e. D ⇢ C.
In this case, whether a source object of class C shall be imported to the target
tool under the class D remains undefined and must be specified with additional
constraints.

(CP4) Class by (path) attribute occurrence/value: a target AML class D corresponds to
source objects which satisfy certain constraints on the associated (nested)
attributes. In the context of AML, path attributes refer to nested CAEX attributes,
e.g., the x coordinate of a frame attribute.

(CP5) Subclass defined by relation domain: in AML, the only essential relations are
hasIE and hasEI. Therefore, this pattern means that a target AML class D
corresponds to a set of source objects with certain sub internal elements or
external interfaces.

(CP6) Equivalent property: in AML, properties are the CAEX attributes. Equivalent
property means that a target CAEX attribute b has the same meaning as a source
CAEX attribute a, and can copy the value from a. Note that the name of a and b
can be different. For example, the source attribute frame is equivalent to the target
attribute coordinate.

(CP7) Aggregation: several source objects shall be grouped together to formulate one
target object. For example, the source internal elements ie1, ie2, and ie3 shall be
put under the target internal element ie4 as child objects.

(CP8) Property-relation correspondence: a CAEX attribute in one tool might be
represented as an object relation in another tool. For example, the CAEX attribute
manual in the source tool stores the location of product manuals. The target tool
might not have this attribute but an external interface of the class Manual, which
holds a CAEX attribute fileLocation. During data exchange, the target tool
needs to create an instance of the interface class Manual, and copy the value of
the source attribute manual to the target attribute fileLocation.

Recall the data exchange workflow of AML, as illustrated by Fig. 2.5, and assume that
the target tool defined some AML classes which do not exist in the source tool. CP1-
CP5 suggests that the target-specific AML classes can be modeled as structure or value
constraints of the source data. The design of a QBE-like approach for AML shall support
these features to comply with the mixed model principle [4]. CP6 is the main functionality
that is supported by early works on AML-based interoperability [1]. Finally, CP7 and CP8
represent two use cases for the construction of complex target instances.

8.1.3. General XML Data Exchange Use Cases

Section 8.1.1 and 8.1.2 summarized functional requirements for exchanging AML data
which originated from industrial use cases. In terms of general XML data exchange, the
following XQuery features (XF) [32] give a upper bound of the expressiveness that can
be achieved by XQuery programs:

(XF1) Copy: the basic action in data exchange which copies data from source to target.

(XF2) Existential quantification: a source XML node shall contain a particular sub XML
node or tree.
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(XF3) Conjunction: a set of conjunctively connected logical expressions, i.e., several
constraints that need to be satisfied together.

(XF4) Filtering: a constraint on the value of a source XML attribute or text node.
Filtering can be combined with XF2 and XF3 for building complex filters over
the source tree.

(XF5) Breadth projection: only a subset (can be empty) of sub-trees of a source node is
taken into the target.

(XF6) Construction of new elements: the target side needs to construct some new XML
elements which may interact with the data copied from the source side.

(XF7) Nesting: a set of source nodes are put in a particular nested structure in the target
tree.

(XF8) Flattening: a set of nested source nodes become siblings in the target tree.

(XF9) Grouping: since XQuery 3.0, the groupby operator is available for grouping nodes
on the target side. In practice, grouping can also be realized by restructuring the
target XML document.

(XF10) Depth projection: suppose that a source XML tree node A has a child B, which in
turn has a child C. Depth projection maps A and C to a target tree node A0 and
C 0 respectively, while ignoring the intermediate source node B. A special case of
depth projection is that only C is copied into the target.

(XF11) Join: some XML attributes or text nodes of the source or target tree have the same
value. Note that the actual value is not essential, as long as the equality holds.

(XF12) Aggregates: a target node aggregates data from several source nodes by means
of the functions min, max, count, avg, sum. Note that aggregates in this context
are different from the n-m mapping (Section 8.1.1) and the aggregation pattern
(Section 8.1.2). The latter two refer to the “grouping” of several source nodes
under one target node.

(XF13) Negation: represented by the XPath logical operator not. The expression not(e)
is true if e is false. Negations can be used to specify the opposite of a value
constraint or the non-existence of a tree structure. For example,
Attr[not(Value > 0)] selects Attrs with Value  0, and IE[not(EI)] selects
IEs which do not have any EI.

(XF14) Arithmetic computations: XQuery supports standard arithmetic computations
such as +, ⇤,�, /. As described in Section 7.4, AML per se does not support
these features.

(XF15) Renaming: a source tree node A is copied to a target tree node A0, and A0 changes
the original XML tag of A. This feature is irrelevant for AML since both the
source and target AML file use the same XML schema definition.

(XF16) Cartesian product: let S1 and S2 be two sets of source tree nodes with |S1| = n
and |S2| = m. The Cartesian product S1⇥ S2 produces n ·m pairs, each of which
contains one node from S1 and one node from S2. This feature is not considered
in this thesis because the Cartesian product generates duplicated data on the target
side.
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Table 8.1.: Required XQuery features for the implementation of the common mapping
scenarios described in Section 8.1.1. The features XF2-XF4 are implicitly
used by all cases for describing complex structural and value constraints on
the source nodes.

Common mapping scenarios XQuery features
OM1 (1-1 object mapping) XF1
OM2 (1-n object mapping) XF1, XF5, XF6
OM3 (n-1 object mapping) XF1 (for all qualified source objects)
OM4 (n-m object mapping) XF1, XF5, XF6 (for all qualified source objects)
SM1 (breadth projection) XF1, XF5
SM2 (child-only breadth projection) XF1
SM3 (flattening) XF1, XF8
SM4 (flattening and decomposition) XF1, XF5, XF6, XF8
SM5 (offset path) XF1, XF7

(XF17) Sorting: the XQuery operator orderby can be used to sort target nodes according
to a value-based ordering. This feature is not essential for AML data exchange,
because neither CAEX nor AML imposes an ordering over the objects in the
instance hierarchy.

(XF18) Node order: since XML is an ordered tree in general terms, XQuery supports
querying for a tree node in a particular position, e.g., IE[position() = 1] selects
the first IE node. Similar to XF17, this feature is not considered in this thesis.

(XF19) Multiple documents: the target XML tree merges data from several sources.
While this feature can be useful in general XML data exchange scenarios, it is not
considered in this thesis, because the standard data exchange process as
illustrated in Fig. 2.5 is based on one AML source file.

(XF20) Disjunction: represented by the XPath logical operator or. The expression d or e
is true if either d or e is true. For example, Attr[Value > 5 or Value < 0]
selects Attrs whose Value is either larger than 5 or less than 0. As described in
Section 7.4, AML per se does not support these features.

(XF21) Union: represents the logical operator [ and is denoted with the operator | in
XQuery. A union A|B constructs a disjunctive combination of nodes that match
A and B, respectively.

(XF22) Difference: for two sets of tree nodes S1 and S2, the difference between S1 and S2

(or the relative complement of S1 w.r.t. S2) are the nodes in S1 but not in S2.

(XF23) Universal quantification: a source XML node only contains sub-trees satisfying
particular constraints.

It can be observed that features XF14 to XF23 are either inexpressible with AML
(XF14, XF20-XF23) or unnecessary (XF15-XF19) for AML data exchange.
Furthermore, by comparing the features above with the requirements described in
Section 8.1.1, the features XF1-XF8 are sufficient for implementing the common
industrial data exchange tasks, as shown in Table 8.1. In terms of semantic
correspondence patterns, CP1-CP5 correspond to the features XF2-XF4 for modeling
constraints in the source part. CP6 (equivalent property) is covered by XF1 and XF6 in
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the case of AML since all properties are represented as XML elements. Finally, CP7
corresponds to XF9 and CP8 can be realized with XF1-XF7.

In conclusion, XF1-XF9 are the essential features that must be supported by the
extended AQT because they are necessary and sufficient to cover the requirements listed
in Section 8.1.1 and 8.1.2.

8.2. A Data Exchange Setting for AML

The extension of AQT needs a theoretical foundation that defines the basic setting and
the necessary notions for AML data exchange. Until now, two relevant formalisms are
introduced, namely, the tree pattern query (TPQ) as described in Section 6.2 and the XML
schema mapping as described in Section 6.3. Unfortunately, for the following reasons,
neither formalism is appropriate for the data exchange task in AML-based engineering.

On the one hand, TPQ is a concept only for extracting data from a source XML file
and has no means for specifying how to construct a target XML document. As mentioned
in [95], a data exchange setting needs to collect data from the source and reproduce it
in the target. Moreover, relationships between the source and target documents need to
be defined. The requirement study presented in Section 8.1 suggested that two kinds of
relationships are necessary for AML data exchange. The first one is the full-copy action
that replicates a source data object in the target. The other one is the partial-copy action
that projects parts of a source data object to the target.

