3,511 research outputs found

    Dependability Analysis of Control Systems using SystemC and Statistical Model Checking

    Get PDF
    Stochastic Petri nets are commonly used for modeling distributed systems in order to study their performance and dependability. This paper proposes a realization of stochastic Petri nets in SystemC for modeling large embedded control systems. Then statistical model checking is used to analyze the dependability of the constructed model. Our verification framework allows users to express a wide range of useful properties to be verified which is illustrated through a case study

    Interaction protocols for cross-organisational workflows

    Get PDF
    Workflow technologies are widely used in industry and commerce to assist in the specification, execution and completion of well defined processes within organisations. As industrial and commercial relations have evolved, based on advances on information and communications technologies, cross-organisational workflow integration has become an important issue. Since organisations can have very different workflows, the creation of compatible workflows so that organisations can collaborate and/or carry out mutual transactions automatically in an integrated fashion can be a very complex and time consuming process. As a consequence, the development of technologies to support the creation and execution of compatible workflows is a most relevant issue. In the present article we introduce the JamSession coordination platform as a tool to implement cross-organisational workflow integration. JamSession is declarative and based on algebraic specification methods, and therefore workflow integration implemented using this platform can profit from formal behavioural analysis, based on which desired features and properties can be verified and/or obtained

    Integration of an object formalism within a hybrid dynamic simulation environment

    Get PDF
    PrODHyS is a general object-oriented environment which provides common and reusable components designed for the development and the management of dynamic simulation of systems engineering. Its major characteristic is its ability to simulate processes described by a hybrid model. In this framework, this paper focuses on the "Object Differential Petri Net" (ODPN) formalism integrated within PrODHyS. The use of this formalism is illustrated through a didactic example relating to the field of Chemical Process System Engineering (PSE)

    Reconciling a component and process view

    Full text link
    In many cases we need to represent on the same abstraction level not only system components but also processes within the system, and if for both representation different frameworks are used, the system model becomes hard to read and to understand. We suggest a solution how to cover this gap and to reconcile component and process views on system representation: a formal framework that gives the advantage of solving design problems for large-scale component systems.Comment: Preprint, 7th International Workshop on Modeling in Software Engineering (MiSE) at ICSE 201

    Repotting the Geraniums: On Nested Graph Transformation Rules

    Get PDF
    We propose a scheme for rule amalgamation based on nested graph predicates. Essentially, we extend all the graphs in such a predicate with right hand sides. Whenever such an enriched nested predicate matches (i.e., is satisfied by) a given host graph, this results in many individual match morphisms, and thus many “small” rule applications. The total effect is described by the amalgamated rule. This makes for a smooth, uniform and very powerful amalgamation scheme, which we demonstrate on a number of examples. Among the examples is the following, which we believe to be inexpressible in very few other parallel rule formalism proposed in the literature: repot all flowering geraniums whose pots have cracked.\u

    Modularity for Security-Sensitive Workflows

    Full text link
    An established trend in software engineering insists on using components (sometimes also called services or packages) to encapsulate a set of related functionalities or data. By defining interfaces specifying what functionalities they provide or use, components can be combined with others to form more complex components. In this way, IT systems can be designed by mostly re-using existing components and developing new ones to provide new functionalities. In this paper, we introduce a notion of component and a combination mechanism for an important class of software artifacts, called security-sensitive workflows. These are business processes in which execution constraints on the tasks are complemented with authorization constraints (e.g., Separation of Duty) and authorization policies (constraining which users can execute which tasks). We show how well-known workflow execution patterns can be simulated by our combination mechanism and how authorization constraints can also be imposed across components. Then, we demonstrate the usefulness of our notion of component by showing (i) the scalability of a technique for the synthesis of run-time monitors for security-sensitive workflows and (ii) the design of a plug-in for the re-use of workflows and related run-time monitors inside an editor for security-sensitive workflows

    Artifact Lifecycle Discovery

    Get PDF
    Artifact-centric modeling is a promising approach for modeling business processes based on the so-called business artifacts - key entities driving the company's operations and whose lifecycles define the overall business process. While artifact-centric modeling shows significant advantages, the overwhelming majority of existing process mining methods cannot be applied (directly) as they are tailored to discover monolithic process models. This paper addresses the problem by proposing a chain of methods that can be applied to discover artifact lifecycle models in Guard-Stage-Milestone notation. We decompose the problem in such a way that a wide range of existing (non-artifact-centric) process discovery and analysis methods can be reused in a flexible manner. The methods presented in this paper are implemented as software plug-ins for ProM, a generic open-source framework and architecture for implementing process mining tools

    Extended Connectors: Structuring Glue Operators in BIP

    Get PDF
    Based on a variation of the BIP operational semantics using the offer predicate introduced in our previous work, we extend the algebras used to model glue operators in BIP to encompass priorities. This extension uses the Algebra of Causal Interaction Trees, T(P), as a pivot: existing transformations automatically provide the extensions for the Algebra of Connectors. We then extend the axiomatisation of T(P), since the equivalence induced by the new operational semantics is weaker than that induced by the interaction semantics. This extension leads to canonical normal forms for all structures and to a simplification of the algorithm for the synthesis of connectors from Boolean coordination constraints.Comment: In Proceedings ICE 2013, arXiv:1310.401
    • 

    corecore