On the other hand, XML schema mapping is primarily designed for transmitting data
between XML databases, which conform to different XML schema definitions. Therefore,
the XML data exchange setting, as shown in Definition 6.6, merely considers structural
dependencies and value correspondences between the source and target side. The former
is given by the structure of the tree-pattern formulae (TPF), while the latter is denoted by
the identical variables. For carrying data from source to target, the TPFs in both sides
must enumerate over all possible XML attributes and sub-trees that are defined. Suppose
a simple STD ' !  that describes a copy of AML internal elements from source to
target:

IE(Name = v1, ID = v2)! IE(Name = v1, ID = v2)

According to Definition 6.5, for a pair of source and target internal elements s, t with
s.Name = t.Name and s.ID = t.ID, the above STD can be satisfied. However, the STD
is not able to characterize the full-copy of an internal element, because the sub-trees of
s and t are not specified. Suppose s has a supported role class, the STD that copies the
supported role class to the target would be:

IE(Name = v1, ID = v2)[SRC(ref = v3)]! IE(Name = v1, ID = v2)[SRC(ref = v3)]

Now, the target internal element t needs to have a corresponding supported role class
for satisfying the STD. While this solution works for simple CAEX schema elements,
it becomes subtle for complex, recursively defined ones. For example, AML internal
elements can have nested internal elements, which in turn can have further nested internal
elements. Therefore, a general STD that specifies the full-copy of any internal element
would need infinitely many nested TPFs which can not be formulated.
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Another challenge of the schema mapping approach is that common data exchange tasks
in AML involve value comparisons. Recall the AQT examples in Fig. 7.7. It is evident
that none of these tree patterns can be described with TPF. This problem has been reported
under the term contextual schema matching in relational databases [37].

This thesis proposes a proper data exchange setting for AML by providing a notion for
the target side, which adapts tree patterns in Definition 6.2. The basic idea of the setting is
to have a source model Q and a target model P that describe patterns over the source and
target AML documents, respectively. More specifically, Q is a source tree pattern4 (STP)
according to Definition 6.1, and P is a target tree pattern (TTP) defined as follows:

Definition 8.1 (Target Tree Pattern). A target tree pattern is a node-labeled rooted tree
P = (N,E), where:

• N is the set of nodes, E is the set of edges, and the root of the tree is the node with
no parent;

• Each node x 2 N can either be bound or free.

• A bound node t is represented as a tuple (id, tag, name, sid, full), where id is the
identifier of the node, tag is the related XML tag, name is the desired name, sid
is the identifier of a node s in an STP Q, and full is a boolean flag. The node s
is called the source correspondence of t. The relation between s and t is called a
binding, which can either be a full-copy binding if full = true or a partial-copy
binding if full = false.

• A free node n is represented as a triple (id, tag, C), where id is the identifier of the
node, tag is the related XML tag (the label), and C is a set of constraints on the
value of n’s text content or attributes, that is:

(n.value | n.attr) = c

where value is the text content of n, attr is the name of an XML attribute, and c
is a string constant.

• An edge in E is a pair (x, y) where x and y are identifiers of the connected nodes.
In contrast to Definition 6.1, an edge in TTP always describes a parent-child
relationship from x to y. In this context, TTPs are always fully-specified [95].

In Definition 8.1, a bound node indicates a full or partial copy from a source file, where
sid specifies its source correspondence. The element name is specifically designed for
bindings between CAEX attributes, where the target engineering tool wants to import all
content from a source CAEX attribute but change the attribute name. If the target node is
not a CAEX attribute, then name can be set arbitrarily. A free node is defined similarly
to an STP node besides that only equality is allowed in the value constraints. Informally,
free nodes are such data objects that only exist in the target side.

A pair (Q,P ) with Q = (N,E) being an STP and P = (N 0, E 0
) being a TTP can be

visualized as two tree-like structures, between which binding edges exist, as shown in
Fig. 8.3. The left part of the figure is the visualization of Q, as described in Section 7.2.2

4The terminology is only for convenience. A source tree pattern is indeed a tree pattern as described in
Definition 6.1.
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Figure 8.3.: The visualization of a pair (Q,P ) where Q is an STP and P is a TTP.

(note that an STP has no returned node). The right part of the figure represents the
structure of P where each node in N 0 is represented by its XML tag and ID, and each
edge e0 = (n0

1, n
0
2) is depicted with a line between the target nodes n0

1 and n0
2. A free

target node is denoted by a + symbol on the top right corner, e.g., the nodes IE4 and
RR3. Between a target bound node n0 2 N 0 and its source correspondence n 2 N , there
is a binding edge represented by a dashed line. Intuitively, n.id = n0.sid is satisfied for a
binding edge (n, n0

). The symbol I over a binding edge (n, n0
) denotes that (n, n0

) is a
full-copy binding, i.e., n0.full = true, while B means that (n, n0

) is a partial-copy
binding, i.e., n0.full = false. In Fig. 8.3, IE5 and IE6 are bound target nodes with
IE5.full = true and IE6.full = false.

Similar to a tree pattern, the semantics of a TTP is formally defined via target
embeddings, as shown in Definition 8.2.

Definition 8.2 (Target Embedding). Let Q = (N,E) be a source tree pattern, S = (V, F )

be a source AML document, and e 2 Q(S) an embedding from Q to S, as described in
Section 6.2. Let P = (N 0, E 0

) be a target tree pattern and T = (V 0, F 0
) be a target AML

document. A target embedding from P to T that satisfies e is a function embeddingT :

N 0 ! V 0 such that:

1. for each free node n0 2 N 0, n0.tag = embeddingT (n0
).tag, and all value constraints

in n0.C are satisfied by embeddingT (n0
).

2. for each bound node t 2 N 0, let s 2 N be the source correspondence of t:

a) if t.full = true, then embeddingT (t) is a full-copy of e(s). Otherwise,
embeddingT (t) is a partial-copy of e(s).

b) if t.tag = Attr, then embeddingT (t).Name = t.name.

3. for each (x, y) 2 E0, (embeddingT (x), embeddingT (y)) 2 F 0.

The XML node embeddingT (n0
) 2 V 0 is also called an instance of the TTP node n0.

In Definition 8.2, case 1 describes the meaning of free nodes, which is similar to
Definition 6.2. In case 2, the embedding of the bound nodes depends on the given source
tree pattern and the source AML document, because bound target nodes (partially)
reproduces their source correspondences. Finally, case 3 requires that for each edge in P
there is a corresponding edge in the target AML document.

It remains to describe what exactly does a full and a partial-copy mean during target
construction.
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Definition 8.3 (partial-copy). Let s be an XML node in a source AML document. A
partial-copy of s is an XML node t in a target AML document that satisfies:

• t.tag = s.tag;

• If s is a CAEX attribute, then for each XML attribute ai of s except for Name, there
is an XML attribute a0i of t such that a0i = ai5;

• If s is not a CAEX attribute, then for each XML attribute ai of s, there is an XML
attribute a0i of t such that a0i = ai;

• If s is a text node, then s.value = t.value.

Definition 8.4 (full-copy). Let s be an XML node in a source AML document. A full-
copy of s is an XML node t in a target AML document that satisfies:

• t is a partial-copy of s;

• for each child node sChild of s, t has a child node tChild which is a full-copy of
sChild.

In other words, a full-copy of a source XML node s reproduces the entire tree of s in
the target XML document. Consider the data exchange example, as shown in Fig. 8.3.
This example describes a data exchange that, for all descendant internal elements IE1 in
the source data which contain at least one Robot (IE2) and one Clamp (IE3), construct
a target RobotCell (IE4) that contains a full-copy of each Robot and a partial-copy of
each Clamp.

One last challenge is the default existential quantification within the STP. For example,
the existential quantification on the IE2 and IE3 in Fig. 8.3 indicates that there might
be several Robots and Clamps under the embedding of IE1, as shown in the following
example.

Example 8.1 (Possible embeddings for Q in Fig. 8.3). Let S = (V, F ) be a source AML
document, and ie1, ie2, ie3, ie4 be distinct tree nodes in V . Let e1 and e2 be two possible
embeddings from Q to S with:

(i) e1(IE1) = ie1, e1(IE2) = ie2, e1(IE3) = ie3;

(ii) e2(IE1) = ie1, e2(IE2) = ie4, e2(IE3) = ie3.

Now consider possible target embeddings from P in Fig. 8.3 to a target AML document
T . Definition 8.2 states that for any target embedding e0 from P to T , if e0 satisfies a
source embedding e, then e0(IE5) must be a full-copy of e(IE2) because IE2 is the source
correspondence of the bound target node IE5. However, in the case of Example 8.1, there
are two source embeddings e1 and e2 from Q to S. So the question is, shall e0 satisfy both
e1 and e2 or only one of them?

The answer to the above question relates to the two possible semantics of data exchange:
Cartesian product [32] or grouping [97, 96]. Under Cartesian product semantics, one
target embedding needs to satisfy only one source embedding. In other words, several
instances of IE4 are constructed, each of which according to one possible embedding
from Q to S.

5The equality between XML attributes denotes the equality between their names and their values.
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Example 8.2 (Cartesian Product). Consider the source embeddings e1 and e2 in
Example 8.1. Under the Cartesian product semantics, for each pair (x, y) of Robot and
Clamp, an IE4 is constructed that contains x and y as child nodes. Because IE2 has two
embeddings ie2 and ie4, two target internal elements corresponding to IE4 are
generated: IE4-1 that contains (ie2, ie3) as child nodes, and IE4-2 that contains
(ie4, ie3) as child nodes.

Obviously, the Cartesian product semantics introduces duplication of source data in the
target. In Example 8.2, the source XML node ie3 appeared twice in the target, each of
which is put under a different instance of IE4. In engineering, it is desired to construct
one instance of IE4 under the grouping semantics such that ie2, ie3, ie4 are copied as
child nodes of the same IE4 instance [100]. To formally define the grouping semantics, a
context needs to be fixed for the corresponding grouping node.

Definition 8.5 (Context Node). Let Q = (N,E) be a source tree pattern and P = (N 0, E 0
)

be a target tree pattern. Let t 2 N 0 be a TTP node and DB(t) = {d1, · · · , dk} be the set
of descendant bound nodes of t. Let s be the source correspondence of t (s = null if t is
free) and s1, · · · , sl be the source correspondences of d1, · · · , dk, with l  k. The context
node of t, written as context(t), is defined as:

(i) if t is free and |DB(t)| = 0, then context(t) = null;

(ii) if t is bound and |DB(t)| = 0, then context(t) is the source correspondence of t;

(iii) if t is free and |DB(t)| 6= 0, then context(t) is the least common ancestor (LCA)
of s1, · · · , sl ;

(iv) if t is bound and |DB(t)| 6= 0, then context(t) is the least common ancestor (LCA)
of s, s1, · · · , sl ;

In the definition above, the total number of source correspondences s1, · · · , sl can be
smaller than the total number of the descendant bound nodes of n, because it is allowed
to bind different target nodes with the same source node. The listed four cases cover two
situations that might occur. On the one hand, if the target node t has no bound descendant,
i.e., case (i) and (ii), then grouping is not needed. On the other hand, if the target node t
has bound descendants, then case (iii) and (iv) define the context of t to be the LCA of the
source correspondences of the bound nodes.

Example 8.3 (Context Node). For the node IE4 in Fig. 8.3, its bound descendants are
IE5 and IE6, whose source correspondences are IE2 and IE3, respectively. Therefore,
context(IE4) is the LCA of IE2 and IE3, that is, the node IE1.

Definition 8.6 (Grouping). Let S = (V, F ) be a source AML document and T = (V 0, F 0
)

be a target AML document. Let Q = (N,E) be an STP, P = (N 0, E 0
) be a TTP, and let the

node s 2 N be the context node of the node t 2 N 0. Let e1, · · · , en be valid embeddings
from Q to S with e1(s) = · · · = en(s), and e01, · · · , e0n be valid target embeddings from
P to T that satisfy e1, · · · , en, respectively. Then T is constructed under the grouping
semantics, if e01(t) = · · · = e0n(t).
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Definition 8.6 shows that under the grouping semantics, each instance of a target node
t is constructed for a set of source embeddings e1, · · · , en that matches context(t) to the
same source XML node. In other words, the construction of each distinct instance of t
depends on the embedding of context(t), which in turn depends on the source
correspondences of t and its bound descendants. These dependencies can be represented
by an XQuery for-return clause that restricts the instances of t to distinct embeddings of
context(t) (see Definition 8.9 in Section 8.4.1). Moreover, if t is a free node with the
XML tag IE or EI, then a so-called Skolem function [97, 96] is used to create the UUID of
the instances of t. The Skolem function takes as input the source correspondences
{s, s1, · · · , sl} (recall that s1, · · · , sl are the source correspondences of the descendant
bound nodes of t, cf. Definition 8.5) and outputs a UUID for each distinct set of them.

Example 8.4 (Grouping). Consider the source embeddings e1 and e2 in Example 8.1.
Under the grouping semantics, because context(IE4) = IE1 and e1(IE1) = e2(IE1),
only one instance of IE4 is constructed, which contains ie2, ie3, ie4 as child nodes.

Note that making a choice between Cartesian product and grouping semantics is not
required for the free target nodes that have no bound descendant node (case (i) in
Definition 8.5), e.g., RR3 in Fig. 8.3. Until now, the meaning of TTP and its relation to
STP has been presented. The following definition provides a formal setting for AML
data exchange.

Definition 8.7 (Data Exchange Setting for AML). A data exchange setting for AML is a
tuple (Q,P, F ), where Q is an STP, P is a TTP, and F is a Skolem function. Let S be
a source AML document and Q(S) be the set of all source embeddings from Q to S. A
target AML document T is a solution for S w.r.t (Q,P, F ), if:

1. for each source embedding e 2 Q(S), there is a target embedding e0 from P to T ,
such that e0 satisfies e;

2. T is constructed under the grouping semantics.

Case 1 in Definition 8.7 ensures the consistency between the source and target AML
documents under the pair (Q,P ), while case 2 additionally requires that T is constructed
under the grouping semantics.

8.3. Extending AQT for Data Exchange

Based on the data exchange setting above, this section extends AQT for query modeling
using AML. Similar to XQBE [32] and VXQ [33], the extended AQT consists of two
parts: (i) a source AQT I that describes what is needed from the source AML document,
and (ii) a target AQT J that specifies how to construct a target AML document..
Essentially, I corresponds to an STP and J corresponds to a TTP. A pair of (I, J) is
called an st-AQT (source-to-target AQT).
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Table 8.2.: The configuration parameters of a bound target tree node.
Name Type Default

sourceID string -
mode string copy

8.3.1. Syntax Extensions

Because the design principle of AQT is to use AML for query modeling, both the source
AQT I and the target AQT J are AML models. For the source part, the original AQT
syntax introduced in Section 7.2.1 can be reused. However, the returned parameter in
Table 7.2 is not required anymore.

The main task of the extension is to develop a syntax for the target AQT J , which
shall be interpreted as a TTP. According to Definition 8.1, a TTP node can be either free
or bound. The former is target-specific while the latter relates to nodes in an STP via
bindings. Intuitively, a free node can be directly represented in AML. For the bound
nodes, two CAEX attributes are defined as query-specific configuration parameters, as
shown in Table 8.2.

The parameter mode 2 {copy, projection} specifies the type of a binding between an
STP and a TTP node as follows:

• mode = copy refers to a full-copy binding as described in Definition 8.4.

• mode = projection refers to an extended partial-copy that also takes into account
the source RRs, SRCs, and ILs, because they are essential information in most
engineering activities. Therefore, it is beneficial to simplify the data exchange
models by handling them as part of the partial-copy by default. For convenience, a
binding with mode = projection is called a projection binding.

The parameter sourceID denotes the corresponding source node that is bound to the
given target node. The value of sourceID adheres to the standard identification
mechanism in AML, i.e., the UUID of the source internal element or external interface,
or the full path of the corresponding source CAEX attribute. Because the target CAEX
attribute can have a different name than its source correspondence, the binding between
two CAEX attributes is called a renaming binding. The target configuration parameters
mode and sourceID are embedded into the CAEX attribute targetConfig in the target
AQT. Intuitively, a target node is bound if it is associated with a targetConfig and free
otherwise.

Fig. 8.4 shows the raw XML serialization of an st-AQT (I, J). Both I and J are AML
instance hierarchies. I describes an STP with the root node IH1 which has a descendant
node IE1. Furthermore, IE1 should contain one Robot and one Clamp. J describes a
TTP with the root node IH2 which has a free child node IE4. IE4 in turn, has two bound
child nodes IE5 and IE6. More specifically, IE5 represents a full-copy of the node IE2 in
I because IE5.mode = copy and IE5.sourceID is the UUID of IE2, while IE6 denotes
a partial-copy of the node IE3 in I because IE6.mode = projection and IE6.sourceID
is the UUID of IE3.

In Section 7.2.1, a formal representation of the source AQT has been introduced,
which is based on the notion of rooted trees. This formal representation also applies to
the target AQT. The only difference is the set B of target tree nodes, which contains the
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(a) The source AQT I .

(b) The target AQT J .

Figure 8.4.: An st-AQT (I, J).
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target configuration parameters mode and sourceID. Again, B can be empty for some
nodes in the target tree because CAEX attributes can not be associated with conditional
CAEXBasicObjects. In other words, conditional CAEXBasicObjects cannot be bound
to any source nodes. Nevertheless, since concrete engineering data is stored within
CAEX attributes and organized in the nested structure of internal elements and external
interfaces, only target internal elements, external interfaces, and CAEX attribute nodes
need to be bound. Furthermore, if a target-specific conditional CAEXBasicObjects is
required during the construction, it can be modeled as a free node in the target tree, such
as the RR node in Fig. 8.4b.

8.3.2. Semantics Extensions

Let I = (V, F ) be a source AQT and J = (V 0, F 0
) be a target AQT. The following shows

how to construct a pair (Q = (N,E), P = (N 0, E 0
)) where Q is an STP and P is a TTP:

1. Construct Q = (N,E) from I following Section 7.2.2, because an STP is
essentially a TPQ in which each node has returned = false.

2. Construct P = (N 0, E 0
) from J as follows:

a) For each bound node v 2 V 0 with v = (id, tag, A,B) and B 6= ;, construct a
bound TTP node t = (id, tag, name, sid, full) in N , where t.id = v.id,
t.tag = v.tag, t.name = v.A.Name, and t.sid = v.B.sourceID. If
v.B.mode == copy, then t.full = true, otherwise t.full = false.

b) For each bound node v 2 V 0 with v = (id, tag, A,B) and B 6= ;, if
v.B.mode == project and v.tag == IE, then add the following default
bindings to P and Q. Let s 2 N be the source correspondence of t 2 N 0,
then:

i. add a node tRR = (id,RR, “rr”, sid, true) to N 0, and a node
sRR = (id,RR, ;, ;) to N , with tRR.sid = sRR.id. Add (s, sRR) as an
edge to E and (t, tRR) as an edge to E 0.

ii. add a node tSRC = (id, SRC, “src”, sid, true) to N 0, and a node sSRC =

(id, SRC, ;, ;) to N , with tSRC.sid = sSRC.id. Add (s, sSRC) as an edge to
E and (t, tSRC) as an edge to E 0.

iii. add a node tIL = (id, IL, “il”, sid, true) to N 0, and a node
sIL = (id, IL, ;, ;) to N , with tIL.sid = sIL.id. Add (s, sIL) as an edge to
E and (t, tIL) as an edge to E 0.

c) For each free node w 2 V 0 with w = (id, tag, A, ;), construct a free node
n0

= (id, tag, C) in N 0, where n0.id = w.id, n0.tag = w.tag, and add each
value constraint in w.A to n0.C.

d) For each edge f 0
= (v0i, v

0
j) in F 0, add an edge e0 = (n0

i, n
0
j) in E 0, where v0i is

mapped to n0
i and v0j is mapped to n0

j .

It can be observed that the construction of P also influences the already constructed
source tree pattern Q. More specifically, step 2b) enriches both P and Q with the default
bindings for RRs, SRCs, and ILs. Note that the default bindings only exist in the pair
(Q, P) but not in the pair (I, J). Also note that CAEX attributes are not considered as
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default bindings, because it is assumed that the source and target engineering tools may
use different attribute names. Therefore, if one source CAEX attribute shall be conveyed
to the target side under the projection mode, it must be explicitly modeled within the
target AQT.

The semantics defined above allow the visualization of st-AQTs as tree structures, as
specified in Section 8.2. In particular, Fig. 8.3 is the visualization of the example shown
in Fig. 8.4. In the following, more examples of st-AQTs are presented.

IE1

IH1

ref="Structure"

IE2

ref="MyStructure"
RR1 RR2+

IH2

Figure 8.5.: (Q1) role class equality.

Fig. 8.5 shows the query Q1 that states “from each source IH, copy each child
Structure into the target, and extend them with a RR of the class MyStructure.” From
the perspective of semantic correspondence patterns, Q1 describes the equivalence
between the source role class Structure and the target role class MyStructure.

IH1

IE1

RR1 Attr1

Attr2

Value1
value<5

name="y", unit="m"
type="xs:double"

name="Frame"

ref="Robot"

IE2

IH2

RR2
ref="MyRobotX"

+

Figure 8.6.: (Q2) subclass.

Fig. 8.6 shows the query Q2 that states “from each source IH, copy all descendant
Robots whose nested CAEX attribute Frame.x has a value smaller than 5.” Essentially,
Q2 extends Q1 with the value constraint on the CAEX attribute Frame.y of IE1. In terms
of semantic correspondence patterns, the target role class MyRobotX is a subclass of the
source role class Robot, because only the source robots that satisfy the value constraints
are members of MyRobotX.

Fig. 8.7 shows the query Q3 that states “from all source IEs with at least one child
Robot and one child Clamp, copy the Robots and Clamps and extend them with a RR of
the class MyResource.” Note that the coexistence of IE2 and IE3 is necessary. Regarding
the semantic correspondence patterns, the target role class MyResource is a superclass of
both Robot and Clamp.

Fig. 8.8 extends Q3 with cardinality restrictions on IE2 and IE3. Now the coexistence
of IE2 and IE3 is not mandatory because the minimum cardinality for both of them is
0. Q3 demonstrates how to model a binding without forcing the existence of the source
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IE2

IE1

ref="Robot"

IE4

IH2

ref="MyResource"
RR1 RR3

IE3

ref="Clamp"
RR2

+

IH1

IE5

ref="MyResource"
RR4

+

Figure 8.7.: (Q3) superclass.

IE2

IE1

ref="Robot"

IE4

IH2

ref="MyResource"
RR1 RR3

IE3

ref="Clamp"
RR2

+

IH1

IE5

ref="MyResource"
RR4

+

[0,-1] [0,-1]

Figure 8.8.: (Q4) superclass with cardinality restrictions [0,1].

IH1

IE1

Attr1
name="Frame"

IE2

IH2

Attr2
name="Coordinates"

RR1
name="Robot"

Figure 8.9.: (Q5) copy with attribute renaming.
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correspondence and states “from all source IEs, copy the child Robots and Clamps and
extend them with a RR of the class MyResource.”

Fig. 8.9 shows the query Q5 that states “for all source Robots with a CAEX attribute
Frame, copy the Robots and change Frame to Coordinates”. Q5 demonstrates how to
change CAEX attribute names during a full-copy.

IH1

IE1

Attr1name="Frame"

IE2

IH2

Attr8
name="Coordinates"

RR1
name="Robot"

Attr2
name="x"

Attr3
name="y"

Attr4
name="z"

Attr5
name="rx"

Attr6
name="ry"

Attr7
name="rz"

Attr9
name="tx"

Attr10
name="ty"

Attr11
name="tz"

Attr12
name="rx"

Attr13
name="ry"

Attr14
name="rz"

Figure 8.10.: (Q6) copy with nested attribute renaming.

Fig. 8.10 extends Q5 by specifying the data exchange behavior of the sub-attributes of
the source XML attribute Frame. In particular, the name of Frame.x, Frame.y, and
Frame.z are changed to Coordinates.tx, Coordinates.tx, and Coordinates.tz,
respectively, while Frame.rx, Frame.ry and Frame.rz are copied without changes.

IH1

IE1

Attr1
name="Frame"

IE2

IH2

IE3RR1
name="Robot"

Attr2
name="x"

Attr3
name="y"

Attr4
name="z"

Attr5
name="rx"

Attr6
name="ry"

Attr7
name="rz"

Attr9
name="x"

Attr10
name="y"

Attr11
name="z"

Attr12
name="rx"

Attr13
name="ry"

Attr14
name="rz"

+

RR2
ref="Frame"

+

Figure 8.11.: (Q7) from attribute to object relation.

Fig. 8.11 shows the query Q7 that has a similar structure to Q6 but maps the source
CAEX attribute Frame to a target internal element IE3 of type Frame. The sub-attributes
of the source CAEX attribute Frame are copied as attributes of IE3. Q7 demonstrates the
property to relation mapping (CP8 in Section 8.1.2).

IE1

IH1

ref="Structure"
RR1

IE3

IH2

IE4IE2

ref="Structure"
RR2

Figure 8.12.: (Q8) projection.
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Fig. 8.12 shows the query Q8 that states “for all source IHs with a child Structure,
which in turn has a child Structure, project the outer Structure to the target while
keeping the nested one.” Note that according to the semantics of st-AQTs, RR1 belongs to
the default bindings and will be copied to IE3.

IE1

IH1

ref="Structure"
RR1

IE4

IH2

IE5IE2

ref="Structure"
RR2 IE3

ref="Structure"
RR3

IE6

Figure 8.13.: (Q9) nested projection.

Fig. 8.13 extends Q8 with a nested projection of IE1 and IE2. Now, IE2 is not bound
to the target with a full-copy binding but projected to the target node IE5. Consequently,
the instances of IE4 will only contain data from the embeddings of IE1 that belong to
the default binding, while the instances of IE5 will comprise the embeddings of IE3 in
addition to the projection of IE2.

IE1

IH1

ref="Structure"
RR1

IE3

IH2

IE4IE2

ref="Structure"
RR2

ref="ComplexStructure"
RR3

+

Figure 8.14.: (Q10) projection with new target elements.

Fig. 8.14 also represents an extension of Q8. The instances of IE3 will be enriched
with a new RR that refers to the class ComplexStructure. Q10 shows how to extend a
projected node with target-specific data.

Fig. 8.15 has the similar structure to Q6. However, the full-copy bindings between
(IE1, IE2) and (Attr1, Attr2) are changed to projection bindings, such that the instances
of the TTP node Attr8 will only have three sub-attributes, which are copied from the STP
nodes Attr2, Attr3 and Attr4.

Fig. 8.16 shows the query Q12 that changes the TTP of Q9 by deleting one TTP node.
Q12 thus does not project data from the embeddings of IE2 but nests the embeddings of
IE3 into the corresponding instance of IE4. Due to the grouping semantics, each instance
of IE4 corresponds to a distinct embedding e(IE1), under which all embeddings of IE3
that share e(IE1) as a predecessor will be grouped together.

Fig. 8.17 shows the query Q13 that states “for all source Structures with at least one
child Robot and one child Clamp, construct one IE4 that contains the full-copy of all the
Robots, and one IE5 that contains the full-copy of all the Clamps, and add a new RR to
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IH1

IE1

RR1 Attr1

Attr2
name="x"

name="Frame"

ref="Robot"
Attr8

IE2

Attr3
name="y"

Attr4
name="z"

Attr5
name="rx"

Attr6
name="ry"

Attr7
name="rz"

Attr9
name="tx"

Attr10
name="ty"

Attr11
name="tz"

IH2

name="Translations"

Figure 8.15.: (Q11) projection with attribute renaming.

IE1

IH1

ref="Structure"
RR1

IE4

IH2

IE2

ref="Structure"
RR2 IE3

ref="Structure"
RR3

IE5

Figure 8.16.: (Q12) projection while ignoring intermediate data.

IE2

IE1

ref="Robot"

IE4

IH2

ref="MyStructureX"

RR2

RR4IE3

ref="Clamp"
RR3

+

IH1

ref="Structure"
RR1 IE6

IE5

ref="MyStructureY"
RR5

+IE7

+ +

Figure 8.17.: (Q13) object decomposition.
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IE4 and IE5, respectively." Under the grouping semantics, because the context of both
IE4 and IE5 are the STP node IE1, each distinct embedding of IE1 will introduce one
pair of instances for IE4 and IE5. Essentially, Q13 decomposes the STP node IE1 into
two target nodes IE6 and IE7, which are restructured according to the requirements of the
target AML document.

IE1

IH1

ref="Robot"

IH2

RR1

IE2

ref="Clamp"
RR2 IE4

IE3

RR3
ref="MyAggregator"

IE5

+

+

Figure 8.18.: (Q14) object aggregation.

Fig. 8.18 shows the query Q14 that states “aggregate all Robots and Clamps in the
source file under a new object of the class MyAggregator in the target file.” Again,
because of the grouping semantics, no Cartesian product for each pair of (Robot, Clamp)
is built. Instead, all embeddings of IE1 and IE2 under a given instance of IH1 are stored
under one instance of IE3.

IE2

IE1

ref="Robot"
RR2

IE3

ref="Clamp"
RR3

IH1

ref="Structure"
RR1

IH2

IE4 IE5 IE6

Figure 8.19.: (Q15) object flattening.

Fig. 8.19 shows the query Q15 that changes the TTP of Q13. Moreover, the STP node
IE1 is now projected to the target node IE4, while its children IE2 and IE3 are copied as
siblings of IE4. In other words, the nested structure of IE1(IE2, IE3) is flattened to a list
(IE4, IE5, IE6).

IE2

IE1

ref="Robot"
RR2

IE3

ref="Clamp"
RR3

IH1

ref="Structure"
RR1

IE4

IE5 IE6 IE7

IH2

+

Figure 8.20.: (Q16) object flattening and grouping.
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Fig. 8.20 extends Q15 with a free node IE4 in the target model. Q16 thus flattens the
nested structure of IE1 and groups the flattened objects (IE5, IE6, IE7) again into the
target node IE4. The grouping semantics assures that for each distinct embedding of IE1,
an instance of IE4 will be constructed.

IE1

IH1

ref="Structure"
RR1

IH2

IE3

IE2

ref="Structure"
RR2

IE4

RR3
ref="OffSet"

IE5

+

Figure 8.21.: (Q17) object offsetting and nesting.

Fig. 8.21 shows the query Q17 that states “for each source IH with nested Structures,
project the outer Structure to the target, and add an intermediate IE4 of the class OffSet
between the outer and the inner Structure in the target." Q16 intends to break the parent-
child relation of (IE1, IE2) in the STP, and generate target-specific data between them.

Table 8.3.: Summary of the data exchange features covered by Q1-Q14.
Query Example C.M. Scenarios S.C. Patterns XQuery Features

Q1 OM1 CP1 XF1-XF4,XF6
Q2 OM1 CP3,CP4 XF1-XF4,XF6
Q3 OM3,SM2 CP2 XF1-XF4,XF6
Q4 OM3,SM2 CP2 XF1-XF4,XF6
Q5 OM1 CP6 XF1-XF4,XF5
Q6 OM1 CP6 XF1-XF4,XF8
Q6 OM1 CP6 XF1-XF4,XF8
Q7 OM1 CP5, CP8 XF1-XF4,XF8
Q9 OM1,SM1 CP5 XF1-XF4,XF5

Q10 OM1,SM1 CP5 XF1-XF4,XF5,XF6
Q11 OM1,SM1 CP5,CP6 XF1-XF4,XF5
Q12 OM1,SM1 CP5 XF1-XF4,XF7,XF10
Q13 OM1,OM2 - XF1-XF4,XF6
Q14 OM1,OM3 CP7 XF1-XF4,XF6,XF8,XF9
Q15 OM1,OM2,SM1,SM3,SM4 CP5,CP7 XF1-XF4,XF5,XF9
Q16 OM4,SM1,SM3,SM4 CP5,CP7 XF1-XF4,XF5,XF6,XF9
Q17 OM2,SM1,SM5 CP5 XF1-XF4,XF5,XF6,XF7

Table 8.3 summarizes the data exchange features covered by the query examples
Q1-Q17. It can be seen that all requirements of the common mapping scenarios
(OM1-OM4, SM1-SM5) and the semantic correspondence patterns (CP1-CP8) are
covered. Consequently, XQuery features XF1-XF9 are supported by AQT. Furthermore,
Q12 shows how the depth projection (XF10) is realized. In the next section, algorithms
and implementations are presented for translating st-AQTs into XQuery programs.
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8.4. Extending AQP for Data Exchange

This section extends the AML Query Processor (AQP, cf. Fig. 7.1b) for AML data
exchange based on the extended AQT. More concretely, given an AML data exchange
setting (Q,P, F ) where Q is an STP, P is a TTP, and F is a Skolem function, construct
an XQuery program that generates a solution T for every possible source AML
document S.

8.4.1. Code Templates

The extension of the AQP is based on the so-called identity transformation, which is
shown as the XQuery function fCopy in Listing 8.1.

Listing 8.1 Implementation of full-copy in XQuery
1 declare function caex:fCopy($element as element()){
2 element {node-name($element)}
3 {
4 $element/@*,
5 for $child in $element/node()
6 return

7 if ($child instance of element())
8 then caex215:fCopy($child)
9 else $child

10 }
11 };

The function fCopy takes as input one XML element $element and outputs a new
XML element that copies the content of $element. It starts by constructing the XML tag
of the new element in line 2, using the XML tag of $element. Then it adds all the XML
attributes of $element to the new element in line 4. From line 5 to line 9, fCopy adds
the results of the recursive calls on the children of $element into the new element in a
depth-first manner. Recall Definition 8.4, fCopy implements the full-copy from an input
source XML element to an output target XML element.

Identity transformation is a very flexible XQuery code structure that can be adapted
for specific purposes. For example, the following variation of the identity transformation
implements the partial-copy in Definition 8.3. In contrast to Listing 8.1, The function
pCopy does not traverse the child nodes but copies the text content of $element.

Listing 8.2 Implementation of partial-copy in XQuery
1 declare function caex:pCopy($element as element()){
2 element {node-name($element)}
3 {
4 $element/@*,
5 $element/text()
6 }
7 };
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The above two code examples can be used as pure XQuery functions and are
implemented in the caex XQuery module. However, for the construction of a target
AML document, they are not sufficiently expressive, because neither fCopy nor pCopy
provides means for handling potential child nodes of a target node in P . For example, a
full-copied target node may contain some child nodes that need to be renamed, e.g., Q5
in Fig. 8.9. In the following, the so-called code templates are presented, which serve as
the blueprint of three basic types of XQuery programs that may be constructed in AQP,
i.e., copy, projection, and renaming.

8.4.1.1. Code Template for Copy

Listing 8.3 Template for a full-copy binding (sn, tn)
1 element {node-name($sn)}
2 {
3 $sn/@*,
4 for $child in $sn/node()
5 return(
6 (:cascaded if-then-else clause for internal children of tn

:)
7 )
8 (:for-return clauses for external children of tn:)
9 (:raw XML text for simple free children of tn:)

10 }

Listing 8.3 shows the code template for a full-copy binding between a STP node sn and
a TTP node tn. The notion $sn refers to the XQuery variable of sn and corresponds to
sn’s embeddings e(sn) in a source AML document. Intuitively, a target AML document
needs to copy data from the sub-tree of e(sn) to the position of tn. However, tn might
have the following three kinds of child nodes, which also need to be covered by the copy:

• Simple free children: free child nodes of tn which have no bound descendants.
Simple free children do not need any particular translation. Their raw XML text
can be used by XQuery for target construction (line 9 in Listing 8.3).

• Internal children: internal children are bound child nodes of tn whose source
correspondences are also child nodes of tn’s source correspondence. Consider Q9
in Fig. 8.13. The target node IE5 is an internal child of IE4 because the source
node IE2 is a child of IE1. On the contrary, IE5 in Fig. 8.16 is not an internal child
of its parent IE4, because the source correspondence of IE5 is not a child of the
source correspondence of IE4. Internal children are a specific set of target nodes
that are translated to cascaded if-then-else clauses. The term “internal” refers to
the fact that the XQuery program of such nodes constitutes the return clause of the
XQuery program of their parent node (line 6 in Listing 8.3).

• External children: external children are those child nodes of tn that are neither
simple free nor internal. Essentially, external children include (i) complex free
children which contain any bound descendants, and (ii) bound children whose
source correspondence are not children of the source correspondence of tn. Note
that if tn is free, then all its bound children must be external since tn has no source
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correspondence. External children are translated to additional for-return clauses
outside of the return clause of tn (line 8 in Listing 8.3).

Let tChild be an internal child of t and sChild the source correspondence of tChild in
the STP Q. The function call BuildIfThenElse(tChild,Q) (Definition 8.8) constructs an
if-then-else clause for transferring data from the sChild to tChild. The if clause selects
the sChild from the source document, the then clause contains the XQuery program for
the full-copy binding (sChild, tChild), and the else clause is a placeholder for further
children of tn. Listing 8.4 shows an example of an if-then-else clause that copies the
source CAEX attribute Frame to the target side.

Definition 8.8 (BuildIfThenElse(tn,Q)). Let tn be a TTP node and Q be the associated
STP. The function BuildIfThenElse(tn,Q) builds an XQuery if-then-else clause as
follows:

1. let xpath be the XPath expression of the source correspondence of tn

2. build an if clause xif with xpath as the condition

3. build an empty then clause xthen

4. build an empty else clause xelse

5. return xif, xthen, xelse

Listing 8.4 An if-then-else clause of a source child node
1 if ($child[self::Attr[@Name="Frame"]])
2 then ( caex:fCopy($child) )
3 else ( )

A cascaded if-then-else clause is a concatenated XQuery if-then-else clause, where
each if clause is concatenated to the else clause of the previous one. For example, a two-
level cascaded if-then-else clause looks like: if-then-else if-then-else. The generated
else if has the standard meaning in common programming languages. The cascaded if-
then-else clause intends to enumerate over all bound children of tn within the for-return
clause in Listing 8.3. If tn has no external child, then the expression caex : fCopy($child)
is added to the return clause for copying all descendant information from sn to the target,
as shown in Listing 8.5:

Listing 8.5 Template for copy with no external child
1 element {node-name($sn)}
2 {
3 $sn/@*,
4 for $child in $sn/node()
5 return(
6 caex:fCopy($child)
7 )
8 (:raw XML text for simple free children of tn:)
9 }

For an external child, a further for-return clause is generated using the function
BuildForReturn.
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Definition 8.9 (BuildForReturn(tn, tp,Q)). Let tn be a TTP node, tp be the parent of tn,
and Q be the associated STP. The function BuildForReturn(tn, tp,Q) builds an XQuery
for-return clause as follows:

1. let ctn be the context node of tn and var be the XQuery variable assigned to ctn.

2. let base := GetBaseReference(tn, tp,Q) and baseV ar be the XQuery variable
assigned to base.

3. compute the XPath expression xtn between ctn and base.

4. let xfor := for $var in $baseV ar/xtn

5. let xret be an empty return clause

6. return xfor, xret

Recall that the desired solution of an AML data exchange setting is a target AML
document that is constructed under the grouping semantics. Definition 8.6 showed that
grouping is achieved by fixing a context node. Therefore, BuildForReturn first
computes the context nodes ctn for the target node tn. The second step is to find the
so-called base reference of tn, which is the starting point for navigating to ctn.
Intuitively, the root node of Q can always be used as such a starting point, because any
node in Q (including ctn) is reachable from the root of Q. This simple intuition,
however, will not work for queries that contain a hierarchy of bindings. Consider Q12 in
Fig. 8.16. A for clause for IE5 starting from the root of Q would be:

for $var in $root/IE[RR[@ref = “Structure”]]/

IE[RR[@ref = “Structure”]]/

IE[RR[@ref = “Structure”]]

(8.1)

The problem of the for clause in Formula 8.1 is that the context of the target node IE4
is disregarded. Suppose a source AML document T = (V, F ) such that two embeddings
e1 and e2 exist with e1(IE1) = v1, e1(IE3) = v2 and e2(IE1) = v3, e2(IE3) = v4, where
v1, v2, v3, v4 are distinct XML nodes in V . According to the grouping semantics, two
different instances of IE4 shall be constructed because the context node for IE4 is IE1
and e1(IE1) 6= e2(IE1). However, the for clause in Formula 8.1 would append v2 and
v4 to both instances of IE4, since the XPath expression in Formula 8.1 navigates to both
v2 and v4 from the root. In other words, the hierarchy of the bindings (IE1, IE4) and
(IE3, IE5) is not considered within the for clause. Therefore, step 2 in Definition 8.9 calls
the function GetBaseReference to find the appropriate starting point for the navigation.
The rest of BuildForReturn computes the XPath expression xtn starting from the base
reference to the context node of tn and constructs a for clause using xtn.

Definition 8.10 (GetBaseReference(tn, tp,Q)). Let tn be a TTP node, tp be a
predecessor of tn, and Q be the associated STP. The function
GetBaseReference(tn, tp,Q) returns a node in Q as follows:

1. let scp be the source correspondence of tp and ctp be the context of tp.

2. let ctn be the context of tn.

3. If scp is the same as or a predecessor of ctn, return scp.
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4. If ctp is the same as or a predecessor of ctn, return ctp.

The principle of GetBaseReference is to use either the source correspondence scp or the
context node ctp of tn’s predecessor as the base reference for tn, both of which must have
appeared once in the generated XQuery program and can be used as an anchor point for
ctn. For Q12 in Fig. 8.16, the base reference of IE5 is the node IE1, which is the source
correspondence and the context node of IE4. Let ie1 be the XQuery variable assigned to
IE1 in Q12. The for clause of IE5 generated by BuildForReturn would be:

for $var in $ie1/IE[@ref = “Structure”]/IE[@ref = “Structure”] (8.2)

Notably, the for clause in Formula 8.2 is simpler than Formula 8.1, because the tree
pattern of IE1 itself is eliminated. This mechanism also works correctly for uncommon
situations where the target nodes have a reversed hierarchy w.r.t. their source
correspondences. In this case, ctp is preferred over scp because the source
correspondence of tn can be higher than the source correspondence of tp (i.e., scp) in Q.
Fig. 8.22 shows such an example: the target node IE3 is higher than IE4 in the TTP, but
the source correspondence of IE3 is lower than the source correspondence of IE4 in the
STP. Therefore, the context node of IE4 is IE1 which is the same as the context node of
IE3. Accordingly, the following for clause is generated by BuildForReturn:

for $var in $ie1 (8.3)

IE1

IH1

ref="Structure"
RR1

IH2

IE3

IE2

ref="Structure"
RR2

IE4

Figure 8.22.: Reversed hierarchy of target nodes w.r.t. their source correspondences.

8.4.1.2. Code Template for Projection

Listing 8.6 shows the code template for a projection binding between (sn, tn). The
basic form of the template inherits from the function pCopy and the copy template. The
if-then-else clause from line 7 to 11 copies child nodes that belong to the default bindings,
as described in Section 8.3.2. The else clause is kept empty by default and can be extended
with the cascaded if-then-else clause for the internal children of tn.
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Listing 8.6 Template for a projection binding (sn,tn)
1 element {node-name($sn)}
2 {
3 $sn/@*,
4 $sn/text(),
5 for $child in $sn/node()
6 return

7 if (caex:isProjectDefault($child$))
8 then caex215:fCopy($child)
9 else (

10 (:cascaded if-then-else clause for internal children
of tn:)

11 )
12 (:for-return clauses for external children of tn:)
13 (:raw XML text for simple free children of tn:)
14 }

8.4.1.3. Code Template for Renaming

The last code template is designed for the renaming of CAEX attributes during the copy
or projection from sn to tn. In contrast to previous templates, the XML attribute Name
is not copied to the target element in line 3 but set to the value of the input parameter
$name in line 4. In case sn is a nested CAEX attribute with subordinate CAEX attributes,
a target CAEX attribute that is bound to sn might only take a subset of the subordinate
ones. Therefore, lines 5 to 8 prepare a for-return clause for handling the internal children
of tn. If tn would contain any external free children, then they are also handled outside
of the return clause.

Listing 8.7 Template of renaming for a binding (sn,tn)
1 element {node-name($sn)}
2 {
3 $sn/@*[not(name(.)="Name")],
4 attribute{"Name"}{$name},
5 for $child in $sn/node()
6 return(
7 (:cascaded if-then-else clause for internal children of tn

:)
8 )
9 (:for-return clauses for external children of tn:)

10 (:raw XML text for simple free children of tn:)
11 }

8.4.2. Query Translation

Algorithm 8.1 shows the main body of the query translation. The algorithm takes an
AML data exchange setting S = (Q,P, F ) and outputs the translated XQuery program.
The translation begins with the variable invention and assignment for each node in the
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Algorithm 8.1 TranslateToXQuery

Input: AML data exchange setting S = (Q,P, F )

Output: XQuery program prog
1: for each node n in Q.N do
2: assign a distinct XQuery variable to n
3: end for
4: let prog := ;, and tr be the root node of P
5: let forRet be a for-return clause for tr
6: add Construct(S, tr) to the return clause of forRet
7: add forRet to prog
8: return prog

Algorithm 8.2 Construct

Input: AML data exchange setting S = (Q,P, F ), current TTP node tn
Output: XQuery program prog

1: if tn is a free node then
2: prog = ConstructNew(S, tn)
3: else
4: prog = ConstructBound(S, tn)
5: end if
6: return prog

STP (line 2). In line 5, an XQuery for-return clause is constructed for P ’s root node
tr. Essentially, the for clause selects all appropriate IH nodes from the source AML
document, and the return clause is a place holder for the XQuery program of tr. Because
tr’s context node is always Q’s root node sr, the for clause evaluates over each XML
node in the source AML document that satisfies the XPath expression of sr, such as:

for $root in doc(“source.aml”)/CAEXFile/IH[...]

return ()
(8.4)

The XPath predicate in Formula 8.4 represents the complete structure of Q. As studied
by Choi et al. [33], using the predicate of sr helps to filter the source AML document in
the early phase of query evaluation and can significantly increase run-time performance.
The translation proceeds with a function call construct(S, tr), which builds two different
kinds of XQuery programs depending on the current TTP node, as shown in
Algorithm 8.2. The result of construct(S, tr) is added to the return clause of tr in line
6. Finally, line 7 adds the for-return clause of tr to the program. Because tr is always a
free IH node, construct starts with ConstructNew(S, tr) in line 2.

Since free nodes are target-specific data, identity transformation can not be used as
a basis for their translation, and thus no code template is available for them. Instead,
Algorithm 8.3 shows the construction of an XQuery program prog for a free node tn.
In line 2, the opening XML tag of tn is added to prog, e.g., <InstanceHierarchy>
in the case of the root node tr. If tn was generated from an AQT internal element or
external interface node, then a UUID is invented and added to the opening XML tag
using the Skolem function F (line 4). If tn has XML attributes, e.g., class reference of
a RR, then the XML attributes are added to the opening XML tag in line 6. Afterward,
ConstructNew proceeds with the child nodes of tn. If child is simple free, then the
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Algorithm 8.3 ConstructNew

Input: AML data exchange setting S = (Q,P, F ), current TTP node tn
Output: XQuery program prog

1: let prog := ;
2: add the opening XML tag of tn to prog
3: if tn.tag == IE or tn.tag == EI then
4: invent a UUID for tn using F and adds it to the opening XML tag
5: end if
6: add all XML attributes in tn.C to the opening XML tag
7: for each child node child of tn do
8: if child is simple free then
9: add the XML text of child to prog

10: else
11: let fr := buildForReturn(child, tn,Q)

12: add Construct(S, child) to the return clause of fr
13: add fr to prog
14: end if
15: end for
16: add the closing XML tag of tn to prog
17: return prog

Algorithm 8.4 ConstructBound

Input: AML data exchange setting S = (Q,P, F ), current TTP node tn
Output: XQuery program prog

1: let prog be the corresponding code template for tn
2: let cascade be an empty if-then-else clause
3: for each child of tn do
4: if child is internal then
5: let ite := BuildIfThenElse(child,Q)

6: add Construct(S, child) to the then clause of ite
7: concatenate cascade with ite
8: else
9: if child is simple free then

10: add raw XML text of child to prog
11: else
12: let fr := buildForReturn(child, tn,Q)

13: add Construct(S, child) to the return clause of fr
14: add fr to prog
15: end if
16: end if
17: end for
18: add cascade to the return clause of prog
19: return prog
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raw XML text of child is added to prog in line 9. Otherwise, line 11 generates a for-
return clause for child using the function BuildForReturn (cf. Definition 8.9), and line
12 fills the corresponding return clause with the recursive call Construct(S, child). Each
individual for-return clause is added to prog sequentially in line 13. Finally, the closing
XML tag of tn is added to prog in line 16.

For a bound target node tn, Algorithm 8.4 shows how to extend its corresponding code
template towards a complete XQuery program. The first step of the translation is the
construction of the appropriate code template for tn, as described in Section 8.4.1. From
line 2 to 17, the child nodes of tn are translated. For each internal child, an if-then-else
clause ite is generated (line 5) whose then part is filled with the recursive call
Construct(S, child) (line 6). According to the code templates, all ites are concatenated
together in line 7. If the child is simple free, its raw XML text is directly added to the
code template (line 10). If the child is external, a for-return clause is generated where
the return part is filled with the recursive call Construct(S, child) (line 13). Finally, line
18 adds the cascaded if-then-else clause to the return clause of the code template and
line 19 returns the XQuery program.

Listing 8.8 XQuery program for Q8
1 declare namespace uuid = ’java.util.UUID’;
2 import module namespace caex215 = "http://ipr.kit.edu/caex

" at "src/main/resources/caex.xqy";
3 for $root in doc("src/test/resources/data.aml")/CAEXFile/

IH[IE[RR[@ref="Structure"] and IE[RR[@ref="Structure
"]]]]

4 return

5 (
6 <InstanceHierarchy>
7 {
8 for $n1 in $root/IE[RR[@ref="Structure"] and IE[RR[

@ref="Structure"]]]
9 return

10 element{node-name($n1)}
11 {
12 $n1/@*,
13 for $n2 in $n1/node()
14 return

15 if (caex215:isProjectDefault($n2))
16 then caex215:copy($n2)
17 else

18 if ($n2[self::IE[RR[@ref="Structure"]]])
19 then caex:fCopy($n2)
20 else()
21 }
22 }
23 </InstanceHierarchy>
24 )

Listing 8.8 exemplifies the translation procedure for Q8 in Fig. 8.12. Lines 1 and 2
include the necessary declarations of namespaces, which contain the XQuery module
functions required by the program. Lines 3 and 4 are the for-return clause generated for
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the node IH2 in Q8, where the XPath expression:

IH[IE[RR[@ref = ”Structure”] and IE[RR[@ref = ”Structure”]]]]

represents the complete structure of IH1. Lines 6 and 23 are the opening and closing
XML tags of IH2, which are constructed by ConstructNew(S, IH2). Between the XML
tags, ConstructNew(S, IH2) also generates a for-return clause for IE3, which is the only
child of IH2. Because the context node of IH2 is IH1, GetBaseReference(IE3, IH2, Q)

returns IH1 as the base reference for selecting the context node of IE3. Consequently, the
XPath expression between IH1 and IE1 is used inside the for clause in line 8. The body
of the return clause is filled with the result of Construct(S, IE3), which in turn, calls the
function ConstructBound(S, IE3) since IE3 is a bound node. The binding between IE3
and its source correspondence IE1 is a projection binding, therefore the code template in
Listing 8.6 is adopted. Finally, because IE4 is the only child of IE3, a single if-then-else
clause for IE4 is added to the else clause through line 18 to 20.

The following shows that for an AML data exchange setting (Q,P, F ) and an arbitrary
AML document S, the presented translation constructs a solution T for S w.r.t. (Q,P, F ).

According to Definition 8.7, the following two conditions must hold:

(i) for each source embedding e 2 Q(S), there is a target embedding e0 from P to T ,
such that e0 satisfies e;

(ii) T is constructed under the grouping semantics.

For condition (i), Definition 8.2 distinguishes following three cases:

1. for each free node n0 2 N 0, n0.tag = embeddingT (n0
).tag, and all value constraints

in n0.C are satisfied by embeddingT (n0
). This case is covered by line 2 to 6 and

line 16 of ConstructNew.

2. for each bound node t 2 N 0, let s 2 N be the source correspondence of t:

a) if t.full = true, then embeddingT (t) is a full-copy of e(s). Otherwise,
embeddingT (t) is a partial-copy of e(s). In ConstructBound, the instances
of t are constructed based on the code templates, which implement the full-
and the extended partial-copy of a source XML node e(s).

b) if t.tag = Attr, then embeddingT (t).Name = t.name. This case is covered
by lines 3 and 4 in the renaming template (Listing 8.7).

3. for each (x, y) 2 E 0, (embeddingT (x), embeddingT (y)) 2 F 0. Because all child
nodes are handled within the scope of the code templates, their instances are nested
into the instances of their parent nodes.

For condition (ii), the for-return clause constructed by the function BuildForReturn

ensures that target instances are created following the grouping semantics. Furthermore,
the invention of UUIDs is controlled by the Skolem function F such that each distinct
instance of a free node receives a unique UUID if one is required.

8.5. Results and Discussions

The extended AQT and AQP are implemented based on the existing QBE framework
described in Section 7.4. To construct a query, the user specifies an st-AQT model with a
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Table 8.4.: The supported XQuery features of XQBE, VXQ, and AQT. The greyed out
features (XF11-XF15) are non-essential for AML data exchange becauses
they were not mentioned in the requirements study in Section 8.1.

Modeling Features XQBE [32] VXQ [33] AQT
(XF1) Copy yes yes yes
(XF2) Existential quantification yes yes yes
(XF3) Conjunction yes yes yes
(XF4) Filtering yes yes yes
(XF5) Breadth projection yes yes yes
(XF6) New element yes yes yes
(XF7) Nesting yes yes yes
(XF8) Flattening yes yes yes
(XF9) Grouping yes yes yes
(XF10) Depth projection yes yes yes
(XF11) Join yes yes partially
(XF12) Aggregates yes yes partially
(XF13) Negation partially partially partially
(XF14) Arithmetic computation yes yes no
(XF15) Renaming yes yes no
(XF16) Cartesian product yes yes no
(XF17) Sorting yes yes no
(XF18) Node order yes yes no
(XF19) Multiple documents yes yes no
(XF20) Disjunction no no no
(XF21) Union no no no
(XF22) Difference no no no
(XF23) Universal quantification no no no

conventional AML tool, e.g., the AutomationML Editor, as shown in Fig. 8.23. Then the
user triggers the query translation by feeding the st-AQT model to the AQP. The result of
the query translation is an XQuery program, which is apparently much more laborious to
implement than the corresponding st-AQT model (compare Listing. 8.8 with Fig. 8.23).
One might argue that query implementation in a conventional programming language,
such as Java or C#, would be more intuitive than the XQuery variant (cf. Fig. 7.1a).
However, the manual implementation of the query program requires sufficient
programming skills and knowledge of the underlying AML engine. Furthermore, manual
implementations are often not reusable because different engineering projects and
systems would require different software infrastructures. On the contrary, the AQT-based
approach generates a query program that can be executed on all mainstream operating
systems.

In terms of the expressive power of query models, Table 8.4 shows the supported
XQuery features of XQBE [32], VXQ [33], and AQT. Obviously, both XQBE and VXQ
cover more XQuery features than AQT:

• Features XF11 (join) and XF12 (aggregates) are only partially supported by AQT.
For XF11, the internal link support of AQT (cf. Section 7.3.3) represents a special
case of join that compares the UUIDs of external interfaces. For XF12, only the
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(a) The source AQT with the root node IH1 and target AQT with the root node IH2 of Q8.

(b) The configuration parameters of IE1.

(c) The configuration parameters of IE2.

(d) The configuration parameters of IE3.

(e) The configuration parameters of IE4.

Figure 8.23.: The st-AQT of the query Q8 as shown in Fig. 8.12). The instance
hierarchies IH1 and IH2 in sub-figure (a) represent the source and target
AQT of Q8, respectively. The configuration parameters of IE1 (sub-figure
(b)) and IE2 (sub-figure (c)) take default values and are thus omitted in the
source AQT, as described in Section 7.2.1. The value of sourceID in sub-
figure (d) corresponds to the UUID of IE1, while the value of sourceID in
sub-figure (e) corresponds to the UUID of IE2.
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function count is covered by AQT through the parameters minCardinality and
maxCardinality.

• Feature XF13 (negation) is partially supported in all three approaches through the
zero-cardinality. In the case of AQT, it is expressed using maxCardinality=0.

• Features XF14 to XF19 are inexpressible with AQT. However, XF15 to XF19 are
not relevant for AML data exchange, while AML does not support arithmetic
computation (XF14).

There are two reasons for the restricted expressiveness. First, the features XF11-XF23
are not essential for AML-based engineering because they did not appear in the
requirements study in Section 8.1. Second, fully supporting these features would lead to
complex query templates, which in turn, would require additional modeling efforts or an
extension of the AML standard. On the other hand, as described in Section 7.4, AQT
covers domain-specific modeling features that are not considered in XQBE and VXQ.

In terms of the modeling complexity, AQT is more efficient in query construction than
XQBE and VXQ:

• AQT allows updating the source data during a copy or projection. For example,
query Q5 in Fig. 8.9 copies the source internal element IE1 to the target internal
element IE2 while changing the name of the CAEX attribute Frame to
Coordinates. In contrast, XQBE can either copy all data without any changes or
enumerate individual objects that need to be copied or updated explicitly. For Q5,
one needs to draw one target node for renaming the attribute and one target node
for receiving data from the source node RR1. Consider the embeddings of IE1 that
would contain further sub-elements, e.g., internal elements and CAEX attributes.
Then XQBE requires to construct one target node for each of these sub-elements.

• The default bindings of AQT reduces the modeling efforts dramatically for
projection bindings. For example, query Q10 in Fig. 8.14 projects IE1 to IE3 and
adds a new role requirements RR3 to IE3. For modeling this query with XQBE and
VXQ, one needs to add a target node RR4 and the default binding for (RR1, RR4).
In the case that IE1 has further child SRCs and ILs, their default bindings also need
to be added manually.

In conclusion, AQT is designed for AML data exchange by finding a balance between
expressive power and the modeling complexity. Furthermore, in contrast to a dedicated
graphical query language as XQBE and VXQ, the AML-based syntax of AQT is more
intuitive for the AML users and allows creating queries with conventional AML editors.
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This thesis investigated the problem of semantic interoperability in AML-based
engineering from two perspectives. The first part tackled the challenges of ontology
building in the industrial context, and the second part developed QBE-like approaches
for accessing and exchanging data stored in AML files. This chapter summarizes the
thesis by revisiting the research questions and discussing future work.

9.1. Contributions

In Section 1.1, the motivation and the background of the work were presented. In
particular, two research questions have been proposed that define the scope of the thesis.

RQ1: How to facilitate ontology building in industrial environments and incorporate
domain experts into the modeling procedure?

This research question is addressed in the first part of the thesis as follows:

• Because creating sophisticated ontological concepts can be overwhelming for
domain experts, Chapter 4 aimed at developing advanced machine learning
algorithms for inducing OWL complex class expressions from labeled data.
Section 4.1 studied the state-of-the-art learning algorithm CELOE and discussed
its drawbacks in both theoretical and practical aspects. Section 4.2 presented the
algorithm Rapid Restart Hill Climbing (RRHC) that tackles the problems of
CELOE by traversing the search tree in a hill climbing fashion. For learning from
AML data, Section 4.3 proposed the AML-specific refinement operator ⇢aml that
reduces the search space by utilizing the syntactic constraints of the CAEX
schema. Finally, the effectiveness of RRHC and ⇢aml is evaluated in Section 4.4.
On the one hand, RRHC outperformed CELOE in 11 out of 16 learning problems
for OWL and had a comparative result in the remaining 5 cases. On the other hand,
⇢aml showed superior performance in all learning problems for AML.

• The raw outputs of the concept learning algorithms are OWL complex class
expressions, which can be unintuitive for domain experts. To make the learner
more transparent, Chapter 5 introduced the AMLLEARNER framework that assists
the user during concept induction. AMLLEARNER interacts with the user based
on bidirectional communication via the AML Concept Model (ACM). ACMs build
the front-end of the system by representing OWL complex class expressions in the
AML syntax. Therefore, the results of the learner can be inspected and modified
by the user. The user feedback, in turn, is exploited by the learner for improving
the results. By studying the literature on interactive machine learning (IML)
systems, Section 5.4 showed that AMLLEARNER supports the most desired
interactive features.
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RQ2: How to adapt database-based approaches for AML-based engineering so that
they become AutomationML-centric while adhering to the foundations of database
theory?

The motivation of RQ2 was driven by the recent advances from database research. The
second part of the thesis provides an answer to RQ2 following the Query by Example
(QBE) paradigm.

• Chapter 7 investigated the problem of AML data access. In contrast to the
conventional approach that relies on the API of an AML engine, Section 7.2
introduced the AML Query Template (AQT) for describing the desired query using
native AML models, and Section 7.3 presented algorithms for translating AQTs
into XPath and XQuery programs. AQT has two design principles. First, it aims at
domain experts who are familiar with AML but unskilled in programming.
Second, AQT is inspired by the QBE approaches for XML data exchange and has
a tree pattern based semantics. The study of essential requirements for querying
AML showed that AQT has rich modeling features while being intuitive to AML
users.

• Based on the results of Chapter 7, Chapter 8 extended AQT for exchanging AML
data using the same methodology. First, a systematic analysis of the requirements
for AML data exchange is conducted in Section 8.1. Second, a data exchange
setting is developed for AML, which is based on the foundations of database
theories. The theoretical study provided necessary notions for the design of the
extension and a guideline for the implementation. Based on the formal setting,
Section 8.3 presented the syntax and semantics extensions of AQT. Finally,
algorithms for query translation are developed in Section 8.4. The comparison
with the related work showed that AQT is more suitable for data exchange tasks in
AML-based engineering.

9.2. Future Work

Despite the achievements as described above, future work in several aspects can be
considered.

Better concept learning algorithms. First, the learning algorithms presented in
Chapter 4 are based on top-down refinement operators. However, bottom-up approaches
might be more effective to learn complex concepts from a small set of examples [39].
Moreover, bottom-up approaches do not necessarily require negative examples which
can be more suitable for learning from engineering data. In the literature of learning in
DL, mixed approaches that combine top-down and bottom-up refinements have also been
proposed, such as YINGYANG [70] and DL-FOIL [73][74]. Future work following this
direction can again utilize the structure properties of the CAEX schema for efficient
space traversal.

Second, while the experiments of RRHC showed promising results, this thesis did not
look into the “myopia” problem of hill climbing [103]. One reason is that the heuristic
of RRHC has a dynamic nature, i.e., the score of a tree node changes after its concept is
refined. In future work, it is worth investigating how the myopia problem affects RRHC
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for learning DL concepts, and techniques from Inductive Logic Programming (ILP) can be
borrowed for improving the performance of RRHC. For example, macros were introduced
for tackling the problem of non-discriminating relations [104]. A similar adaptation of
the refinement operators can thus require the consumer in any quantification (filler of an
object property) to be a specialization of the top concept >.

Third, more sophisticated strategies for space traversing can be considered. In the field
of ILP, randomized searching has been proposed [105][106]. In the same sequel, Mahsa
et al. proposed a reinforcement learning (RL) based approach for concept learning in
EL++ [107]. The core idea thereby, is to replace the deterministic top-down refinement
with a stochastic sampling of hypotheses. To this end, the refinement operator is
interpreted as actions, and a reward function is defined which has a similar effect to the
heuristic. Future work in this direction includes widening the RL-based approach for
more expressive languages, including OWL, and the investigation of better reward
functions.

Finally, techniques from parallel computing can be adopted. In particular, the learning
algorithms PARCEL [71] and SPARCEL [72] proposed by Tran et al. seem very
promising because they are built on top of DL-Learner. In other words, the top-down
learning algorithm RRHC and the refinement operator ⇢aml proposed in this thesis can be
combined with the parallel techniques for potentially better learning performance.

Employing machine learning techniques for tackling various semantic
interoperability problems. The first part of the thesis was completely based on the
ontology language OWL. However, recent advances from the machine learning field
showed appealing research directions based on different semantic formalisms, including
learning associational rules from RDF triple stores or OWL ontologies [108][109][110],
onto-relational learning in hybrid knowledge bases [111][112][113], and rule mining
from knowledge graphs [114][115][116]. The objective of these approaches is to learn
rules that reveal logical relations in the data, which can be used for achieving a higher
level of semantic interoperability. However, different approaches are based on the
underlying semantic foundation and have advantages or drawbacks regarding the
expressiveness and performance. Therefore, future work in this direction may consider
various formalisms for the semantic lifting of engineering data and choose the
appropriate techniques for solving individual interoperability problems.

Increasing the expressive power of AQT and inducing tree pattern queries. As
described in Section 7.4 and 8.5, the expressiveness of AQT can be improved by
considering common arithmetic and String operations. These features are necessary for
describing value processing relations [34]. Because XPath and XQuery provide
dedicated notions and functions for the implementation of value processing, only a
modeling approach is required for covering these features in AQT. On the one hand, an
extension of the AML standard can be discussed in the scope of Best Practice
Recommendations (BPR). On the other hand, the modeling approach proposed by Bihani
et al. [51] can be adopted as an ad-hoc solution. Finally, a further step based on AQT is
to employ machine learning techniques for query induction. For example, Cohen and
Weiss studied the complexity of learning tree patterns from example graphs [117]. In this
regard, one interesting question is whether AQTs for data access can be learned because
ACM and AQT share a very similar structure. However, future work needs to investigate
the complexity of learning the descendant axis, which could lead to performance issues
during inference. Another related research direction is the reverse-engineering of
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SPARQL queries [118][119], which can be seen as a more advanced solution to the
induction of tree patterns.
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